1 /*
2   Madge Ambassador ATM Adapter driver.
3   Copyright (C) 1995-1999  Madge Networks Ltd.
4 
5   This program is free software; you can redistribute it and/or modify
6   it under the terms of the GNU General Public License as published by
7   the Free Software Foundation; either version 2 of the License, or
8   (at your option) any later version.
9 
10   This program is distributed in the hope that it will be useful,
11   but WITHOUT ANY WARRANTY; without even the implied warranty of
12   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13   GNU General Public License for more details.
14 
15   You should have received a copy of the GNU General Public License
16   along with this program; if not, write to the Free Software
17   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18 
19   The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
20   system and in the file COPYING in the Linux kernel source.
21 */
22 
23 /* * dedicated to the memory of Graham Gordon 1971-1998 * */
24 
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/pci.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/ioport.h>
31 #include <linux/atmdev.h>
32 #include <linux/delay.h>
33 #include <linux/interrupt.h>
34 #include <linux/poison.h>
35 #include <linux/bitrev.h>
36 #include <linux/mutex.h>
37 #include <linux/firmware.h>
38 #include <linux/ihex.h>
39 #include <linux/slab.h>
40 
41 #include <linux/atomic.h>
42 #include <asm/io.h>
43 #include <asm/byteorder.h>
44 
45 #include "ambassador.h"
46 
47 #define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
48 #define description_string "Madge ATM Ambassador driver"
49 #define version_string "1.2.4"
50 
show_version(void)51 static inline void __init show_version (void) {
52   printk ("%s version %s\n", description_string, version_string);
53 }
54 
55 /*
56 
57   Theory of Operation
58 
59   I Hardware, detection, initialisation and shutdown.
60 
61   1. Supported Hardware
62 
63   This driver is for the PCI ATMizer-based Ambassador card (except
64   very early versions). It is not suitable for the similar EISA "TR7"
65   card. Commercially, both cards are known as Collage Server ATM
66   adapters.
67 
68   The loader supports image transfer to the card, image start and few
69   other miscellaneous commands.
70 
71   Only AAL5 is supported with vpi = 0 and vci in the range 0 to 1023.
72 
73   The cards are big-endian.
74 
75   2. Detection
76 
77   Standard PCI stuff, the early cards are detected and rejected.
78 
79   3. Initialisation
80 
81   The cards are reset and the self-test results are checked. The
82   microcode image is then transferred and started. This waits for a
83   pointer to a descriptor containing details of the host-based queues
84   and buffers and various parameters etc. Once they are processed
85   normal operations may begin. The BIA is read using a microcode
86   command.
87 
88   4. Shutdown
89 
90   This may be accomplished either by a card reset or via the microcode
91   shutdown command. Further investigation required.
92 
93   5. Persistent state
94 
95   The card reset does not affect PCI configuration (good) or the
96   contents of several other "shared run-time registers" (bad) which
97   include doorbell and interrupt control as well as EEPROM and PCI
98   control. The driver must be careful when modifying these registers
99   not to touch bits it does not use and to undo any changes at exit.
100 
101   II Driver software
102 
103   0. Generalities
104 
105   The adapter is quite intelligent (fast) and has a simple interface
106   (few features). VPI is always zero, 1024 VCIs are supported. There
107   is limited cell rate support. UBR channels can be capped and ABR
108   (explicit rate, but not EFCI) is supported. There is no CBR or VBR
109   support.
110 
111   1. Driver <-> Adapter Communication
112 
113   Apart from the basic loader commands, the driver communicates
114   through three entities: the command queue (CQ), the transmit queue
115   pair (TXQ) and the receive queue pairs (RXQ). These three entities
116   are set up by the host and passed to the microcode just after it has
117   been started.
118 
119   All queues are host-based circular queues. They are contiguous and
120   (due to hardware limitations) have some restrictions as to their
121   locations in (bus) memory. They are of the "full means the same as
122   empty so don't do that" variety since the adapter uses pointers
123   internally.
124 
125   The queue pairs work as follows: one queue is for supply to the
126   adapter, items in it are pending and are owned by the adapter; the
127   other is the queue for return from the adapter, items in it have
128   been dealt with by the adapter. The host adds items to the supply
129   (TX descriptors and free RX buffer descriptors) and removes items
130   from the return (TX and RX completions). The adapter deals with out
131   of order completions.
132 
133   Interrupts (card to host) and the doorbell (host to card) are used
134   for signalling.
135 
136   1. CQ
137 
138   This is to communicate "open VC", "close VC", "get stats" etc. to
139   the adapter. At most one command is retired every millisecond by the
140   card. There is no out of order completion or notification. The
141   driver needs to check the return code of the command, waiting as
142   appropriate.
143 
144   2. TXQ
145 
146   TX supply items are of variable length (scatter gather support) and
147   so the queue items are (more or less) pointers to the real thing.
148   Each TX supply item contains a unique, host-supplied handle (the skb
149   bus address seems most sensible as this works for Alphas as well,
150   there is no need to do any endian conversions on the handles).
151 
152   TX return items consist of just the handles above.
153 
154   3. RXQ (up to 4 of these with different lengths and buffer sizes)
155 
156   RX supply items consist of a unique, host-supplied handle (the skb
157   bus address again) and a pointer to the buffer data area.
158 
159   RX return items consist of the handle above, the VC, length and a
160   status word. This just screams "oh so easy" doesn't it?
161 
162   Note on RX pool sizes:
163 
164   Each pool should have enough buffers to handle a back-to-back stream
165   of minimum sized frames on a single VC. For example:
166 
167     frame spacing = 3us (about right)
168 
169     delay = IRQ lat + RX handling + RX buffer replenish = 20 (us)  (a guess)
170 
171     min number of buffers for one VC = 1 + delay/spacing (buffers)
172 
173     delay/spacing = latency = (20+2)/3 = 7 (buffers)  (rounding up)
174 
175   The 20us delay assumes that there is no need to sleep; if we need to
176   sleep to get buffers we are going to drop frames anyway.
177 
178   In fact, each pool should have enough buffers to support the
179   simultaneous reassembly of a separate frame on each VC and cope with
180   the case in which frames complete in round robin cell fashion on
181   each VC.
182 
183   Only one frame can complete at each cell arrival, so if "n" VCs are
184   open, the worst case is to have them all complete frames together
185   followed by all starting new frames together.
186 
187     desired number of buffers = n + delay/spacing
188 
189   These are the extreme requirements, however, they are "n+k" for some
190   "k" so we have only the constant to choose. This is the argument
191   rx_lats which current defaults to 7.
192 
193   Actually, "n ? n+k : 0" is better and this is what is implemented,
194   subject to the limit given by the pool size.
195 
196   4. Driver locking
197 
198   Simple spinlocks are used around the TX and RX queue mechanisms.
199   Anyone with a faster, working method is welcome to implement it.
200 
201   The adapter command queue is protected with a spinlock. We always
202   wait for commands to complete.
203 
204   A more complex form of locking is used around parts of the VC open
205   and close functions. There are three reasons for a lock: 1. we need
206   to do atomic rate reservation and release (not used yet), 2. Opening
207   sometimes involves two adapter commands which must not be separated
208   by another command on the same VC, 3. the changes to RX pool size
209   must be atomic. The lock needs to work over context switches, so we
210   use a semaphore.
211 
212   III Hardware Features and Microcode Bugs
213 
214   1. Byte Ordering
215 
216   *%^"$&%^$*&^"$(%^$#&^%$(&#%$*(&^#%!"!"!*!
217 
218   2. Memory access
219 
220   All structures that are not accessed using DMA must be 4-byte
221   aligned (not a problem) and must not cross 4MB boundaries.
222 
223   There is a DMA memory hole at E0000000-E00000FF (groan).
224 
225   TX fragments (DMA read) must not cross 4MB boundaries (would be 16MB
226   but for a hardware bug).
227 
228   RX buffers (DMA write) must not cross 16MB boundaries and must
229   include spare trailing bytes up to the next 4-byte boundary; they
230   will be written with rubbish.
231 
232   The PLX likes to prefetch; if reading up to 4 u32 past the end of
233   each TX fragment is not a problem, then TX can be made to go a
234   little faster by passing a flag at init that disables a prefetch
235   workaround. We do not pass this flag. (new microcode only)
236 
237   Now we:
238   . Note that alloc_skb rounds up size to a 16byte boundary.
239   . Ensure all areas do not traverse 4MB boundaries.
240   . Ensure all areas do not start at a E00000xx bus address.
241   (I cannot be certain, but this may always hold with Linux)
242   . Make all failures cause a loud message.
243   . Discard non-conforming SKBs (causes TX failure or RX fill delay).
244   . Discard non-conforming TX fragment descriptors (the TX fails).
245   In the future we could:
246   . Allow RX areas that traverse 4MB (but not 16MB) boundaries.
247   . Segment TX areas into some/more fragments, when necessary.
248   . Relax checks for non-DMA items (ignore hole).
249   . Give scatter-gather (iovec) requirements using ???. (?)
250 
251   3. VC close is broken (only for new microcode)
252 
253   The VC close adapter microcode command fails to do anything if any
254   frames have been received on the VC but none have been transmitted.
255   Frames continue to be reassembled and passed (with IRQ) to the
256   driver.
257 
258   IV To Do List
259 
260   . Fix bugs!
261 
262   . Timer code may be broken.
263 
264   . Deal with buggy VC close (somehow) in microcode 12.
265 
266   . Handle interrupted and/or non-blocking writes - is this a job for
267     the protocol layer?
268 
269   . Add code to break up TX fragments when they span 4MB boundaries.
270 
271   . Add SUNI phy layer (need to know where SUNI lives on card).
272 
273   . Implement a tx_alloc fn to (a) satisfy TX alignment etc. and (b)
274     leave extra headroom space for Ambassador TX descriptors.
275 
276   . Understand these elements of struct atm_vcc: recvq (proto?),
277     sleep, callback, listenq, backlog_quota, reply and user_back.
278 
279   . Adjust TX/RX skb allocation to favour IP with LANE/CLIP (configurable).
280 
281   . Impose a TX-pending limit (2?) on each VC, help avoid TX q overflow.
282 
283   . Decide whether RX buffer recycling is or can be made completely safe;
284     turn it back on. It looks like Werner is going to axe this.
285 
286   . Implement QoS changes on open VCs (involves extracting parts of VC open
287     and close into separate functions and using them to make changes).
288 
289   . Hack on command queue so that someone can issue multiple commands and wait
290     on the last one (OR only "no-op" or "wait" commands are waited for).
291 
292   . Eliminate need for while-schedule around do_command.
