1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Code extracted from drivers/block/genhd.c
4  *  Copyright (C) 1991-1998  Linus Torvalds
5  *  Re-organised Feb 1998 Russell King
6  *
7  *  We now have independent partition support from the
8  *  block drivers, which allows all the partition code to
9  *  be grouped in one location, and it to be mostly self
10  *  contained.
11  */
12 
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/fs.h>
16 #include <linux/slab.h>
17 #include <linux/kmod.h>
18 #include <linux/ctype.h>
19 #include <linux/genhd.h>
20 #include <linux/blktrace_api.h>
21 
22 #include "partitions/check.h"
23 
24 #ifdef CONFIG_BLK_DEV_MD
25 extern void md_autodetect_dev(dev_t dev);
26 #endif
27 
28 /*
29  * disk_name() is used by partition check code and the genhd driver.
30  * It formats the devicename of the indicated disk into
31  * the supplied buffer (of size at least 32), and returns
32  * a pointer to that same buffer (for convenience).
33  */
34 
disk_name(struct gendisk * hd,int partno,char * buf)35 char *disk_name(struct gendisk *hd, int partno, char *buf)
36 {
37 	if (!partno)
38 		snprintf(buf, BDEVNAME_SIZE, "%s", hd->disk_name);
39 	else if (isdigit(hd->disk_name[strlen(hd->disk_name)-1]))
40 		snprintf(buf, BDEVNAME_SIZE, "%sp%d", hd->disk_name, partno);
41 	else
42 		snprintf(buf, BDEVNAME_SIZE, "%s%d", hd->disk_name, partno);
43 
44 	return buf;
45 }
46 
bdevname(struct block_device * bdev,char * buf)47 const char *bdevname(struct block_device *bdev, char *buf)
48 {
49 	return disk_name(bdev->bd_disk, bdev->bd_part->partno, buf);
50 }
51 
52 EXPORT_SYMBOL(bdevname);
53 
bio_devname(struct bio * bio,char * buf)54 const char *bio_devname(struct bio *bio, char *buf)
55 {
56 	return disk_name(bio->bi_disk, bio->bi_partno, buf);
57 }
58 EXPORT_SYMBOL(bio_devname);
59 
60 /*
61  * There's very little reason to use this, you should really
62  * have a struct block_device just about everywhere and use
63  * bdevname() instead.
64  */
__bdevname(dev_t dev,char * buffer)65 const char *__bdevname(dev_t dev, char *buffer)
66 {
67 	scnprintf(buffer, BDEVNAME_SIZE, "unknown-block(%u,%u)",
68 				MAJOR(dev), MINOR(dev));
69 	return buffer;
70 }
71 
72 EXPORT_SYMBOL(__bdevname);
73 
part_partition_show(struct device * dev,struct device_attribute * attr,char * buf)74 static ssize_t part_partition_show(struct device *dev,
75 				   struct device_attribute *attr, char *buf)
76 {
77 	struct hd_struct *p = dev_to_part(dev);
78 
79 	return sprintf(buf, "%d\n", p->partno);
80 }
81 
part_start_show(struct device * dev,struct device_attribute * attr,char * buf)82 static ssize_t part_start_show(struct device *dev,
83 			       struct device_attribute *attr, char *buf)
84 {
85 	struct hd_struct *p = dev_to_part(dev);
86 
87 	return sprintf(buf, "%llu\n",(unsigned long long)p->start_sect);
88 }
89 
part_size_show(struct device * dev,struct device_attribute * attr,char * buf)90 ssize_t part_size_show(struct device *dev,
91 		       struct device_attribute *attr, char *buf)
92 {
93 	struct hd_struct *p = dev_to_part(dev);
94 	return sprintf(buf, "%llu\n",(unsigned long long)part_nr_sects_read(p));
95 }
96 
part_ro_show(struct device * dev,struct device_attribute * attr,char * buf)97 static ssize_t part_ro_show(struct device *dev,
98 			    struct device_attribute *attr, char *buf)
99 {
100 	struct hd_struct *p = dev_to_part(dev);
101 	return sprintf(buf, "%d\n", p->policy ? 1 : 0);
102 }
103 
