1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/sched/clock.h>
12 #include <linux/blkdev.h>
13 #include <linux/elevator.h>
14 #include <linux/ktime.h>
15 #include <linux/rbtree.h>
16 #include <linux/ioprio.h>
17 #include <linux/blktrace_api.h>
18 #include <linux/blk-cgroup.h>
19 #include "blk.h"
20 #include "blk-wbt.h"
21
22 /*
23 * tunables
24 */
25 /* max queue in one round of service */
26 static const int cfq_quantum = 8;
27 static const u64 cfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
28 /* maximum backwards seek, in KiB */
29 static const int cfq_back_max = 16 * 1024;
30 /* penalty of a backwards seek */
31 static const int cfq_back_penalty = 2;
32 static const u64 cfq_slice_sync = NSEC_PER_SEC / 10;
33 static u64 cfq_slice_async = NSEC_PER_SEC / 25;
34 static const int cfq_slice_async_rq = 2;
35 static u64 cfq_slice_idle = NSEC_PER_SEC / 125;
36 static u64 cfq_group_idle = NSEC_PER_SEC / 125;
37 static const u64 cfq_target_latency = (u64)NSEC_PER_SEC * 3/10; /* 300 ms */
38 static const int cfq_hist_divisor = 4;
39
40 /*
41 * offset from end of queue service tree for idle class
42 */
43 #define CFQ_IDLE_DELAY (NSEC_PER_SEC / 5)
44 /* offset from end of group service tree under time slice mode */
45 #define CFQ_SLICE_MODE_GROUP_DELAY (NSEC_PER_SEC / 5)
46 /* offset from end of group service under IOPS mode */
47 #define CFQ_IOPS_MODE_GROUP_DELAY (HZ / 5)
48
49 /*
50 * below this threshold, we consider thinktime immediate
51 */
52 #define CFQ_MIN_TT (2 * NSEC_PER_SEC / HZ)
53
54 #define CFQ_SLICE_SCALE (5)
55 #define CFQ_HW_QUEUE_MIN (5)
56 #define CFQ_SERVICE_SHIFT 12
57
58 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
59 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
60 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
61 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
62
63 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
64 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
65 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
66
67 static struct kmem_cache *cfq_pool;
68
69 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
70 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
71 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
72
73 #define sample_valid(samples) ((samples) > 80)
74 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
75
76 /* blkio-related constants */
77 #define CFQ_WEIGHT_LEGACY_MIN 10
78 #define CFQ_WEIGHT_LEGACY_DFL 500
79 #define CFQ_WEIGHT_LEGACY_MAX 1000
80
81 struct cfq_ttime {
82 u64 last_end_request;
83
84 u64 ttime_total;
85 u64 ttime_mean;
86 unsigned long ttime_samples;
87 };
88
89 /*
90 * Most of our rbtree usage is for sorting with min extraction, so
91 * if we cache the leftmost node we don't have to walk down the tree
92 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
93 * move this into the elevator for the rq sorting as well.
94 */
95 struct cfq_rb_root {
96 struct rb_root_cached rb;
97 struct rb_node *rb_rightmost;
98 unsigned count;
99 u64 min_vdisktime;
100 struct cfq_ttime ttime;
101 };
102 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT_CACHED, \
103 .rb_rightmost = NULL, \
104 .ttime = {.last_end_request = ktime_get_ns(),},}
105
106 /*
107 * Per process-grouping structure
108 */
109 struct cfq_queue {
110 /* reference count */
111 int ref;
112 /* various state flags, see below */
113 unsigned int flags;
114 /* parent cfq_data */
115 struct cfq_data *cfqd;
116 /* service_tree member */
117 struct rb_node rb_node;
118 /* service_tree key */
119 u64 rb_key;
120 /* prio tree member */
121 struct rb_node p_node;
122 /* prio tree root we belong to, if any */
123 struct rb_root *p_root;
124 /* sorted list of pending requests */
125 struct rb_root sort_list;
126 /* if fifo isn't expired, next request to serve */
127 struct request *next_rq;
128 /* requests queued in sort_list */
129 int queued[2];
130 /* currently allocated requests */
131 int allocated[2];
132 /* fifo list of requests in sort_list */
133 struct list_head fifo;
134
135 /* time when queue got scheduled in to dispatch first request. */
136 u64 dispatch_start;
137 u64 allocated_slice;
138 u64 slice_dispatch;
139 /* time when first request from queue completed and slice started. */
140 u64 slice_start;
141 u64 slice_end;
142 s64 slice_resid;
143
144 /* pending priority requests */
145 int prio_pending;
146 /* number of requests that are on the dispatch list or inside driver */
147 int dispatched;
148
149 /* io prio of this group */
150 unsigned short ioprio, org_ioprio;
151 unsigned short ioprio_class, org_ioprio_class;
152
153 pid_t pid;
154
155 u32 seek_history;
156 sector_t last_request_pos;
157
158 struct cfq_rb_root *service_tree;
159 struct cfq_queue *new_cfqq;
160 struct cfq_group *cfqg;
161 /* Number of sectors dispatched from queue in single dispatch round */
162 unsigned long nr_sectors;
163 };
164
165 /*
166 * First index in the service_trees.
167 * IDLE is handled separately, so it has negative index
168 */
169 enum wl_class_t {
170 BE_WORKLOAD = 0,
171 RT_WORKLOAD = 1,
172 IDLE_WORKLOAD = 2,
173 CFQ_PRIO_NR,
174 };
175
176 /*
177 * Second index in the service_trees.
178 */
179 enum wl_type_t {
180 ASYNC_WORKLOAD = 0,
181 SYNC_NOIDLE_WORKLOAD = 1,
182 SYNC_WORKLOAD = 2
183 };
184
185 struct cfqg_stats {
186 #ifdef CONFIG_CFQ_GROUP_IOSCHED
187 /* number of ios merged */
188 struct blkg_rwstat merged;
189 /* total time spent on device in ns, may not be accurate w/ queueing */
190 struct blkg_rwstat service_time;
191 /* total time spent waiting in scheduler queue in ns */
192 struct blkg_rwstat wait_time;
193 /* number of IOs queued up */
194 struct blkg_rwstat queued;
195 /* total disk time and nr sectors dispatched by this group */
196 struct blkg_stat time;
197 #ifdef CONFIG_DEBUG_BLK_CGROUP
198 /* time not charged to this cgroup */
199 struct blkg_stat unaccounted_time;
200 /* sum of number of ios queued across all samples */
201 struct blkg_stat avg_queue_size_sum;
202 /* count of samples taken for average */
203 struct blkg_stat avg_queue_size_samples;
204 /* how many times this group has been removed from service tree */
205 struct blkg_stat dequeue;
206 /* total time spent waiting for it to be assigned a timeslice. */
207 struct blkg_stat group_wait_time;
208 /* time spent idling for this blkcg_gq */
209 struct blkg_stat idle_time;
210 /* total time with empty current active q with other requests queued */
211 struct blkg_stat empty_time;
212 /* fields after this shouldn't be cleared on stat reset */
213 u64 start_group_wait_time;
214 u64 start_idle_time;
215 u64 start_empty_time;
216 uint16_t flags;
217 #endif /* CONFIG_DEBUG_BLK_CGROUP */
218 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
219 };
220
221 /* Per-cgroup data */
222 struct cfq_group_data {
223 /* must be the first member */
224 struct blkcg_policy_data cpd;
225
226 unsigned int weight;
227 unsigned int leaf_weight;
228 };
229
230 /* This is per cgroup per device grouping structure */
231 struct cfq_group {
232 /* must be the first member */
233 struct blkg_policy_data pd;
234
235 /* group service_tree member */
236 struct rb_node rb_node;
237
238 /* group service_tree key */
239 u64 vdisktime;
240
241 /*
242 * The number of active cfqgs and sum of their weights under this
243 * cfqg. This covers this cfqg's leaf_weight and all children's
244 * weights, but does not cover weights of further descendants.
245 *
246 * If a cfqg is on the service tree, it's active. An active cfqg
247 * also activates its parent and contributes to the children_weight
248 * of the parent.
249 */
250 int nr_active;
251 unsigned int children_weight;
252
253 /*
254 * vfraction is the fraction of vdisktime that the tasks in this
255 * cfqg are entitled to. This is determined by compounding the
256 * ratios walking up from this cfqg to the root.
257 *
258 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
259 * vfractions on a service tree is approximately 1. The sum may
260 * deviate a bit due to rounding errors and fluctuations caused by
261 * cfqgs entering and leaving the service tree.
262 */
263 unsigned int vfraction;
264
265 /*
266 * There are two weights - (internal) weight is the weight of this
267 * cfqg against the sibling cfqgs. leaf_weight is the wight of
268 * this cfqg against the child cfqgs. For the root cfqg, both
269 * weights are kept in sync for backward compatibility.
270 */
271 unsigned int weight;
272 unsigned int new_weight;
273 unsigned int dev_weight;
274
275 unsigned int leaf_weight;
276 unsigned int new_leaf_weight;
277 unsigned int dev_leaf_weight;
278
279 /* number of cfqq currently on this group */
280 int nr_cfqq;
281
282 /*
283 * Per group busy queues average. Useful for workload slice calc. We
284 * create the array for each prio class but at run time it is used
285 * only for RT and BE class and slot for IDLE class remains unused.
286 * This is primarily done to avoid confusion and a gcc warning.
287 */
288 unsigned int busy_queues_avg[CFQ_PRIO_NR];
289 /*
290 * rr lists of queues with requests. We maintain service trees for
291 * RT and BE classes. These trees are subdivided in subclasses
292 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
293 * class there is no subclassification and all the cfq queues go on
294 * a single tree service_tree_idle.
295 * Counts are embedded in the cfq_rb_root
296 */
297 struct cfq_rb_root service_trees[2][3];
298 struct cfq_rb_root service_tree_idle;
299
300 u64 saved_wl_slice;
301 enum wl_type_t saved_wl_type;
302 enum wl_class_t saved_wl_class;
303
304 /* number of requests that are on the dispatch list or inside driver */
305 int dispatched;
306 struct cfq_ttime ttime;
307 struct cfqg_stats stats; /* stats for this cfqg */
308
309 /* async queue for each priority case */
310 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
311 struct cfq_queue *async_idle_cfqq;
312
313 };
314
315 struct cfq_io_cq {
316 struct io_cq icq; /* must be the first member */
317 struct cfq_queue *cfqq[2];
318 struct cfq_ttime ttime;
319 int ioprio; /* the current ioprio */
320 #ifdef CONFIG_CFQ_GROUP_IOSCHED
321 uint64_t blkcg_serial_nr; /* the current blkcg serial */
322 #endif
323 };
324
325 /*
326 * Per block device queue structure
327 */
328 struct cfq_data {
329 struct request_queue *queue;
330 /* Root service tree for cfq_groups */
331 struct cfq_rb_root grp_service_tree;
332 struct cfq_group *root_group;
333
334 /*
335 * The priority currently being served
336 */
337 enum wl_class_t serving_wl_class;
338 enum wl_type_t serving_wl_type;
339 u64 workload_expires;
340 struct cfq_group *serving_group;
341
342 /*
343 * Each priority tree is sorted by next_request position. These
344 * trees are used when determining if two or more queues are
345 * interleaving requests (see cfq_close_cooperator).
346 */
347 struct rb_root prio_trees[CFQ_PRIO_LISTS];
348
349 unsigned int busy_queues;
350 unsigned int busy_sync_queues;
351
352 int rq_in_driver;
353 int rq_in_flight[2];
354
355 /*
356 * queue-depth detection
357 */
358 int rq_queued;
359 int hw_tag;
360 /*
361 * hw_tag can be
362 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
363 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
364 * 0 => no NCQ
365 */
366 int hw_tag_est_depth;
367 unsigned int hw_tag_samples;
368
369 /*
370 * idle window management
371 */
372 struct hrtimer idle_slice_timer;
373 struct work_struct unplug_work;
374
375 struct cfq_queue *active_queue;
376 struct cfq_io_cq *active_cic;
377
378 sector_t last_position;
379
380 /*
381 * tunables, see top of file
382 */
383 unsigned int cfq_quantum;
384 unsigned int cfq_back_penalty;
385 unsigned int cfq_back_max;
386 unsigned int cfq_slice_async_rq;
387 unsigned int cfq_latency;
388 u64 cfq_fifo_expire[2];
389 u64 cfq_slice[2];
390 u64 cfq_slice_idle;
391 u64 cfq_group_idle;
392 u64 cfq_target_latency;
393
394 /*
395 * Fallback dummy cfqq for extreme OOM conditions
396 */
397 struct cfq_queue oom_cfqq;
398
399 u64 last_delayed_sync;
400 };
401
402 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
403 static void cfq_put_queue(struct cfq_queue *cfqq);
404
st_for(struct cfq_group * cfqg,enum wl_class_t class,enum wl_type_t type)405 static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
406 enum wl_class_t class,
407 enum wl_type_t type)
408 {
409 if (!cfqg)
410 return NULL;
411
412 if (class == IDLE_WORKLOAD)
413 return &cfqg->service_tree_idle;
414
415 return &cfqg->service_trees[class][type];
416 }
417
418 enum cfqq_state_flags {
419 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
420 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
421 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
422 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
423 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
424 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
425 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
426 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
427 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
428 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
429 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
430 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
431 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
432 };
433
434 #define CFQ_CFQQ_FNS(name) \
435 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
436 { \
437 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
438 } \
439 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
440 { \
441 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
442 } \
443 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
444 { \
445 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
446 }
447
448 CFQ_CFQQ_FNS(on_rr);
449 CFQ_CFQQ_FNS(wait_request);
450 CFQ_CFQQ_FNS(must_dispatch);
451 CFQ_CFQQ_FNS(must_alloc_slice);
452 CFQ_CFQQ_FNS(fifo_expire);
453 CFQ_CFQQ_FNS(idle_window);
454 CFQ_CFQQ_FNS(prio_changed);
455 CFQ_CFQQ_FNS(slice_new);
456 CFQ_CFQQ_FNS(sync);
457 CFQ_CFQQ_FNS(coop);
458 CFQ_CFQQ_FNS(split_coop);
459 CFQ_CFQQ_FNS(deep);
460 CFQ_CFQQ_FNS(wait_busy);
461 #undef CFQ_CFQQ_FNS
462
463 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
464
465 /* cfqg stats flags */
466 enum cfqg_stats_flags {
467 CFQG_stats_waiting = 0,
468 CFQG_stats_idling,
469 CFQG_stats_empty,
470 };
471
472 #define CFQG_FLAG_FNS(name) \
473 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
474 { \
475 stats->flags |= (1 << CFQG_stats_##name); \
476 } \
477 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
478 { \
479 stats->flags &= ~(1 << CFQG_stats_##name); \
480 } \
481 static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
482 { \
483 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
484 } \
485
486 CFQG_FLAG_FNS(waiting)
CFQG_FLAG_FNS(idling)487 CFQG_FLAG_FNS(idling)
488 CFQG_FLAG_FNS(empty)
489 #undef CFQG_FLAG_FNS
490
491 /* This should be called with the queue_lock held. */
492 static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
493 {
494 u64 now;
495
496 if (!cfqg_stats_waiting(stats))
497 return;
498
499 now = ktime_get_ns();
500 if (now > stats->start_group_wait_time)
501 blkg_stat_add(&stats->group_wait_time,
502 now - stats->start_group_wait_time);
503 cfqg_stats_clear_waiting(stats);
504 }
505
506 /* This should be called with the queue_lock held. */
cfqg_stats_set_start_group_wait_time(struct cfq_group * cfqg,struct cfq_group * curr_cfqg)507 static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
508 struct cfq_group *curr_cfqg)
509 {
510 struct cfqg_stats *stats = &cfqg->stats;
511
512 if (cfqg_stats_waiting(stats))
513 return;
514 if (cfqg == curr_cfqg)
515 return;
516 stats->start_group_wait_time = ktime_get_ns();
517 cfqg_stats_mark_waiting(stats);
518 }
519
520 /* This should be called with the queue_lock held. */
cfqg_stats_end_empty_time(struct cfqg_stats * stats)521 static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
522 {
523 u64 now;
524
525 if (!cfqg_stats_empty(stats))
526 return;
527
528 now = ktime_get_ns();
529 if (now > stats->start_empty_time)
530 blkg_stat_add(&stats->empty_time,
531 now - stats->start_empty_time);
532 cfqg_stats_clear_empty(stats);
533 }
534
cfqg_stats_update_dequeue(struct cfq_group * cfqg)535 static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
536 {
537 blkg_stat_add(&cfqg->stats.dequeue, 1);
538 }
539
cfqg_stats_set_start_empty_time(struct cfq_group * cfqg)540 static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
541 {
542 struct cfqg_stats *stats = &cfqg->stats;
543
544 if (blkg_rwstat_total(&stats->queued))
545 return;
546
547 /*
548 * group is already marked empty. This can happen if cfqq got new
549 * request in parent group and moved to this group while being added
550 * to service tree. Just ignore the event and move on.