293 
294 */
295 
296 static void do_housekeeping (struct timer_list *t);
297 /********** globals **********/
298 
299 static unsigned short debug = 0;
300 static unsigned int cmds = 8;
301 static unsigned int txs = 32;
302 static unsigned int rxs[NUM_RX_POOLS] = { 64, 64, 64, 64 };
303 static unsigned int rxs_bs[NUM_RX_POOLS] = { 4080, 12240, 36720, 65535 };
304 static unsigned int rx_lats = 7;
305 static unsigned char pci_lat = 0;
306 
307 static const unsigned long onegigmask = -1 << 30;
308 
309 /********** access to adapter **********/
310 
wr_plain(const amb_dev * dev,size_t addr,u32 data)311 static inline void wr_plain (const amb_dev * dev, size_t addr, u32 data) {
312   PRINTD (DBG_FLOW|DBG_REGS, "wr: %08zx <- %08x", addr, data);
313 #ifdef AMB_MMIO
314   dev->membase[addr / sizeof(u32)] = data;
315 #else
316   outl (data, dev->iobase + addr);
317 #endif
318 }
319 
rd_plain(const amb_dev * dev,size_t addr)320 static inline u32 rd_plain (const amb_dev * dev, size_t addr) {
321 #ifdef AMB_MMIO
322   u32 data = dev->membase[addr / sizeof(u32)];
323 #else
324   u32 data = inl (dev->iobase + addr);
325 #endif
326   PRINTD (DBG_FLOW|DBG_REGS, "rd: %08zx -> %08x", addr, data);
327   return data;
328 }
329 
wr_mem(const amb_dev * dev,size_t addr,u32 data)330 static inline void wr_mem (const amb_dev * dev, size_t addr, u32 data) {
331   __be32 be = cpu_to_be32 (data);
332   PRINTD (DBG_FLOW|DBG_REGS, "wr: %08zx <- %08x b[%08x]", addr, data, be);
333 #ifdef AMB_MMIO
334   dev->membase[addr / sizeof(u32)] = be;
335 #else
336   outl (be, dev->iobase + addr);
337 #endif
338 }
339 
rd_mem(const amb_dev * dev,size_t addr)340 static inline u32 rd_mem (const amb_dev * dev, size_t addr) {
341 #ifdef AMB_MMIO
342   __be32 be = dev->membase[addr / sizeof(u32)];
343 #else
344   __be32 be = inl (dev->iobase + addr);
345 #endif
346   u32 data = be32_to_cpu (be);
347   PRINTD (DBG_FLOW|DBG_REGS, "rd: %08zx -> %08x b[%08x]", addr, data, be);
348   return data;
349 }
350 
351 /********** dump routines **********/
352 
dump_registers(const amb_dev * dev)353 static inline void dump_registers (const amb_dev * dev) {
354 #ifdef DEBUG_AMBASSADOR
355   if (debug & DBG_REGS) {
356     size_t i;
357     PRINTD (DBG_REGS, "reading PLX control: ");
358     for (i = 0x00; i < 0x30; i += sizeof(u32))
359       rd_mem (dev, i);
360     PRINTD (DBG_REGS, "reading mailboxes: ");
361     for (i = 0x40; i < 0x60; i += sizeof(u32))
362       rd_mem (dev, i);
363     PRINTD (DBG_REGS, "reading doorb irqev irqen reset:");
364     for (i = 0x60; i < 0x70; i += sizeof(u32))
365       rd_mem (dev, i);
366   }
367 #else
368   (void) dev;
369 #endif
370   return;
371 }
372 
dump_loader_block(volatile loader_block * lb)373 static inline void dump_loader_block (volatile loader_block * lb) {
374 #ifdef DEBUG_AMBASSADOR
375   unsigned int i;
376   PRINTDB (DBG_LOAD, "lb @ %p; res: %d, cmd: %d, pay:",
377 	   lb, be32_to_cpu (lb->result), be32_to_cpu (lb->command));
378   for (i = 0; i < MAX_COMMAND_DATA; ++i)
379     PRINTDM (DBG_LOAD, " %08x", be32_to_cpu (lb->payload.data[i]));
380   PRINTDE (DBG_LOAD, ", vld: %08x", be32_to_cpu (lb->valid));
381 #else
382   (void) lb;
383 #endif
384   return;
385 }
386 
dump_command(command * cmd)387 static inline void dump_command (command * cmd) {
388 #ifdef DEBUG_AMBASSADOR
389   unsigned int i;
390   PRINTDB (DBG_CMD, "cmd @ %p, req: %08x, pars:",
391 	   cmd, /*be32_to_cpu*/ (cmd->request));
392   for (i = 0; i < 3; ++i)
393     PRINTDM (DBG_CMD, " %08x", /*be32_to_cpu*/ (cmd->args.par[i]));
394   PRINTDE (DBG_CMD, "");
395 #else
396   (void) cmd;
397 #endif
398   return;
399 }
400 
dump_skb(char * prefix,unsigned int vc,struct sk_buff * skb)401 static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
402 #ifdef DEBUG_AMBASSADOR
403   unsigned int i;
404   unsigned char * data = skb->data;
405   PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
406   for (i=0; i<skb->len && i < 256;i++)
407     PRINTDM (DBG_DATA, "%02x ", data[i]);
408   PRINTDE (DBG_DATA,"");
409 #else
410   (void) prefix;
411   (void) vc;
412   (void) skb;
413 #endif
414   return;
415 }
416 
417 /********** check memory areas for use by Ambassador **********/
418 
419 /* see limitations under Hardware Features */
420 
check_area(void * start,size_t length)421 static int check_area (void * start, size_t length) {
422   // assumes length > 0
423   const u32 fourmegmask = -1 << 22;
424   const u32 twofivesixmask = -1 << 8;
425   const u32 starthole = 0xE0000000;
426   u32 startaddress = virt_to_bus (start);
427   u32 lastaddress = startaddress+length-1;
428   if ((startaddress ^ lastaddress) & fourmegmask ||
429       (startaddress & twofivesixmask) == starthole) {
430     PRINTK (KERN_ERR, "check_area failure: [%x,%x] - mail maintainer!",
431 	    startaddress, lastaddress);
432     return -1;
433   } else {
434     return 0;
435   }
436 }
437 
438 /********** free an skb (as per ATM device driver documentation) **********/
439 
amb_kfree_skb(struct sk_buff * skb)440 static void amb_kfree_skb (struct sk_buff * skb) {
441   if (ATM_SKB(skb)->vcc->pop) {
442     ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
443   } else {
444     dev_kfree_skb_any (skb);
445   }
446 }
447 
448 /********** TX completion **********/
449 
tx_complete(amb_dev * dev,tx_out * tx)450 static void tx_complete (amb_dev * dev, tx_out * tx) {
451   tx_simple * tx_descr = bus_to_virt (tx->handle);
452   struct sk_buff * skb = tx_descr->skb;
453 
454   PRINTD (DBG_FLOW|DBG_TX, "tx_complete %p %p", dev, tx);
455 
456   // VC layer stats
457   atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
458 
459   // free the descriptor
460   kfree (tx_descr);
461 
462   // free the skb
463   amb_kfree_skb (skb);
464 
465   dev->stats.tx_ok++;
466   return;
467 }
468 
469 /********** RX completion **********/
470 
rx_complete(amb_dev * dev,rx_out * rx)471 static void rx_complete (amb_dev * dev, rx_out * rx) {
472   struct sk_buff * skb = bus_to_virt (rx->handle);
473   u16 vc = be16_to_cpu (rx->vc);
474   // unused: u16 lec_id = be16_to_cpu (rx->lec_id);
475   u16 status = be16_to_cpu (rx->status);
476   u16 rx_len = be16_to_cpu (rx->length);
477 
478   PRINTD (DBG_FLOW|DBG_RX, "rx_complete %p %p (len=%hu)", dev, rx, rx_len);
479 
480   // XXX move this in and add to VC stats ???
481   if (!status) {
482     struct atm_vcc * atm_vcc = dev->rxer[vc];
483     dev->stats.rx.ok++;
484 
485     if (atm_vcc) {
486 
487       if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
488 
489 	if (atm_charge (atm_vcc, skb->truesize)) {
490 
491 	  // prepare socket buffer
492 	  ATM_SKB(skb)->vcc = atm_vcc;
493 	  skb_put (skb, rx_len);
494 
495 	  dump_skb ("<<<", vc, skb);
496 
497 	  // VC layer stats
498 	  atomic_inc(&atm_vcc->stats->rx);
499 	  __net_timestamp(skb);
500 	  // end of our responsibility
501 	  atm_vcc->push (atm_vcc, skb);
502 	  return;
503 
504 	} else {
505 	  // someone fix this (message), please!
506 	  PRINTD (DBG_INFO|DBG_RX, "dropped thanks to atm_charge (vc %hu, truesize %u)", vc, skb->truesize);
507 	  // drop stats incremented in atm_charge
508 	}
509 
510       } else {
511       	PRINTK (KERN_INFO, "dropped over-size frame");
512 	// should we count this?
513 	atomic_inc(&atm_vcc->stats->rx_drop);
514       }
515 
516     } else {
517       PRINTD (DBG_WARN|DBG_RX, "got frame but RX closed for channel %hu", vc);
518       // this is an adapter bug, only in new version of microcode
519     }
520 
521   } else {
522     dev->stats.rx.error++;
523     if (status & CRC_ERR)
524       dev->stats.rx.badcrc++;
525     if (status & LEN_ERR)
526       dev->stats.rx.toolong++;
527     if (status & ABORT_ERR)
528       dev->stats.rx.aborted++;
529     if (status & UNUSED_ERR)
530       dev->stats.rx.unused++;
531   }
532 
533   dev_kfree_skb_any (skb);
534   return;
535 }
536 
537 /*
538 
539   Note on queue handling.
540 
541   Here "give" and "take" refer to queue entries and a queue (pair)
542   rather than frames to or from the host or adapter. Empty frame
543   buffers are given to the RX queue pair and returned unused or
544   containing RX frames. TX frames (well, pointers to TX fragment
545   lists) are given to the TX queue pair, completions are returned.
546 
547 */
548 
549 /********** command queue **********/
550 
551 // I really don't like this, but it's the best I can do at the moment
552 
553 // also, the callers are responsible for byte order as the microcode
554 // sometimes does 16-bit accesses (yuk yuk yuk)
555 
command_do(amb_dev * dev,command * cmd)556 static int command_do (amb_dev * dev, command * cmd) {
557   amb_cq * cq = &dev->cq;
558   volatile amb_cq_ptrs * ptrs = &cq->ptrs;
559   command * my_slot;
560 
561   PRINTD (DBG_FLOW|DBG_CMD, "command_do %p", dev);
562 
563   if (test_bit (dead, &dev->flags))
564     return 0;
565 
566   spin_lock (&cq->lock);
567 
568   // if not full...
569   if (cq->pending < cq->maximum) {
570     // remember my slot for later
571     my_slot = ptrs->in;
572     PRINTD (DBG_CMD, "command in slot %p", my_slot);
573 
574     dump_command (cmd);
575 
576     // copy command in
577     *ptrs->in = *cmd;
578     cq->pending++;
579     ptrs->in = NEXTQ (ptrs->in, ptrs->start, ptrs->limit);
580 
581     // mail the command
582     wr_mem (dev, offsetof(amb_mem, mb.adapter.cmd_address), virt_to_bus (ptrs->in));
583 
584     if (cq->pending > cq->high)
585       cq->high = cq->pending;
586     spin_unlock (&cq->lock);
587 
588     // these comments were in a while-loop before, msleep removes the loop
589     // go to sleep
590     // PRINTD (DBG_CMD, "wait: sleeping %lu for command", timeout);
591     msleep(cq->pending);
592 
593     // wait for my slot to be reached (all waiters are here or above, until...)