part_alignment_offset_show(struct device * dev,struct device_attribute * attr,char * buf)104 static ssize_t part_alignment_offset_show(struct device *dev,
105 					  struct device_attribute *attr, char *buf)
106 {
107 	struct hd_struct *p = dev_to_part(dev);
108 	return sprintf(buf, "%llu\n", (unsigned long long)p->alignment_offset);
109 }
110 
part_discard_alignment_show(struct device * dev,struct device_attribute * attr,char * buf)111 static ssize_t part_discard_alignment_show(struct device *dev,
112 					   struct device_attribute *attr, char *buf)
113 {
114 	struct hd_struct *p = dev_to_part(dev);
115 	return sprintf(buf, "%u\n", p->discard_alignment);
116 }
117 
part_stat_show(struct device * dev,struct device_attribute * attr,char * buf)118 ssize_t part_stat_show(struct device *dev,
119 		       struct device_attribute *attr, char *buf)
120 {
121 	struct hd_struct *p = dev_to_part(dev);
122 	struct request_queue *q = part_to_disk(p)->queue;
123 	unsigned int inflight[2];
124 	int cpu;
125 
126 	cpu = part_stat_lock();
127 	part_round_stats(q, cpu, p);
128 	part_stat_unlock();
129 	part_in_flight(q, p, inflight);
130 	return sprintf(buf,
131 		"%8lu %8lu %8llu %8u "
132 		"%8lu %8lu %8llu %8u "
133 		"%8u %8u %8u "
134 		"%8lu %8lu %8llu %8u"
135 		"\n",
136 		part_stat_read(p, ios[STAT_READ]),
137 		part_stat_read(p, merges[STAT_READ]),
138 		(unsigned long long)part_stat_read(p, sectors[STAT_READ]),
139 		(unsigned int)part_stat_read_msecs(p, STAT_READ),
140 		part_stat_read(p, ios[STAT_WRITE]),
141 		part_stat_read(p, merges[STAT_WRITE]),
142 		(unsigned long long)part_stat_read(p, sectors[STAT_WRITE]),
143 		(unsigned int)part_stat_read_msecs(p, STAT_WRITE),
144 		inflight[0],
145 		jiffies_to_msecs(part_stat_read(p, io_ticks)),
146 		jiffies_to_msecs(part_stat_read(p, time_in_queue)),
147 		part_stat_read(p, ios[STAT_DISCARD]),
148 		part_stat_read(p, merges[STAT_DISCARD]),
149 		(unsigned long long)part_stat_read(p, sectors[STAT_DISCARD]),
150 		(unsigned int)part_stat_read_msecs(p, STAT_DISCARD));
151 }
152 
part_inflight_show(struct device * dev,struct device_attribute * attr,char * buf)153 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
154 			   char *buf)
155 {
156 	struct hd_struct *p = dev_to_part(dev);
157 	struct request_queue *q = part_to_disk(p)->queue;
158 	unsigned int inflight[2];
159 
160 	part_in_flight_rw(q, p, inflight);
161 	return sprintf(buf, "%8u %8u\n", inflight[0], inflight[1]);
162 }
163 
164 #ifdef CONFIG_FAIL_MAKE_REQUEST
part_fail_show(struct device * dev,struct device_attribute * attr,char * buf)165 ssize_t part_fail_show(struct device *dev,
166 		       struct device_attribute *attr, char *buf)
167 {
168 	struct hd_struct *p = dev_to_part(dev);
169 
170 	return sprintf(buf, "%d\n", p->make_it_fail);
171 }
172 
part_fail_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)173 ssize_t part_fail_store(struct device *dev,
174 			struct device_attribute *attr,
175 			const char *buf, size_t count)
176 {
177 	struct hd_struct *p = dev_to_part(dev);
178 	int i;
179 
180 	if (count > 0 && sscanf(buf, "%d", &i) > 0)
181 		p->make_it_fail = (i == 0) ? 0 : 1;
182 
183 	return count;
184 }
185 #endif
186 
187 static DEVICE_ATTR(partition, 0444, part_partition_show, NULL);
188 static DEVICE_ATTR(start, 0444, part_start_show, NULL);
189 static DEVICE_ATTR(size, 0444, part_size_show, NULL);
190 static DEVICE_ATTR(ro, 0444, part_ro_show, NULL);
191 static DEVICE_ATTR(alignment_offset, 0444, part_alignment_offset_show, NULL);
