1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * cacheinfo support - processor cache information via sysfs
4 *
5 * Based on arch/x86/kernel/cpu/intel_cacheinfo.c
6 * Author: Sudeep Holla <sudeep.holla@arm.com>
7 */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/acpi.h>
11 #include <linux/bitops.h>
12 #include <linux/cacheinfo.h>
13 #include <linux/compiler.h>
14 #include <linux/cpu.h>
15 #include <linux/device.h>
16 #include <linux/init.h>
17 #include <linux/of.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/smp.h>
21 #include <linux/sysfs.h>
22
23 /* pointer to per cpu cacheinfo */
24 static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo);
25 #define ci_cacheinfo(cpu) (&per_cpu(ci_cpu_cacheinfo, cpu))
26 #define cache_leaves(cpu) (ci_cacheinfo(cpu)->num_leaves)
27 #define per_cpu_cacheinfo(cpu) (ci_cacheinfo(cpu)->info_list)
28
get_cpu_cacheinfo(unsigned int cpu)29 struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu)
30 {
31 return ci_cacheinfo(cpu);
32 }
33
34 #ifdef CONFIG_OF
cache_leaves_are_shared(struct cacheinfo * this_leaf,struct cacheinfo * sib_leaf)35 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
36 struct cacheinfo *sib_leaf)
37 {
38 return sib_leaf->fw_token == this_leaf->fw_token;
39 }
40
41 /* OF properties to query for a given cache type */
42 struct cache_type_info {
43 const char *size_prop;
44 const char *line_size_props[2];
45 const char *nr_sets_prop;
46 };
47
48 static const struct cache_type_info cache_type_info[] = {
49 {
50 .size_prop = "cache-size",
51 .line_size_props = { "cache-line-size",
52 "cache-block-size", },
53 .nr_sets_prop = "cache-sets",
54 }, {
55 .size_prop = "i-cache-size",
56 .line_size_props = { "i-cache-line-size",
57 "i-cache-block-size", },
58 .nr_sets_prop = "i-cache-sets",
59 }, {
60 .size_prop = "d-cache-size",
61 .line_size_props = { "d-cache-line-size",
62 "d-cache-block-size", },
63 .nr_sets_prop = "d-cache-sets",
64 },
65 };
66
get_cacheinfo_idx(enum cache_type type)67 static inline int get_cacheinfo_idx(enum cache_type type)
68 {
69 if (type == CACHE_TYPE_UNIFIED)
70 return 0;
71 return type;
72 }
73
cache_size(struct cacheinfo * this_leaf,struct device_node * np)74 static void cache_size(struct cacheinfo *this_leaf, struct device_node *np)
75 {
76 const char *propname;
77 int ct_idx;
78
79 ct_idx = get_cacheinfo_idx(this_leaf->type);
80 propname = cache_type_info[ct_idx].size_prop;
81
82 if (of_property_read_u32(np, propname, &this_leaf->size))
83 this_leaf->size = 0;
84 }
85
86 /* not cache_line_size() because that's a macro in include/linux/cache.h */
cache_get_line_size(struct cacheinfo * this_leaf,struct device_node * np)87 static void cache_get_line_size(struct cacheinfo *this_leaf,
88 struct device_node *np)
89 {
90 int i, lim, ct_idx;
91
92 ct_idx = get_cacheinfo_idx(this_leaf->type);
93 lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props);
94
95 for (i = 0; i < lim; i++) {
96 int ret;
97 u32 line_size;
98 const char *propname;
99
100 propname = cache_type_info[ct_idx].line_size_props[i];
101 ret = of_property_read_u32(np, propname, &line_size);
102 if (!ret) {
103 this_leaf->coherency_line_size = line_size;
104 break;
105 }
106 }
107 }
108
cache_nr_sets(struct cacheinfo * this_leaf,struct device_node * np)109 static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np)
110 {
111 const char *propname;
112 int ct_idx;
113
114 ct_idx = get_cacheinfo_idx(this_leaf->type);
115 propname = cache_type_info[ct_idx].nr_sets_prop;
116
117 if (of_property_read_u32(np, propname, &this_leaf->number_of_sets))
118 this_leaf->number_of_sets = 0;
119 }
120
cache_associativity(struct cacheinfo * this_leaf)121 static void cache_associativity(struct cacheinfo *this_leaf)
122 {
123 unsigned int line_size = this_leaf->coherency_line_size;
124 unsigned int nr_sets = this_leaf->number_of_sets;
125 unsigned int size = this_leaf->size;
126
127 /*
128 * If the cache is fully associative, there is no need to
129 * check the other properties.