594     while (ptrs->out != my_slot) {
595       PRINTD (DBG_CMD, "wait: command slot (now at %p)", ptrs->out);
596       set_current_state(TASK_UNINTERRUPTIBLE);
597       schedule();
598     }
599 
600     // wait on my slot (... one gets to its slot, and... )
601     while (ptrs->out->request != cpu_to_be32 (SRB_COMPLETE)) {
602       PRINTD (DBG_CMD, "wait: command slot completion");
603       set_current_state(TASK_UNINTERRUPTIBLE);
604       schedule();
605     }
606 
607     PRINTD (DBG_CMD, "command complete");
608     // update queue (... moves the queue along to the next slot)
609     spin_lock (&cq->lock);
610     cq->pending--;
611     // copy command out
612     *cmd = *ptrs->out;
613     ptrs->out = NEXTQ (ptrs->out, ptrs->start, ptrs->limit);
614     spin_unlock (&cq->lock);
615 
616     return 0;
617   } else {
618     cq->filled++;
619     spin_unlock (&cq->lock);
620     return -EAGAIN;
621   }
622 
623 }
624 
625 /********** TX queue pair **********/
626 
tx_give(amb_dev * dev,tx_in * tx)627 static int tx_give (amb_dev * dev, tx_in * tx) {
628   amb_txq * txq = &dev->txq;
629   unsigned long flags;
630 
631   PRINTD (DBG_FLOW|DBG_TX, "tx_give %p", dev);
632 
633   if (test_bit (dead, &dev->flags))
634     return 0;
635 
636   spin_lock_irqsave (&txq->lock, flags);
637 
638   if (txq->pending < txq->maximum) {
639     PRINTD (DBG_TX, "TX in slot %p", txq->in.ptr);
640 
641     *txq->in.ptr = *tx;
642     txq->pending++;
643     txq->in.ptr = NEXTQ (txq->in.ptr, txq->in.start, txq->in.limit);
644     // hand over the TX and ring the bell
645     wr_mem (dev, offsetof(amb_mem, mb.adapter.tx_address), virt_to_bus (txq->in.ptr));
646     wr_mem (dev, offsetof(amb_mem, doorbell), TX_FRAME);
647 
648     if (txq->pending > txq->high)
649       txq->high = txq->pending;
650     spin_unlock_irqrestore (&txq->lock, flags);
651     return 0;
652   } else {
653     txq->filled++;
654     spin_unlock_irqrestore (&txq->lock, flags);
655     return -EAGAIN;
656   }
657 }
658 
tx_take(amb_dev * dev)659 static int tx_take (amb_dev * dev) {
660   amb_txq * txq = &dev->txq;
661   unsigned long flags;
662 
663   PRINTD (DBG_FLOW|DBG_TX, "tx_take %p", dev);
664 
665   spin_lock_irqsave (&txq->lock, flags);
666 
667   if (txq->pending && txq->out.ptr->handle) {
668     // deal with TX completion
669     tx_complete (dev, txq->out.ptr);
670     // mark unused again
671     txq->out.ptr->handle = 0;
672     // remove item
673     txq->pending--;
674     txq->out.ptr = NEXTQ (txq->out.ptr, txq->out.start, txq->out.limit);
675 
676     spin_unlock_irqrestore (&txq->lock, flags);
677     return 0;
678   } else {
679 
680     spin_unlock_irqrestore (&txq->lock, flags);
681     return -1;
682   }
683 }
684 
685 /********** RX queue pairs **********/
686 
rx_give(amb_dev * dev,rx_in * rx,unsigned char pool)687 static int rx_give (amb_dev * dev, rx_in * rx, unsigned char pool) {
688   amb_rxq * rxq = &dev->rxq[pool];
689   unsigned long flags;
690 
691   PRINTD (DBG_FLOW|DBG_RX, "rx_give %p[%hu]", dev, pool);
692 
693   spin_lock_irqsave (&rxq->lock, flags);
694 
695   if (rxq->pending < rxq->maximum) {
696     PRINTD (DBG_RX, "RX in slot %p", rxq->in.ptr);
697 
698     *rxq->in.ptr = *rx;
699     rxq->pending++;
700     rxq->in.ptr = NEXTQ (rxq->in.ptr, rxq->in.start, rxq->in.limit);
701     // hand over the RX buffer
702     wr_mem (dev, offsetof(amb_mem, mb.adapter.rx_address[pool]), virt_to_bus (rxq->in.ptr));
703 
704     spin_unlock_irqrestore (&rxq->lock, flags);
705     return 0;
706   } else {
707     spin_unlock_irqrestore (&rxq->lock, flags);
708     return -1;
709   }
710 }
711 
rx_take(amb_dev * dev,unsigned char pool)712 static int rx_take (amb_dev * dev, unsigned char pool) {
713   amb_rxq * rxq = &dev->rxq[pool];
714   unsigned long flags;
715 
716   PRINTD (DBG_FLOW|DBG_RX, "rx_take %p[%hu]", dev, pool);
717 
718   spin_lock_irqsave (&rxq->lock, flags);
719 
720   if (rxq->pending && (rxq->out.ptr->status || rxq->out.ptr->length)) {
721     // deal with RX completion
722     rx_complete (dev, rxq->out.ptr);
723     // mark unused again
724     rxq->out.ptr->status = 0;
725     rxq->out.ptr->length = 0;
726     // remove item
727     rxq->pending--;
728     rxq->out.ptr = NEXTQ (rxq->out.ptr, rxq->out.start, rxq->out.limit);
729 
730     if (rxq->pending < rxq->low)
731       rxq->low = rxq->pending;
732     spin_unlock_irqrestore (&rxq->lock, flags);
733     return 0;
734   } else {
735     if (!rxq->pending && rxq->buffers_wanted)
736       rxq->emptied++;
737     spin_unlock_irqrestore (&rxq->lock, flags);
738     return -1;
739   }
740 }
741 
742 /********** RX Pool handling **********/
743 
744 /* pre: buffers_wanted = 0, post: pending = 0 */
drain_rx_pool(amb_dev * dev,unsigned char pool)745 static void drain_rx_pool (amb_dev * dev, unsigned char pool) {
746   amb_rxq * rxq = &dev->rxq[pool];
747 
748   PRINTD (DBG_FLOW|DBG_POOL, "drain_rx_pool %p %hu", dev, pool);
749 
750   if (test_bit (dead, &dev->flags))
751     return;
752 
753   /* we are not quite like the fill pool routines as we cannot just
754      remove one buffer, we have to remove all of them, but we might as
755      well pretend... */
756   if (rxq->pending > rxq->buffers_wanted) {
757     command cmd;
758     cmd.request = cpu_to_be32 (SRB_FLUSH_BUFFER_Q);
759     cmd.args.flush.flags = cpu_to_be32 (pool << SRB_POOL_SHIFT);
760     while (command_do (dev, &cmd))
761       schedule();
762     /* the pool may also be emptied via the interrupt handler */
763     while (rxq->pending > rxq->buffers_wanted)
764       if (rx_take (dev, pool))
765 	schedule();
766   }
767 
768   return;
769 }
770 
drain_rx_pools(amb_dev * dev)771 static void drain_rx_pools (amb_dev * dev) {
772   unsigned char pool;
773 
774   PRINTD (DBG_FLOW|DBG_POOL, "drain_rx_pools %p", dev);
775 
776   for (pool = 0; pool < NUM_RX_POOLS; ++pool)
777     drain_rx_pool (dev, pool);
778 }
779 
fill_rx_pool(amb_dev * dev,unsigned char pool,gfp_t priority)780 static void fill_rx_pool (amb_dev * dev, unsigned char pool,
781                                  gfp_t priority)
782 {
783   rx_in rx;
784   amb_rxq * rxq;
785 
786   PRINTD (DBG_FLOW|DBG_POOL, "fill_rx_pool %p %hu %x", dev, pool, priority);
787 
788   if (test_bit (dead, &dev->flags))
789     return;
790 
791   rxq = &dev->rxq[pool];
792   while (rxq->pending < rxq->maximum && rxq->pending < rxq->buffers_wanted) {
793 
794     struct sk_buff * skb = alloc_skb (rxq->buffer_size, priority);
795     if (!skb) {
796       PRINTD (DBG_SKB|DBG_POOL, "failed to allocate skb for RX pool %hu", pool);
797       return;
798     }
799     if (check_area (skb->data, skb->truesize)) {
800       dev_kfree_skb_any (skb);
801       return;
802     }
803     // cast needed as there is no %? for pointer differences
804     PRINTD (DBG_SKB, "allocated skb at %p, head %p, area %li",
805 	    skb, skb->head, (long) skb_end_offset(skb));
806     rx.handle = virt_to_bus (skb);
807     rx.host_address = cpu_to_be32 (virt_to_bus (skb->data));
808     if (rx_give (dev, &rx, pool))
809       dev_kfree_skb_any (skb);
810 
811   }
812 
813   return;
814 }
815 
816 // top up all RX pools
fill_rx_pools(amb_dev * dev)817 static void fill_rx_pools (amb_dev * dev) {
818   unsigned char pool;
819 
820   PRINTD (DBG_FLOW|DBG_POOL, "fill_rx_pools %p", dev);
821 
822   for (pool = 0; pool < NUM_RX_POOLS; ++pool)
823     fill_rx_pool (dev, pool, GFP_ATOMIC);
824 
825   return;
826 }
827 
828 /********** enable host interrupts **********/
829 
interrupts_on(amb_dev * dev)830 static void interrupts_on (amb_dev * dev) {
831   wr_plain (dev, offsetof(amb_mem, interrupt_control),
832 	    rd_plain (dev, offsetof(amb_mem, interrupt_control))
833 	    | AMB_INTERRUPT_BITS);
834 }
835 
836 /********** disable host interrupts **********/
837 
interrupts_off(amb_dev * dev)838 static void interrupts_off (amb_dev * dev) {
839   wr_plain (dev, offsetof(amb_mem, interrupt_control),
840 	    rd_plain (dev, offsetof(amb_mem, interrupt_control))
841 	    &~ AMB_INTERRUPT_BITS);
842 }
843 
844 /********** interrupt handling **********/
845 
interrupt_handler(int irq,void * dev_id)846 static irqreturn_t interrupt_handler(int irq, void *dev_id) {
847   amb_dev * dev = dev_id;
848 
849   PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler: %p", dev_id);
850 
851   {
852     u32 interrupt = rd_plain (dev, offsetof(amb_mem, interrupt));
853 
854     // for us or someone else sharing the same interrupt
855     if (!interrupt) {
856       PRINTD (DBG_IRQ, "irq not for me: %d", irq);
857       return IRQ_NONE;
858     }
859 
860     // definitely for us
861     PRINTD (DBG_IRQ, "FYI: interrupt was %08x", interrupt);
862     wr_plain (dev, offsetof(amb_mem, interrupt), -1);
863   }
864 
865   {
866     unsigned int irq_work = 0;
867     unsigned char pool;
868     for (pool = 0; pool < NUM_RX_POOLS; ++pool)
869       while (!rx_take (dev, pool))
870 	++irq_work;
871     while (!tx_take (dev))
872       ++irq_work;
873 
874     if (irq_work) {
875       fill_rx_pools (dev);
876 
877       PRINTD (DBG_IRQ, "work done: %u", irq_work);
878     } else {
879       PRINTD (DBG_IRQ|DBG_WARN, "no work done");
880     }
881   }
882 
883   PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
884   return IRQ_HANDLED;
885 }
886 
887 /********** make rate (not quite as much fun as Horizon) **********/
888 
make_rate(unsigned int rate,rounding r,u16 * bits,unsigned int * actual)889 static int make_rate (unsigned int rate, rounding r,
890 		      u16 * bits, unsigned int * actual) {
891   unsigned char exp = -1; // hush gcc
892   unsigned int man = -1;  // hush gcc
893 
894   PRINTD (DBG_FLOW|DBG_QOS, "make_rate %u", rate);
895 
896   // rates in cells per second, ITU format (nasty 16-bit floating-point)
897   // given 5-bit e and 9-bit m:
898   // rate = EITHER (1+m/2^9)*2^e    OR 0
899   // bits = EITHER 1<<14 | e<<9 | m OR 0
900   // (bit 15 is "reserved", bit 14 "non-zero")
901   // smallest rate is 0 (special representation)
902   // largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
903   // smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
904   // simple algorithm:
905   // find position of top bit, this gives e
906   // remove top bit and shift (rounding if feeling clever) by 9-e
907 
908   // ucode bug: please don't set bit 14! so 0 rate not representable
909 
910   if (rate > 0xffc00000U) {
911     // larger than largest representable rate
912 
913     if (r == round_up) {
914 	return -EINVAL;
915     } else {
916       exp = 31;
917       man = 511;
918     }
919 
920   } else if (rate) {
921     // representable rate
922 
923     exp = 31;
924     man = rate;
925 
926     // invariant: rate = man*2^(exp-31)
927     while (!(man & (1<<31))) {
928       exp = exp - 1;
929       man = man<<1;
930     }
931 
932     // man has top bit set
933     // rate = (2^31+(man-2^31))*2^(exp-31)
934     // rate = (1+(man-2^31)/2^31)*2^exp
935     man = man<<1;
936     man &= 0xffffffffU; // a nop on 32-bit systems
937     // rate = (1+man/2^32)*2^exp
938 
939     // exp is in the range 0 to 31, man is in the range 0 to 2^32-1
940     // time to lose significance... we want m in the range 0 to 2^9-1
941     // rounding presents a minor problem... we first decide which way
942     // we are rounding (based on given rounding direction and possibly
943     // the bits of the mantissa that are to be discarded).