192 static DEVICE_ATTR(discard_alignment, 0444, part_discard_alignment_show, NULL);
193 static DEVICE_ATTR(stat, 0444, part_stat_show, NULL);
194 static DEVICE_ATTR(inflight, 0444, part_inflight_show, NULL);
195 #ifdef CONFIG_FAIL_MAKE_REQUEST
196 static struct device_attribute dev_attr_fail =
197 	__ATTR(make-it-fail, 0644, part_fail_show, part_fail_store);
198 #endif
199 
200 static struct attribute *part_attrs[] = {
201 	&dev_attr_partition.attr,
202 	&dev_attr_start.attr,
203 	&dev_attr_size.attr,
204 	&dev_attr_ro.attr,
205 	&dev_attr_alignment_offset.attr,
206 	&dev_attr_discard_alignment.attr,
207 	&dev_attr_stat.attr,
208 	&dev_attr_inflight.attr,
209 #ifdef CONFIG_FAIL_MAKE_REQUEST
210 	&dev_attr_fail.attr,
211 #endif
212 	NULL
213 };
214 
215 static struct attribute_group part_attr_group = {
216 	.attrs = part_attrs,
217 };
218 
219 static const struct attribute_group *part_attr_groups[] = {
220 	&part_attr_group,
221 #ifdef CONFIG_BLK_DEV_IO_TRACE
222 	&blk_trace_attr_group,
223 #endif
224 	NULL
225 };
226 
part_release(struct device * dev)227 static void part_release(struct device *dev)
228 {
229 	struct hd_struct *p = dev_to_part(dev);
230 	blk_free_devt(dev->devt);
231 	hd_free_part(p);
232 	kfree(p);
233 }
234 
part_uevent(struct device * dev,struct kobj_uevent_env * env)235 static int part_uevent(struct device *dev, struct kobj_uevent_env *env)
236 {
237 	struct hd_struct *part = dev_to_part(dev);
238 
239 	add_uevent_var(env, "PARTN=%u", part->partno);
240 	if (part->info && part->info->volname[0])
241 		add_uevent_var(env, "PARTNAME=%s", part->info->volname);
242 	return 0;
243 }
244 
245 struct device_type part_type = {
246 	.name		= "partition",
247 	.groups		= part_attr_groups,
248 	.release	= part_release,
249 	.uevent		= part_uevent,
250 };
251 
delete_partition_rcu_cb(struct rcu_head * head)252 static void delete_partition_rcu_cb(struct rcu_head *head)
253 {
254 	struct hd_struct *part = container_of(head, struct hd_struct, rcu_head);
255 
256 	part->start_sect = 0;
257 	part->nr_sects = 0;
258 	part_stat_set_all(part, 0);
259 	put_device(part_to_dev(part));
260 }
261 
__delete_partition(struct percpu_ref * ref)262 void __delete_partition(struct percpu_ref *ref)
263 {
264 	struct hd_struct *part = container_of(ref, struct hd_struct, ref);
265 	call_rcu(&part->rcu_head, delete_partition_rcu_cb);
266 }
267 
268 /*
269  * Must be called either with bd_mutex held, before a disk can be opened or
270  * after all disk users are gone.
271  */
delete_partition(struct gendisk * disk,int partno)272 void delete_partition(struct gendisk *disk, int partno)
273 {
274 	struct disk_part_tbl *ptbl =
275 		rcu_dereference_protected(disk->part_tbl, 1);
276 	struct hd_struct *part;
277 
278 	if (partno >= ptbl->len)
279 		return;
280 
281 	part = rcu_dereference_protected(ptbl->part[partno], 1);
282 	if (!part)
283 		return;
284 
285 	rcu_assign_pointer(ptbl->part[partno], NULL);
286 	rcu_assign_pointer(ptbl->last_lookup, NULL);
287 	kobject_put(part->holder_dir);
288 	device_del(part_to_dev(part));
289 
290 	hd_struct_kill(part);
291 }
292 
whole_disk_show(struct device * dev,struct device_attribute * attr,char * buf)293 static ssize_t whole_disk_show(struct device *dev,
294 			       struct device_attribute *attr, char *buf)
295 {
296 	return 0;
297 }
298 static DEVICE_ATTR(whole_disk, 0444, whole_disk_show, NULL);
299 
300 /*
301  * Must be called either with bd_mutex held, before a disk can be opened or
302  * after all disk users are gone.