130 */
131 if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0))
132 this_leaf->ways_of_associativity = (size / nr_sets) / line_size;
133 }
134
cache_node_is_unified(struct cacheinfo * this_leaf,struct device_node * np)135 static bool cache_node_is_unified(struct cacheinfo *this_leaf,
136 struct device_node *np)
137 {
138 return of_property_read_bool(np, "cache-unified");
139 }
140
cache_of_set_props(struct cacheinfo * this_leaf,struct device_node * np)141 static void cache_of_set_props(struct cacheinfo *this_leaf,
142 struct device_node *np)
143 {
144 /*
145 * init_cache_level must setup the cache level correctly
146 * overriding the architecturally specified levels, so
147 * if type is NONE at this stage, it should be unified
148 */
149 if (this_leaf->type == CACHE_TYPE_NOCACHE &&
150 cache_node_is_unified(this_leaf, np))
151 this_leaf->type = CACHE_TYPE_UNIFIED;
152 cache_size(this_leaf, np);
153 cache_get_line_size(this_leaf, np);
154 cache_nr_sets(this_leaf, np);
155 cache_associativity(this_leaf);
156 }
157
cache_setup_of_node(unsigned int cpu)158 static int cache_setup_of_node(unsigned int cpu)
159 {
160 struct device_node *np;
161 struct cacheinfo *this_leaf;
162 struct device *cpu_dev = get_cpu_device(cpu);
163 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
164 unsigned int index = 0;
165
166 /* skip if fw_token is already populated */
167 if (this_cpu_ci->info_list->fw_token) {
168 return 0;
169 }
170
171 if (!cpu_dev) {
172 pr_err("No cpu device for CPU %d\n", cpu);
173 return -ENODEV;
174 }
175 np = cpu_dev->of_node;
176 if (!np) {
177 pr_err("Failed to find cpu%d device node\n", cpu);
178 return -ENOENT;
179 }
180
181 while (index < cache_leaves(cpu)) {
182 this_leaf = this_cpu_ci->info_list + index;
183 if (this_leaf->level != 1)
184 np = of_find_next_cache_node(np);
185 else
186 np = of_node_get(np);/* cpu node itself */
187 if (!np)
188 break;
189 cache_of_set_props(this_leaf, np);
190 this_leaf->fw_token = np;
191 index++;
192 }
193
194 if (index != cache_leaves(cpu)) /* not all OF nodes populated */
195 return -ENOENT;
196
197 return 0;
198 }
199 #else
cache_setup_of_node(unsigned int cpu)200 static inline int cache_setup_of_node(unsigned int cpu) { return 0; }
cache_leaves_are_shared(struct cacheinfo * this_leaf,struct cacheinfo * sib_leaf)201 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
202 struct cacheinfo *sib_leaf)
203 {
204 /*
205 * For non-DT/ACPI systems, assume unique level 1 caches, system-wide
206 * shared caches for all other levels. This will be used only if
207 * arch specific code has not populated shared_cpu_map
208 */
209 return !(this_leaf->level == 1);
210 }
211 #endif
212
cache_setup_acpi(unsigned int cpu)213 int __weak cache_setup_acpi(unsigned int cpu)
214 {
215 return -ENOTSUPP;
216 }
217
cache_shared_cpu_map_setup(unsigned int cpu)218 static int cache_shared_cpu_map_setup(unsigned int cpu)
219 {
220 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