944 
945     switch (r) {
946       case round_down: {
947 	// just truncate
948 	man = man>>(32-9);
949 	break;
950       }
951       case round_up: {
952 	// check all bits that we are discarding
953 	if (man & (~0U>>9)) {
954 	  man = (man>>(32-9)) + 1;
955 	  if (man == (1<<9)) {
956 	    // no need to check for round up outside of range
957 	    man = 0;
958 	    exp += 1;
959 	  }
960 	} else {
961 	  man = (man>>(32-9));
962 	}
963 	break;
964       }
965       case round_nearest: {
966 	// check msb that we are discarding
967 	if (man & (1<<(32-9-1))) {
968 	  man = (man>>(32-9)) + 1;
969 	  if (man == (1<<9)) {
970 	    // no need to check for round up outside of range
971 	    man = 0;
972 	    exp += 1;
973 	  }
974 	} else {
975 	  man = (man>>(32-9));
976 	}
977 	break;
978       }
979     }
980 
981   } else {
982     // zero rate - not representable
983 
984     if (r == round_down) {
985       return -EINVAL;
986     } else {
987       exp = 0;
988       man = 0;
989     }
990 
991   }
992 
993   PRINTD (DBG_QOS, "rate: man=%u, exp=%hu", man, exp);
994 
995   if (bits)
996     *bits = /* (1<<14) | */ (exp<<9) | man;
997 
998   if (actual)
999     *actual = (exp >= 9)
1000       ? (1 << exp) + (man << (exp-9))
1001       : (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
1002 
1003   return 0;
1004 }
1005 
1006 /********** Linux ATM Operations **********/
1007 
1008 // some are not yet implemented while others do not make sense for
1009 // this device
1010 
1011 /********** Open a VC **********/
1012 
amb_open(struct atm_vcc * atm_vcc)1013 static int amb_open (struct atm_vcc * atm_vcc)
1014 {
1015   int error;
1016 
1017   struct atm_qos * qos;
1018   struct atm_trafprm * txtp;
1019   struct atm_trafprm * rxtp;
1020   u16 tx_rate_bits = -1; // hush gcc
1021   u16 tx_vc_bits = -1; // hush gcc
1022   u16 tx_frame_bits = -1; // hush gcc
1023 
1024   amb_dev * dev = AMB_DEV(atm_vcc->dev);
1025   amb_vcc * vcc;
1026   unsigned char pool = -1; // hush gcc
1027   short vpi = atm_vcc->vpi;
1028   int vci = atm_vcc->vci;
1029 
1030   PRINTD (DBG_FLOW|DBG_VCC, "amb_open %x %x", vpi, vci);
1031 
1032 #ifdef ATM_VPI_UNSPEC
1033   // UNSPEC is deprecated, remove this code eventually
1034   if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
1035     PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
1036     return -EINVAL;
1037   }
1038 #endif
1039 
1040   if (!(0 <= vpi && vpi < (1<<NUM_VPI_BITS) &&
1041 	0 <= vci && vci < (1<<NUM_VCI_BITS))) {
1042     PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
1043     return -EINVAL;
1044   }
1045 
1046   qos = &atm_vcc->qos;
1047 
1048   if (qos->aal != ATM_AAL5) {
1049     PRINTD (DBG_QOS, "AAL not supported");
1050     return -EINVAL;
1051   }
1052 
1053   // traffic parameters
1054 
1055   PRINTD (DBG_QOS, "TX:");
1056   txtp = &qos->txtp;
1057   if (txtp->traffic_class != ATM_NONE) {
1058     switch (txtp->traffic_class) {
1059       case ATM_UBR: {
1060 	// we take "the PCR" as a rate-cap
1061 	int pcr = atm_pcr_goal (txtp);
1062 	if (!pcr) {
1063 	  // no rate cap
1064 	  tx_rate_bits = 0;
1065 	  tx_vc_bits = TX_UBR;
1066 	  tx_frame_bits = TX_FRAME_NOTCAP;
1067 	} else {
1068 	  rounding r;
1069 	  if (pcr < 0) {
1070 	    r = round_down;
1071 	    pcr = -pcr;
1072 	  } else {
1073 	    r = round_up;
1074 	  }
1075 	  error = make_rate (pcr, r, &tx_rate_bits, NULL);
1076 	  if (error)
1077 	    return error;
1078 	  tx_vc_bits = TX_UBR_CAPPED;
1079 	  tx_frame_bits = TX_FRAME_CAPPED;
1080 	}
1081 	break;
1082       }
1083 #if 0
1084       case ATM_ABR: {
1085 	pcr = atm_pcr_goal (txtp);
1086 	PRINTD (DBG_QOS, "pcr goal = %d", pcr);
1087 	break;
1088       }
1089 #endif
1090       default: {
1091 	// PRINTD (DBG_QOS, "request for non-UBR/ABR denied");
1092 	PRINTD (DBG_QOS, "request for non-UBR denied");
1093 	return -EINVAL;
1094       }
1095     }
1096     PRINTD (DBG_QOS, "tx_rate_bits=%hx, tx_vc_bits=%hx",
1097 	    tx_rate_bits, tx_vc_bits);
1098   }
1099 
1100   PRINTD (DBG_QOS, "RX:");
1101   rxtp = &qos->rxtp;
1102   if (rxtp->traffic_class == ATM_NONE) {
1103     // do nothing
1104   } else {
1105     // choose an RX pool (arranged in increasing size)
1106     for (pool = 0; pool < NUM_RX_POOLS; ++pool)
1107       if ((unsigned int) rxtp->max_sdu <= dev->rxq[pool].buffer_size) {
1108 	PRINTD (DBG_VCC|DBG_QOS|DBG_POOL, "chose pool %hu (max_sdu %u <= %u)",
1109 		pool, rxtp->max_sdu, dev->rxq[pool].buffer_size);
1110 	break;
1111       }
1112     if (pool == NUM_RX_POOLS) {
1113       PRINTD (DBG_WARN|DBG_VCC|DBG_QOS|DBG_POOL,
1114 	      "no pool suitable for VC (RX max_sdu %d is too large)",
1115 	      rxtp->max_sdu);
1116       return -EINVAL;
1117     }
1118 
1119     switch (rxtp->traffic_class) {
1120       case ATM_UBR: {
1121 	break;
1122       }
1123 #if 0
1124       case ATM_ABR: {
1125 	pcr = atm_pcr_goal (rxtp);
1126 	PRINTD (DBG_QOS, "pcr goal = %d", pcr);
1127 	break;
1128       }
1129 #endif
1130       default: {
1131 	// PRINTD (DBG_QOS, "request for non-UBR/ABR denied");
1132 	PRINTD (DBG_QOS, "request for non-UBR denied");
1133 	return -EINVAL;
1134       }
1135     }
1136   }
1137 
1138   // get space for our vcc stuff
1139   vcc = kmalloc (sizeof(amb_vcc), GFP_KERNEL);
1140   if (!vcc) {
1141     PRINTK (KERN_ERR, "out of memory!");
1142     return -ENOMEM;
1143   }
1144   atm_vcc->dev_data = (void *) vcc;
1145 
1146   // no failures beyond this point
1147 
1148   // we are not really "immediately before allocating the connection
1149   // identifier in hardware", but it will just have to do!
1150   set_bit(ATM_VF_ADDR,&atm_vcc->flags);
1151 
1152   if (txtp->traffic_class != ATM_NONE) {
1153     command cmd;
1154 
1155     vcc->tx_frame_bits = tx_frame_bits;
1156 
1157     mutex_lock(&dev->vcc_sf);
1158     if (dev->rxer[vci]) {
1159       // RXer on the channel already, just modify rate...
1160       cmd.request = cpu_to_be32 (SRB_MODIFY_VC_RATE);
1161       cmd.args.modify_rate.vc = cpu_to_be32 (vci);  // vpi 0
1162       cmd.args.modify_rate.rate = cpu_to_be32 (tx_rate_bits << SRB_RATE_SHIFT);
1163       while (command_do (dev, &cmd))
1164 	schedule();
1165       // ... and TX flags, preserving the RX pool
1166       cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1167       cmd.args.modify_flags.vc = cpu_to_be32 (vci);  // vpi 0
1168       cmd.args.modify_flags.flags = cpu_to_be32
1169 	( (AMB_VCC(dev->rxer[vci])->rx_info.pool << SRB_POOL_SHIFT)
1170 	  | (tx_vc_bits << SRB_FLAGS_SHIFT) );
1171       while (command_do (dev, &cmd))
1172 	schedule();
1173     } else {
1174       // no RXer on the channel, just open (with pool zero)
1175       cmd.request = cpu_to_be32 (SRB_OPEN_VC);
1176       cmd.args.open.vc = cpu_to_be32 (vci);  // vpi 0
1177       cmd.args.open.flags = cpu_to_be32 (tx_vc_bits << SRB_FLAGS_SHIFT);
1178       cmd.args.open.rate = cpu_to_be32 (tx_rate_bits << SRB_RATE_SHIFT);
1179       while (command_do (dev, &cmd))
1180 	schedule();
1181     }
1182     dev->txer[vci].tx_present = 1;
1183     mutex_unlock(&dev->vcc_sf);
1184   }
1185 
1186   if (rxtp->traffic_class != ATM_NONE) {
1187     command cmd;
1188 
1189     vcc->rx_info.pool = pool;
1190 
1191     mutex_lock(&dev->vcc_sf);
1192     /* grow RX buffer pool */
1193     if (!dev->rxq[pool].buffers_wanted)
1194       dev->rxq[pool].buffers_wanted = rx_lats;
1195     dev->rxq[pool].buffers_wanted += 1;
1196     fill_rx_pool (dev, pool, GFP_KERNEL);
1197 
1198     if (dev->txer[vci].tx_present) {
1199       // TXer on the channel already
1200       // switch (from pool zero) to this pool, preserving the TX bits
1201       cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1202       cmd.args.modify_flags.vc = cpu_to_be32 (vci);  // vpi 0
1203       cmd.args.modify_flags.flags = cpu_to_be32
1204 	( (pool << SRB_POOL_SHIFT)
1205 	  | (dev->txer[vci].tx_vc_bits << SRB_FLAGS_SHIFT) );
1206     } else {
1207       // no TXer on the channel, open the VC (with no rate info)
1208       cmd.request = cpu_to_be32 (SRB_OPEN_VC);
1209       cmd.args.open.vc = cpu_to_be32 (vci);  // vpi 0
1210       cmd.args.open.flags = cpu_to_be32 (pool << SRB_POOL_SHIFT);
1211       cmd.args.open.rate = cpu_to_be32 (0);
1212     }
1213     while (command_do (dev, &cmd))
1214       schedule();
1215     // this link allows RX frames through
1216     dev->rxer[vci] = atm_vcc;
1217     mutex_unlock(&dev->vcc_sf);
1218   }
1219 
1220   // indicate readiness
1221   set_bit(ATM_VF_READY,&atm_vcc->flags);
1222 
1223   return 0;
1224 }
1225 
1226 /********** Close a VC **********/
1227 
amb_close(struct atm_vcc * atm_vcc)1228 static void amb_close (struct atm_vcc * atm_vcc) {