303  */
add_partition(struct gendisk * disk,int partno,sector_t start,sector_t len,int flags,struct partition_meta_info * info)304 struct hd_struct *add_partition(struct gendisk *disk, int partno,
305 				sector_t start, sector_t len, int flags,
306 				struct partition_meta_info *info)
307 {
308 	struct hd_struct *p;
309 	dev_t devt = MKDEV(0, 0);
310 	struct device *ddev = disk_to_dev(disk);
311 	struct device *pdev;
312 	struct disk_part_tbl *ptbl;
313 	const char *dname;
314 	int err;
315 
316 	err = disk_expand_part_tbl(disk, partno);
317 	if (err)
318 		return ERR_PTR(err);
319 	ptbl = rcu_dereference_protected(disk->part_tbl, 1);
320 
321 	if (ptbl->part[partno])
322 		return ERR_PTR(-EBUSY);
323 
324 	p = kzalloc(sizeof(*p), GFP_KERNEL);
325 	if (!p)
326 		return ERR_PTR(-EBUSY);
327 
328 	if (!init_part_stats(p)) {
329 		err = -ENOMEM;
330 		goto out_free;
331 	}
332 
333 	seqcount_init(&p->nr_sects_seq);
334 	pdev = part_to_dev(p);
335 
336 	p->start_sect = start;
337 	p->alignment_offset =
338 		queue_limit_alignment_offset(&disk->queue->limits, start);
339 	p->discard_alignment =
340 		queue_limit_discard_alignment(&disk->queue->limits, start);
341 	p->nr_sects = len;
342 	p->partno = partno;
343 	p->policy = get_disk_ro(disk);
344 
345 	if (info) {
346 		struct partition_meta_info *pinfo = alloc_part_info(disk);
347 		if (!pinfo) {
348 			err = -ENOMEM;
349 			goto out_free_stats;
350 		}
351 		memcpy(pinfo, info, sizeof(*info));
352 		p->info = pinfo;
353 	}
354 
355 	dname = dev_name(ddev);
356 	if (isdigit(dname[strlen(dname) - 1]))
357 		dev_set_name(pdev, "%sp%d", dname, partno);
358 	else
359 		dev_set_name(pdev, "%s%d", dname, partno);
360 
361 	device_initialize(pdev);
362 	pdev->class = &block_class;
363 	pdev->type = &part_type;
364 	pdev->parent = ddev;
365 
366 	err = blk_alloc_devt(p, &devt);
367 	if (err)
368 		goto out_free_info;
369 	pdev->devt = devt;
370 
371 	/* delay uevent until 'holders' subdir is created */
372 	dev_set_uevent_suppress(pdev, 1);
373 	err = device_add(pdev);
374 	if (err)
375 		goto out_put;
376 
377 	err = -ENOMEM;
378 	p->holder_dir = kobject_create_and_add("holders", &pdev->kobj);
379 	if (!p->holder_dir)
380 		goto out_del;
381 
382 	dev_set_uevent_suppress(pdev, 0);
383 	if (flags & ADDPART_FLAG_WHOLEDISK) {
384 		err = device_create_file(pdev, &dev_attr_whole_disk);
385 		if (err)
386 			goto out_del;
387 	}
388 
389 	err = hd_ref_init(p);
390 	if (err) {
391 		if (flags & ADDPART_FLAG_WHOLEDISK)
392 			goto out_remove_file;
393 		goto out_del;
394 	}
395 
396 	/* everything is up and running, commence */
397 	rcu_assign_pointer(ptbl->part[partno], p);
398 
399 	/* suppress uevent if the disk suppresses it */
400 	if (!dev_get_uevent_suppress(ddev))
401 		kobject_uevent(&pdev->kobj, KOBJ_ADD);
402 	return p;
403 
404 out_free_info:
405 	free_part_info(p);
406 out_free_stats:
407 	free_part_stats(p);
408 out_free:
409 	kfree(p);
410 	return ERR_PTR(err);
411 out_remove_file:
412 	device_remove_file(pdev, &dev_attr_whole_disk);
413 out_del:
414 	kobject_put(p->holder_dir);
415 	device_del(pdev);
416 out_put:
417 	put_device(pdev);
418 	return ERR_PTR(err);
419 }
420 
disk_unlock_native_capacity(struct gendisk * disk)421 static bool disk_unlock_native_capacity(struct gendisk *disk)
422 {
423 	const struct block_device_operations *bdops = disk->fops;
424 
425 	if (bdops->unlock_native_capacity &&
426 	    !(disk->flags & GENHD_FL_NATIVE_CAPACITY)) {
427 		printk(KERN_CONT "enabling native capacity\n");
428 		bdops->unlock_native_capacity(disk);
429 		disk->flags |= GENHD_FL_NATIVE_CAPACITY;
430 		return true;
431 	} else {
432 		printk(KERN_CONT "truncated\n");
433 		return false;
434 	}
435 }
436 
drop_partitions(struct gendisk * disk,struct block_device * bdev)437 static int drop_partitions(struct gendisk *disk, struct block_device *bdev)
438 {
439 	struct disk_part_iter piter;
440 	struct hd_struct *part;