221 struct cacheinfo *this_leaf, *sib_leaf;
222 unsigned int index;
223 int ret = 0;
224
225 if (this_cpu_ci->cpu_map_populated)
226 return 0;
227
228 if (of_have_populated_dt())
229 ret = cache_setup_of_node(cpu);
230 else if (!acpi_disabled)
231 ret = cache_setup_acpi(cpu);
232
233 if (ret)
234 return ret;
235
236 for (index = 0; index < cache_leaves(cpu); index++) {
237 unsigned int i;
238
239 this_leaf = this_cpu_ci->info_list + index;
240 /* skip if shared_cpu_map is already populated */
241 if (!cpumask_empty(&this_leaf->shared_cpu_map))
242 continue;
243
244 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
245 for_each_online_cpu(i) {
246 struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
247
248 if (i == cpu || !sib_cpu_ci->info_list)
249 continue;/* skip if itself or no cacheinfo */
250 sib_leaf = sib_cpu_ci->info_list + index;
251 if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
252 cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map);
253 cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
254 }
255 }
256 }
257
258 return 0;
259 }
260
cache_shared_cpu_map_remove(unsigned int cpu)261 static void cache_shared_cpu_map_remove(unsigned int cpu)
262 {
263 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
264 struct cacheinfo *this_leaf, *sib_leaf;
265 unsigned int sibling, index;
266
267 for (index = 0; index < cache_leaves(cpu); index++) {
268 this_leaf = this_cpu_ci->info_list + index;
269 for_each_cpu(sibling, &this_leaf->shared_cpu_map) {
270 struct cpu_cacheinfo *sib_cpu_ci;
271
272 if (sibling == cpu) /* skip itself */
273 continue;
274
275 sib_cpu_ci = get_cpu_cacheinfo(sibling);
276 if (!sib_cpu_ci->info_list)
277 continue;
278
279 sib_leaf = sib_cpu_ci->info_list + index;
280 cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map);
281 cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map);
282 }
283 if (of_have_populated_dt())
284 of_node_put(this_leaf->fw_token);
285 }
286 }
287
free_cache_attributes(unsigned int cpu)288 static void free_cache_attributes(unsigned int cpu)
289 {
290 if (!per_cpu_cacheinfo(cpu))
291 return;
292
293 cache_shared_cpu_map_remove(cpu);
294
295 kfree(per_cpu_cacheinfo(cpu));
296 per_cpu_cacheinfo(cpu) = NULL;
297 }
298
init_cache_level(unsigned int cpu)299 int __weak init_cache_level(unsigned int cpu)
300 {
301 return -ENOENT;
302 }
303
populate_cache_leaves(unsigned int cpu)304 int __weak populate_cache_leaves(unsigned int cpu)
305 {
306 return -ENOENT;
307 }
308
detect_cache_attributes(unsigned int cpu)309 static int detect_cache_attributes(unsigned int cpu)
310 {
311 int ret;
312
313 if (init_cache_level(cpu) || !cache_leaves(cpu))
314 return -ENOENT;
315
316 per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu),
317 sizeof(struct cacheinfo), GFP_KERNEL);
318 if (per_cpu_cacheinfo(cpu) == NULL)
319 return -ENOMEM;
320
321 /*
322 * populate_cache_leaves() may completely setup the cache leaves and
323 * shared_cpu_map or it may leave it partially setup.