1229   amb_dev * dev = AMB_DEV (atm_vcc->dev);
1230   amb_vcc * vcc = AMB_VCC (atm_vcc);
1231   u16 vci = atm_vcc->vci;
1232 
1233   PRINTD (DBG_VCC|DBG_FLOW, "amb_close");
1234 
1235   // indicate unreadiness
1236   clear_bit(ATM_VF_READY,&atm_vcc->flags);
1237 
1238   // disable TXing
1239   if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
1240     command cmd;
1241 
1242     mutex_lock(&dev->vcc_sf);
1243     if (dev->rxer[vci]) {
1244       // RXer still on the channel, just modify rate... XXX not really needed
1245       cmd.request = cpu_to_be32 (SRB_MODIFY_VC_RATE);
1246       cmd.args.modify_rate.vc = cpu_to_be32 (vci);  // vpi 0
1247       cmd.args.modify_rate.rate = cpu_to_be32 (0);
1248       // ... and clear TX rate flags (XXX to stop RM cell output?), preserving RX pool
1249     } else {
1250       // no RXer on the channel, close channel
1251       cmd.request = cpu_to_be32 (SRB_CLOSE_VC);
1252       cmd.args.close.vc = cpu_to_be32 (vci); // vpi 0
1253     }
1254     dev->txer[vci].tx_present = 0;
1255     while (command_do (dev, &cmd))
1256       schedule();
1257     mutex_unlock(&dev->vcc_sf);
1258   }
1259 
1260   // disable RXing
1261   if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1262     command cmd;
1263 
1264     // this is (the?) one reason why we need the amb_vcc struct
1265     unsigned char pool = vcc->rx_info.pool;
1266 
1267     mutex_lock(&dev->vcc_sf);
1268     if (dev->txer[vci].tx_present) {
1269       // TXer still on the channel, just go to pool zero XXX not really needed
1270       cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1271       cmd.args.modify_flags.vc = cpu_to_be32 (vci);  // vpi 0
1272       cmd.args.modify_flags.flags = cpu_to_be32
1273 	(dev->txer[vci].tx_vc_bits << SRB_FLAGS_SHIFT);
1274     } else {
1275       // no TXer on the channel, close the VC
1276       cmd.request = cpu_to_be32 (SRB_CLOSE_VC);
1277       cmd.args.close.vc = cpu_to_be32 (vci); // vpi 0
1278     }
1279     // forget the rxer - no more skbs will be pushed
1280     if (atm_vcc != dev->rxer[vci])
1281       PRINTK (KERN_ERR, "%s vcc=%p rxer[vci]=%p",
1282 	      "arghhh! we're going to die!",
1283 	      vcc, dev->rxer[vci]);
1284     dev->rxer[vci] = NULL;
1285     while (command_do (dev, &cmd))
1286       schedule();
1287 
1288     /* shrink RX buffer pool */
1289     dev->rxq[pool].buffers_wanted -= 1;
1290     if (dev->rxq[pool].buffers_wanted == rx_lats) {
1291       dev->rxq[pool].buffers_wanted = 0;
1292       drain_rx_pool (dev, pool);
1293     }
1294     mutex_unlock(&dev->vcc_sf);
1295   }
1296 
1297   // free our structure
1298   kfree (vcc);
1299 
1300   // say the VPI/VCI is free again
1301   clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
1302 
1303   return;
1304 }
1305 
1306 /********** Send **********/
1307 
amb_send(struct atm_vcc * atm_vcc,struct sk_buff * skb)1308 static int amb_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1309   amb_dev * dev = AMB_DEV(atm_vcc->dev);
1310   amb_vcc * vcc = AMB_VCC(atm_vcc);
1311   u16 vc = atm_vcc->vci;
1312   unsigned int tx_len = skb->len;
1313   unsigned char * tx_data = skb->data;
1314   tx_simple * tx_descr;
1315   tx_in tx;
1316 
1317   if (test_bit (dead, &dev->flags))
1318     return -EIO;
1319 
1320   PRINTD (DBG_FLOW|DBG_TX, "amb_send vc %x data %p len %u",
1321 	  vc, tx_data, tx_len);
1322 
1323   dump_skb (">>>", vc, skb);
1324 
1325   if (!dev->txer[vc].tx_present) {
1326     PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", vc);
1327     return -EBADFD;
1328   }
1329 
1330   // this is a driver private field so we have to set it ourselves,
1331   // despite the fact that we are _required_ to use it to check for a
1332   // pop function
1333   ATM_SKB(skb)->vcc = atm_vcc;
1334 
1335   if (skb->len > (size_t) atm_vcc->qos.txtp.max_sdu) {
1336     PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1337     return -EIO;
1338   }
1339 
1340   if (check_area (skb->data, skb->len)) {
1341     atomic_inc(&atm_vcc->stats->tx_err);
1342     return -ENOMEM; // ?
1343   }
1344 
1345   // allocate memory for fragments
1346   tx_descr = kmalloc (sizeof(tx_simple), GFP_KERNEL);
1347   if (!tx_descr) {
1348     PRINTK (KERN_ERR, "could not allocate TX descriptor");
1349     return -ENOMEM;
1350   }
1351   if (check_area (tx_descr, sizeof(tx_simple))) {
1352     kfree (tx_descr);
1353     return -ENOMEM;
1354   }
1355   PRINTD (DBG_TX, "fragment list allocated at %p", tx_descr);
1356 
1357   tx_descr->skb = skb;
1358 
1359   tx_descr->tx_frag.bytes = cpu_to_be32 (tx_len);
1360   tx_descr->tx_frag.address = cpu_to_be32 (virt_to_bus (tx_data));
1361 
1362   tx_descr->tx_frag_end.handle = virt_to_bus (tx_descr);
1363   tx_descr->tx_frag_end.vc = 0;
1364   tx_descr->tx_frag_end.next_descriptor_length = 0;
1365   tx_descr->tx_frag_end.next_descriptor = 0;
1366 #ifdef AMB_NEW_MICROCODE
1367   tx_descr->tx_frag_end.cpcs_uu = 0;
1368   tx_descr->tx_frag_end.cpi = 0;
1369   tx_descr->tx_frag_end.pad = 0;
1370 #endif
1371 
1372   tx.vc = cpu_to_be16 (vcc->tx_frame_bits | vc);
1373   tx.tx_descr_length = cpu_to_be16 (sizeof(tx_frag)+sizeof(tx_frag_end));
1374   tx.tx_descr_addr = cpu_to_be32 (virt_to_bus (&tx_descr->tx_frag));
1375 
1376   while (tx_give (dev, &tx))
1377     schedule();
1378   return 0;
1379 }
1380 
1381 /********** Change QoS on a VC **********/
1382 
1383 // int amb_change_qos (struct atm_vcc * atm_vcc, struct atm_qos * qos, int flags);
1384 
1385 /********** Free RX Socket Buffer **********/
1386 
1387 #if 0
1388 static void amb_free_rx_skb (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1389   amb_dev * dev = AMB_DEV (atm_vcc->dev);
1390   amb_vcc * vcc = AMB_VCC (atm_vcc);
1391   unsigned char pool = vcc->rx_info.pool;
1392   rx_in rx;
1393 
1394   // This may be unsafe for various reasons that I cannot really guess
1395   // at. However, I note that the ATM layer calls kfree_skb rather
1396   // than dev_kfree_skb at this point so we are least covered as far
1397   // as buffer locking goes. There may be bugs if pcap clones RX skbs.
1398 
1399   PRINTD (DBG_FLOW|DBG_SKB, "amb_rx_free skb %p (atm_vcc %p, vcc %p)",
1400 	  skb, atm_vcc, vcc);
1401 
1402   rx.handle = virt_to_bus (skb);
1403   rx.host_address = cpu_to_be32 (virt_to_bus (skb->data));
1404 
1405   skb->data = skb->head;
1406   skb_reset_tail_pointer(skb);
1407   skb->len = 0;
1408 
1409   if (!rx_give (dev, &rx, pool)) {
1410     // success
1411     PRINTD (DBG_SKB|DBG_POOL, "recycled skb for pool %hu", pool);
1412     return;
1413   }
1414 
1415   // just do what the ATM layer would have done
1416   dev_kfree_skb_any (skb);
1417 
1418   return;
1419 }
1420 #endif
1421 
1422 /********** Proc File Output **********/
1423 
amb_proc_read(struct atm_dev * atm_dev,loff_t * pos,char * page)1424 static int amb_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
1425   amb_dev * dev = AMB_DEV (atm_dev);
1426   int left = *pos;
1427   unsigned char pool;
1428 
1429   PRINTD (DBG_FLOW, "amb_proc_read");
1430 
1431   /* more diagnostics here? */
1432 
1433   if (!left--) {
1434     amb_stats * s = &dev->stats;
1435     return sprintf (page,
1436 		    "frames: TX OK %lu, RX OK %lu, RX bad %lu "
1437 		    "(CRC %lu, long %lu, aborted %lu, unused %lu).\n",
1438 		    s->tx_ok, s->rx.ok, s->rx.error,
1439 		    s->rx.badcrc, s->rx.toolong,
1440 		    s->rx.aborted, s->rx.unused);
1441   }
1442 
1443   if (!left--) {
1444     amb_cq * c = &dev->cq;
1445     return sprintf (page, "cmd queue [cur/hi/max]: %u/%u/%u. ",
1446 		    c->pending, c->high, c->maximum);
1447   }
1448 
1449   if (!left--) {
1450     amb_txq * t = &dev->txq;
1451     return sprintf (page, "TX queue [cur/max high full]: %u/%u %u %u.\n",
1452 		    t->pending, t->maximum, t->high, t->filled);
1453   }
1454 
1455   if (!left--) {
1456     unsigned int count = sprintf (page, "RX queues [cur/max/req low empty]:");
1457     for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1458       amb_rxq * r = &dev->rxq[pool];
1459       count += sprintf (page+count, " %u/%u/%u %u %u",
1460 			r->pending, r->maximum, r->buffers_wanted, r->low, r->emptied);
1461     }
1462     count += sprintf (page+count, ".\n");
1463     return count;
1464   }
1465 
1466   if (!left--) {
1467     unsigned int count = sprintf (page, "RX buffer sizes:");
1468     for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1469       amb_rxq * r = &dev->rxq[pool];
1470       count += sprintf (page+count, " %u", r->buffer_size);
1471     }
1472     count += sprintf (page+count, ".\n");
1473     return count;
1474   }
1475 
1476 #if 0
1477   if (!left--) {
1478     // suni block etc?