551 */
552 if (cfqg_stats_empty(stats))
553 return;
554
555 stats->start_empty_time = ktime_get_ns();
556 cfqg_stats_mark_empty(stats);
557 }
558
cfqg_stats_update_idle_time(struct cfq_group * cfqg)559 static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
560 {
561 struct cfqg_stats *stats = &cfqg->stats;
562
563 if (cfqg_stats_idling(stats)) {
564 u64 now = ktime_get_ns();
565
566 if (now > stats->start_idle_time)
567 blkg_stat_add(&stats->idle_time,
568 now - stats->start_idle_time);
569 cfqg_stats_clear_idling(stats);
570 }
571 }
572
cfqg_stats_set_start_idle_time(struct cfq_group * cfqg)573 static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
574 {
575 struct cfqg_stats *stats = &cfqg->stats;
576
577 BUG_ON(cfqg_stats_idling(stats));
578
579 stats->start_idle_time = ktime_get_ns();
580 cfqg_stats_mark_idling(stats);
581 }
582
cfqg_stats_update_avg_queue_size(struct cfq_group * cfqg)583 static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
584 {
585 struct cfqg_stats *stats = &cfqg->stats;
586
587 blkg_stat_add(&stats->avg_queue_size_sum,
588 blkg_rwstat_total(&stats->queued));
589 blkg_stat_add(&stats->avg_queue_size_samples, 1);
590 cfqg_stats_update_group_wait_time(stats);
591 }
592
593 #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
594
cfqg_stats_set_start_group_wait_time(struct cfq_group * cfqg,struct cfq_group * curr_cfqg)595 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
cfqg_stats_end_empty_time(struct cfqg_stats * stats)596 static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
cfqg_stats_update_dequeue(struct cfq_group * cfqg)597 static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
cfqg_stats_set_start_empty_time(struct cfq_group * cfqg)598 static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
cfqg_stats_update_idle_time(struct cfq_group * cfqg)599 static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
cfqg_stats_set_start_idle_time(struct cfq_group * cfqg)600 static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
cfqg_stats_update_avg_queue_size(struct cfq_group * cfqg)601 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
602
603 #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
604
605 #ifdef CONFIG_CFQ_GROUP_IOSCHED
606
pd_to_cfqg(struct blkg_policy_data * pd)607 static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
608 {
609 return pd ? container_of(pd, struct cfq_group, pd) : NULL;
610 }
611
612 static struct cfq_group_data
cpd_to_cfqgd(struct blkcg_policy_data * cpd)613 *cpd_to_cfqgd(struct blkcg_policy_data *cpd)
614 {
615 return cpd ? container_of(cpd, struct cfq_group_data, cpd) : NULL;
616 }
617
cfqg_to_blkg(struct cfq_group * cfqg)618 static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
619 {
620 return pd_to_blkg(&cfqg->pd);
621 }
622
623 static struct blkcg_policy blkcg_policy_cfq;
624
blkg_to_cfqg(struct blkcg_gq * blkg)625 static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
626 {
627 return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
628 }
629
blkcg_to_cfqgd(struct blkcg * blkcg)630 static struct cfq_group_data *blkcg_to_cfqgd(struct blkcg *blkcg)
631 {
632 return cpd_to_cfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_cfq));
633 }
634
cfqg_parent(struct cfq_group * cfqg)635 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg)
636 {
637 struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent;
638
639 return pblkg ? blkg_to_cfqg(pblkg) : NULL;
640 }
641
cfqg_is_descendant(struct cfq_group * cfqg,struct cfq_group * ancestor)642 static inline bool cfqg_is_descendant(struct cfq_group *cfqg,
643 struct cfq_group *ancestor)
644 {
645 return cgroup_is_descendant(cfqg_to_blkg(cfqg)->blkcg->css.cgroup,
646 cfqg_to_blkg(ancestor)->blkcg->css.cgroup);
647 }
648
cfqg_get(struct cfq_group * cfqg)649 static inline void cfqg_get(struct cfq_group *cfqg)
650 {
651 return blkg_get(cfqg_to_blkg(cfqg));
652 }
653
cfqg_put(struct cfq_group * cfqg)654 static inline void cfqg_put(struct cfq_group *cfqg)
655 {
656 return blkg_put(cfqg_to_blkg(cfqg));
657 }
658
659 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
660 blk_add_cgroup_trace_msg((cfqd)->queue, \
661 cfqg_to_blkg((cfqq)->cfqg)->blkcg, \
662 "cfq%d%c%c " fmt, (cfqq)->pid, \
663 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
664 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
665 ##args); \
666 } while (0)
667
668 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
669 blk_add_cgroup_trace_msg((cfqd)->queue, \
670 cfqg_to_blkg(cfqg)->blkcg, fmt, ##args); \
671 } while (0)
672
cfqg_stats_update_io_add(struct cfq_group * cfqg,struct cfq_group * curr_cfqg,unsigned int op)673 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
674 struct cfq_group *curr_cfqg,
675 unsigned int op)
676 {
677 blkg_rwstat_add(&cfqg->stats.queued, op, 1);
678 cfqg_stats_end_empty_time(&cfqg->stats);
679 cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
680 }
681
cfqg_stats_update_timeslice_used(struct cfq_group * cfqg,uint64_t time,unsigned long unaccounted_time)682 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
683 uint64_t time, unsigned long unaccounted_time)
684 {
685 blkg_stat_add(&cfqg->stats.time, time);
686 #ifdef CONFIG_DEBUG_BLK_CGROUP
687 blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
688 #endif
689 }
690
cfqg_stats_update_io_remove(struct cfq_group * cfqg,unsigned int op)691 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg,
692 unsigned int op)
693 {
694 blkg_rwstat_add(&cfqg->stats.queued, op, -1);
695 }
696
cfqg_stats_update_io_merged(struct cfq_group * cfqg,unsigned int op)697 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg,
698 unsigned int op)
699 {
700 blkg_rwstat_add(&cfqg->stats.merged, op, 1);
701 }
702
cfqg_stats_update_completion(struct cfq_group * cfqg,u64 start_time_ns,u64 io_start_time_ns,unsigned int op)703 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
704 u64 start_time_ns,
705 u64 io_start_time_ns,
706 unsigned int op)
707 {
708 struct cfqg_stats *stats = &cfqg->stats;
709 u64 now = ktime_get_ns();
710
711 if (now > io_start_time_ns)
712 blkg_rwstat_add(&stats->service_time, op,
713 now - io_start_time_ns);
714 if (io_start_time_ns > start_time_ns)
715 blkg_rwstat_add(&stats->wait_time, op,
716 io_start_time_ns - start_time_ns);
717 }
718
719 /* @stats = 0 */
cfqg_stats_reset(struct cfqg_stats * stats)720 static void cfqg_stats_reset(struct cfqg_stats *stats)
721 {
722 /* queued stats shouldn't be cleared */
723 blkg_rwstat_reset(&stats->merged);
724 blkg_rwstat_reset(&stats->service_time);
725 blkg_rwstat_reset(&stats->wait_time);
726 blkg_stat_reset(&stats->time);
727 #ifdef CONFIG_DEBUG_BLK_CGROUP
728 blkg_stat_reset(&stats->unaccounted_time);
729 blkg_stat_reset(&stats->avg_queue_size_sum);
730 blkg_stat_reset(&stats->avg_queue_size_samples);
731 blkg_stat_reset(&stats->dequeue);
732 blkg_stat_reset(&stats->group_wait_time);
733 blkg_stat_reset(&stats->idle_time);
734 blkg_stat_reset(&stats->empty_time);
735 #endif
736 }
737
738 /* @to += @from */
cfqg_stats_add_aux(struct cfqg_stats * to,struct cfqg_stats * from)739 static void cfqg_stats_add_aux(struct cfqg_stats *to, struct cfqg_stats *from)
740 {
741 /* queued stats shouldn't be cleared */
742 blkg_rwstat_add_aux(&to->merged, &from->merged);
743 blkg_rwstat_add_aux(&to->service_time, &from->service_time);
744 blkg_rwstat_add_aux(&to->wait_time, &from->wait_time);
745 blkg_stat_add_aux(&from->time, &from->time);
746 #ifdef CONFIG_DEBUG_BLK_CGROUP
747 blkg_stat_add_aux(&to->unaccounted_time, &from->unaccounted_time);
748 blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
749 blkg_stat_add_aux(&to->avg_queue_size_samples, &from->avg_queue_size_samples);
750 blkg_stat_add_aux(&to->dequeue, &from->dequeue);
751 blkg_stat_add_aux(&to->group_wait_time, &from->group_wait_time);
752 blkg_stat_add_aux(&to->idle_time, &from->idle_time);
753 blkg_stat_add_aux(&to->empty_time, &from->empty_time);
754 #endif
755 }
756
757 /*
758 * Transfer @cfqg's stats to its parent's aux counts so that the ancestors'
759 * recursive stats can still account for the amount used by this cfqg after
760 * it's gone.
761 */
cfqg_stats_xfer_dead(struct cfq_group * cfqg)762 static void cfqg_stats_xfer_dead(struct cfq_group *cfqg)
763 {
764 struct cfq_group *parent = cfqg_parent(cfqg);
765
766 lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock);
767
768 if (unlikely(!parent))
769 return;
770
771 cfqg_stats_add_aux(&parent->stats, &cfqg->stats);
772 cfqg_stats_reset(&cfqg->stats);
773 }
774
775 #else /* CONFIG_CFQ_GROUP_IOSCHED */
776
cfqg_parent(struct cfq_group * cfqg)777 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; }
cfqg_is_descendant(struct cfq_group * cfqg,struct cfq_group * ancestor)778 static inline bool cfqg_is_descendant(struct cfq_group *cfqg,
779 struct cfq_group *ancestor)
780 {
781 return true;
782 }
cfqg_get(struct cfq_group * cfqg)783 static inline void cfqg_get(struct cfq_group *cfqg) { }
cfqg_put(struct cfq_group * cfqg)784 static inline void cfqg_put(struct cfq_group *cfqg) { }
785
786 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
787 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
788 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
789 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
790 ##args)
791 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
792
cfqg_stats_update_io_add(struct cfq_group * cfqg,struct cfq_group * curr_cfqg,unsigned int op)793 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
794 struct cfq_group *curr_cfqg, unsigned int op) { }
cfqg_stats_update_timeslice_used(struct cfq_group * cfqg,uint64_t time,unsigned long unaccounted_time)795 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
796 uint64_t time, unsigned long unaccounted_time) { }
cfqg_stats_update_io_remove(struct cfq_group * cfqg,unsigned int op)797 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg,
798 unsigned int op) { }
cfqg_stats_update_io_merged(struct cfq_group * cfqg,unsigned int op)799 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg,
800 unsigned int op) { }
cfqg_stats_update_completion(struct cfq_group * cfqg,u64 start_time_ns,u64 io_start_time_ns,unsigned int op)801 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
802 u64 start_time_ns,
803 u64 io_start_time_ns,
804 unsigned int op) { }
805
806 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
807
808 #define cfq_log(cfqd, fmt, args...) \
809 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
810
811 /* Traverses through cfq group service trees */
812 #define for_each_cfqg_st(cfqg, i, j, st) \
813 for (i = 0; i <= IDLE_WORKLOAD; i++) \
814 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
815 : &cfqg->service_tree_idle; \
816 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
817 (i == IDLE_WORKLOAD && j == 0); \
818 j++, st = i < IDLE_WORKLOAD ? \
819 &cfqg->service_trees[i][j]: NULL) \
820
cfq_io_thinktime_big(struct cfq_data * cfqd,struct cfq_ttime * ttime,bool group_idle)821 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
822 struct cfq_ttime *ttime, bool group_idle)
823 {
824 u64 slice;
825 if (!sample_valid(ttime->ttime_samples))
826 return false;
827 if (group_idle)
828 slice = cfqd->cfq_group_idle;
829 else
830 slice = cfqd->cfq_slice_idle;
831 return ttime->ttime_mean > slice;
832 }
833
iops_mode(struct cfq_data * cfqd)834 static inline bool iops_mode(struct cfq_data *cfqd)
835 {
836 /*
837 * If we are not idling on queues and it is a NCQ drive, parallel
838 * execution of requests is on and measuring time is not possible
839 * in most of the cases until and unless we drive shallower queue
840 * depths and that becomes a performance bottleneck. In such cases
841 * switch to start providing fairness in terms of number of IOs.
842 */
843 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
844 return true;
845 else
846 return false;
847 }
848
cfqq_class(struct cfq_queue * cfqq)849 static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
850 {
851 if (cfq_class_idle(cfqq))
852 return IDLE_WORKLOAD;
853 if (cfq_class_rt(cfqq))
854 return RT_WORKLOAD;
855 return BE_WORKLOAD;
856 }
857
858
cfqq_type(struct cfq_queue * cfqq)859 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
860 {
861 if (!cfq_cfqq_sync(cfqq))
862 return ASYNC_WORKLOAD;
863 if (!cfq_cfqq_idle_window(cfqq))
864 return SYNC_NOIDLE_WORKLOAD;
865 return SYNC_WORKLOAD;
866 }
867
cfq_group_busy_queues_wl(enum wl_class_t wl_class,struct cfq_data * cfqd,struct cfq_group * cfqg)868 static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
869 struct cfq_data *cfqd,
870 struct cfq_group *cfqg)
871 {
872 if (wl_class == IDLE_WORKLOAD)
873 return cfqg->service_tree_idle.count;
874
875 return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
876 cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
877 cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
878 }
879
cfqg_busy_async_queues(struct cfq_data * cfqd,struct cfq_group * cfqg)880 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
881 struct cfq_group *cfqg)
882 {
883 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
884 cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
885 }
886
887 static void cfq_dispatch_insert(struct request_queue *, struct request *);
888 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
889 struct cfq_io_cq *cic, struct bio *bio);
890
icq_to_cic(struct io_cq * icq)891 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
892 {
893 /* cic->icq is the first member, %NULL will convert to %NULL */
894 return container_of(icq, struct cfq_io_cq, icq);
895 }
896
cfq_cic_lookup(struct cfq_data * cfqd,struct io_context * ioc)897 static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
898 struct io_context *ioc)
899 {
900 if (ioc)
901 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
902 return NULL;
903 }
904
cic_to_cfqq(struct cfq_io_cq * cic,bool is_sync)905 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
906 {
907 return cic->cfqq[is_sync];
908 }
909
cic_set_cfqq(struct cfq_io_cq * cic,struct cfq_queue * cfqq,bool is_sync)910 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
911 bool is_sync)
912 {
913 cic->cfqq[is_sync] = cfqq;
914 }
915
cic_to_cfqd(struct cfq_io_cq * cic)916 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
917 {
918 return cic->icq.q->elevator->elevator_data;
919 }
920
921 /*
922 * scheduler run of queue, if there are requests pending and no one in the
923 * driver that will restart queueing
924 */
cfq_schedule_dispatch(struct cfq_data * cfqd)925 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
926 {
927 if (cfqd->busy_queues) {
928 cfq_log(cfqd, "schedule dispatch");
929 kblockd_schedule_work(&cfqd->unplug_work);
930 }
931 }
932
933 /*
934 * Scale schedule slice based on io priority. Use the sync time slice only
935 * if a queue is marked sync and has sync io queued. A sync queue with async
936 * io only, should not get full sync slice length.
937 */
cfq_prio_slice(struct cfq_data * cfqd,bool sync,unsigned short prio)938 static inline u64 cfq_prio_slice(struct cfq_data *cfqd, bool sync,
939 unsigned short prio)
940 {
941 u64 base_slice = cfqd->cfq_slice[sync];
942 u64 slice = div_u64(base_slice, CFQ_SLICE_SCALE);
943
944 WARN_ON(prio >= IOPRIO_BE_NR);
945
946 return base_slice + (slice * (4 - prio));
947 }
948
949 static inline u64
cfq_prio_to_slice(struct cfq_data * cfqd,struct cfq_queue * cfqq)950 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
951 {
952 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
953 }
954
955 /**
956 * cfqg_scale_charge - scale disk time charge according to cfqg weight
957 * @charge: disk time being charged
958 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
959 *
960 * Scale @charge according to @vfraction, which is in range (0, 1]. The
961 * scaling is inversely proportional.
962 *
963 * scaled = charge / vfraction
964 *
965 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
966 */
cfqg_scale_charge(u64 charge,unsigned int vfraction)967 static inline u64 cfqg_scale_charge(u64 charge,
968 unsigned int vfraction)
969 {
970 u64 c = charge << CFQ_SERVICE_SHIFT; /* make it fixed point */
971
972 /* charge / vfraction */
973 c <<= CFQ_SERVICE_SHIFT;
974 return div_u64(c, vfraction);
975 }
976
max_vdisktime(u64 min_vdisktime,u64 vdisktime)977 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
978 {
979 s64 delta = (s64)(vdisktime - min_vdisktime);
980 if (delta > 0)
981 min_vdisktime = vdisktime;
982
983 return min_vdisktime;
984 }
985
update_min_vdisktime(struct cfq_rb_root * st)986 static void update_min_vdisktime(struct cfq_rb_root *st)
987 {
988 if (!RB_EMPTY_ROOT(&st->rb.rb_root)) {
989 struct cfq_group *cfqg = rb_entry_cfqg(st->rb.rb_leftmost);
990
991 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
992 cfqg->vdisktime);
993 }
994 }
995
996 /*
997 * get averaged number of queues of RT/BE priority.
998 * average is updated, with a formula that gives more weight to higher numbers,
999 * to quickly follows sudden increases and decrease slowly
1000 */
1001
cfq_group_get_avg_queues(struct cfq_data * cfqd,struct cfq_group * cfqg,bool rt)1002 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
1003 struct cfq_group *cfqg, bool rt)
1004 {
1005 unsigned min_q, max_q;
1006 unsigned mult = cfq_hist_divisor - 1;
1007 unsigned round = cfq_hist_divisor / 2;
1008 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
1009
1010 min_q = min(cfqg->busy_queues_avg[rt], busy);
1011 max_q = max(cfqg->busy_queues_avg[rt], busy);
1012 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
1013 cfq_hist_divisor;
1014 return cfqg->busy_queues_avg[rt];
1015 }
1016
1017 static inline u64
cfq_group_slice(struct cfq_data * cfqd,struct cfq_group * cfqg)1018 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
1019 {
1020 return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
1021 }
1022
1023 static inline u64
cfq_scaled_cfqq_slice(struct cfq_data * cfqd,struct cfq_queue * cfqq)1024 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1025 {
1026 u64 slice = cfq_prio_to_slice(cfqd, cfqq);
1027 if (cfqd->cfq_latency) {
1028 /*
1029 * interested queues (we consider only the ones with the same
1030 * priority class in the cfq group)
1031 */
1032 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
1033 cfq_class_rt(cfqq));
1034 u64 sync_slice = cfqd->cfq_slice[1];
1035 u64 expect_latency = sync_slice * iq;
1036 u64 group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
1037
1038 if (expect_latency > group_slice) {
1039 u64 base_low_slice = 2 * cfqd->cfq_slice_idle;
1040 u64 low_slice;
1041
1042 /* scale low_slice according to IO priority
1043 * and sync vs async */
1044 low_slice = div64_u64(base_low_slice*slice, sync_slice);
1045 low_slice = min(slice, low_slice);
1046 /* the adapted slice value is scaled to fit all iqs
1047 * into the target latency */
1048 slice = div64_u64(slice*group_slice, expect_latency);
1049 slice = max(slice, low_slice);
1050 }
1051 }
1052 return slice;
1053 }
1054
1055 static inline void
cfq_set_prio_slice(struct cfq_data * cfqd,struct cfq_queue * cfqq)1056 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1057 {
1058 u64 slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1059 u64 now = ktime_get_ns();
1060
1061 cfqq->slice_start = now;
1062 cfqq->slice_end = now + slice;
1063 cfqq->allocated_slice = slice;
1064 cfq_log_cfqq(cfqd, cfqq, "set_slice=%llu", cfqq->slice_end - now);
1065 }
1066
1067 /*
1068 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1069 * isn't valid until the first request from the dispatch is activated
1070 * and the slice time set.