441 	int res;
442 
443 	if (bdev->bd_part_count || bdev->bd_super)
444 		return -EBUSY;
445 	res = invalidate_partition(disk, 0);
446 	if (res)
447 		return res;
448 
449 	disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
450 	while ((part = disk_part_iter_next(&piter)))
451 		delete_partition(disk, part->partno);
452 	disk_part_iter_exit(&piter);
453 
454 	return 0;
455 }
456 
part_zone_aligned(struct gendisk * disk,struct block_device * bdev,sector_t from,sector_t size)457 static bool part_zone_aligned(struct gendisk *disk,
458 			      struct block_device *bdev,
459 			      sector_t from, sector_t size)
460 {
461 	unsigned int zone_sectors = bdev_zone_sectors(bdev);
462 
463 	/*
464 	 * If this function is called, then the disk is a zoned block device
465 	 * (host-aware or host-managed). This can be detected even if the
466 	 * zoned block device support is disabled (CONFIG_BLK_DEV_ZONED not
467 	 * set). In this case, however, only host-aware devices will be seen
468 	 * as a block device is not created for host-managed devices. Without
469 	 * zoned block device support, host-aware drives can still be used as
470 	 * regular block devices (no zone operation) and their zone size will
471 	 * be reported as 0. Allow this case.
472 	 */
473 	if (!zone_sectors)
474 		return true;
475 
476 	/*
477 	 * Check partition start and size alignement. If the drive has a
478 	 * smaller last runt zone, ignore it and allow the partition to
479 	 * use it. Check the zone size too: it should be a power of 2 number
480 	 * of sectors.
481 	 */
482 	if (WARN_ON_ONCE(!is_power_of_2(zone_sectors))) {
483 		u32 rem;
484 
485 		div_u64_rem(from, zone_sectors, &rem);
486 		if (rem)
487 			return false;
488 		if ((from + size) < get_capacity(disk)) {
489 			div_u64_rem(size, zone_sectors, &rem);
490 			if (rem)
491 				return false;
492 		}
493 
494 	} else {
495 
496 		if (from & (zone_sectors - 1))
497 			return false;
498 		if ((from + size) < get_capacity(disk) &&
499 		    (size & (zone_sectors - 1)))
500 			return false;
501 
502 	}
503 
504 	return true;
505 }
506 
rescan_partitions(struct gendisk * disk,struct block_device * bdev)507 int rescan_partitions(struct gendisk *disk, struct block_device *bdev)
508 {
509 	struct parsed_partitions *state = NULL;
510 	struct hd_struct *part;
511 	int p, highest, res;
512 rescan:
513 	if (state && !IS_ERR(state)) {
514 		free_partitions(state);
515 		state = NULL;
516 	}
517 
518 	res = drop_partitions(disk, bdev);
519 	if (res)
520 		return res;
521 
522 	if (disk->fops->revalidate_disk)
523 		disk->fops->revalidate_disk(disk);
524 	check_disk_size_change(disk, bdev, true);
525 	bdev->bd_invalidated = 0;
526 	if (!get_capacity(disk) || !(state = check_partition(disk, bdev)))
527 		return 0;
528 	if (IS_ERR(state)) {
529 		/*
530 		 * I/O error reading the partition table.  If any
531 		 * partition code tried to read beyond EOD, retry
532 		 * after unlocking native capacity.
533 		 */
534 		if (PTR_ERR(state) == -ENOSPC) {
535 			printk(KERN_WARNING "%s: partition table beyond EOD, ",
536 			       disk->disk_name);
537 			if (disk_unlock_native_capacity(disk))
538 				goto rescan;
539 		}
540 		return -EIO;
541 	}
542 	/*
543 	 * If any partition code tried to read beyond EOD, try
544 	 * unlocking native capacity even if partition table is
545 	 * successfully read as we could be missing some partitions.
546 	 */
547 	if (state->access_beyond_eod) {
548 		printk(KERN_WARNING
549 		       "%s: partition table partially beyond EOD, ",
550 		       disk->disk_name);
551 		if (disk_unlock_native_capacity(disk))
552 			goto rescan;
553 	}
554 
555 	/* tell userspace that the media / partition table may have changed */
556 	kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
557 
558 	/* Detect the highest partition number and preallocate
559 	 * disk->part_tbl.  This is an optimization and not strictly
560 	 * necessary.