1479   }
1480 #endif
1481 
1482   return 0;
1483 }
1484 
1485 /********** Operation Structure **********/
1486 
1487 static const struct atmdev_ops amb_ops = {
1488   .open         = amb_open,
1489   .close	= amb_close,
1490   .send         = amb_send,
1491   .proc_read	= amb_proc_read,
1492   .owner	= THIS_MODULE,
1493 };
1494 
1495 /********** housekeeping **********/
do_housekeeping(struct timer_list * t)1496 static void do_housekeeping (struct timer_list *t) {
1497   amb_dev * dev = from_timer(dev, t, housekeeping);
1498 
1499   // could collect device-specific (not driver/atm-linux) stats here
1500 
1501   // last resort refill once every ten seconds
1502   fill_rx_pools (dev);
1503   mod_timer(&dev->housekeeping, jiffies + 10*HZ);
1504 
1505   return;
1506 }
1507 
1508 /********** creation of communication queues **********/
1509 
create_queues(amb_dev * dev,unsigned int cmds,unsigned int txs,unsigned int * rxs,unsigned int * rx_buffer_sizes)1510 static int create_queues(amb_dev *dev, unsigned int cmds, unsigned int txs,
1511 			 unsigned int *rxs, unsigned int *rx_buffer_sizes)
1512 {
1513   unsigned char pool;
1514   size_t total = 0;
1515   void * memory;
1516   void * limit;
1517 
1518   PRINTD (DBG_FLOW, "create_queues %p", dev);
1519 
1520   total += cmds * sizeof(command);
1521 
1522   total += txs * (sizeof(tx_in) + sizeof(tx_out));
1523 
1524   for (pool = 0; pool < NUM_RX_POOLS; ++pool)
1525     total += rxs[pool] * (sizeof(rx_in) + sizeof(rx_out));
1526 
1527   memory = kmalloc (total, GFP_KERNEL);
1528   if (!memory) {
1529     PRINTK (KERN_ERR, "could not allocate queues");
1530     return -ENOMEM;
1531   }
1532   if (check_area (memory, total)) {
1533     PRINTK (KERN_ERR, "queues allocated in nasty area");
1534     kfree (memory);
1535     return -ENOMEM;
1536   }
1537 
1538   limit = memory + total;
1539   PRINTD (DBG_INIT, "queues from %p to %p", memory, limit);
1540 
1541   PRINTD (DBG_CMD, "command queue at %p", memory);
1542 
1543   {
1544     command * cmd = memory;
1545     amb_cq * cq = &dev->cq;
1546 
1547     cq->pending = 0;
1548     cq->high = 0;
1549     cq->maximum = cmds - 1;
1550 
1551     cq->ptrs.start = cmd;
1552     cq->ptrs.in = cmd;
1553     cq->ptrs.out = cmd;
1554     cq->ptrs.limit = cmd + cmds;
1555 
1556     memory = cq->ptrs.limit;
1557   }
1558 
1559   PRINTD (DBG_TX, "TX queue pair at %p", memory);
1560 
1561   {
1562     tx_in * in = memory;
1563     tx_out * out;
1564     amb_txq * txq = &dev->txq;
1565 
1566     txq->pending = 0;
1567     txq->high = 0;
1568     txq->filled = 0;
1569     txq->maximum = txs - 1;
1570 
1571     txq->in.start = in;
1572     txq->in.ptr = in;
1573     txq->in.limit = in + txs;
1574 
1575     memory = txq->in.limit;
1576     out = memory;
1577 
1578     txq->out.start = out;
1579     txq->out.ptr = out;
1580     txq->out.limit = out + txs;
1581 
1582     memory = txq->out.limit;
1583   }
1584 
1585   PRINTD (DBG_RX, "RX queue pairs at %p", memory);
1586 
1587   for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1588     rx_in * in = memory;
1589     rx_out * out;
1590     amb_rxq * rxq = &dev->rxq[pool];
1591 
1592     rxq->buffer_size = rx_buffer_sizes[pool];
1593     rxq->buffers_wanted = 0;
1594 
1595     rxq->pending = 0;
1596     rxq->low = rxs[pool] - 1;
1597     rxq->emptied = 0;
1598     rxq->maximum = rxs[pool] - 1;
1599 
1600     rxq->in.start = in;
1601     rxq->in.ptr = in;
1602     rxq->in.limit = in + rxs[pool];
1603 
1604     memory = rxq->in.limit;
1605     out = memory;
1606 
1607     rxq->out.start = out;
1608     rxq->out.ptr = out;
1609     rxq->out.limit = out + rxs[pool];
1610 
1611     memory = rxq->out.limit;
1612   }
1613 
1614   if (memory == limit) {
1615     return 0;
1616   } else {
1617     PRINTK (KERN_ERR, "bad queue alloc %p != %p (tell maintainer)", memory, limit);
1618     kfree (limit - total);
1619     return -ENOMEM;
1620   }
1621 
1622 }
1623 
1624 /********** destruction of communication queues **********/
1625 
destroy_queues(amb_dev * dev)1626 static void destroy_queues (amb_dev * dev) {
1627   // all queues assumed empty
1628   void * memory = dev->cq.ptrs.start;
1629   // includes txq.in, txq.out, rxq[].in and rxq[].out
1630 
1631   PRINTD (DBG_FLOW, "destroy_queues %p", dev);
1632 
1633   PRINTD (DBG_INIT, "freeing queues at %p", memory);
1634   kfree (memory);
1635 
1636   return;
1637 }
1638 
1639 /********** basic loader commands and error handling **********/
1640 // centisecond timeouts - guessing away here
1641 static unsigned int command_timeouts [] = {
1642 	[host_memory_test]     = 15,
1643 	[read_adapter_memory]  = 2,
1644 	[write_adapter_memory] = 2,
1645 	[adapter_start]        = 50,
1646 	[get_version_number]   = 10,
1647 	[interrupt_host]       = 1,
1648 	[flash_erase_sector]   = 1,
1649 	[adap_download_block]  = 1,
1650 	[adap_erase_flash]     = 1,
1651 	[adap_run_in_iram]     = 1,
1652 	[adap_end_download]    = 1
1653 };
1654 
1655 
1656 static unsigned int command_successes [] = {
1657 	[host_memory_test]     = COMMAND_PASSED_TEST,
1658 	[read_adapter_memory]  = COMMAND_READ_DATA_OK,
1659 	[write_adapter_memory] = COMMAND_WRITE_DATA_OK,
1660 	[adapter_start]        = COMMAND_COMPLETE,
1661 	[get_version_number]   = COMMAND_COMPLETE,
1662 	[interrupt_host]       = COMMAND_COMPLETE,
1663 	[flash_erase_sector]   = COMMAND_COMPLETE,
1664 	[adap_download_block]  = COMMAND_COMPLETE,
1665 	[adap_erase_flash]     = COMMAND_COMPLETE,
1666 	[adap_run_in_iram]     = COMMAND_COMPLETE,
1667 	[adap_end_download]    = COMMAND_COMPLETE
1668 };
1669 
decode_loader_result(loader_command cmd,u32 result)1670 static  int decode_loader_result (loader_command cmd, u32 result)
1671 {
1672 	int res;
1673 	const char *msg;
1674 
1675 	if (result == command_successes[cmd])
1676 		return 0;
1677 
1678 	switch (result) {
1679 		case BAD_COMMAND:
1680 			res = -EINVAL;
1681 			msg = "bad command";
1682 			break;
1683 		case COMMAND_IN_PROGRESS:
1684 			res = -ETIMEDOUT;
1685 			msg = "command in progress";
1686 			break;
1687 		case COMMAND_PASSED_TEST:
1688 			res = 0;
1689 			msg = "command passed test";
1690 			break;
1691 		case COMMAND_FAILED_TEST:
1692 			res = -EIO;
1693 			msg = "command failed test";
1694 			break;
1695 		case COMMAND_READ_DATA_OK:
1696 			res = 0;
1697 			msg = "command read data ok";
1698 			break;
1699 		case COMMAND_READ_BAD_ADDRESS:
1700 			res = -EINVAL;
1701 			msg = "command read bad address";
1702 			break;
1703 		case COMMAND_WRITE_DATA_OK:
1704 			res = 0;
1705 			msg = "command write data ok";
1706 			break;
1707 		case COMMAND_WRITE_BAD_ADDRESS:
1708 			res = -EINVAL;
1709 			msg = "command write bad address";
1710 			break;
1711 		case COMMAND_WRITE_FLASH_FAILURE:
1712 			res = -EIO;
1713 			msg = "command write flash failure";
1714 			break;
1715 		case COMMAND_COMPLETE:
1716 			res = 0;
1717 			msg = "command complete";
1718 			break;
1719 		case COMMAND_FLASH_ERASE_FAILURE:
1720 			res = -EIO;
1721 			msg = "command flash erase failure";
1722 			break;
1723 		case COMMAND_WRITE_BAD_DATA:
1724 			res = -EINVAL;
1725 			msg = "command write bad data";
1726 			break;
1727 		default:
1728 			res = -EINVAL;
1729 			msg = "unknown error";
1730 			PRINTD (DBG_LOAD|DBG_ERR,
1731 				"decode_loader_result got %d=%x !",
1732 				result, result);
1733 			break;
1734 	}
1735 
1736 	PRINTK (KERN_ERR, "%s", msg);
1737 	return res;
1738 }
1739 
do_loader_command(volatile loader_block * lb,const amb_dev * dev,loader_command cmd)1740 static int do_loader_command(volatile loader_block *lb, const amb_dev *dev,
1741 			     loader_command cmd)
1742 {
1743 
1744   unsigned long timeout;
1745 
1746   PRINTD (DBG_FLOW|DBG_LOAD, "do_loader_command");
1747 
1748   /* do a command
1749 
1750      Set the return value to zero, set the command type and set the
1751      valid entry to the right magic value. The payload is already
1752      correctly byte-ordered so we leave it alone. Hit the doorbell
1753      with the bus address of this structure.
1754 
1755   */
1756 
1757   lb->result = 0;
1758   lb->command = cpu_to_be32 (cmd);
1759   lb->valid = cpu_to_be32 (DMA_VALID);
1760   // dump_registers (dev);
1761   // dump_loader_block (lb);
1762   wr_mem (dev, offsetof(amb_mem, doorbell), virt_to_bus (lb) & ~onegigmask);
1763 
1764   timeout = command_timeouts[cmd] * 10;
1765 
1766   while (!lb->result || lb->result == cpu_to_be32 (COMMAND_IN_PROGRESS))
1767     if (timeout) {
1768       timeout = msleep_interruptible(timeout);
1769     } else {
1770       PRINTD (DBG_LOAD|DBG_ERR, "command %d timed out", cmd);
1771       dump_registers (dev);
1772       dump_loader_block (lb);
1773       return -ETIMEDOUT;
1774     }
1775 
1776   if (cmd == adapter_start) {
1777     // wait for start command to acknowledge...