1071 */
cfq_slice_used(struct cfq_queue * cfqq)1072 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1073 {
1074 if (cfq_cfqq_slice_new(cfqq))
1075 return false;
1076 if (ktime_get_ns() < cfqq->slice_end)
1077 return false;
1078
1079 return true;
1080 }
1081
1082 /*
1083 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1084 * We choose the request that is closest to the head right now. Distance
1085 * behind the head is penalized and only allowed to a certain extent.
1086 */
1087 static struct request *
cfq_choose_req(struct cfq_data * cfqd,struct request * rq1,struct request * rq2,sector_t last)1088 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1089 {
1090 sector_t s1, s2, d1 = 0, d2 = 0;
1091 unsigned long back_max;
1092 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1093 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1094 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1095
1096 if (rq1 == NULL || rq1 == rq2)
1097 return rq2;
1098 if (rq2 == NULL)
1099 return rq1;
1100
1101 if (rq_is_sync(rq1) != rq_is_sync(rq2))
1102 return rq_is_sync(rq1) ? rq1 : rq2;
1103
1104 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1105 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1106
1107 s1 = blk_rq_pos(rq1);
1108 s2 = blk_rq_pos(rq2);
1109
1110 /*
1111 * by definition, 1KiB is 2 sectors
1112 */
1113 back_max = cfqd->cfq_back_max * 2;
1114
1115 /*
1116 * Strict one way elevator _except_ in the case where we allow
1117 * short backward seeks which are biased as twice the cost of a
1118 * similar forward seek.
1119 */
1120 if (s1 >= last)
1121 d1 = s1 - last;
1122 else if (s1 + back_max >= last)
1123 d1 = (last - s1) * cfqd->cfq_back_penalty;
1124 else
1125 wrap |= CFQ_RQ1_WRAP;
1126
1127 if (s2 >= last)
1128 d2 = s2 - last;
1129 else if (s2 + back_max >= last)
1130 d2 = (last - s2) * cfqd->cfq_back_penalty;
1131 else
1132 wrap |= CFQ_RQ2_WRAP;
1133
1134 /* Found required data */
1135
1136 /*
1137 * By doing switch() on the bit mask "wrap" we avoid having to
1138 * check two variables for all permutations: --> faster!
1139 */
1140 switch (wrap) {
1141 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1142 if (d1 < d2)
1143 return rq1;
1144 else if (d2 < d1)
1145 return rq2;
1146 else {
1147 if (s1 >= s2)
1148 return rq1;
1149 else
1150 return rq2;
1151 }
1152
1153 case CFQ_RQ2_WRAP:
1154 return rq1;
1155 case CFQ_RQ1_WRAP:
1156 return rq2;
1157 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1158 default:
1159 /*
1160 * Since both rqs are wrapped,
1161 * start with the one that's further behind head
1162 * (--> only *one* back seek required),
1163 * since back seek takes more time than forward.
1164 */
1165 if (s1 <= s2)
1166 return rq1;
1167 else
1168 return rq2;
1169 }
1170 }
1171
cfq_rb_first(struct cfq_rb_root * root)1172 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1173 {
1174 /* Service tree is empty */
1175 if (!root->count)
1176 return NULL;
1177
1178 return rb_entry(rb_first_cached(&root->rb), struct cfq_queue, rb_node);
1179 }
1180
cfq_rb_first_group(struct cfq_rb_root * root)1181 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1182 {
1183 return rb_entry_cfqg(rb_first_cached(&root->rb));
1184 }
1185
cfq_rb_erase(struct rb_node * n,struct cfq_rb_root * root)1186 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1187 {
1188 if (root->rb_rightmost == n)
1189 root->rb_rightmost = rb_prev(n);
1190
1191 rb_erase_cached(n, &root->rb);
1192 RB_CLEAR_NODE(n);
1193
1194 --root->count;
1195 }
1196
1197 /*
1198 * would be nice to take fifo expire time into account as well
1199 */
1200 static struct request *
cfq_find_next_rq(struct cfq_data * cfqd,struct cfq_queue * cfqq,struct request * last)1201 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1202 struct request *last)
1203 {
1204 struct rb_node *rbnext = rb_next(&last->rb_node);
1205 struct rb_node *rbprev = rb_prev(&last->rb_node);
1206 struct request *next = NULL, *prev = NULL;
1207
1208 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1209
1210 if (rbprev)
1211 prev = rb_entry_rq(rbprev);
1212
1213 if (rbnext)
1214 next = rb_entry_rq(rbnext);
1215 else {
1216 rbnext = rb_first(&cfqq->sort_list);
1217 if (rbnext && rbnext != &last->rb_node)
1218 next = rb_entry_rq(rbnext);
1219 }
1220
1221 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1222 }
1223
cfq_slice_offset(struct cfq_data * cfqd,struct cfq_queue * cfqq)1224 static u64 cfq_slice_offset(struct cfq_data *cfqd,
1225 struct cfq_queue *cfqq)
1226 {
1227 /*
1228 * just an approximation, should be ok.
1229 */
1230 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1231 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1232 }
1233
1234 static inline s64
cfqg_key(struct cfq_rb_root * st,struct cfq_group * cfqg)1235 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1236 {
1237 return cfqg->vdisktime - st->min_vdisktime;
1238 }
1239
1240 static void
__cfq_group_service_tree_add(struct cfq_rb_root * st,struct cfq_group * cfqg)1241 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1242 {
1243 struct rb_node **node = &st->rb.rb_root.rb_node;
1244 struct rb_node *parent = NULL;
1245 struct cfq_group *__cfqg;
1246 s64 key = cfqg_key(st, cfqg);
1247 bool leftmost = true, rightmost = true;
1248
1249 while (*node != NULL) {
1250 parent = *node;
1251 __cfqg = rb_entry_cfqg(parent);
1252
1253 if (key < cfqg_key(st, __cfqg)) {
1254 node = &parent->rb_left;
1255 rightmost = false;
1256 } else {
1257 node = &parent->rb_right;
1258 leftmost = false;
1259 }
1260 }
1261
1262 if (rightmost)
1263 st->rb_rightmost = &cfqg->rb_node;
1264
1265 rb_link_node(&cfqg->rb_node, parent, node);
1266 rb_insert_color_cached(&cfqg->rb_node, &st->rb, leftmost);
1267 }
1268
1269 /*
1270 * This has to be called only on activation of cfqg
1271 */
1272 static void
cfq_update_group_weight(struct cfq_group * cfqg)1273 cfq_update_group_weight(struct cfq_group *cfqg)
1274 {
1275 if (cfqg->new_weight) {
1276 cfqg->weight = cfqg->new_weight;
1277 cfqg->new_weight = 0;
1278 }
1279 }
1280
1281 static void
cfq_update_group_leaf_weight(struct cfq_group * cfqg)1282 cfq_update_group_leaf_weight(struct cfq_group *cfqg)
1283 {
1284 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1285
1286 if (cfqg->new_leaf_weight) {
1287 cfqg->leaf_weight = cfqg->new_leaf_weight;
1288 cfqg->new_leaf_weight = 0;
1289 }
1290 }
1291
1292 static void
cfq_group_service_tree_add(struct cfq_rb_root * st,struct cfq_group * cfqg)1293 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1294 {
1295 unsigned int vfr = 1 << CFQ_SERVICE_SHIFT; /* start with 1 */
1296 struct cfq_group *pos = cfqg;
1297 struct cfq_group *parent;
1298 bool propagate;
1299
1300 /* add to the service tree */
1301 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1302
1303 /*
1304 * Update leaf_weight. We cannot update weight at this point
1305 * because cfqg might already have been activated and is
1306 * contributing its current weight to the parent's child_weight.
1307 */
1308 cfq_update_group_leaf_weight(cfqg);
1309 __cfq_group_service_tree_add(st, cfqg);
1310
1311 /*
1312 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1313 * entitled to. vfraction is calculated by walking the tree
1314 * towards the root calculating the fraction it has at each level.
1315 * The compounded ratio is how much vfraction @cfqg owns.
1316 *
1317 * Start with the proportion tasks in this cfqg has against active
1318 * children cfqgs - its leaf_weight against children_weight.
1319 */
1320 propagate = !pos->nr_active++;
1321 pos->children_weight += pos->leaf_weight;
1322 vfr = vfr * pos->leaf_weight / pos->children_weight;
1323
1324 /*
1325 * Compound ->weight walking up the tree. Both activation and
1326 * vfraction calculation are done in the same loop. Propagation
1327 * stops once an already activated node is met. vfraction
1328 * calculation should always continue to the root.
1329 */
1330 while ((parent = cfqg_parent(pos))) {
1331 if (propagate) {
1332 cfq_update_group_weight(pos);
1333 propagate = !parent->nr_active++;
1334 parent->children_weight += pos->weight;
1335 }
1336 vfr = vfr * pos->weight / parent->children_weight;
1337 pos = parent;
1338 }
1339
1340 cfqg->vfraction = max_t(unsigned, vfr, 1);
1341 }
1342
cfq_get_cfqg_vdisktime_delay(struct cfq_data * cfqd)1343 static inline u64 cfq_get_cfqg_vdisktime_delay(struct cfq_data *cfqd)
1344 {
1345 if (!iops_mode(cfqd))
1346 return CFQ_SLICE_MODE_GROUP_DELAY;
1347 else
1348 return CFQ_IOPS_MODE_GROUP_DELAY;
1349 }
1350
1351 static void
cfq_group_notify_queue_add(struct cfq_data * cfqd,struct cfq_group * cfqg)1352 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1353 {
1354 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1355 struct cfq_group *__cfqg;
1356 struct rb_node *n;
1357
1358 cfqg->nr_cfqq++;
1359 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1360 return;
1361
1362 /*
1363 * Currently put the group at the end. Later implement something
1364 * so that groups get lesser vtime based on their weights, so that
1365 * if group does not loose all if it was not continuously backlogged.
1366 */
1367 n = st->rb_rightmost;
1368 if (n) {
1369 __cfqg = rb_entry_cfqg(n);
1370 cfqg->vdisktime = __cfqg->vdisktime +
1371 cfq_get_cfqg_vdisktime_delay(cfqd);
1372 } else
1373 cfqg->vdisktime = st->min_vdisktime;
1374 cfq_group_service_tree_add(st, cfqg);
1375 }
1376
1377 static void
cfq_group_service_tree_del(struct cfq_rb_root * st,struct cfq_group * cfqg)1378 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1379 {
1380 struct cfq_group *pos = cfqg;
1381 bool propagate;
1382
1383 /*
1384 * Undo activation from cfq_group_service_tree_add(). Deactivate
1385 * @cfqg and propagate deactivation upwards.
1386 */
1387 propagate = !--pos->nr_active;
1388 pos->children_weight -= pos->leaf_weight;
1389
1390 while (propagate) {
1391 struct cfq_group *parent = cfqg_parent(pos);
1392
1393 /* @pos has 0 nr_active at this point */
1394 WARN_ON_ONCE(pos->children_weight);
1395 pos->vfraction = 0;
1396
1397 if (!parent)
1398 break;
1399
1400 propagate = !--parent->nr_active;
1401 parent->children_weight -= pos->weight;
1402 pos = parent;
1403 }
1404
1405 /* remove from the service tree */
1406 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1407 cfq_rb_erase(&cfqg->rb_node, st);
1408 }
1409
1410 static void
cfq_group_notify_queue_del(struct cfq_data * cfqd,struct cfq_group * cfqg)1411 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1412 {
1413 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1414
1415 BUG_ON(cfqg->nr_cfqq < 1);
1416 cfqg->nr_cfqq--;
1417
1418 /* If there are other cfq queues under this group, don't delete it */
1419 if (cfqg->nr_cfqq)
1420 return;
1421
1422 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1423 cfq_group_service_tree_del(st, cfqg);
1424 cfqg->saved_wl_slice = 0;
1425 cfqg_stats_update_dequeue(cfqg);
1426 }
1427
cfq_cfqq_slice_usage(struct cfq_queue * cfqq,u64 * unaccounted_time)1428 static inline u64 cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1429 u64 *unaccounted_time)
1430 {
1431 u64 slice_used;
1432 u64 now = ktime_get_ns();
1433
1434 /*
1435 * Queue got expired before even a single request completed or
1436 * got expired immediately after first request completion.
1437 */
1438 if (!cfqq->slice_start || cfqq->slice_start == now) {
1439 /*
1440 * Also charge the seek time incurred to the group, otherwise
1441 * if there are mutiple queues in the group, each can dispatch
1442 * a single request on seeky media and cause lots of seek time
1443 * and group will never know it.
1444 */
1445 slice_used = max_t(u64, (now - cfqq->dispatch_start),
1446 jiffies_to_nsecs(1));
1447 } else {
1448 slice_used = now - cfqq->slice_start;
1449 if (slice_used > cfqq->allocated_slice) {
1450 *unaccounted_time = slice_used - cfqq->allocated_slice;
1451 slice_used = cfqq->allocated_slice;
1452 }
1453 if (cfqq->slice_start > cfqq->dispatch_start)
1454 *unaccounted_time += cfqq->slice_start -
1455 cfqq->dispatch_start;
1456 }
1457
1458 return slice_used;
1459 }
1460
cfq_group_served(struct cfq_data * cfqd,struct cfq_group * cfqg,struct cfq_queue * cfqq)1461 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1462 struct cfq_queue *cfqq)
1463 {
1464 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1465 u64 used_sl, charge, unaccounted_sl = 0;
1466 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1467 - cfqg->service_tree_idle.count;
1468 unsigned int vfr;
1469 u64 now = ktime_get_ns();
1470
1471 BUG_ON(nr_sync < 0);
1472 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1473
1474 if (iops_mode(cfqd))
1475 charge = cfqq->slice_dispatch;
1476 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1477 charge = cfqq->allocated_slice;
1478
1479 /*
1480 * Can't update vdisktime while on service tree and cfqg->vfraction
1481 * is valid only while on it. Cache vfr, leave the service tree,
1482 * update vdisktime and go back on. The re-addition to the tree
1483 * will also update the weights as necessary.
1484 */
1485 vfr = cfqg->vfraction;
1486 cfq_group_service_tree_del(st, cfqg);
1487 cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
1488 cfq_group_service_tree_add(st, cfqg);
1489
1490 /* This group is being expired. Save the context */
1491 if (cfqd->workload_expires > now) {
1492 cfqg->saved_wl_slice = cfqd->workload_expires - now;
1493 cfqg->saved_wl_type = cfqd->serving_wl_type;
1494 cfqg->saved_wl_class = cfqd->serving_wl_class;
1495 } else
1496 cfqg->saved_wl_slice = 0;
1497
1498 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1499 st->min_vdisktime);
1500 cfq_log_cfqq(cfqq->cfqd, cfqq,
1501 "sl_used=%llu disp=%llu charge=%llu iops=%u sect=%lu",
1502 used_sl, cfqq->slice_dispatch, charge,
1503 iops_mode(cfqd), cfqq->nr_sectors);
1504 cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1505 cfqg_stats_set_start_empty_time(cfqg);
1506 }
1507
1508 /**
1509 * cfq_init_cfqg_base - initialize base part of a cfq_group
1510 * @cfqg: cfq_group to initialize
1511 *
1512 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1513 * is enabled or not.
1514 */
cfq_init_cfqg_base(struct cfq_group * cfqg)1515 static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1516 {
1517 struct cfq_rb_root *st;
1518 int i, j;
1519
1520 for_each_cfqg_st(cfqg, i, j, st)
1521 *st = CFQ_RB_ROOT;
1522 RB_CLEAR_NODE(&cfqg->rb_node);
1523
1524 cfqg->ttime.last_end_request = ktime_get_ns();
1525 }
1526
1527 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1528 static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val,
1529 bool on_dfl, bool reset_dev, bool is_leaf_weight);
1530
cfqg_stats_exit(struct cfqg_stats * stats)1531 static void cfqg_stats_exit(struct cfqg_stats *stats)
1532 {
1533 blkg_rwstat_exit(&stats->merged);
1534 blkg_rwstat_exit(&stats->service_time);
1535 blkg_rwstat_exit(&stats->wait_time);
1536 blkg_rwstat_exit(&stats->queued);
1537 blkg_stat_exit(&stats->time);
1538 #ifdef CONFIG_DEBUG_BLK_CGROUP
1539 blkg_stat_exit(&stats->unaccounted_time);
1540 blkg_stat_exit(&stats->avg_queue_size_sum);
1541 blkg_stat_exit(&stats->avg_queue_size_samples);
1542 blkg_stat_exit(&stats->dequeue);
1543 blkg_stat_exit(&stats->group_wait_time);
1544 blkg_stat_exit(&stats->idle_time);
1545 blkg_stat_exit(&stats->empty_time);
1546 #endif
1547 }
1548
cfqg_stats_init(struct cfqg_stats * stats,gfp_t gfp)1549 static int cfqg_stats_init(struct cfqg_stats *stats, gfp_t gfp)
1550 {
1551 if (blkg_rwstat_init(&stats->merged, gfp) ||
1552 blkg_rwstat_init(&stats->service_time, gfp) ||
1553 blkg_rwstat_init(&stats->wait_time, gfp) ||
1554 blkg_rwstat_init(&stats->queued, gfp) ||
1555 blkg_stat_init(&stats->time, gfp))
1556 goto err;
1557
1558 #ifdef CONFIG_DEBUG_BLK_CGROUP
1559 if (blkg_stat_init(&stats->unaccounted_time, gfp) ||
1560 blkg_stat_init(&stats->avg_queue_size_sum, gfp) ||
1561 blkg_stat_init(&stats->avg_queue_size_samples, gfp) ||
1562 blkg_stat_init(&stats->dequeue, gfp) ||
1563 blkg_stat_init(&stats->group_wait_time, gfp) ||
1564 blkg_stat_init(&stats->idle_time, gfp) ||
1565 blkg_stat_init(&stats->empty_time, gfp))
1566 goto err;
1567 #endif
1568 return 0;
1569 err:
1570 cfqg_stats_exit(stats);
1571 return -ENOMEM;
1572 }
1573
cfq_cpd_alloc(gfp_t gfp)1574 static struct blkcg_policy_data *cfq_cpd_alloc(gfp_t gfp)
1575 {
1576 struct cfq_group_data *cgd;
1577
1578 cgd = kzalloc(sizeof(*cgd), gfp);
1579 if (!cgd)
1580 return NULL;
1581 return &cgd->cpd;
1582 }
1583
cfq_cpd_init(struct blkcg_policy_data * cpd)1584 static void cfq_cpd_init(struct blkcg_policy_data *cpd)
1585 {
1586 struct cfq_group_data *cgd = cpd_to_cfqgd(cpd);
1587 unsigned int weight = cgroup_subsys_on_dfl(io_cgrp_subsys) ?