324 */
325 ret = populate_cache_leaves(cpu);
326 if (ret)
327 goto free_ci;
328 /*
329 * For systems using DT for cache hierarchy, fw_token
330 * and shared_cpu_map will be set up here only if they are
331 * not populated already
332 */
333 ret = cache_shared_cpu_map_setup(cpu);
334 if (ret) {
335 pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu);
336 goto free_ci;
337 }
338
339 return 0;
340
341 free_ci:
342 free_cache_attributes(cpu);
343 return ret;
344 }
345
346 /* pointer to cpuX/cache device */
347 static DEFINE_PER_CPU(struct device *, ci_cache_dev);
348 #define per_cpu_cache_dev(cpu) (per_cpu(ci_cache_dev, cpu))
349
350 static cpumask_t cache_dev_map;
351
352 /* pointer to array of devices for cpuX/cache/indexY */
353 static DEFINE_PER_CPU(struct device **, ci_index_dev);
354 #define per_cpu_index_dev(cpu) (per_cpu(ci_index_dev, cpu))
355 #define per_cache_index_dev(cpu, idx) ((per_cpu_index_dev(cpu))[idx])
356
357 #define show_one(file_name, object) \
358 static ssize_t file_name##_show(struct device *dev, \
359 struct device_attribute *attr, char *buf) \
360 { \
361 struct cacheinfo *this_leaf = dev_get_drvdata(dev); \
362 return sprintf(buf, "%u\n", this_leaf->object); \
363 }
364
365 show_one(id, id);
366 show_one(level, level);
367 show_one(coherency_line_size, coherency_line_size);
368 show_one(number_of_sets, number_of_sets);
369 show_one(physical_line_partition, physical_line_partition);
370 show_one(ways_of_associativity, ways_of_associativity);
371
size_show(struct device * dev,struct device_attribute * attr,char * buf)372 static ssize_t size_show(struct device *dev,
373 struct device_attribute *attr, char *buf)
374 {
375 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
376
377 return sprintf(buf, "%uK\n", this_leaf->size >> 10);
378 }
379
shared_cpumap_show_func(struct device * dev,bool list,char * buf)380 static ssize_t shared_cpumap_show_func(struct device *dev, bool list, char *buf)
381 {
382 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
383 const struct cpumask *mask = &this_leaf->shared_cpu_map;
384
385 return cpumap_print_to_pagebuf(list, buf, mask);
386 }
387
shared_cpu_map_show(struct device * dev,struct device_attribute * attr,char * buf)388 static ssize_t shared_cpu_map_show(struct device *dev,
389 struct device_attribute *attr, char *buf)
390 {
391 return shared_cpumap_show_func(dev, false, buf);
392 }
393
shared_cpu_list_show(struct device * dev,struct device_attribute * attr,char * buf)394 static ssize_t shared_cpu_list_show(struct device *dev,
395 struct device_attribute *attr, char *buf)
396 {
397 return shared_cpumap_show_func(dev, true, buf);
398 }
399
type_show(struct device * dev,struct device_attribute * attr,char * buf)400 static ssize_t type_show(struct device *dev,
401 struct device_attribute *attr, char *buf)
402 {
403 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
404
405 switch (this_leaf->type) {
406 case CACHE_TYPE_DATA:
407 return sprintf(buf, "Data\n");
408 case CACHE_TYPE_INST:
409 return sprintf(buf, "Instruction\n");
410 case CACHE_TYPE_UNIFIED:
411 return sprintf(buf, "Unified\n");
412 default:
413 return -EINVAL;
414 }
415 }
416
allocation_policy_show(struct device * dev,struct device_attribute * attr,char * buf)417 static ssize_t allocation_policy_show(struct device *dev,
418 struct device_attribute *attr, char *buf)
419 {
420 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
421 unsigned int ci_attr = this_leaf->attributes;
422 int n = 0;
423
424 if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE))
425 n = sprintf(buf, "ReadWriteAllocate\n");
426 else if (ci_attr & CACHE_READ_ALLOCATE)