1778     timeout = 100;
1779     while (rd_plain (dev, offsetof(amb_mem, doorbell)))
1780       if (timeout) {
1781 	timeout = msleep_interruptible(timeout);
1782       } else {
1783 	PRINTD (DBG_LOAD|DBG_ERR, "start command did not clear doorbell, res=%08x",
1784 		be32_to_cpu (lb->result));
1785 	dump_registers (dev);
1786 	return -ETIMEDOUT;
1787       }
1788     return 0;
1789   } else {
1790     return decode_loader_result (cmd, be32_to_cpu (lb->result));
1791   }
1792 
1793 }
1794 
1795 /* loader: determine loader version */
1796 
get_loader_version(loader_block * lb,const amb_dev * dev,u32 * version)1797 static int get_loader_version(loader_block *lb, const amb_dev *dev,
1798 			      u32 *version)
1799 {
1800   int res;
1801 
1802   PRINTD (DBG_FLOW|DBG_LOAD, "get_loader_version");
1803 
1804   res = do_loader_command (lb, dev, get_version_number);
1805   if (res)
1806     return res;
1807   if (version)
1808     *version = be32_to_cpu (lb->payload.version);
1809   return 0;
1810 }
1811 
1812 /* loader: write memory data blocks */
1813 
loader_write(loader_block * lb,const amb_dev * dev,const struct ihex_binrec * rec)1814 static int loader_write(loader_block *lb, const amb_dev *dev,
1815 			const struct ihex_binrec *rec)
1816 {
1817   transfer_block * tb = &lb->payload.transfer;
1818 
1819   PRINTD (DBG_FLOW|DBG_LOAD, "loader_write");
1820 
1821   tb->address = rec->addr;
1822   tb->count = cpu_to_be32(be16_to_cpu(rec->len) / 4);
1823   memcpy(tb->data, rec->data, be16_to_cpu(rec->len));
1824   return do_loader_command (lb, dev, write_adapter_memory);
1825 }
1826 
1827 /* loader: verify memory data blocks */
1828 
loader_verify(loader_block * lb,const amb_dev * dev,const struct ihex_binrec * rec)1829 static int loader_verify(loader_block *lb, const amb_dev *dev,
1830 			 const struct ihex_binrec *rec)
1831 {
1832   transfer_block * tb = &lb->payload.transfer;
1833   int res;
1834 
1835   PRINTD (DBG_FLOW|DBG_LOAD, "loader_verify");
1836 
1837   tb->address = rec->addr;
1838   tb->count = cpu_to_be32(be16_to_cpu(rec->len) / 4);
1839   res = do_loader_command (lb, dev, read_adapter_memory);
1840   if (!res && memcmp(tb->data, rec->data, be16_to_cpu(rec->len)))
1841     res = -EINVAL;
1842   return res;
1843 }
1844 
1845 /* loader: start microcode */
1846 
loader_start(loader_block * lb,const amb_dev * dev,u32 address)1847 static int loader_start(loader_block *lb, const amb_dev *dev, u32 address)
1848 {
1849   PRINTD (DBG_FLOW|DBG_LOAD, "loader_start");
1850 
1851   lb->payload.start = cpu_to_be32 (address);
1852   return do_loader_command (lb, dev, adapter_start);
1853 }
1854 
1855 /********** reset card **********/
1856 
sf(const char * msg)1857 static inline void sf (const char * msg)
1858 {
1859 	PRINTK (KERN_ERR, "self-test failed: %s", msg);
1860 }
1861 
amb_reset(amb_dev * dev,int diags)1862 static int amb_reset (amb_dev * dev, int diags) {
1863   u32 word;
1864 
1865   PRINTD (DBG_FLOW|DBG_LOAD, "amb_reset");
1866 
1867   word = rd_plain (dev, offsetof(amb_mem, reset_control));
1868   // put card into reset state
1869   wr_plain (dev, offsetof(amb_mem, reset_control), word | AMB_RESET_BITS);
1870   // wait a short while
1871   udelay (10);
1872 #if 1
1873   // put card into known good state
1874   wr_plain (dev, offsetof(amb_mem, interrupt_control), AMB_DOORBELL_BITS);
1875   // clear all interrupts just in case
1876   wr_plain (dev, offsetof(amb_mem, interrupt), -1);
1877 #endif
1878   // clear self-test done flag
1879   wr_plain (dev, offsetof(amb_mem, mb.loader.ready), 0);
1880   // take card out of reset state
1881   wr_plain (dev, offsetof(amb_mem, reset_control), word &~ AMB_RESET_BITS);
1882 
1883   if (diags) {
1884     unsigned long timeout;
1885     // 4.2 second wait
1886     msleep(4200);
1887     // half second time-out
1888     timeout = 500;
1889     while (!rd_plain (dev, offsetof(amb_mem, mb.loader.ready)))
1890       if (timeout) {
1891 	timeout = msleep_interruptible(timeout);
1892       } else {
1893 	PRINTD (DBG_LOAD|DBG_ERR, "reset timed out");
1894 	return -ETIMEDOUT;
1895       }
1896 
1897     // get results of self-test
1898     // XXX double check byte-order
1899     word = rd_mem (dev, offsetof(amb_mem, mb.loader.result));
1900     if (word & SELF_TEST_FAILURE) {
1901       if (word & GPINT_TST_FAILURE)
1902 	sf ("interrupt");
1903       if (word & SUNI_DATA_PATTERN_FAILURE)
1904 	sf ("SUNI data pattern");
1905       if (word & SUNI_DATA_BITS_FAILURE)
1906 	sf ("SUNI data bits");
1907       if (word & SUNI_UTOPIA_FAILURE)
1908 	sf ("SUNI UTOPIA interface");
1909       if (word & SUNI_FIFO_FAILURE)
1910 	sf ("SUNI cell buffer FIFO");
1911       if (word & SRAM_FAILURE)
1912 	sf ("bad SRAM");
1913       // better return value?
1914       return -EIO;
1915     }
1916 
1917   }
1918   return 0;
1919 }
1920 
1921 /********** transfer and start the microcode **********/
1922 
ucode_init(loader_block * lb,amb_dev * dev)1923 static int ucode_init(loader_block *lb, amb_dev *dev)
1924 {
1925   const struct firmware *fw;
1926   unsigned long start_address;
1927   const struct ihex_binrec *rec;
1928   const char *errmsg = NULL;
1929   int res;
1930 
1931   res = request_ihex_firmware(&fw, "atmsar11.fw", &dev->pci_dev->dev);
1932   if (res) {
1933     PRINTK (KERN_ERR, "Cannot load microcode data");
1934     return res;
1935   }
1936 
1937   /* First record contains just the start address */
1938   rec = (const struct ihex_binrec *)fw->data;
1939   if (be16_to_cpu(rec->len) != sizeof(__be32) || be32_to_cpu(rec->addr)) {
1940     errmsg = "no start record";
1941     goto fail;
1942   }
1943   start_address = be32_to_cpup((__be32 *)rec->data);
1944 
1945   rec = ihex_next_binrec(rec);
1946 
1947   PRINTD (DBG_FLOW|DBG_LOAD, "ucode_init");
1948 
1949   while (rec) {
1950     PRINTD (DBG_LOAD, "starting region (%x, %u)", be32_to_cpu(rec->addr),
1951 	    be16_to_cpu(rec->len));
1952     if (be16_to_cpu(rec->len) > 4 * MAX_TRANSFER_DATA) {
1953 	    errmsg = "record too long";
1954 	    goto fail;
1955     }
1956     if (be16_to_cpu(rec->len) & 3) {
1957 	    errmsg = "odd number of bytes";
1958 	    goto fail;
1959     }
1960     res = loader_write(lb, dev, rec);
1961     if (res)
1962       break;
1963 
1964     res = loader_verify(lb, dev, rec);
1965     if (res)
1966       break;
1967     rec = ihex_next_binrec(rec);
1968   }
1969   release_firmware(fw);
1970   if (!res)
1971     res = loader_start(lb, dev, start_address);
1972 
1973   return res;
1974 fail:
1975   release_firmware(fw);
1976   PRINTK(KERN_ERR, "Bad microcode data (%s)", errmsg);
1977   return -EINVAL;
1978 }
1979 
1980 /********** give adapter parameters **********/
1981 
bus_addr(void * addr)1982 static inline __be32 bus_addr(void * addr) {
1983     return cpu_to_be32 (virt_to_bus (addr));
1984 }
1985 
amb_talk(amb_dev * dev)1986 static int amb_talk(amb_dev *dev)
1987 {
1988   adap_talk_block a;
1989   unsigned char pool;
1990   unsigned long timeout;
1991 
1992   PRINTD (DBG_FLOW, "amb_talk %p", dev);
1993 
1994   a.command_start = bus_addr (dev->cq.ptrs.start);
1995   a.command_end   = bus_addr (dev->cq.ptrs.limit);
1996   a.tx_start      = bus_addr (dev->txq.in.start);
1997   a.tx_end        = bus_addr (dev->txq.in.limit);
1998   a.txcom_start   = bus_addr (dev->txq.out.start);
1999   a.txcom_end     = bus_addr (dev->txq.out.limit);
2000 
2001   for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
2002     // the other "a" items are set up by the adapter
2003     a.rec_struct[pool].buffer_start = bus_addr (dev->rxq[pool].in.start);
2004     a.rec_struct[pool].buffer_end   = bus_addr (dev->rxq[pool].in.limit);
2005     a.rec_struct[pool].rx_start     = bus_addr (dev->rxq[pool].out.start);
2006     a.rec_struct[pool].rx_end       = bus_addr (dev->rxq[pool].out.limit);
2007     a.rec_struct[pool].buffer_size = cpu_to_be32 (dev->rxq[pool].buffer_size);
2008   }
2009 
2010 #ifdef AMB_NEW_MICROCODE
2011   // disable fast PLX prefetching
2012   a.init_flags = 0;
2013 #endif
2014 
2015   // pass the structure
2016   wr_mem (dev, offsetof(amb_mem, doorbell), virt_to_bus (&a));
2017 
2018   // 2.2 second wait (must not touch doorbell during 2 second DMA test)
2019   msleep(2200);
2020   // give the adapter another half second?
2021   timeout = 500;
2022   while (rd_plain (dev, offsetof(amb_mem, doorbell)))
2023     if (timeout) {
2024       timeout = msleep_interruptible(timeout);
2025     } else {
2026       PRINTD (DBG_INIT|DBG_ERR, "adapter init timed out");
2027       return -ETIMEDOUT;
2028     }
2029 
2030   return 0;
2031 }
2032 
2033 // get microcode version
amb_ucode_version(amb_dev * dev)2034 static void amb_ucode_version(amb_dev *dev)
2035 {
2036   u32 major;
2037   u32 minor;
2038   command cmd;
2039   cmd.request = cpu_to_be32 (SRB_GET_VERSION);
2040   while (command_do (dev, &cmd)) {
2041     set_current_state(TASK_UNINTERRUPTIBLE);
2042     schedule();
2043   }
2044   major = be32_to_cpu (cmd.args.version.major);
2045   minor = be32_to_cpu (cmd.args.version.minor);
2046   PRINTK (KERN_INFO, "microcode version is %u.%u", major, minor);
2047 }
2048 
2049 // get end station address
amb_esi(amb_dev * dev,u8 * esi)2050 static void amb_esi(amb_dev *dev, u8 *esi)
2051 {
2052   u32 lower4;
2053   u16 upper2;
2054   command cmd;
2055 
2056   cmd.request = cpu_to_be32 (SRB_GET_BIA);
2057   while (command_do (dev, &cmd)) {
2058     set_current_state(TASK_UNINTERRUPTIBLE);
2059     schedule();
2060   }
2061   lower4 = be32_to_cpu (cmd.args.bia.lower4);
2062   upper2 = be32_to_cpu (cmd.args.bia.upper2);
2063   PRINTD (DBG_LOAD, "BIA: lower4: %08x, upper2 %04x", lower4, upper2);
2064 
2065   if (esi) {
2066     unsigned int i;
2067 
2068     PRINTDB (DBG_INIT, "ESI:");
2069     for (i = 0; i < ESI_LEN; ++i) {
2070       if (i < 4)
2071 	  esi[i] = bitrev8(lower4>>(8*i));
2072       else
2073 	  esi[i] = bitrev8(upper2>>(8*(i-4)));
2074       PRINTDM (DBG_INIT, " %02x", esi[i]);
2075     }
2076 
2077     PRINTDE (DBG_INIT, "");
2078   }
2079 
2080   return;
2081 }
2082 
fixup_plx_window(amb_dev * dev,loader_block * lb)2083 static void fixup_plx_window (amb_dev *dev, loader_block *lb)
2084 {
2085 	// fix up the PLX-mapped window base address to match the block
2086 	unsigned long blb;
2087 	u32 mapreg;
2088 	blb = virt_to_bus(lb);
2089 	// the kernel stack had better not ever cross a 1Gb boundary!