1588 CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL;
1589
1590 if (cpd_to_blkcg(cpd) == &blkcg_root)
1591 weight *= 2;
1592
1593 cgd->weight = weight;
1594 cgd->leaf_weight = weight;
1595 }
1596
cfq_cpd_free(struct blkcg_policy_data * cpd)1597 static void cfq_cpd_free(struct blkcg_policy_data *cpd)
1598 {
1599 kfree(cpd_to_cfqgd(cpd));
1600 }
1601
cfq_cpd_bind(struct blkcg_policy_data * cpd)1602 static void cfq_cpd_bind(struct blkcg_policy_data *cpd)
1603 {
1604 struct blkcg *blkcg = cpd_to_blkcg(cpd);
1605 bool on_dfl = cgroup_subsys_on_dfl(io_cgrp_subsys);
1606 unsigned int weight = on_dfl ? CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL;
1607
1608 if (blkcg == &blkcg_root)
1609 weight *= 2;
1610
1611 WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, false));
1612 WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, true));
1613 }
1614
cfq_pd_alloc(gfp_t gfp,int node)1615 static struct blkg_policy_data *cfq_pd_alloc(gfp_t gfp, int node)
1616 {
1617 struct cfq_group *cfqg;
1618
1619 cfqg = kzalloc_node(sizeof(*cfqg), gfp, node);
1620 if (!cfqg)
1621 return NULL;
1622
1623 cfq_init_cfqg_base(cfqg);
1624 if (cfqg_stats_init(&cfqg->stats, gfp)) {
1625 kfree(cfqg);
1626 return NULL;
1627 }
1628
1629 return &cfqg->pd;
1630 }
1631
cfq_pd_init(struct blkg_policy_data * pd)1632 static void cfq_pd_init(struct blkg_policy_data *pd)
1633 {
1634 struct cfq_group *cfqg = pd_to_cfqg(pd);
1635 struct cfq_group_data *cgd = blkcg_to_cfqgd(pd->blkg->blkcg);
1636
1637 cfqg->weight = cgd->weight;
1638 cfqg->leaf_weight = cgd->leaf_weight;
1639 }
1640
cfq_pd_offline(struct blkg_policy_data * pd)1641 static void cfq_pd_offline(struct blkg_policy_data *pd)
1642 {
1643 struct cfq_group *cfqg = pd_to_cfqg(pd);
1644 int i;
1645
1646 for (i = 0; i < IOPRIO_BE_NR; i++) {
1647 if (cfqg->async_cfqq[0][i])
1648 cfq_put_queue(cfqg->async_cfqq[0][i]);
1649 if (cfqg->async_cfqq[1][i])
1650 cfq_put_queue(cfqg->async_cfqq[1][i]);
1651 }
1652
1653 if (cfqg->async_idle_cfqq)
1654 cfq_put_queue(cfqg->async_idle_cfqq);
1655
1656 /*
1657 * @blkg is going offline and will be ignored by
1658 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
1659 * that they don't get lost. If IOs complete after this point, the
1660 * stats for them will be lost. Oh well...
1661 */
1662 cfqg_stats_xfer_dead(cfqg);
1663 }
1664
cfq_pd_free(struct blkg_policy_data * pd)1665 static void cfq_pd_free(struct blkg_policy_data *pd)
1666 {
1667 struct cfq_group *cfqg = pd_to_cfqg(pd);
1668
1669 cfqg_stats_exit(&cfqg->stats);
1670 return kfree(cfqg);
1671 }
1672
cfq_pd_reset_stats(struct blkg_policy_data * pd)1673 static void cfq_pd_reset_stats(struct blkg_policy_data *pd)
1674 {
1675 struct cfq_group *cfqg = pd_to_cfqg(pd);
1676
1677 cfqg_stats_reset(&cfqg->stats);
1678 }
1679
cfq_lookup_cfqg(struct cfq_data * cfqd,struct blkcg * blkcg)1680 static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
1681 struct blkcg *blkcg)
1682 {
1683 struct blkcg_gq *blkg;
1684
1685 blkg = blkg_lookup(blkcg, cfqd->queue);
1686 if (likely(blkg))
1687 return blkg_to_cfqg(blkg);
1688 return NULL;
1689 }
1690
cfq_link_cfqq_cfqg(struct cfq_queue * cfqq,struct cfq_group * cfqg)1691 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1692 {
1693 cfqq->cfqg = cfqg;
1694 /* cfqq reference on cfqg */
1695 cfqg_get(cfqg);
1696 }
1697
cfqg_prfill_weight_device(struct seq_file * sf,struct blkg_policy_data * pd,int off)1698 static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1699 struct blkg_policy_data *pd, int off)
1700 {
1701 struct cfq_group *cfqg = pd_to_cfqg(pd);
1702
1703 if (!cfqg->dev_weight)
1704 return 0;
1705 return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1706 }
1707
cfqg_print_weight_device(struct seq_file * sf,void * v)1708 static int cfqg_print_weight_device(struct seq_file *sf, void *v)
1709 {
1710 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1711 cfqg_prfill_weight_device, &blkcg_policy_cfq,
1712 0, false);
1713 return 0;
1714 }
1715
cfqg_prfill_leaf_weight_device(struct seq_file * sf,struct blkg_policy_data * pd,int off)1716 static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1717 struct blkg_policy_data *pd, int off)
1718 {
1719 struct cfq_group *cfqg = pd_to_cfqg(pd);
1720
1721 if (!cfqg->dev_leaf_weight)
1722 return 0;
1723 return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1724 }
1725
cfqg_print_leaf_weight_device(struct seq_file * sf,void * v)1726 static int cfqg_print_leaf_weight_device(struct seq_file *sf, void *v)
1727 {
1728 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1729 cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq,
1730 0, false);
1731 return 0;
1732 }
1733
cfq_print_weight(struct seq_file * sf,void * v)1734 static int cfq_print_weight(struct seq_file *sf, void *v)
1735 {
1736 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1737 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1738 unsigned int val = 0;
1739
1740 if (cgd)
1741 val = cgd->weight;
1742
1743 seq_printf(sf, "%u\n", val);
1744 return 0;
1745 }
1746
cfq_print_leaf_weight(struct seq_file * sf,void * v)1747 static int cfq_print_leaf_weight(struct seq_file *sf, void *v)
1748 {
1749 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1750 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1751 unsigned int val = 0;
1752
1753 if (cgd)
1754 val = cgd->leaf_weight;
1755
1756 seq_printf(sf, "%u\n", val);
1757 return 0;
1758 }
1759
__cfqg_set_weight_device(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool on_dfl,bool is_leaf_weight)1760 static ssize_t __cfqg_set_weight_device(struct kernfs_open_file *of,
1761 char *buf, size_t nbytes, loff_t off,
1762 bool on_dfl, bool is_leaf_weight)
1763 {
1764 unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN;
1765 unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX;
1766 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1767 struct blkg_conf_ctx ctx;
1768 struct cfq_group *cfqg;
1769 struct cfq_group_data *cfqgd;
1770 int ret;
1771 u64 v;
1772
1773 ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1774 if (ret)
1775 return ret;
1776
1777 if (sscanf(ctx.body, "%llu", &v) == 1) {
1778 /* require "default" on dfl */
1779 ret = -ERANGE;
1780 if (!v && on_dfl)
1781 goto out_finish;
1782 } else if (!strcmp(strim(ctx.body), "default")) {
1783 v = 0;
1784 } else {
1785 ret = -EINVAL;
1786 goto out_finish;
1787 }
1788
1789 cfqg = blkg_to_cfqg(ctx.blkg);
1790 cfqgd = blkcg_to_cfqgd(blkcg);
1791
1792 ret = -ERANGE;
1793 if (!v || (v >= min && v <= max)) {
1794 if (!is_leaf_weight) {
1795 cfqg->dev_weight = v;
1796 cfqg->new_weight = v ?: cfqgd->weight;
1797 } else {
1798 cfqg->dev_leaf_weight = v;
1799 cfqg->new_leaf_weight = v ?: cfqgd->leaf_weight;
1800 }
1801 ret = 0;
1802 }
1803 out_finish:
1804 blkg_conf_finish(&ctx);
1805 return ret ?: nbytes;
1806 }
1807
cfqg_set_weight_device(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1808 static ssize_t cfqg_set_weight_device(struct kernfs_open_file *of,
1809 char *buf, size_t nbytes, loff_t off)
1810 {
1811 return __cfqg_set_weight_device(of, buf, nbytes, off, false, false);
1812 }
1813
cfqg_set_leaf_weight_device(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1814 static ssize_t cfqg_set_leaf_weight_device(struct kernfs_open_file *of,
1815 char *buf, size_t nbytes, loff_t off)
1816 {
1817 return __cfqg_set_weight_device(of, buf, nbytes, off, false, true);
1818 }
1819
__cfq_set_weight(struct cgroup_subsys_state * css,u64 val,bool on_dfl,bool reset_dev,bool is_leaf_weight)1820 static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val,
1821 bool on_dfl, bool reset_dev, bool is_leaf_weight)
1822 {
1823 unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN;
1824 unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX;
1825 struct blkcg *blkcg = css_to_blkcg(css);
1826 struct blkcg_gq *blkg;
1827 struct cfq_group_data *cfqgd;
1828 int ret = 0;
1829
1830 if (val < min || val > max)
1831 return -ERANGE;
1832
1833 spin_lock_irq(&blkcg->lock);
1834 cfqgd = blkcg_to_cfqgd(blkcg);
1835 if (!cfqgd) {
1836 ret = -EINVAL;
1837 goto out;
1838 }
1839
1840 if (!is_leaf_weight)
1841 cfqgd->weight = val;
1842 else
1843 cfqgd->leaf_weight = val;
1844
1845 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
1846 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1847
1848 if (!cfqg)
1849 continue;
1850
1851 if (!is_leaf_weight) {
1852 if (reset_dev)
1853 cfqg->dev_weight = 0;
1854 if (!cfqg->dev_weight)
1855 cfqg->new_weight = cfqgd->weight;
1856 } else {
1857 if (reset_dev)
1858 cfqg->dev_leaf_weight = 0;
1859 if (!cfqg->dev_leaf_weight)
1860 cfqg->new_leaf_weight = cfqgd->leaf_weight;
1861 }
1862 }
1863
1864 out:
1865 spin_unlock_irq(&blkcg->lock);
1866 return ret;
1867 }
1868
cfq_set_weight(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)1869 static int cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1870 u64 val)
1871 {
1872 return __cfq_set_weight(css, val, false, false, false);
1873 }
1874
cfq_set_leaf_weight(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)1875 static int cfq_set_leaf_weight(struct cgroup_subsys_state *css,
1876 struct cftype *cft, u64 val)
1877 {
1878 return __cfq_set_weight(css, val, false, false, true);
1879 }
1880
cfqg_print_stat(struct seq_file * sf,void * v)1881 static int cfqg_print_stat(struct seq_file *sf, void *v)
1882 {
1883 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
1884 &blkcg_policy_cfq, seq_cft(sf)->private, false);
1885 return 0;
1886 }
1887
cfqg_print_rwstat(struct seq_file * sf,void * v)1888 static int cfqg_print_rwstat(struct seq_file *sf, void *v)
1889 {
1890 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
1891 &blkcg_policy_cfq, seq_cft(sf)->private, true);
1892 return 0;
1893 }
1894
cfqg_prfill_stat_recursive(struct seq_file * sf,struct blkg_policy_data * pd,int off)1895 static u64 cfqg_prfill_stat_recursive(struct seq_file *sf,
1896 struct blkg_policy_data *pd, int off)
1897 {
1898 u64 sum = blkg_stat_recursive_sum(pd_to_blkg(pd),
1899 &blkcg_policy_cfq, off);
1900 return __blkg_prfill_u64(sf, pd, sum);
1901 }
1902
cfqg_prfill_rwstat_recursive(struct seq_file * sf,struct blkg_policy_data * pd,int off)1903 static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf,
1904 struct blkg_policy_data *pd, int off)
1905 {
1906 struct blkg_rwstat sum = blkg_rwstat_recursive_sum(pd_to_blkg(pd),
1907 &blkcg_policy_cfq, off);
1908 return __blkg_prfill_rwstat(sf, pd, &sum);
1909 }
1910
cfqg_print_stat_recursive(struct seq_file * sf,void * v)1911 static int cfqg_print_stat_recursive(struct seq_file *sf, void *v)
1912 {
1913 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1914 cfqg_prfill_stat_recursive, &blkcg_policy_cfq,
1915 seq_cft(sf)->private, false);
1916 return 0;
1917 }
1918
cfqg_print_rwstat_recursive(struct seq_file * sf,void * v)1919 static int cfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
1920 {
1921 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1922 cfqg_prfill_rwstat_recursive, &blkcg_policy_cfq,
1923 seq_cft(sf)->private, true);
1924 return 0;
1925 }
1926
cfqg_prfill_sectors(struct seq_file * sf,struct blkg_policy_data * pd,int off)1927 static u64 cfqg_prfill_sectors(struct seq_file *sf, struct blkg_policy_data *pd,
1928 int off)
1929 {
1930 u64 sum = blkg_rwstat_total(&pd->blkg->stat_bytes);
1931
1932 return __blkg_prfill_u64(sf, pd, sum >> 9);
1933 }
1934
cfqg_print_stat_sectors(struct seq_file * sf,void * v)1935 static int cfqg_print_stat_sectors(struct seq_file *sf, void *v)
1936 {
1937 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1938 cfqg_prfill_sectors, &blkcg_policy_cfq, 0, false);
1939 return 0;
1940 }
1941
cfqg_prfill_sectors_recursive(struct seq_file * sf,struct blkg_policy_data * pd,int off)1942 static u64 cfqg_prfill_sectors_recursive(struct seq_file *sf,
1943 struct blkg_policy_data *pd, int off)
1944 {
1945 struct blkg_rwstat tmp = blkg_rwstat_recursive_sum(pd->blkg, NULL,
1946 offsetof(struct blkcg_gq, stat_bytes));
1947 u64 sum = atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_READ]) +
1948 atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_WRITE]);
1949
1950 return __blkg_prfill_u64(sf, pd, sum >> 9);
1951 }
1952
cfqg_print_stat_sectors_recursive(struct seq_file * sf,void * v)1953 static int cfqg_print_stat_sectors_recursive(struct seq_file *sf, void *v)
1954 {
1955 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1956 cfqg_prfill_sectors_recursive, &blkcg_policy_cfq, 0,
1957 false);
1958 return 0;
1959 }
1960
1961 #ifdef CONFIG_DEBUG_BLK_CGROUP
cfqg_prfill_avg_queue_size(struct seq_file * sf,struct blkg_policy_data * pd,int off)1962 static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1963 struct blkg_policy_data *pd, int off)
1964 {
1965 struct cfq_group *cfqg = pd_to_cfqg(pd);
1966 u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1967 u64 v = 0;
1968
1969 if (samples) {
1970 v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1971 v = div64_u64(v, samples);
1972 }
1973 __blkg_prfill_u64(sf, pd, v);
1974 return 0;
1975 }
1976
1977 /* print avg_queue_size */
cfqg_print_avg_queue_size(struct seq_file * sf,void * v)1978 static int cfqg_print_avg_queue_size(struct seq_file *sf, void *v)
1979 {
1980 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1981 cfqg_prfill_avg_queue_size, &blkcg_policy_cfq,
1982 0, false);
1983 return 0;
1984 }
1985 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1986
1987 static struct cftype cfq_blkcg_legacy_files[] = {
1988 /* on root, weight is mapped to leaf_weight */
1989 {
1990 .name = "weight_device",
1991 .flags = CFTYPE_ONLY_ON_ROOT,
1992 .seq_show = cfqg_print_leaf_weight_device,
1993 .write = cfqg_set_leaf_weight_device,
1994 },
1995 {
1996 .name = "weight",
1997 .flags = CFTYPE_ONLY_ON_ROOT,
1998 .seq_show = cfq_print_leaf_weight,
1999 .write_u64 = cfq_set_leaf_weight,
2000 },
2001
2002 /* no such mapping necessary for !roots */
2003 {
2004 .name = "weight_device",
2005 .flags = CFTYPE_NOT_ON_ROOT,
2006 .seq_show = cfqg_print_weight_device,
2007 .write = cfqg_set_weight_device,
2008 },
2009 {
2010 .name = "weight",
2011 .flags = CFTYPE_NOT_ON_ROOT,
2012 .seq_show = cfq_print_weight,
2013 .write_u64 = cfq_set_weight,
2014 },
2015
2016 {
2017 .name = "leaf_weight_device",
2018 .seq_show = cfqg_print_leaf_weight_device,
2019 .write = cfqg_set_leaf_weight_device,
2020 },
2021 {
2022 .name = "leaf_weight",
2023 .seq_show = cfq_print_leaf_weight,
2024 .write_u64 = cfq_set_leaf_weight,
2025 },
2026
2027 /* statistics, covers only the tasks in the cfqg */
2028 {
2029 .name = "time",
2030 .private = offsetof(struct cfq_group, stats.time),
2031 .seq_show = cfqg_print_stat,
2032 },
2033 {
2034 .name = "sectors",
2035 .seq_show = cfqg_print_stat_sectors,
2036 },
2037 {
2038 .name = "io_service_bytes",
2039 .private = (unsigned long)&blkcg_policy_cfq,
2040 .seq_show = blkg_print_stat_bytes,
2041 },
2042 {
2043 .name = "io_serviced",
2044 .private = (unsigned long)&blkcg_policy_cfq,
2045 .seq_show = blkg_print_stat_ios,
2046 },
2047 {
2048 .name = "io_service_time",
2049 .private = offsetof(struct cfq_group, stats.service_time),
2050 .seq_show = cfqg_print_rwstat,
2051 },
2052 {
2053 .name = "io_wait_time",
2054 .private = offsetof(struct cfq_group, stats.wait_time),
2055 .seq_show = cfqg_print_rwstat,
2056 },
2057 {
2058 .name = "io_merged",
2059 .private = offsetof(struct cfq_group, stats.merged),
2060 .seq_show = cfqg_print_rwstat,
2061 },
2062 {
2063 .name = "io_queued",
2064 .private = offsetof(struct cfq_group, stats.queued),
2065 .seq_show = cfqg_print_rwstat,
2066 },
2067
2068 /* the same statictics which cover the cfqg and its descendants */
2069 {
2070 .name = "time_recursive",
2071 .private = offsetof(struct cfq_group, stats.time),
2072 .seq_show = cfqg_print_stat_recursive,
2073 },
2074 {
2075 .name = "sectors_recursive",
2076 .seq_show = cfqg_print_stat_sectors_recursive,
2077 },
2078 {
2079 .name = "io_service_bytes_recursive",
2080 .private = (unsigned long)&blkcg_policy_cfq,
2081 .seq_show = blkg_print_stat_bytes_recursive,
2082 },
2083 {
2084 .name = "io_serviced_recursive",
2085 .private = (unsigned long)&blkcg_policy_cfq,
2086 .seq_show = blkg_print_stat_ios_recursive,
2087 },
2088 {
2089 .name = "io_service_time_recursive",
2090 .private = offsetof(struct cfq_group, stats.service_time),
2091 .seq_show = cfqg_print_rwstat_recursive,
2092 },
2093 {
2094 .name = "io_wait_time_recursive",
2095 .private = offsetof(struct cfq_group, stats.wait_time),
2096 .seq_show = cfqg_print_rwstat_recursive,
2097 },
2098 {
2099 .name = "io_merged_recursive",
2100 .private = offsetof(struct cfq_group, stats.merged),
2101 .seq_show = cfqg_print_rwstat_recursive,
2102 },
2103 {
2104 .name = "io_queued_recursive",
2105 .private = offsetof(struct cfq_group, stats.queued),
2106 .seq_show = cfqg_print_rwstat_recursive,
2107 },
2108 #ifdef CONFIG_DEBUG_BLK_CGROUP
2109 {
2110 .name = "avg_queue_size",
2111 .seq_show = cfqg_print_avg_queue_size,
2112 },
2113 {
2114 .name = "group_wait_time",
2115 .private = offsetof(struct cfq_group, stats.group_wait_time),
2116 .seq_show = cfqg_print_stat,
2117 },
2118 {
2119 .name = "idle_time",
2120 .private = offsetof(struct cfq_group, stats.idle_time),
2121 .seq_show = cfqg_print_stat,
2122 },
2123 {
2124 .name = "empty_time",
2125 .private = offsetof(struct cfq_group, stats.empty_time),
2126 .seq_show = cfqg_print_stat,
2127 },
2128 {
2129 .name = "dequeue",
2130 .private = offsetof(struct cfq_group, stats.dequeue),
2131 .seq_show = cfqg_print_stat,
2132 },
2133 {
2134 .name = "unaccounted_time",
2135 .private = offsetof(struct cfq_group, stats.unaccounted_time),
2136 .seq_show = cfqg_print_stat,
2137 },
2138 #endif /* CONFIG_DEBUG_BLK_CGROUP */
2139 { } /* terminate */
2140 };
2141
cfq_print_weight_on_dfl(struct seq_file * sf,void * v)2142 static int cfq_print_weight_on_dfl(struct seq_file *sf, void *v)
2143 {
2144 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2145 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
2146
2147 seq_printf(sf, "default %u\n", cgd->weight);
2148 blkcg_print_blkgs(sf, blkcg, cfqg_prfill_weight_device,
2149 &blkcg_policy_cfq, 0, false);
2150 return 0;
2151 }
2152
cfq_set_weight_on_dfl(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2153 static ssize_t cfq_set_weight_on_dfl(struct kernfs_open_file *of,
2154 char *buf, size_t nbytes, loff_t off)
2155 {
2156 char *endp;
2157 int ret;
2158 u64 v;
2159
2160 buf = strim(buf);
2161
2162 /* "WEIGHT" or "default WEIGHT" sets the default weight */
2163 v = simple_strtoull(buf, &endp, 0);
2164 if (*endp == '\0' || sscanf(buf, "default %llu", &v) == 1) {
2165 ret = __cfq_set_weight(of_css(of), v, true, false, false);
2166 return ret ?: nbytes;
2167 }
2168
2169 /* "MAJ:MIN WEIGHT" */
2170 return __cfqg_set_weight_device(of, buf, nbytes, off, true, false);
2171 }
2172
2173 static struct cftype cfq_blkcg_files[] = {
2174 {
2175 .name = "weight",
2176 .flags = CFTYPE_NOT_ON_ROOT,
2177 .seq_show = cfq_print_weight_on_dfl,
2178 .write = cfq_set_weight_on_dfl,
2179 },
2180 { } /* terminate */
2181 };
2182
2183 #else /* GROUP_IOSCHED */
cfq_lookup_cfqg(struct cfq_data * cfqd,struct blkcg * blkcg)2184 static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
2185 struct blkcg *blkcg)
2186 {
2187 return cfqd->root_group;
2188 }
2189
2190 static inline void
cfq_link_cfqq_cfqg(struct cfq_queue * cfqq,struct cfq_group * cfqg)2191 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
2192 cfqq->cfqg = cfqg;
2193 }
2194
2195 #endif /* GROUP_IOSCHED */
2196
2197 /*
2198 * The cfqd->service_trees holds all pending cfq_queue's that have
2199 * requests waiting to be processed. It is sorted in the order that
2200 * we will service the queues.