427 n = sprintf(buf, "ReadAllocate\n");
428 else if (ci_attr & CACHE_WRITE_ALLOCATE)
429 n = sprintf(buf, "WriteAllocate\n");
430 return n;
431 }
432
write_policy_show(struct device * dev,struct device_attribute * attr,char * buf)433 static ssize_t write_policy_show(struct device *dev,
434 struct device_attribute *attr, char *buf)
435 {
436 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
437 unsigned int ci_attr = this_leaf->attributes;
438 int n = 0;
439
440 if (ci_attr & CACHE_WRITE_THROUGH)
441 n = sprintf(buf, "WriteThrough\n");
442 else if (ci_attr & CACHE_WRITE_BACK)
443 n = sprintf(buf, "WriteBack\n");
444 return n;
445 }
446
447 static DEVICE_ATTR_RO(id);
448 static DEVICE_ATTR_RO(level);
449 static DEVICE_ATTR_RO(type);
450 static DEVICE_ATTR_RO(coherency_line_size);
451 static DEVICE_ATTR_RO(ways_of_associativity);
452 static DEVICE_ATTR_RO(number_of_sets);
453 static DEVICE_ATTR_RO(size);
454 static DEVICE_ATTR_RO(allocation_policy);
455 static DEVICE_ATTR_RO(write_policy);
456 static DEVICE_ATTR_RO(shared_cpu_map);
457 static DEVICE_ATTR_RO(shared_cpu_list);
458 static DEVICE_ATTR_RO(physical_line_partition);
459
460 static struct attribute *cache_default_attrs[] = {
461 &dev_attr_id.attr,
462 &dev_attr_type.attr,
463 &dev_attr_level.attr,
464 &dev_attr_shared_cpu_map.attr,
465 &dev_attr_shared_cpu_list.attr,
466 &dev_attr_coherency_line_size.attr,
467 &dev_attr_ways_of_associativity.attr,
468 &dev_attr_number_of_sets.attr,
469 &dev_attr_size.attr,
470 &dev_attr_allocation_policy.attr,
471 &dev_attr_write_policy.attr,
472 &dev_attr_physical_line_partition.attr,
473 NULL
474 };
475
476 static umode_t
cache_default_attrs_is_visible(struct kobject * kobj,struct attribute * attr,int unused)477 cache_default_attrs_is_visible(struct kobject *kobj,
478 struct attribute *attr, int unused)
479 {
480 struct device *dev = kobj_to_dev(kobj);
481 struct cacheinfo *this_leaf = dev_get_drvdata(dev);
482 const struct cpumask *mask = &this_leaf->shared_cpu_map;
483 umode_t mode = attr->mode;
484
485 if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID))
486 return mode;
487 if ((attr == &dev_attr_type.attr) && this_leaf->type)
488 return mode;
489 if ((attr == &dev_attr_level.attr) && this_leaf->level)
490 return mode;
491 if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask))
492 return mode;
493 if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask))
494 return mode;
495 if ((attr == &dev_attr_coherency_line_size.attr) &&
496 this_leaf->coherency_line_size)
497 return mode;
498 if ((attr == &dev_attr_ways_of_associativity.attr) &&
499 this_leaf->size) /* allow 0 = full associativity */
500 return mode;
501 if ((attr == &dev_attr_number_of_sets.attr) &&
502 this_leaf->number_of_sets)
503 return mode;
504 if ((attr == &dev_attr_size.attr) && this_leaf->size)
505 return mode;
506 if ((attr == &dev_attr_write_policy.attr) &&
507 (this_leaf->attributes & CACHE_WRITE_POLICY_MASK))
508 return mode;
509 if ((attr == &dev_attr_allocation_policy.attr) &&
510 (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK))
511 return mode;
512 if ((attr == &dev_attr_physical_line_partition.attr) &&
513 this_leaf->physical_line_partition)
514 return mode;
515
516 return 0;
517 }
518
519 static const struct attribute_group cache_default_group = {
520 .attrs = cache_default_attrs,
521 .is_visible = cache_default_attrs_is_visible,
522 };
523
524 static const struct attribute_group *cache_default_groups[] = {
525 &cache_default_group,
526 NULL,
527 };
528
529 static const struct attribute_group *cache_private_groups[] = {
530 &cache_default_group,