2090 	mapreg = rd_plain (dev, offsetof(amb_mem, stuff[10]));
2091 	mapreg &= ~onegigmask;
2092 	mapreg |= blb & onegigmask;
2093 	wr_plain (dev, offsetof(amb_mem, stuff[10]), mapreg);
2094 	return;
2095 }
2096 
amb_init(amb_dev * dev)2097 static int amb_init(amb_dev *dev)
2098 {
2099   loader_block lb;
2100 
2101   u32 version;
2102 
2103   if (amb_reset (dev, 1)) {
2104     PRINTK (KERN_ERR, "card reset failed!");
2105   } else {
2106     fixup_plx_window (dev, &lb);
2107 
2108     if (get_loader_version (&lb, dev, &version)) {
2109       PRINTK (KERN_INFO, "failed to get loader version");
2110     } else {
2111       PRINTK (KERN_INFO, "loader version is %08x", version);
2112 
2113       if (ucode_init (&lb, dev)) {
2114 	PRINTK (KERN_ERR, "microcode failure");
2115       } else if (create_queues (dev, cmds, txs, rxs, rxs_bs)) {
2116 	PRINTK (KERN_ERR, "failed to get memory for queues");
2117       } else {
2118 
2119 	if (amb_talk (dev)) {
2120 	  PRINTK (KERN_ERR, "adapter did not accept queues");
2121 	} else {
2122 
2123 	  amb_ucode_version (dev);
2124 	  return 0;
2125 
2126 	} /* amb_talk */
2127 
2128 	destroy_queues (dev);
2129       } /* create_queues, ucode_init */
2130 
2131       amb_reset (dev, 0);
2132     } /* get_loader_version */
2133 
2134   } /* amb_reset */
2135 
2136   return -EINVAL;
2137 }
2138 
setup_dev(amb_dev * dev,struct pci_dev * pci_dev)2139 static void setup_dev(amb_dev *dev, struct pci_dev *pci_dev)
2140 {
2141       unsigned char pool;
2142 
2143       // set up known dev items straight away
2144       dev->pci_dev = pci_dev;
2145       pci_set_drvdata(pci_dev, dev);
2146 
2147       dev->iobase = pci_resource_start (pci_dev, 1);
2148       dev->irq = pci_dev->irq;
2149       dev->membase = bus_to_virt(pci_resource_start(pci_dev, 0));
2150 
2151       // flags (currently only dead)
2152       dev->flags = 0;
2153 
2154       // Allocate cell rates (fibre)
2155       // ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2156       // to be really pedantic, this should be ATM_OC3c_PCR
2157       dev->tx_avail = ATM_OC3_PCR;
2158       dev->rx_avail = ATM_OC3_PCR;
2159 
2160       // semaphore for txer/rxer modifications - we cannot use a
2161       // spinlock as the critical region needs to switch processes
2162       mutex_init(&dev->vcc_sf);
2163       // queue manipulation spinlocks; we want atomic reads and
2164       // writes to the queue descriptors (handles IRQ and SMP)
2165       // consider replacing "int pending" -> "atomic_t available"
2166       // => problem related to who gets to move queue pointers
2167       spin_lock_init (&dev->cq.lock);
2168       spin_lock_init (&dev->txq.lock);
2169       for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2170 	spin_lock_init (&dev->rxq[pool].lock);
2171 }
2172 
setup_pci_dev(struct pci_dev * pci_dev)2173 static void setup_pci_dev(struct pci_dev *pci_dev)
2174 {
2175 	unsigned char lat;
2176 
2177 	// enable bus master accesses
2178 	pci_set_master(pci_dev);
2179 
2180 	// frobnicate latency (upwards, usually)
2181 	pci_read_config_byte (pci_dev, PCI_LATENCY_TIMER, &lat);
2182 
2183 	if (!pci_lat)
2184 		pci_lat = (lat < MIN_PCI_LATENCY) ? MIN_PCI_LATENCY : lat;
2185 
2186 	if (lat != pci_lat) {
2187 		PRINTK (KERN_INFO, "Changing PCI latency timer from %hu to %hu",
2188 			lat, pci_lat);
2189 		pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2190 	}
2191 }
2192 
amb_probe(struct pci_dev * pci_dev,const struct pci_device_id * pci_ent)2193 static int amb_probe(struct pci_dev *pci_dev,
2194 		     const struct pci_device_id *pci_ent)
2195 {
2196 	amb_dev * dev;
2197 	int err;
2198 	unsigned int irq;
2199 
2200 	err = pci_enable_device(pci_dev);
2201 	if (err < 0) {
2202 		PRINTK (KERN_ERR, "skipped broken (PLX rev 2) card");
2203 		goto out;
2204 	}
2205 
2206 	// read resources from PCI configuration space
2207 	irq = pci_dev->irq;
2208 
2209 	if (pci_dev->device == PCI_DEVICE_ID_MADGE_AMBASSADOR_BAD) {
2210 		PRINTK (KERN_ERR, "skipped broken (PLX rev 2) card");
2211 		err = -EINVAL;
2212 		goto out_disable;
2213 	}
2214 
2215 	PRINTD (DBG_INFO, "found Madge ATM adapter (amb) at"
2216 		" IO %llx, IRQ %u, MEM %p",
2217 		(unsigned long long)pci_resource_start(pci_dev, 1),
2218 		irq, bus_to_virt(pci_resource_start(pci_dev, 0)));
2219 
2220 	// check IO region
2221 	err = pci_request_region(pci_dev, 1, DEV_LABEL);
2222 	if (err < 0) {
2223 		PRINTK (KERN_ERR, "IO range already in use!");
2224 		goto out_disable;
2225 	}
2226 
2227 	dev = kzalloc(sizeof(amb_dev), GFP_KERNEL);
2228 	if (!dev) {
2229 		PRINTK (KERN_ERR, "out of memory!");
2230 		err = -ENOMEM;
2231 		goto out_release;
2232 	}
2233 
2234 	setup_dev(dev, pci_dev);
2235 
2236 	err = amb_init(dev);
2237 	if (err < 0) {
2238 		PRINTK (KERN_ERR, "adapter initialisation failure");
2239 		goto out_free;
2240 	}
2241 
2242 	setup_pci_dev(pci_dev);
2243 
2244 	// grab (but share) IRQ and install handler
2245 	err = request_irq(irq, interrupt_handler, IRQF_SHARED, DEV_LABEL, dev);
2246 	if (err < 0) {
2247 		PRINTK (KERN_ERR, "request IRQ failed!");
2248 		goto out_reset;
2249 	}
2250 
2251 	dev->atm_dev = atm_dev_register (DEV_LABEL, &pci_dev->dev, &amb_ops, -1,
2252 					 NULL);
2253 	if (!dev->atm_dev) {
2254 		PRINTD (DBG_ERR, "failed to register Madge ATM adapter");
2255 		err = -EINVAL;
2256 		goto out_free_irq;
2257 	}
2258 
2259 	PRINTD (DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2260 		dev->atm_dev->number, dev, dev->atm_dev);
2261 	dev->atm_dev->dev_data = (void *) dev;
2262 
2263 	// register our address
2264 	amb_esi (dev, dev->atm_dev->esi);
2265 
2266 	// 0 bits for vpi, 10 bits for vci
2267 	dev->atm_dev->ci_range.vpi_bits = NUM_VPI_BITS;
2268 	dev->atm_dev->ci_range.vci_bits = NUM_VCI_BITS;
2269 
2270 	timer_setup(&dev->housekeeping, do_housekeeping, 0);
2271 	mod_timer(&dev->housekeeping, jiffies);
2272 
2273 	// enable host interrupts
2274 	interrupts_on (dev);
2275 
2276 out:
2277 	return err;
2278 
2279 out_free_irq:
2280 	free_irq(irq, dev);
2281 out_reset:
2282 	amb_reset(dev, 0);
2283 out_free:
2284 	kfree(dev);
2285 out_release:
2286 	pci_release_region(pci_dev, 1);
2287 out_disable:
2288 	pci_disable_device(pci_dev);
2289 	goto out;
2290 }
2291 
2292 
amb_remove_one(struct pci_dev * pci_dev)2293 static void amb_remove_one(struct pci_dev *pci_dev)
2294 {
2295 	struct amb_dev *dev;
2296 
2297 	dev = pci_get_drvdata(pci_dev);
2298 
2299 	PRINTD(DBG_INFO|DBG_INIT, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2300 	del_timer_sync(&dev->housekeeping);
2301 	// the drain should not be necessary
2302 	drain_rx_pools(dev);
2303 	interrupts_off(dev);
2304 	amb_reset(dev, 0);
2305 	free_irq(dev->irq, dev);
2306 	pci_disable_device(pci_dev);
2307 	destroy_queues(dev);
2308 	atm_dev_deregister(dev->atm_dev);
2309 	kfree(dev);
2310 	pci_release_region(pci_dev, 1);
2311 }
2312 
amb_check_args(void)2313 static void __init amb_check_args (void) {
2314   unsigned char pool;
2315   unsigned int max_rx_size;
2316 
2317 #ifdef DEBUG_AMBASSADOR
2318   PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2319 #else
2320   if (debug)
2321     PRINTK (KERN_NOTICE, "no debugging support");
2322 #endif
2323 
2324   if (cmds < MIN_QUEUE_SIZE)
2325     PRINTK (KERN_NOTICE, "cmds has been raised to %u",
2326 	    cmds = MIN_QUEUE_SIZE);
2327 
2328   if (txs < MIN_QUEUE_SIZE)
2329     PRINTK (KERN_NOTICE, "txs has been raised to %u",
2330 	    txs = MIN_QUEUE_SIZE);
2331 
2332   for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2333     if (rxs[pool] < MIN_QUEUE_SIZE)
2334       PRINTK (KERN_NOTICE, "rxs[%hu] has been raised to %u",
2335 	      pool, rxs[pool] = MIN_QUEUE_SIZE);
2336 
2337   // buffers sizes should be greater than zero and strictly increasing
2338   max_rx_size = 0;
2339   for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2340     if (rxs_bs[pool] <= max_rx_size)
2341       PRINTK (KERN_NOTICE, "useless pool (rxs_bs[%hu] = %u)",
2342 	      pool, rxs_bs[pool]);
2343     else
2344       max_rx_size = rxs_bs[pool];
2345 
2346   if (rx_lats < MIN_RX_BUFFERS)
2347     PRINTK (KERN_NOTICE, "rx_lats has been raised to %u",
2348 	    rx_lats = MIN_RX_BUFFERS);
2349 
2350   return;
2351 }
2352 
2353 /********** module stuff **********/
2354 
2355 MODULE_AUTHOR(maintainer_string);
2356 MODULE_DESCRIPTION(description_string);
2357 MODULE_LICENSE("GPL");
2358 MODULE_FIRMWARE("atmsar11.fw");
2359 module_param(debug,   ushort, 0644);
2360 module_param(cmds,    uint, 0);
2361 module_param(txs,     uint, 0);
2362 module_param_array(rxs,     uint, NULL, 0);
2363 module_param_array(rxs_bs,  uint, NULL, 0);
2364 module_param(rx_lats, uint, 0);
2365 module_param(pci_lat, byte, 0);
2366 MODULE_PARM_DESC(debug,   "debug bitmap, see .h file");
2367 MODULE_PARM_DESC(cmds,    "number of command queue entries");
2368 MODULE_PARM_DESC(txs,     "number of TX queue entries");
2369 MODULE_PARM_DESC(rxs,     "number of RX queue entries [" __MODULE_STRING(NUM_RX_POOLS) "]");
2370 MODULE_PARM_DESC(rxs_bs,  "size of RX buffers [" __MODULE_STRING(NUM_RX_POOLS) "]");
2371 MODULE_PARM_DESC(rx_lats, "number of extra buffers to cope with RX latencies");
2372 MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2373 
2374 /********** module entry **********/
2375 
2376 static const struct pci_device_id amb_pci_tbl[] = {
2377 	{ PCI_VDEVICE(MADGE, PCI_DEVICE_ID_MADGE_AMBASSADOR), 0 },
2378 	{ PCI_VDEVICE(MADGE, PCI_DEVICE_ID_MADGE_AMBASSADOR_BAD), 0 },
2379 	{ 0, }
2380 };
2381 
2382 MODULE_DEVICE_TABLE(pci, amb_pci_tbl);
2383 
2384 static struct pci_driver amb_driver = {
2385 	.name =		"amb",
2386 	.probe =	amb_probe,
2387 	.remove =	amb_remove_one,
2388 	.id_table =	amb_pci_tbl,
2389 };
2390 
amb_module_init(void)2391 static int __init amb_module_init (void)
2392 {
2393   PRINTD (DBG_FLOW|DBG_INIT, "init_module");
2394 
2395   BUILD_BUG_ON(sizeof(amb_mem) != 4*16 + 4*12);
2396 
2397   show_version();
2398 
2399   amb_check_args();
2400 
2401   // get the juice
2402   return pci_register_driver(&amb_driver);
2403 }
2404 
2405 /********** module exit **********/
2406 
amb_module_exit(void)2407 static void __exit amb_module_exit (void)
2408 {
2409   PRINTD (DBG_FLOW|DBG_INIT, "cleanup_module");
2410 
2411   pci_unregister_driver(&amb_driver);
2412 }
2413 
2414 module_init(amb_module_init);
2415 module_exit(amb_module_exit);
2416