2201 */
cfq_service_tree_add(struct cfq_data * cfqd,struct cfq_queue * cfqq,bool add_front)2202 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2203 bool add_front)
2204 {
2205 struct rb_node **p, *parent;
2206 struct cfq_queue *__cfqq;
2207 u64 rb_key;
2208 struct cfq_rb_root *st;
2209 bool leftmost = true;
2210 int new_cfqq = 1;
2211 u64 now = ktime_get_ns();
2212
2213 st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
2214 if (cfq_class_idle(cfqq)) {
2215 rb_key = CFQ_IDLE_DELAY;
2216 parent = st->rb_rightmost;
2217 if (parent && parent != &cfqq->rb_node) {
2218 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2219 rb_key += __cfqq->rb_key;
2220 } else
2221 rb_key += now;
2222 } else if (!add_front) {
2223 /*
2224 * Get our rb key offset. Subtract any residual slice
2225 * value carried from last service. A negative resid
2226 * count indicates slice overrun, and this should position
2227 * the next service time further away in the tree.
2228 */
2229 rb_key = cfq_slice_offset(cfqd, cfqq) + now;
2230 rb_key -= cfqq->slice_resid;
2231 cfqq->slice_resid = 0;
2232 } else {
2233 rb_key = -NSEC_PER_SEC;
2234 __cfqq = cfq_rb_first(st);
2235 rb_key += __cfqq ? __cfqq->rb_key : now;
2236 }
2237
2238 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2239 new_cfqq = 0;
2240 /*
2241 * same position, nothing more to do
2242 */
2243 if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
2244 return;
2245
2246 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2247 cfqq->service_tree = NULL;
2248 }
2249
2250 parent = NULL;
2251 cfqq->service_tree = st;
2252 p = &st->rb.rb_root.rb_node;
2253 while (*p) {
2254 parent = *p;
2255 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2256
2257 /*
2258 * sort by key, that represents service time.
2259 */
2260 if (rb_key < __cfqq->rb_key)
2261 p = &parent->rb_left;
2262 else {
2263 p = &parent->rb_right;
2264 leftmost = false;
2265 }
2266 }
2267
2268 cfqq->rb_key = rb_key;
2269 rb_link_node(&cfqq->rb_node, parent, p);
2270 rb_insert_color_cached(&cfqq->rb_node, &st->rb, leftmost);
2271 st->count++;
2272 if (add_front || !new_cfqq)
2273 return;
2274 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
2275 }
2276
2277 static struct cfq_queue *
cfq_prio_tree_lookup(struct cfq_data * cfqd,struct rb_root * root,sector_t sector,struct rb_node ** ret_parent,struct rb_node *** rb_link)2278 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
2279 sector_t sector, struct rb_node **ret_parent,
2280 struct rb_node ***rb_link)
2281 {
2282 struct rb_node **p, *parent;
2283 struct cfq_queue *cfqq = NULL;
2284
2285 parent = NULL;
2286 p = &root->rb_node;
2287 while (*p) {
2288 struct rb_node **n;
2289
2290 parent = *p;
2291 cfqq = rb_entry(parent, struct cfq_queue, p_node);
2292
2293 /*
2294 * Sort strictly based on sector. Smallest to the left,
2295 * largest to the right.
2296 */
2297 if (sector > blk_rq_pos(cfqq->next_rq))
2298 n = &(*p)->rb_right;
2299 else if (sector < blk_rq_pos(cfqq->next_rq))
2300 n = &(*p)->rb_left;
2301 else
2302 break;
2303 p = n;
2304 cfqq = NULL;
2305 }
2306
2307 *ret_parent = parent;
2308 if (rb_link)
2309 *rb_link = p;
2310 return cfqq;
2311 }
2312
cfq_prio_tree_add(struct cfq_data * cfqd,struct cfq_queue * cfqq)2313 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2314 {
2315 struct rb_node **p, *parent;
2316 struct cfq_queue *__cfqq;
2317
2318 if (cfqq->p_root) {
2319 rb_erase(&cfqq->p_node, cfqq->p_root);
2320 cfqq->p_root = NULL;
2321 }
2322
2323 if (cfq_class_idle(cfqq))
2324 return;
2325 if (!cfqq->next_rq)
2326 return;
2327
2328 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2329 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
2330 blk_rq_pos(cfqq->next_rq), &parent, &p);
2331 if (!__cfqq) {
2332 rb_link_node(&cfqq->p_node, parent, p);
2333 rb_insert_color(&cfqq->p_node, cfqq->p_root);
2334 } else
2335 cfqq->p_root = NULL;
2336 }
2337
2338 /*
2339 * Update cfqq's position in the service tree.
2340 */
cfq_resort_rr_list(struct cfq_data * cfqd,struct cfq_queue * cfqq)2341 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2342 {
2343 /*
2344 * Resorting requires the cfqq to be on the RR list already.
2345 */
2346 if (cfq_cfqq_on_rr(cfqq)) {
2347 cfq_service_tree_add(cfqd, cfqq, 0);
2348 cfq_prio_tree_add(cfqd, cfqq);
2349 }
2350 }
2351
2352 /*
2353 * add to busy list of queues for service, trying to be fair in ordering
2354 * the pending list according to last request service
2355 */
cfq_add_cfqq_rr(struct cfq_data * cfqd,struct cfq_queue * cfqq)2356 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2357 {
2358 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
2359 BUG_ON(cfq_cfqq_on_rr(cfqq));
2360 cfq_mark_cfqq_on_rr(cfqq);
2361 cfqd->busy_queues++;
2362 if (cfq_cfqq_sync(cfqq))
2363 cfqd->busy_sync_queues++;
2364
2365 cfq_resort_rr_list(cfqd, cfqq);
2366 }
2367
2368 /*
2369 * Called when the cfqq no longer has requests pending, remove it from
2370 * the service tree.
2371 */
cfq_del_cfqq_rr(struct cfq_data * cfqd,struct cfq_queue * cfqq)2372 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2373 {
2374 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2375 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2376 cfq_clear_cfqq_on_rr(cfqq);
2377
2378 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2379 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2380 cfqq->service_tree = NULL;
2381 }
2382 if (cfqq->p_root) {
2383 rb_erase(&cfqq->p_node, cfqq->p_root);
2384 cfqq->p_root = NULL;
2385 }
2386
2387 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2388 BUG_ON(!cfqd->busy_queues);
2389 cfqd->busy_queues--;
2390 if (cfq_cfqq_sync(cfqq))
2391 cfqd->busy_sync_queues--;
2392 }
2393
2394 /*
2395 * rb tree support functions
2396 */
cfq_del_rq_rb(struct request * rq)2397 static void cfq_del_rq_rb(struct request *rq)
2398 {
2399 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2400 const int sync = rq_is_sync(rq);
2401
2402 BUG_ON(!cfqq->queued[sync]);
2403 cfqq->queued[sync]--;
2404
2405 elv_rb_del(&cfqq->sort_list, rq);
2406
2407 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2408 /*
2409 * Queue will be deleted from service tree when we actually
2410 * expire it later. Right now just remove it from prio tree
2411 * as it is empty.
2412 */
2413 if (cfqq->p_root) {
2414 rb_erase(&cfqq->p_node, cfqq->p_root);
2415 cfqq->p_root = NULL;
2416 }
2417 }
2418 }
2419
cfq_add_rq_rb(struct request * rq)2420 static void cfq_add_rq_rb(struct request *rq)
2421 {
2422 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2423 struct cfq_data *cfqd = cfqq->cfqd;
2424 struct request *prev;
2425
2426 cfqq->queued[rq_is_sync(rq)]++;
2427
2428 elv_rb_add(&cfqq->sort_list, rq);
2429
2430 if (!cfq_cfqq_on_rr(cfqq))
2431 cfq_add_cfqq_rr(cfqd, cfqq);
2432
2433 /*
2434 * check if this request is a better next-serve candidate
2435 */
2436 prev = cfqq->next_rq;
2437 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2438
2439 /*
2440 * adjust priority tree position, if ->next_rq changes
2441 */
2442 if (prev != cfqq->next_rq)
2443 cfq_prio_tree_add(cfqd, cfqq);
2444
2445 BUG_ON(!cfqq->next_rq);
2446 }
2447
cfq_reposition_rq_rb(struct cfq_queue * cfqq,struct request * rq)2448 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2449 {
2450 elv_rb_del(&cfqq->sort_list, rq);
2451 cfqq->queued[rq_is_sync(rq)]--;
2452 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2453 cfq_add_rq_rb(rq);
2454 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2455 rq->cmd_flags);
2456 }
2457
2458 static struct request *
cfq_find_rq_fmerge(struct cfq_data * cfqd,struct bio * bio)2459 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2460 {
2461 struct task_struct *tsk = current;
2462 struct cfq_io_cq *cic;
2463 struct cfq_queue *cfqq;
2464
2465 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2466 if (!cic)
2467 return NULL;
2468
2469 cfqq = cic_to_cfqq(cic, op_is_sync(bio->bi_opf));
2470 if (cfqq)
2471 return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio));
2472
2473 return NULL;
2474 }
2475
cfq_activate_request(struct request_queue * q,struct request * rq)2476 static void cfq_activate_request(struct request_queue *q, struct request *rq)
2477 {
2478 struct cfq_data *cfqd = q->elevator->elevator_data;
2479
2480 cfqd->rq_in_driver++;
2481 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2482 cfqd->rq_in_driver);
2483
2484 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2485 }
2486
cfq_deactivate_request(struct request_queue * q,struct request * rq)2487 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2488 {
2489 struct cfq_data *cfqd = q->elevator->elevator_data;
2490
2491 WARN_ON(!cfqd->rq_in_driver);
2492 cfqd->rq_in_driver--;
2493 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2494 cfqd->rq_in_driver);
2495 }
2496
cfq_remove_request(struct request * rq)2497 static void cfq_remove_request(struct request *rq)
2498 {
2499 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2500
2501 if (cfqq->next_rq == rq)
2502 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2503
2504 list_del_init(&rq->queuelist);
2505 cfq_del_rq_rb(rq);
2506
2507 cfqq->cfqd->rq_queued--;
2508 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2509 if (rq->cmd_flags & REQ_PRIO) {
2510 WARN_ON(!cfqq->prio_pending);
2511 cfqq->prio_pending--;
2512 }
2513 }
2514
cfq_merge(struct request_queue * q,struct request ** req,struct bio * bio)2515 static enum elv_merge cfq_merge(struct request_queue *q, struct request **req,
2516 struct bio *bio)
2517 {
2518 struct cfq_data *cfqd = q->elevator->elevator_data;
2519 struct request *__rq;
2520
2521 __rq = cfq_find_rq_fmerge(cfqd, bio);
2522 if (__rq && elv_bio_merge_ok(__rq, bio)) {
2523 *req = __rq;
2524 return ELEVATOR_FRONT_MERGE;
2525 }
2526
2527 return ELEVATOR_NO_MERGE;
2528 }
2529
cfq_merged_request(struct request_queue * q,struct request * req,enum elv_merge type)2530 static void cfq_merged_request(struct request_queue *q, struct request *req,
2531 enum elv_merge type)
2532 {
2533 if (type == ELEVATOR_FRONT_MERGE) {
2534 struct cfq_queue *cfqq = RQ_CFQQ(req);
2535
2536 cfq_reposition_rq_rb(cfqq, req);
2537 }
2538 }
2539
cfq_bio_merged(struct request_queue * q,struct request * req,struct bio * bio)2540 static void cfq_bio_merged(struct request_queue *q, struct request *req,
2541 struct bio *bio)
2542 {
2543 cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_opf);
2544 }
2545
2546 static void
cfq_merged_requests(struct request_queue * q,struct request * rq,struct request * next)2547 cfq_merged_requests(struct request_queue *q, struct request *rq,
2548 struct request *next)
2549 {
2550 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2551 struct cfq_data *cfqd = q->elevator->elevator_data;
2552
2553 /*
2554 * reposition in fifo if next is older than rq
2555 */
2556 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2557 next->fifo_time < rq->fifo_time &&
2558 cfqq == RQ_CFQQ(next)) {
2559 list_move(&rq->queuelist, &next->queuelist);
2560 rq->fifo_time = next->fifo_time;
2561 }
2562
2563 if (cfqq->next_rq == next)
2564 cfqq->next_rq = rq;
2565 cfq_remove_request(next);
2566 cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
2567
2568 cfqq = RQ_CFQQ(next);
2569 /*
2570 * all requests of this queue are merged to other queues, delete it
2571 * from the service tree. If it's the active_queue,
2572 * cfq_dispatch_requests() will choose to expire it or do idle
2573 */
2574 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2575 cfqq != cfqd->active_queue)
2576 cfq_del_cfqq_rr(cfqd, cfqq);
2577 }
2578
cfq_allow_bio_merge(struct request_queue * q,struct request * rq,struct bio * bio)2579 static int cfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2580 struct bio *bio)
2581 {
2582 struct cfq_data *cfqd = q->elevator->elevator_data;
2583 bool is_sync = op_is_sync(bio->bi_opf);
2584 struct cfq_io_cq *cic;
2585 struct cfq_queue *cfqq;
2586
2587 /*
2588 * Disallow merge of a sync bio into an async request.
2589 */
2590 if (is_sync && !rq_is_sync(rq))
2591 return false;
2592
2593 /*
2594 * Lookup the cfqq that this bio will be queued with and allow
2595 * merge only if rq is queued there.