531 NULL, /* Place holder for private group */
532 NULL,
533 };
534
535 const struct attribute_group *
cache_get_priv_group(struct cacheinfo * this_leaf)536 __weak cache_get_priv_group(struct cacheinfo *this_leaf)
537 {
538 return NULL;
539 }
540
541 static const struct attribute_group **
cache_get_attribute_groups(struct cacheinfo * this_leaf)542 cache_get_attribute_groups(struct cacheinfo *this_leaf)
543 {
544 const struct attribute_group *priv_group =
545 cache_get_priv_group(this_leaf);
546
547 if (!priv_group)
548 return cache_default_groups;
549
550 if (!cache_private_groups[1])
551 cache_private_groups[1] = priv_group;
552
553 return cache_private_groups;
554 }
555
556 /* Add/Remove cache interface for CPU device */
cpu_cache_sysfs_exit(unsigned int cpu)557 static void cpu_cache_sysfs_exit(unsigned int cpu)
558 {
559 int i;
560 struct device *ci_dev;
561
562 if (per_cpu_index_dev(cpu)) {
563 for (i = 0; i < cache_leaves(cpu); i++) {
564 ci_dev = per_cache_index_dev(cpu, i);
565 if (!ci_dev)
566 continue;
567 device_unregister(ci_dev);
568 }
569 kfree(per_cpu_index_dev(cpu));
570 per_cpu_index_dev(cpu) = NULL;
571 }
572 device_unregister(per_cpu_cache_dev(cpu));
573 per_cpu_cache_dev(cpu) = NULL;
574 }
575
cpu_cache_sysfs_init(unsigned int cpu)576 static int cpu_cache_sysfs_init(unsigned int cpu)
577 {
578 struct device *dev = get_cpu_device(cpu);
579
580 if (per_cpu_cacheinfo(cpu) == NULL)
581 return -ENOENT;
582
583 per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache");
584 if (IS_ERR(per_cpu_cache_dev(cpu)))
585 return PTR_ERR(per_cpu_cache_dev(cpu));
586
587 /* Allocate all required memory */
588 per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu),
589 sizeof(struct device *), GFP_KERNEL);
590 if (unlikely(per_cpu_index_dev(cpu) == NULL))
591 goto err_out;
592
593 return 0;
594
595 err_out:
596 cpu_cache_sysfs_exit(cpu);
597 return -ENOMEM;
598 }
599
cache_add_dev(unsigned int cpu)600 static int cache_add_dev(unsigned int cpu)
601 {
602 unsigned int i;
603 int rc;
604 struct device *ci_dev, *parent;
605 struct cacheinfo *this_leaf;
606 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
607 const struct attribute_group **cache_groups;
608
609 rc = cpu_cache_sysfs_init(cpu);
610 if (unlikely(rc < 0))
611 return rc;
612
613 parent = per_cpu_cache_dev(cpu);
614 for (i = 0; i < cache_leaves(cpu); i++) {
615 this_leaf = this_cpu_ci->info_list + i;
616 if (this_leaf->disable_sysfs)
617 continue;
618 cache_groups = cache_get_attribute_groups(this_leaf);
619 ci_dev = cpu_device_create(parent, this_leaf, cache_groups,
620 "index%1u", i);
621 if (IS_ERR(ci_dev)) {
622 rc = PTR_ERR(ci_dev);
623 goto err;
624 }
625 per_cache_index_dev(cpu, i) = ci_dev;
626 }
627 cpumask_set_cpu(cpu, &cache_dev_map);
628
629 return 0;
630 err:
631 cpu_cache_sysfs_exit(cpu);
632 return rc;
633 }
634
cacheinfo_cpu_online(unsigned int cpu)635 static int cacheinfo_cpu_online(unsigned int cpu)
636 {
637 int rc = detect_cache_attributes(cpu);
638
639 if (rc)
640 return rc;
641 rc = cache_add_dev(cpu);
642 if (rc)
643 free_cache_attributes(cpu);
644 return rc;
645 }
646
cacheinfo_cpu_pre_down(unsigned int cpu)647 static int cacheinfo_cpu_pre_down(unsigned int cpu)
648 {
649 if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map))
650 cpu_cache_sysfs_exit(cpu);
651
652 free_cache_attributes(cpu);
653 return 0;
654 }
655
cacheinfo_sysfs_init(void)656 static int __init cacheinfo_sysfs_init(void)
657 {
658 return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "base/cacheinfo:online",
659 cacheinfo_cpu_online, cacheinfo_cpu_pre_down);
660 }
661 device_initcall(cacheinfo_sysfs_init);
662