561 	 */
562 	for (p = 1, highest = 0; p < state->limit; p++)
563 		if (state->parts[p].size)
564 			highest = p;
565 
566 	disk_expand_part_tbl(disk, highest);
567 
568 	/* add partitions */
569 	for (p = 1; p < state->limit; p++) {
570 		sector_t size, from;
571 
572 		size = state->parts[p].size;
573 		if (!size)
574 			continue;
575 
576 		from = state->parts[p].from;
577 		if (from >= get_capacity(disk)) {
578 			printk(KERN_WARNING
579 			       "%s: p%d start %llu is beyond EOD, ",
580 			       disk->disk_name, p, (unsigned long long) from);
581 			if (disk_unlock_native_capacity(disk))
582 				goto rescan;
583 			continue;
584 		}
585 
586 		if (from + size > get_capacity(disk)) {
587 			printk(KERN_WARNING
588 			       "%s: p%d size %llu extends beyond EOD, ",
589 			       disk->disk_name, p, (unsigned long long) size);
590 
591 			if (disk_unlock_native_capacity(disk)) {
592 				/* free state and restart */
593 				goto rescan;
594 			} else {
595 				/*
596 				 * we can not ignore partitions of broken tables
597 				 * created by for example camera firmware, but
598 				 * we limit them to the end of the disk to avoid
599 				 * creating invalid block devices
600 				 */
601 				size = get_capacity(disk) - from;
602 			}
603 		}
604 
605 		/*
606 		 * On a zoned block device, partitions should be aligned on the
607 		 * device zone size (i.e. zone boundary crossing not allowed).
608 		 * Otherwise, resetting the write pointer of the last zone of
609 		 * one partition may impact the following partition.
610 		 */
611 		if (bdev_is_zoned(bdev) &&
612 		    !part_zone_aligned(disk, bdev, from, size)) {
613 			printk(KERN_WARNING
614 			       "%s: p%d start %llu+%llu is not zone aligned\n",
615 			       disk->disk_name, p, (unsigned long long) from,
616 			       (unsigned long long) size);
617 			continue;
618 		}
619 
620 		part = add_partition(disk, p, from, size,
621 				     state->parts[p].flags,
622 				     &state->parts[p].info);
623 		if (IS_ERR(part)) {
624 			printk(KERN_ERR " %s: p%d could not be added: %ld\n",
625 			       disk->disk_name, p, -PTR_ERR(part));
626 			continue;
627 		}
628 #ifdef CONFIG_BLK_DEV_MD
629 		if (state->parts[p].flags & ADDPART_FLAG_RAID)
630 			md_autodetect_dev(part_to_dev(part)->devt);
631 #endif
632 	}
633 	free_partitions(state);
634 	return 0;
635 }
636 
invalidate_partitions(struct gendisk * disk,struct block_device * bdev)637 int invalidate_partitions(struct gendisk *disk, struct block_device *bdev)
638 {
639 	int res;
640 
641 	if (!bdev->bd_invalidated)
642 		return 0;
643 
644 	res = drop_partitions(disk, bdev);
645 	if (res)
646 		return res;
647 
648 	set_capacity(disk, 0);
649 	check_disk_size_change(disk, bdev, false);
650 	bdev->bd_invalidated = 0;
651 	/* tell userspace that the media / partition table may have changed */
652 	kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
653 
654 	return 0;
655 }
656 
read_dev_sector(struct block_device * bdev,sector_t n,Sector * p)657 unsigned char *read_dev_sector(struct block_device *bdev, sector_t n, Sector *p)
658 {
659 	struct address_space *mapping = bdev->bd_inode->i_mapping;
660 	struct page *page;
661 
662 	page = read_mapping_page(mapping, (pgoff_t)(n >> (PAGE_SHIFT-9)), NULL);
663 	if (!IS_ERR(page)) {
664 		if (PageError(page))
665 			goto fail;
666 		p->v = page;
667 		return (unsigned char *)page_address(page) +  ((n & ((1 << (PAGE_SHIFT - 9)) - 1)) << 9);
668 fail:
669 		put_page(page);
670 	}
671 	p->v = NULL;
672 	return NULL;
673 }
674 
675 EXPORT_SYMBOL(read_dev_sector);
676