2596 */
2597 cic = cfq_cic_lookup(cfqd, current->io_context);
2598 if (!cic)
2599 return false;
2600
2601 cfqq = cic_to_cfqq(cic, is_sync);
2602 return cfqq == RQ_CFQQ(rq);
2603 }
2604
cfq_allow_rq_merge(struct request_queue * q,struct request * rq,struct request * next)2605 static int cfq_allow_rq_merge(struct request_queue *q, struct request *rq,
2606 struct request *next)
2607 {
2608 return RQ_CFQQ(rq) == RQ_CFQQ(next);
2609 }
2610
cfq_del_timer(struct cfq_data * cfqd,struct cfq_queue * cfqq)2611 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2612 {
2613 hrtimer_try_to_cancel(&cfqd->idle_slice_timer);
2614 cfqg_stats_update_idle_time(cfqq->cfqg);
2615 }
2616
__cfq_set_active_queue(struct cfq_data * cfqd,struct cfq_queue * cfqq)2617 static void __cfq_set_active_queue(struct cfq_data *cfqd,
2618 struct cfq_queue *cfqq)
2619 {
2620 if (cfqq) {
2621 cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2622 cfqd->serving_wl_class, cfqd->serving_wl_type);
2623 cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2624 cfqq->slice_start = 0;
2625 cfqq->dispatch_start = ktime_get_ns();
2626 cfqq->allocated_slice = 0;
2627 cfqq->slice_end = 0;
2628 cfqq->slice_dispatch = 0;
2629 cfqq->nr_sectors = 0;
2630
2631 cfq_clear_cfqq_wait_request(cfqq);
2632 cfq_clear_cfqq_must_dispatch(cfqq);
2633 cfq_clear_cfqq_must_alloc_slice(cfqq);
2634 cfq_clear_cfqq_fifo_expire(cfqq);
2635 cfq_mark_cfqq_slice_new(cfqq);
2636
2637 cfq_del_timer(cfqd, cfqq);
2638 }
2639
2640 cfqd->active_queue = cfqq;
2641 }
2642
2643 /*
2644 * current cfqq expired its slice (or was too idle), select new one
2645 */
2646 static void
__cfq_slice_expired(struct cfq_data * cfqd,struct cfq_queue * cfqq,bool timed_out)2647 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2648 bool timed_out)
2649 {
2650 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2651
2652 if (cfq_cfqq_wait_request(cfqq))
2653 cfq_del_timer(cfqd, cfqq);
2654
2655 cfq_clear_cfqq_wait_request(cfqq);
2656 cfq_clear_cfqq_wait_busy(cfqq);
2657
2658 /*
2659 * If this cfqq is shared between multiple processes, check to
2660 * make sure that those processes are still issuing I/Os within
2661 * the mean seek distance. If not, it may be time to break the
2662 * queues apart again.
2663 */
2664 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2665 cfq_mark_cfqq_split_coop(cfqq);
2666
2667 /*
2668 * store what was left of this slice, if the queue idled/timed out
2669 */
2670 if (timed_out) {
2671 if (cfq_cfqq_slice_new(cfqq))
2672 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2673 else
2674 cfqq->slice_resid = cfqq->slice_end - ktime_get_ns();
2675 cfq_log_cfqq(cfqd, cfqq, "resid=%lld", cfqq->slice_resid);
2676 }
2677
2678 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2679
2680 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2681 cfq_del_cfqq_rr(cfqd, cfqq);
2682
2683 cfq_resort_rr_list(cfqd, cfqq);
2684
2685 if (cfqq == cfqd->active_queue)
2686 cfqd->active_queue = NULL;
2687
2688 if (cfqd->active_cic) {
2689 put_io_context(cfqd->active_cic->icq.ioc);
2690 cfqd->active_cic = NULL;
2691 }
2692 }
2693
cfq_slice_expired(struct cfq_data * cfqd,bool timed_out)2694 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2695 {
2696 struct cfq_queue *cfqq = cfqd->active_queue;
2697
2698 if (cfqq)
2699 __cfq_slice_expired(cfqd, cfqq, timed_out);
2700 }
2701
2702 /*
2703 * Get next queue for service. Unless we have a queue preemption,
2704 * we'll simply select the first cfqq in the service tree.
2705 */
cfq_get_next_queue(struct cfq_data * cfqd)2706 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2707 {
2708 struct cfq_rb_root *st = st_for(cfqd->serving_group,
2709 cfqd->serving_wl_class, cfqd->serving_wl_type);
2710
2711 if (!cfqd->rq_queued)
2712 return NULL;
2713
2714 /* There is nothing to dispatch */
2715 if (!st)
2716 return NULL;
2717 if (RB_EMPTY_ROOT(&st->rb.rb_root))
2718 return NULL;
2719 return cfq_rb_first(st);
2720 }
2721
cfq_get_next_queue_forced(struct cfq_data * cfqd)2722 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2723 {
2724 struct cfq_group *cfqg;
2725 struct cfq_queue *cfqq;
2726 int i, j;
2727 struct cfq_rb_root *st;
2728
2729 if (!cfqd->rq_queued)
2730 return NULL;
2731
2732 cfqg = cfq_get_next_cfqg(cfqd);
2733 if (!cfqg)
2734 return NULL;
2735
2736 for_each_cfqg_st(cfqg, i, j, st) {
2737 cfqq = cfq_rb_first(st);
2738 if (cfqq)
2739 return cfqq;
2740 }
2741 return NULL;
2742 }
2743
2744 /*
2745 * Get and set a new active queue for service.
2746 */
cfq_set_active_queue(struct cfq_data * cfqd,struct cfq_queue * cfqq)2747 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2748 struct cfq_queue *cfqq)
2749 {
2750 if (!cfqq)
2751 cfqq = cfq_get_next_queue(cfqd);
2752
2753 __cfq_set_active_queue(cfqd, cfqq);
2754 return cfqq;
2755 }
2756
cfq_dist_from_last(struct cfq_data * cfqd,struct request * rq)2757 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2758 struct request *rq)
2759 {
2760 if (blk_rq_pos(rq) >= cfqd->last_position)
2761 return blk_rq_pos(rq) - cfqd->last_position;
2762 else
2763 return cfqd->last_position - blk_rq_pos(rq);
2764 }
2765
cfq_rq_close(struct cfq_data * cfqd,struct cfq_queue * cfqq,struct request * rq)2766 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2767 struct request *rq)
2768 {
2769 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2770 }
2771
cfqq_close(struct cfq_data * cfqd,struct cfq_queue * cur_cfqq)2772 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2773 struct cfq_queue *cur_cfqq)
2774 {
2775 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2776 struct rb_node *parent, *node;
2777 struct cfq_queue *__cfqq;
2778 sector_t sector = cfqd->last_position;
2779
2780 if (RB_EMPTY_ROOT(root))
2781 return NULL;
2782
2783 /*
2784 * First, if we find a request starting at the end of the last
2785 * request, choose it.
2786 */
2787 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2788 if (__cfqq)
2789 return __cfqq;
2790
2791 /*
2792 * If the exact sector wasn't found, the parent of the NULL leaf
2793 * will contain the closest sector.
2794 */
2795 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2796 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2797 return __cfqq;
2798
2799 if (blk_rq_pos(__cfqq->next_rq) < sector)
2800 node = rb_next(&__cfqq->p_node);
2801 else
2802 node = rb_prev(&__cfqq->p_node);
2803 if (!node)
2804 return NULL;
2805
2806 __cfqq = rb_entry(node, struct cfq_queue, p_node);
2807 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2808 return __cfqq;
2809
2810 return NULL;
2811 }
2812
2813 /*
2814 * cfqd - obvious
2815 * cur_cfqq - passed in so that we don't decide that the current queue is
2816 * closely cooperating with itself.
2817 *
2818 * So, basically we're assuming that that cur_cfqq has dispatched at least
2819 * one request, and that cfqd->last_position reflects a position on the disk
2820 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2821 * assumption.
2822 */
cfq_close_cooperator(struct cfq_data * cfqd,struct cfq_queue * cur_cfqq)2823 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2824 struct cfq_queue *cur_cfqq)
2825 {
2826 struct cfq_queue *cfqq;
2827
2828 if (cfq_class_idle(cur_cfqq))
2829 return NULL;
2830 if (!cfq_cfqq_sync(cur_cfqq))
2831 return NULL;
2832 if (CFQQ_SEEKY(cur_cfqq))
2833 return NULL;
2834
2835 /*
2836 * Don't search priority tree if it's the only queue in the group.
2837 */
2838 if (cur_cfqq->cfqg->nr_cfqq == 1)
2839 return NULL;
2840
2841 /*
2842 * We should notice if some of the queues are cooperating, eg
2843 * working closely on the same area of the disk. In that case,
2844 * we can group them together and don't waste time idling.
2845 */
2846 cfqq = cfqq_close(cfqd, cur_cfqq);
2847 if (!cfqq)
2848 return NULL;
2849
2850 /* If new queue belongs to different cfq_group, don't choose it */
2851 if (cur_cfqq->cfqg != cfqq->cfqg)
2852 return NULL;
2853
2854 /*
2855 * It only makes sense to merge sync queues.
2856 */
2857 if (!cfq_cfqq_sync(cfqq))
2858 return NULL;
2859 if (CFQQ_SEEKY(cfqq))
2860 return NULL;
2861
2862 /*
2863 * Do not merge queues of different priority classes
2864 */
2865 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2866 return NULL;
2867
2868 return cfqq;
2869 }
2870
2871 /*
2872 * Determine whether we should enforce idle window for this queue.
2873 */
2874
cfq_should_idle(struct cfq_data * cfqd,struct cfq_queue * cfqq)2875 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2876 {
2877 enum wl_class_t wl_class = cfqq_class(cfqq);
2878 struct cfq_rb_root *st = cfqq->service_tree;
2879
2880 BUG_ON(!st);
2881 BUG_ON(!st->count);
2882
2883 if (!cfqd->cfq_slice_idle)
2884 return false;
2885
2886 /* We never do for idle class queues. */
2887 if (wl_class == IDLE_WORKLOAD)
2888 return false;
2889
2890 /* We do for queues that were marked with idle window flag. */
2891 if (cfq_cfqq_idle_window(cfqq) &&
2892 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2893 return true;
2894
2895 /*
2896 * Otherwise, we do only if they are the last ones
2897 * in their service tree.
2898 */
2899 if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2900 !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2901 return true;
2902 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
2903 return false;
2904 }
2905
cfq_arm_slice_timer(struct cfq_data * cfqd)2906 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2907 {
2908 struct cfq_queue *cfqq = cfqd->active_queue;
2909 struct cfq_rb_root *st = cfqq->service_tree;
2910 struct cfq_io_cq *cic;
2911 u64 sl, group_idle = 0;
2912 u64 now = ktime_get_ns();
2913
2914 /*
2915 * SSD device without seek penalty, disable idling. But only do so
2916 * for devices that support queuing, otherwise we still have a problem
2917 * with sync vs async workloads.
2918 */
2919 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag &&
2920 !cfqd->cfq_group_idle)
2921 return;
2922
2923 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2924 WARN_ON(cfq_cfqq_slice_new(cfqq));
2925
2926 /*
2927 * idle is disabled, either manually or by past process history
2928 */
2929 if (!cfq_should_idle(cfqd, cfqq)) {
2930 /* no queue idling. Check for group idling */
2931 if (cfqd->cfq_group_idle)
2932 group_idle = cfqd->cfq_group_idle;
2933 else
2934 return;
2935 }
2936
2937 /*
2938 * still active requests from this queue, don't idle
2939 */
2940 if (cfqq->dispatched)
2941 return;
2942
2943 /*
2944 * task has exited, don't wait
2945 */
2946 cic = cfqd->active_cic;
2947 if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2948 return;
2949
2950 /*
2951 * If our average think time is larger than the remaining time
2952 * slice, then don't idle. This avoids overrunning the allotted
2953 * time slice.
2954 */
2955 if (sample_valid(cic->ttime.ttime_samples) &&
2956 (cfqq->slice_end - now < cic->ttime.ttime_mean)) {
2957 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%llu",
2958 cic->ttime.ttime_mean);
2959 return;
2960 }
2961
2962 /*
2963 * There are other queues in the group or this is the only group and
2964 * it has too big thinktime, don't do group idle.
2965 */
2966 if (group_idle &&
2967 (cfqq->cfqg->nr_cfqq > 1 ||
2968 cfq_io_thinktime_big(cfqd, &st->ttime, true)))
2969 return;
2970
2971 cfq_mark_cfqq_wait_request(cfqq);
2972
2973 if (group_idle)
2974 sl = cfqd->cfq_group_idle;
2975 else
2976 sl = cfqd->cfq_slice_idle;
2977
2978 hrtimer_start(&cfqd->idle_slice_timer, ns_to_ktime(sl),
2979 HRTIMER_MODE_REL);
2980 cfqg_stats_set_start_idle_time(cfqq->cfqg);
2981 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %llu group_idle: %d", sl,
2982 group_idle ? 1 : 0);
2983 }
2984
2985 /*
2986 * Move request from internal lists to the request queue dispatch list.
2987 */
cfq_dispatch_insert(struct request_queue * q,struct request * rq)2988 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2989 {
2990 struct cfq_data *cfqd = q->elevator->elevator_data;
2991 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2992
2993 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2994
2995 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2996 cfq_remove_request(rq);
2997 cfqq->dispatched++;
2998 (RQ_CFQG(rq))->dispatched++;
2999 elv_dispatch_sort(q, rq);
3000
3001 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
3002 cfqq->nr_sectors += blk_rq_sectors(rq);
3003 }
3004
3005 /*
3006 * return expired entry, or NULL to just start from scratch in rbtree
3007 */
cfq_check_fifo(struct cfq_queue * cfqq)3008 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
3009 {
3010 struct request *rq = NULL;
3011
3012 if (cfq_cfqq_fifo_expire(cfqq))
3013 return NULL;
3014
3015 cfq_mark_cfqq_fifo_expire(cfqq);
3016
3017 if (list_empty(&cfqq->fifo))
3018 return NULL;
3019
3020 rq = rq_entry_fifo(cfqq->fifo.next);
3021 if (ktime_get_ns() < rq->fifo_time)
3022 rq = NULL;
3023
3024 return rq;
3025 }
3026
3027 static inline int
cfq_prio_to_maxrq(struct cfq_data * cfqd,struct cfq_queue * cfqq)3028 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3029 {
3030 const int base_rq = cfqd->cfq_slice_async_rq;
3031
3032 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
3033
3034 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
3035 }
3036
3037 /*
3038 * Must be called with the queue_lock held.
3039 */
cfqq_process_refs(struct cfq_queue * cfqq)3040 static int cfqq_process_refs(struct cfq_queue *cfqq)
3041 {
3042 int process_refs, io_refs;
3043
3044 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
3045 process_refs = cfqq->ref - io_refs;
3046 BUG_ON(process_refs < 0);
3047 return process_refs;
3048 }
3049
cfq_setup_merge(struct cfq_queue * cfqq,struct cfq_queue * new_cfqq)3050 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
3051 {
3052 int process_refs, new_process_refs;
3053 struct cfq_queue *__cfqq;
3054
3055 /*
3056 * If there are no process references on the new_cfqq, then it is
3057 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
3058 * chain may have dropped their last reference (not just their
3059 * last process reference).
3060 */
3061 if (!cfqq_process_refs(new_cfqq))
3062 return;
3063
3064 /* Avoid a circular list and skip interim queue merges */
3065 while ((__cfqq = new_cfqq->new_cfqq)) {
3066 if (__cfqq == cfqq)
3067 return;
3068 new_cfqq = __cfqq;
3069 }
3070
3071 process_refs = cfqq_process_refs(cfqq);
3072 new_process_refs = cfqq_process_refs(new_cfqq);
3073 /*
3074 * If the process for the cfqq has gone away, there is no
3075 * sense in merging the queues.
3076 */
3077 if (process_refs == 0 || new_process_refs == 0)
3078 return;
3079
3080 /*
3081 * Merge in the direction of the lesser amount of work.
3082 */
3083 if (new_process_refs >= process_refs) {
3084 cfqq->new_cfqq = new_cfqq;
3085 new_cfqq->ref += process_refs;
3086 } else {
3087 new_cfqq->new_cfqq = cfqq;
3088 cfqq->ref += new_process_refs;
3089 }
3090 }
3091
cfq_choose_wl_type(struct cfq_data * cfqd,struct cfq_group * cfqg,enum wl_class_t wl_class)3092 static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
3093 struct cfq_group *cfqg, enum wl_class_t wl_class)
3094 {
3095 struct cfq_queue *queue;
3096 int i;
3097 bool key_valid = false;
3098 u64 lowest_key = 0;
3099 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
3100
3101 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
3102 /* select the one with lowest rb_key */
3103 queue = cfq_rb_first(st_for(cfqg, wl_class, i));
3104 if (queue &&
3105 (!key_valid || queue->rb_key < lowest_key)) {
3106 lowest_key = queue->rb_key;
3107 cur_best = i;
3108 key_valid = true;
3109 }
3110 }
3111
3112 return cur_best;
3113 }
3114
3115 static void
choose_wl_class_and_type(struct cfq_data * cfqd,struct cfq_group * cfqg)3116 choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
3117 {
3118 u64 slice;
3119 unsigned count;
3120 struct cfq_rb_root *st;
3121 u64 group_slice;
3122 enum wl_class_t original_class = cfqd->serving_wl_class;
3123 u64 now = ktime_get_ns();
3124
3125 /* Choose next priority. RT > BE > IDLE */
3126 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
3127 cfqd->serving_wl_class = RT_WORKLOAD;
3128 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
3129 cfqd->serving_wl_class = BE_WORKLOAD;
3130 else {
3131 cfqd->serving_wl_class = IDLE_WORKLOAD;
3132 cfqd->workload_expires = now + jiffies_to_nsecs(1);
3133 return;
3134 }
3135
3136 if (original_class != cfqd->serving_wl_class)
3137 goto new_workload;
3138
3139 /*
3140 * For RT and BE, we have to choose also the type
3141 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
3142 * expiration time
3143 */
3144 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3145 count = st->count;
3146
3147 /*
3148 * check workload expiration, and that we still have other queues ready
3149 */
3150 if (count && !(now > cfqd->workload_expires))
3151 return;
3152
3153 new_workload:
3154 /* otherwise select new workload type */
3155 cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
3156 cfqd->serving_wl_class);
3157 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3158 count = st->count;
3159
3160 /*
3161 * the workload slice is computed as a fraction of target latency
3162 * proportional to the number of queues in that workload, over
3163 * all the queues in the same priority class
3164 */
3165 group_slice = cfq_group_slice(cfqd, cfqg);
3166
3167 slice = div_u64(group_slice * count,
3168 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
3169 cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
3170 cfqg)));
3171
3172 if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
3173 u64 tmp;
3174
3175 /*
3176 * Async queues are currently system wide. Just taking
3177 * proportion of queues with-in same group will lead to higher
3178 * async ratio system wide as generally root group is going
3179 * to have higher weight. A more accurate thing would be to
3180 * calculate system wide asnc/sync ratio.
3181 */
3182 tmp = cfqd->cfq_target_latency *
3183 cfqg_busy_async_queues(cfqd, cfqg);
3184 tmp = div_u64(tmp, cfqd->busy_queues);
3185 slice = min_t(u64, slice, tmp);
3186
3187 /* async workload slice is scaled down according to
3188 * the sync/async slice ratio. */
3189 slice = div64_u64(slice*cfqd->cfq_slice[0], cfqd->cfq_slice[1]);
3190 } else
3191 /* sync workload slice is at least 2 * cfq_slice_idle */
3192 slice = max(slice, 2 * cfqd->cfq_slice_idle);
3193
3194 slice = max_t(u64, slice, CFQ_MIN_TT);
3195 cfq_log(cfqd, "workload slice:%llu", slice);
3196 cfqd->workload_expires = now + slice;
3197 }
3198
cfq_get_next_cfqg(struct cfq_data * cfqd)3199 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
3200 {
3201 struct cfq_rb_root *st = &cfqd->grp_service_tree;
3202 struct cfq_group *cfqg;
3203
3204 if (RB_EMPTY_ROOT(&st->rb.rb_root))
3205 return NULL;
3206 cfqg = cfq_rb_first_group(st);
3207 update_min_vdisktime(st);
3208 return cfqg;
3209 }
3210
cfq_choose_cfqg(struct cfq_data * cfqd)3211 static void cfq_choose_cfqg(struct cfq_data *cfqd)
3212 {
3213 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
3214 u64 now = ktime_get_ns();
3215
3216 cfqd->serving_group = cfqg;
3217
3218 /* Restore the workload type data */
3219 if (cfqg->saved_wl_slice) {
3220 cfqd->workload_expires = now + cfqg->saved_wl_slice;
3221 cfqd->serving_wl_type = cfqg->saved_wl_type;
3222 cfqd->serving_wl_class = cfqg->saved_wl_class;
3223 } else
3224 cfqd->workload_expires = now - 1;
3225
3226 choose_wl_class_and_type(cfqd, cfqg);
3227 }
3228
3229 /*
3230 * Select a queue for service. If we have a current active queue,
3231 * check whether to continue servicing it, or retrieve and set a new one.
3232 */
cfq_select_queue(struct cfq_data * cfqd)3233 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
3234 {
3235 struct cfq_queue *cfqq, *new_cfqq = NULL;
3236 u64 now = ktime_get_ns();
3237
3238 cfqq = cfqd->active_queue;
3239 if (!cfqq)
3240 goto new_queue;
3241
3242 if (!cfqd->rq_queued)
3243 return NULL;
3244
3245 /*
3246 * We were waiting for group to get backlogged. Expire the queue
3247 */
3248 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
3249 goto expire;
3250
3251 /*
3252 * The active queue has run out of time, expire it and select new.
3253 */
3254 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
3255 /*
3256 * If slice had not expired at the completion of last request
3257 * we might not have turned on wait_busy flag. Don't expire
3258 * the queue yet. Allow the group to get backlogged.
3259 *
3260 * The very fact that we have used the slice, that means we
3261 * have been idling all along on this queue and it should be
3262 * ok to wait for this request to complete.
3263 */
3264 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
3265 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3266 cfqq = NULL;
3267 goto keep_queue;
3268 } else
3269 goto check_group_idle;
3270 }
3271
3272 /*
3273 * The active queue has requests and isn't expired, allow it to
3274 * dispatch.
3275 */
3276 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3277 goto keep_queue;
3278
3279 /*
3280 * If another queue has a request waiting within our mean seek
3281 * distance, let it run. The expire code will check for close
3282 * cooperators and put the close queue at the front of the service
3283 * tree. If possible, merge the expiring queue with the new cfqq.
3284 */
3285 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
3286 if (new_cfqq) {
3287 if (!cfqq->new_cfqq)
3288 cfq_setup_merge(cfqq, new_cfqq);
3289 goto expire;
3290 }
3291
3292 /*
3293 * No requests pending. If the active queue still has requests in
3294 * flight or is idling for a new request, allow either of these
3295 * conditions to happen (or time out) before selecting a new queue.
3296 */
3297 if (hrtimer_active(&cfqd->idle_slice_timer)) {
3298 cfqq = NULL;
3299 goto keep_queue;
3300 }
3301
3302 /*
3303 * This is a deep seek queue, but the device is much faster than
3304 * the queue can deliver, don't idle
3305 **/
3306 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
3307 (cfq_cfqq_slice_new(cfqq) ||
3308 (cfqq->slice_end - now > now - cfqq->slice_start))) {
3309 cfq_clear_cfqq_deep(cfqq);
3310 cfq_clear_cfqq_idle_window(cfqq);
3311 }
3312
3313 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3314 cfqq = NULL;
3315 goto keep_queue;
3316 }
3317
3318 /*
3319 * If group idle is enabled and there are requests dispatched from
3320 * this group, wait for requests to complete.
3321 */
3322 check_group_idle:
3323 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
3324 cfqq->cfqg->dispatched &&
3325 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
3326 cfqq = NULL;
3327 goto keep_queue;
3328 }
3329
3330 expire:
3331 cfq_slice_expired(cfqd, 0);
3332 new_queue:
3333 /*
3334 * Current queue expired. Check if we have to switch to a new
3335 * service tree
3336 */
3337 if (!new_cfqq)
3338 cfq_choose_cfqg(cfqd);
3339
3340 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
3341 keep_queue:
3342 return cfqq;
3343 }
3344
__cfq_forced_dispatch_cfqq(struct cfq_queue * cfqq)3345 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
3346 {
3347 int dispatched = 0;
3348
3349 while (cfqq->next_rq) {
3350 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
3351 dispatched++;
3352 }
3353
3354 BUG_ON(!list_empty(&cfqq->fifo));
3355
3356 /* By default cfqq is not expired if it is empty. Do it explicitly */
3357 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
3358 return dispatched;
3359 }
3360
3361 /*
3362 * Drain our current requests. Used for barriers and when switching
3363 * io schedulers on-the-fly.
3364 */
cfq_forced_dispatch(struct cfq_data * cfqd)3365 static int cfq_forced_dispatch(struct cfq_data *cfqd)
3366 {
3367 struct cfq_queue *cfqq;
3368 int dispatched = 0;
3369
3370 /* Expire the timeslice of the current active queue first */
3371 cfq_slice_expired(cfqd, 0);
3372 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
3373 __cfq_set_active_queue(cfqd, cfqq);
3374 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3375 }
3376
3377 BUG_ON(cfqd->busy_queues);
3378
3379 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3380 return dispatched;
3381 }
3382
cfq_slice_used_soon(struct cfq_data * cfqd,struct cfq_queue * cfqq)3383 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3384 struct cfq_queue *cfqq)
3385 {
3386 u64 now = ktime_get_ns();
3387
3388 /* the queue hasn't finished any request, can't estimate */
3389 if (cfq_cfqq_slice_new(cfqq))
3390 return true;
3391 if (now + cfqd->cfq_slice_idle * cfqq->dispatched > cfqq->slice_end)
3392 return true;
3393
3394 return false;
3395 }
3396
cfq_may_dispatch(struct cfq_data * cfqd,struct cfq_queue * cfqq)3397 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3398 {
3399 unsigned int max_dispatch;
3400
3401 if (cfq_cfqq_must_dispatch(cfqq))
3402 return true;
3403
3404 /*
3405 * Drain async requests before we start sync IO
3406 */
3407 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3408 return false;
3409
3410 /*
3411 * If this is an async queue and we have sync IO in flight, let it wait
3412 */
3413 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3414 return false;
3415
3416 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3417 if (cfq_class_idle(cfqq))
3418 max_dispatch = 1;
3419
3420 /*
3421 * Does this cfqq already have too much IO in flight?
3422 */
3423 if (cfqq->dispatched >= max_dispatch) {
3424 bool promote_sync = false;
3425 /*
3426 * idle queue must always only have a single IO in flight
3427 */
3428 if (cfq_class_idle(cfqq))
3429 return false;
3430
3431 /*
3432 * If there is only one sync queue
3433 * we can ignore async queue here and give the sync
3434 * queue no dispatch limit. The reason is a sync queue can
3435 * preempt async queue, limiting the sync queue doesn't make
3436 * sense. This is useful for aiostress test.
3437 */
3438 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3439 promote_sync = true;
3440
3441 /*
3442 * We have other queues, don't allow more IO from this one
3443 */
3444 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3445 !promote_sync)
3446 return false;
3447
3448 /*
3449 * Sole queue user, no limit
3450 */
3451 if (cfqd->busy_queues == 1 || promote_sync)
3452 max_dispatch = -1;
3453 else
3454 /*
3455 * Normally we start throttling cfqq when cfq_quantum/2
3456 * requests have been dispatched. But we can drive
3457 * deeper queue depths at the beginning of slice
3458 * subjected to upper limit of cfq_quantum.
3459 * */
3460 max_dispatch = cfqd->cfq_quantum;
3461 }
3462
3463 /*
3464 * Async queues must wait a bit before being allowed dispatch.
3465 * We also ramp up the dispatch depth gradually for async IO,
3466 * based on the last sync IO we serviced
3467 */
3468 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3469 u64 last_sync = ktime_get_ns() - cfqd->last_delayed_sync;
3470 unsigned int depth;
3471
3472 depth = div64_u64(last_sync, cfqd->cfq_slice[1]);
3473 if (!depth && !cfqq->dispatched)
3474 depth = 1;
3475 if (depth < max_dispatch)
3476 max_dispatch = depth;
3477 }
3478
3479 /*
3480 * If we're below the current max, allow a dispatch
3481 */
3482 return cfqq->dispatched < max_dispatch;
3483 }
3484
3485 /*
3486 * Dispatch a request from cfqq, moving them to the request queue
3487 * dispatch list.
3488 */
cfq_dispatch_request(struct cfq_data * cfqd,struct cfq_queue * cfqq)3489 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3490 {
3491 struct request *rq;
3492
3493 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3494
3495 rq = cfq_check_fifo(cfqq);
3496 if (rq)
3497 cfq_mark_cfqq_must_dispatch(cfqq);
3498
3499 if (!cfq_may_dispatch(cfqd, cfqq))
3500 return false;
3501
3502 /*
3503 * follow expired path, else get first next available
3504 */
3505 if (!rq)
3506 rq = cfqq->next_rq;
3507 else
3508 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
3509
3510 /*
3511 * insert request into driver dispatch list
3512 */
3513 cfq_dispatch_insert(cfqd->queue, rq);
3514
3515 if (!cfqd->active_cic) {
3516 struct cfq_io_cq *cic = RQ_CIC(rq);
3517
3518 atomic_long_inc(&cic->icq.ioc->refcount);
3519 cfqd->active_cic = cic;
3520 }
3521
3522 return true;
3523 }
3524
3525 /*
3526 * Find the cfqq that we need to service and move a request from that to the
3527 * dispatch list
3528 */
cfq_dispatch_requests(struct request_queue * q,int force)3529 static int cfq_dispatch_requests(struct request_queue *q, int force)
3530 {
3531 struct cfq_data *cfqd = q->elevator->elevator_data;
3532 struct cfq_queue *cfqq;
3533
3534 if (!cfqd->busy_queues)
3535 return 0;
3536
3537 if (unlikely(force))
3538 return cfq_forced_dispatch(cfqd);
3539
3540 cfqq = cfq_select_queue(cfqd);
3541 if (!cfqq)
3542 return 0;
3543
3544 /*
3545 * Dispatch a request from this cfqq, if it is allowed
3546 */
3547 if (!cfq_dispatch_request(cfqd, cfqq))
3548 return 0;
3549
3550 cfqq->slice_dispatch++;
3551 cfq_clear_cfqq_must_dispatch(cfqq);
3552
3553 /*
3554 * expire an async queue immediately if it has used up its slice. idle
3555 * queue always expire after 1 dispatch round.
3556 */
3557 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3558 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3559 cfq_class_idle(cfqq))) {
3560 cfqq->slice_end = ktime_get_ns() + 1;
3561 cfq_slice_expired(cfqd, 0);
3562 }
3563
3564 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3565 return 1;
3566 }
3567
3568 /*
3569 * task holds one reference to the queue, dropped when task exits. each rq
3570 * in-flight on this queue also holds a reference, dropped when rq is freed.
3571 *
3572 * Each cfq queue took a reference on the parent group. Drop it now.
3573 * queue lock must be held here.
3574 */
cfq_put_queue(struct cfq_queue * cfqq)3575 static void cfq_put_queue(struct cfq_queue *cfqq)
3576 {
3577 struct cfq_data *cfqd = cfqq->cfqd;
3578 struct cfq_group *cfqg;
3579
3580 BUG_ON(cfqq->ref <= 0);
3581
3582 cfqq->ref--;
3583 if (cfqq->ref)
3584 return;
3585
3586 cfq_log_cfqq(cfqd, cfqq, "put_queue");
3587 BUG_ON(rb_first(&cfqq->sort_list));
3588 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3589 cfqg = cfqq->cfqg;
3590
3591 if (unlikely(cfqd->active_queue == cfqq)) {
3592 __cfq_slice_expired(cfqd, cfqq, 0);
3593 cfq_schedule_dispatch(cfqd);
3594 }
3595
3596 BUG_ON(cfq_cfqq_on_rr(cfqq));
3597 kmem_cache_free(cfq_pool, cfqq);
3598 cfqg_put(cfqg);
3599 }
3600
cfq_put_cooperator(struct cfq_queue * cfqq)3601 static void cfq_put_cooperator(struct cfq_queue *cfqq)
3602 {
3603 struct cfq_queue *__cfqq, *next;
3604
3605 /*
3606 * If this queue was scheduled to merge with another queue, be
3607 * sure to drop the reference taken on that queue (and others in
3608 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3609 */
3610 __cfqq = cfqq->new_cfqq;
3611 while (__cfqq) {
3612 if (__cfqq == cfqq) {
3613 WARN(1, "cfqq->new_cfqq loop detected\n");
3614 break;
3615 }
3616 next = __cfqq->new_cfqq;
3617 cfq_put_queue(__cfqq);
3618 __cfqq = next;
3619 }
3620 }
3621
cfq_exit_cfqq(struct cfq_data * cfqd,struct cfq_queue * cfqq)3622 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3623 {
3624 if (unlikely(cfqq == cfqd->active_queue)) {
3625 __cfq_slice_expired(cfqd, cfqq, 0);
3626 cfq_schedule_dispatch(cfqd);
3627 }
3628
3629 cfq_put_cooperator(cfqq);
3630
3631 cfq_put_queue(cfqq);
3632 }
3633
cfq_init_icq(struct io_cq * icq)3634 static void cfq_init_icq(struct io_cq *icq)
3635 {
3636 struct cfq_io_cq *cic = icq_to_cic(icq);
3637
3638 cic->ttime.last_end_request = ktime_get_ns();
3639 }
3640
cfq_exit_icq(struct io_cq * icq)3641 static void cfq_exit_icq(struct io_cq *icq)
3642 {
3643 struct cfq_io_cq *cic = icq_to_cic(icq);
3644 struct cfq_data *cfqd = cic_to_cfqd(cic);
3645
3646 if (cic_to_cfqq(cic, false)) {
3647 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, false));
3648 cic_set_cfqq(cic, NULL, false);
3649 }
3650
3651 if (cic_to_cfqq(cic, true)) {
3652 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, true));
3653 cic_set_cfqq(cic, NULL, true);
3654 }
3655 }
3656
cfq_init_prio_data(struct cfq_queue * cfqq,struct cfq_io_cq * cic)3657 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3658 {
3659 struct task_struct *tsk = current;
3660 int ioprio_class;
3661
3662 if (!cfq_cfqq_prio_changed(cfqq))
3663 return;
3664
3665 ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3666 switch (ioprio_class) {
3667 default:
3668 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3669 /* fall through */
3670 case IOPRIO_CLASS_NONE:
3671 /*
3672 * no prio set, inherit CPU scheduling settings
3673 */
3674 cfqq->ioprio = task_nice_ioprio(tsk);
3675 cfqq->ioprio_class = task_nice_ioclass(tsk);
3676 break;
3677 case IOPRIO_CLASS_RT:
3678 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3679 cfqq->ioprio_class = IOPRIO_CLASS_RT;
3680 break;
3681 case IOPRIO_CLASS_BE:
3682 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3683 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3684 break;
3685 case IOPRIO_CLASS_IDLE:
3686 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3687 cfqq->ioprio = 7;
3688 cfq_clear_cfqq_idle_window(cfqq);
3689 break;
3690 }
3691
3692 /*
3693 * keep track of original prio settings in case we have to temporarily
3694 * elevate the priority of this queue
3695 */
3696 cfqq->org_ioprio = cfqq->ioprio;
3697 cfqq->org_ioprio_class = cfqq->ioprio_class;
3698 cfq_clear_cfqq_prio_changed(cfqq);
3699 }
3700
check_ioprio_changed(struct cfq_io_cq * cic,struct bio * bio)3701 static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3702 {
3703 int ioprio = cic->icq.ioc->ioprio;
3704 struct cfq_data *cfqd = cic_to_cfqd(cic);
3705 struct cfq_queue *cfqq;
3706
3707 /*
3708 * Check whether ioprio has changed. The condition may trigger
3709 * spuriously on a newly created cic but there's no harm.
3710 */
3711 if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3712 return;
3713
3714 cfqq = cic_to_cfqq(cic, false);
3715 if (cfqq) {
3716 cfq_put_queue(cfqq);
3717 cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio);
3718 cic_set_cfqq(cic, cfqq, false);
3719 }
3720
3721 cfqq = cic_to_cfqq(cic, true);
3722 if (cfqq)
3723 cfq_mark_cfqq_prio_changed(cfqq);
3724
3725 cic->ioprio = ioprio;
3726 }
3727
cfq_init_cfqq(struct cfq_data * cfqd,struct cfq_queue * cfqq,pid_t pid,bool is_sync)3728 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3729 pid_t pid, bool is_sync)
3730 {
3731 RB_CLEAR_NODE(&cfqq->rb_node);
3732 RB_CLEAR_NODE(&cfqq->p_node);
3733 INIT_LIST_HEAD(&cfqq->fifo);
3734
3735 cfqq->ref = 0;
3736 cfqq->cfqd = cfqd;
3737
3738 cfq_mark_cfqq_prio_changed(cfqq);
3739
3740 if (is_sync) {
3741 if (!cfq_class_idle(cfqq))
3742 cfq_mark_cfqq_idle_window(cfqq);
3743 cfq_mark_cfqq_sync(cfqq);
3744 }
3745 cfqq->pid = pid;
3746 }
3747
3748 #ifdef CONFIG_CFQ_GROUP_IOSCHED
check_blkcg_changed(struct cfq_io_cq * cic,struct bio * bio)3749 static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3750 {
3751 struct cfq_data *cfqd = cic_to_cfqd(cic);
3752 struct cfq_queue *cfqq;
3753 uint64_t serial_nr;
3754
3755 rcu_read_lock();
3756 serial_nr = bio_blkcg(bio)->css.serial_nr;
3757 rcu_read_unlock();
3758
3759 /*
3760 * Check whether blkcg has changed. The condition may trigger
3761 * spuriously on a newly created cic but there's no harm.
3762 */
3763 if (unlikely(!cfqd) || likely(cic->blkcg_serial_nr == serial_nr))
3764 return;
3765
3766 /*
3767 * Drop reference to queues. New queues will be assigned in new
3768 * group upon arrival of fresh requests.
3769 */
3770 cfqq = cic_to_cfqq(cic, false);
3771 if (cfqq) {
3772 cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3773 cic_set_cfqq(cic, NULL, false);
3774 cfq_put_queue(cfqq);
3775 }
3776
3777 cfqq = cic_to_cfqq(cic, true);
3778 if (cfqq) {
3779 cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3780 cic_set_cfqq(cic, NULL, true);
3781 cfq_put_queue(cfqq);
3782 }
3783
3784 cic->blkcg_serial_nr = serial_nr;
3785 }
3786 #else
check_blkcg_changed(struct cfq_io_cq * cic,struct bio * bio)3787 static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3788 {
3789 }
3790 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
3791
3792 static struct cfq_queue **
cfq_async_queue_prio(struct cfq_group * cfqg,int ioprio_class,int ioprio)3793 cfq_async_queue_prio(struct cfq_group *cfqg, int ioprio_class, int ioprio)
3794 {
3795 switch (ioprio_class) {
3796 case IOPRIO_CLASS_RT:
3797 return &cfqg->async_cfqq[0][ioprio];
3798 case IOPRIO_CLASS_NONE:
3799 ioprio = IOPRIO_NORM;
3800 /* fall through */
3801 case IOPRIO_CLASS_BE:
3802 return &cfqg->async_cfqq[1][ioprio];
3803 case IOPRIO_CLASS_IDLE:
3804 return &cfqg->async_idle_cfqq;
3805 default:
3806 BUG();
3807 }
3808 }
3809
3810 static struct cfq_queue *
cfq_get_queue(struct cfq_data * cfqd,bool is_sync,struct cfq_io_cq * cic,struct bio * bio)3811 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3812 struct bio *bio)
3813 {
3814 int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3815 int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3816 struct cfq_queue **async_cfqq = NULL;
3817 struct cfq_queue *cfqq;
3818 struct cfq_group *cfqg;
3819
3820 rcu_read_lock();
3821 cfqg = cfq_lookup_cfqg(cfqd, bio_blkcg(bio));
3822 if (!cfqg) {
3823 cfqq = &cfqd->oom_cfqq;
3824 goto out;
3825 }
3826
3827 if (!is_sync) {
3828 if (!ioprio_valid(cic->ioprio)) {
3829 struct task_struct *tsk = current;
3830 ioprio = task_nice_ioprio(tsk);
3831 ioprio_class = task_nice_ioclass(tsk);
3832 }
3833 async_cfqq = cfq_async_queue_prio(cfqg, ioprio_class, ioprio);
3834 cfqq = *async_cfqq;
3835 if (cfqq)
3836 goto out;
3837 }
3838
3839 cfqq = kmem_cache_alloc_node(cfq_pool,
3840 GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
3841 cfqd->queue->node);
3842 if (!cfqq) {
3843 cfqq = &cfqd->oom_cfqq;
3844 goto out;
3845 }
3846
3847 /* cfq_init_cfqq() assumes cfqq->ioprio_class is initialized. */
3848 cfqq->ioprio_class = IOPRIO_CLASS_NONE;
3849 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3850 cfq_init_prio_data(cfqq, cic);
3851 cfq_link_cfqq_cfqg(cfqq, cfqg);
3852 cfq_log_cfqq(cfqd, cfqq, "alloced");
3853
3854 if (async_cfqq) {
3855 /* a new async queue is created, pin and remember */
3856 cfqq->ref++;
3857 *async_cfqq = cfqq;
3858 }
3859 out:
3860 cfqq->ref++;
3861 rcu_read_unlock();
3862 return cfqq;
3863 }
3864
3865 static void
__cfq_update_io_thinktime(struct cfq_ttime * ttime,u64 slice_idle)3866 __cfq_update_io_thinktime(struct cfq_ttime *ttime, u64 slice_idle)
3867 {
3868 u64 elapsed = ktime_get_ns() - ttime->last_end_request;
3869 elapsed = min(elapsed, 2UL * slice_idle);
3870
3871 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3872 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
3873 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
3874 ttime->ttime_samples);
3875 }
3876
3877 static void
cfq_update_io_thinktime(struct cfq_data * cfqd,struct cfq_queue * cfqq,struct cfq_io_cq * cic)3878 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3879 struct cfq_io_cq *cic)
3880 {
3881 if (cfq_cfqq_sync(cfqq)) {
3882 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3883 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3884 cfqd->cfq_slice_idle);
3885 }
3886 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3887 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3888 #endif
3889 }
3890
3891 static void
cfq_update_io_seektime(struct cfq_data * cfqd,struct cfq_queue * cfqq,struct request * rq)3892 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3893 struct request *rq)
3894 {
3895 sector_t sdist = 0;
3896 sector_t n_sec = blk_rq_sectors(rq);
3897 if (cfqq->last_request_pos) {
3898 if (cfqq->last_request_pos < blk_rq_pos(rq))
3899 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3900 else
3901 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3902 }
3903
3904 cfqq->seek_history <<= 1;
3905 if (blk_queue_nonrot(cfqd->queue))
3906 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3907 else
3908 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3909 }
3910
req_noidle(struct request * req)3911 static inline bool req_noidle(struct request *req)
3912 {
3913 return req_op(req) == REQ_OP_WRITE &&
3914 (req->cmd_flags & (REQ_SYNC | REQ_IDLE)) == REQ_SYNC;
3915 }
3916
3917 /*
3918 * Disable idle window if the process thinks too long or seeks so much that
3919 * it doesn't matter
3920 */
3921 static void
cfq_update_idle_window(struct cfq_data * cfqd,struct cfq_queue * cfqq,struct cfq_io_cq * cic)3922 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3923 struct cfq_io_cq *cic)
3924 {
3925 int old_idle, enable_idle;
3926
3927 /*
3928 * Don't idle for async or idle io prio class
3929 */
3930 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3931 return;
3932
3933 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3934
3935 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3936 cfq_mark_cfqq_deep(cfqq);
3937
3938 if (cfqq->next_rq && req_noidle(cfqq->next_rq))
3939 enable_idle = 0;
3940 else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3941 !cfqd->cfq_slice_idle ||
3942 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3943 enable_idle = 0;
3944 else if (sample_valid(cic->ttime.ttime_samples)) {
3945 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3946 enable_idle = 0;
3947 else
3948 enable_idle = 1;
3949 }
3950
3951 if (old_idle != enable_idle) {
3952 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3953 if (enable_idle)
3954 cfq_mark_cfqq_idle_window(cfqq);
3955 else
3956 cfq_clear_cfqq_idle_window(cfqq);
3957 }
3958 }
3959
3960 /*
3961 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3962 * no or if we aren't sure, a 1 will cause a preempt.
3963 */
3964 static bool
cfq_should_preempt(struct cfq_data * cfqd,struct cfq_queue * new_cfqq,struct request * rq)3965 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3966 struct request *rq)
3967 {
3968 struct cfq_queue *cfqq;
3969
3970 cfqq = cfqd->active_queue;
3971 if (!cfqq)
3972 return false;
3973
3974 if (cfq_class_idle(new_cfqq))
3975 return false;
3976
3977 if (cfq_class_idle(cfqq))
3978 return true;
3979
3980 /*
3981 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3982 */
3983 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3984 return false;
3985
3986 /*
3987 * if the new request is sync, but the currently running queue is
3988 * not, let the sync request have priority.
3989 */
3990 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
3991 return true;
3992
3993 /*
3994 * Treat ancestors of current cgroup the same way as current cgroup.
3995 * For anybody else we disallow preemption to guarantee service
3996 * fairness among cgroups.
3997 */
3998 if (!cfqg_is_descendant(cfqq->cfqg, new_cfqq->cfqg))
3999 return false;
4000
4001 if (cfq_slice_used(cfqq))
4002 return true;
4003
4004 /*
4005 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
4006 */
4007 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
4008 return true;
4009
4010 WARN_ON_ONCE(cfqq->ioprio_class != new_cfqq->ioprio_class);
4011 /* Allow preemption only if we are idling on sync-noidle tree */
4012 if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
4013 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
4014 RB_EMPTY_ROOT(&cfqq->sort_list))
4015 return true;
4016
4017 /*
4018 * So both queues are sync. Let the new request get disk time if
4019 * it's a metadata request and the current queue is doing regular IO.
4020 */
4021 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
4022 return true;
4023
4024 /* An idle queue should not be idle now for some reason */
4025 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
4026 return true;
4027
4028 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
4029 return false;
4030
4031 /*
4032 * if this request is as-good as one we would expect from the
4033 * current cfqq, let it preempt
4034 */
4035 if (cfq_rq_close(cfqd, cfqq, rq))
4036 return true;
4037
4038 return false;
4039 }
4040
4041 /*
4042 * cfqq preempts the active queue. if we allowed preempt with no slice left,
4043 * let it have half of its nominal slice.
4044 */
cfq_preempt_queue(struct cfq_data * cfqd,struct cfq_queue * cfqq)4045 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4046 {
4047 enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
4048
4049 cfq_log_cfqq(cfqd, cfqq, "preempt");
4050 cfq_slice_expired(cfqd, 1);
4051
4052 /*
4053 * workload type is changed, don't save slice, otherwise preempt
4054 * doesn't happen
4055 */
4056 if (old_type != cfqq_type(cfqq))
4057 cfqq->cfqg->saved_wl_slice = 0;
4058
4059 /*
4060 * Put the new queue at the front of the of the current list,
4061 * so we know that it will be selected next.
4062 */
4063 BUG_ON(!cfq_cfqq_on_rr(cfqq));
4064
4065 cfq_service_tree_add(cfqd, cfqq, 1);
4066
4067 cfqq->slice_end = 0;
4068 cfq_mark_cfqq_slice_new(cfqq);
4069 }
4070
4071 /*
4072 * Called when a new fs request (rq) is added (to cfqq). Check if there's
4073 * something we should do about it
4074 */
4075 static void
cfq_rq_enqueued(struct cfq_data * cfqd,struct cfq_queue * cfqq,struct request * rq)4076 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
4077 struct request *rq)
4078 {
4079 struct cfq_io_cq *cic = RQ_CIC(rq);
4080
4081 cfqd->rq_queued++;
4082 if (rq->cmd_flags & REQ_PRIO)
4083 cfqq->prio_pending++;
4084
4085 cfq_update_io_thinktime(cfqd, cfqq, cic);
4086 cfq_update_io_seektime(cfqd, cfqq, rq);
4087 cfq_update_idle_window(cfqd, cfqq, cic);
4088
4089 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4090
4091 if (cfqq == cfqd->active_queue) {
4092 /*
4093 * Remember that we saw a request from this process, but
4094 * don't start queuing just yet. Otherwise we risk seeing lots
4095 * of tiny requests, because we disrupt the normal plugging
4096 * and merging. If the request is already larger than a single
4097 * page, let it rip immediately. For that case we assume that
4098 * merging is already done. Ditto for a busy system that
4099 * has other work pending, don't risk delaying until the
4100 * idle timer unplug to continue working.
4101 */
4102 if (cfq_cfqq_wait_request(cfqq)) {
4103 if (blk_rq_bytes(rq) > PAGE_SIZE ||
4104 cfqd->busy_queues > 1) {
4105 cfq_del_timer(cfqd, cfqq);
4106 cfq_clear_cfqq_wait_request(cfqq);
4107 __blk_run_queue(cfqd->queue);
4108 } else {
4109 cfqg_stats_update_idle_time(cfqq->cfqg);
4110 cfq_mark_cfqq_must_dispatch(cfqq);
4111 }
4112 }
4113 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
4114 /*
4115 * not the active queue - expire current slice if it is
4116 * idle and has expired it's mean thinktime or this new queue
4117 * has some old slice time left and is of higher priority or
4118 * this new queue is RT and the current one is BE
4119 */
4120 cfq_preempt_queue(cfqd, cfqq);
4121 __blk_run_queue(cfqd->queue);
4122 }
4123 }
4124
cfq_insert_request(struct request_queue * q,struct request * rq)4125 static void cfq_insert_request(struct request_queue *q, struct request *rq)
4126 {
4127 struct cfq_data *cfqd = q->elevator->elevator_data;
4128 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4129
4130 cfq_log_cfqq(cfqd, cfqq, "insert_request");
4131 cfq_init_prio_data(cfqq, RQ_CIC(rq));
4132
4133 rq->fifo_time = ktime_get_ns() + cfqd->cfq_fifo_expire[rq_is_sync(rq)];
4134 list_add_tail(&rq->queuelist, &cfqq->fifo);
4135 cfq_add_rq_rb(rq);
4136 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
4137 rq->cmd_flags);
4138 cfq_rq_enqueued(cfqd, cfqq, rq);
4139 }
4140
4141 /*
4142 * Update hw_tag based on peak queue depth over 50 samples under
4143 * sufficient load.
4144 */
cfq_update_hw_tag(struct cfq_data * cfqd)4145 static void cfq_update_hw_tag(struct cfq_data *cfqd)
4146 {
4147 struct cfq_queue *cfqq = cfqd->active_queue;
4148
4149 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
4150 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
4151
4152 if (cfqd->hw_tag == 1)
4153 return;
4154
4155 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
4156 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
4157 return;
4158
4159 /*
4160 * If active queue hasn't enough requests and can idle, cfq might not
4161 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
4162 * case
4163 */
4164 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
4165 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
4166 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
4167 return;
4168
4169 if (cfqd->hw_tag_samples++ < 50)
4170 return;
4171
4172 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
4173 cfqd->hw_tag = 1;
4174 else
4175 cfqd->hw_tag = 0;
4176 }
4177
cfq_should_wait_busy(struct cfq_data * cfqd,struct cfq_queue * cfqq)4178 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4179 {
4180 struct cfq_io_cq *cic = cfqd->active_cic;
4181 u64 now = ktime_get_ns();
4182
4183 /* If the queue already has requests, don't wait */
4184 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4185 return false;
4186
4187 /* If there are other queues in the group, don't wait */
4188 if (cfqq->cfqg->nr_cfqq > 1)
4189 return false;
4190
4191 /* the only queue in the group, but think time is big */
4192 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
4193 return false;
4194
4195 if (cfq_slice_used(cfqq))
4196 return true;
4197
4198 /* if slice left is less than think time, wait busy */
4199 if (cic && sample_valid(cic->ttime.ttime_samples)
4200 && (cfqq->slice_end - now < cic->ttime.ttime_mean))
4201 return true;
4202
4203 /*
4204 * If think times is less than a jiffy than ttime_mean=0 and above
4205 * will not be true. It might happen that slice has not expired yet
4206 * but will expire soon (4-5 ns) during select_queue(). To cover the
4207 * case where think time is less than a jiffy, mark the queue wait
4208 * busy if only 1 jiffy is left in the slice.
4209 */
4210 if (cfqq->slice_end - now <= jiffies_to_nsecs(1))
4211 return true;
4212
4213 return false;
4214 }
4215
cfq_completed_request(struct request_queue * q,struct request * rq)4216 static void cfq_completed_request(struct request_queue *q, struct request *rq)
4217 {
4218 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4219 struct cfq_data *cfqd = cfqq->cfqd;
4220 const int sync = rq_is_sync(rq);
4221 u64 now = ktime_get_ns();
4222
4223 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", req_noidle(rq));
4224
4225 cfq_update_hw_tag(cfqd);
4226
4227 WARN_ON(!cfqd->rq_in_driver);
4228 WARN_ON(!cfqq->dispatched);
4229 cfqd->rq_in_driver--;
4230 cfqq->dispatched--;
4231 (RQ_CFQG(rq))->dispatched--;
4232 cfqg_stats_update_completion(cfqq->cfqg, rq->start_time_ns,
4233 rq->io_start_time_ns, rq->cmd_flags);
4234
4235 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
4236
4237 if (sync) {
4238 struct cfq_rb_root *st;
4239
4240 RQ_CIC(rq)->ttime.last_end_request = now;
4241
4242 if (cfq_cfqq_on_rr(cfqq))
4243 st = cfqq->service_tree;
4244 else
4245 st = st_for(cfqq->cfqg, cfqq_class(cfqq),
4246 cfqq_type(cfqq));
4247
4248 st->ttime.last_end_request = now;
4249 if (rq->start_time_ns + cfqd->cfq_fifo_expire[1] <= now)
4250 cfqd->last_delayed_sync = now;
4251 }
4252
4253 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4254 cfqq->cfqg->ttime.last_end_request = now;
4255 #endif
4256
4257 /*
4258 * If this is the active queue, check if it needs to be expired,
4259 * or if we want to idle in case it has no pending requests.
4260 */
4261 if (cfqd->active_queue == cfqq) {
4262 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
4263
4264 if (cfq_cfqq_slice_new(cfqq)) {
4265 cfq_set_prio_slice(cfqd, cfqq);
4266 cfq_clear_cfqq_slice_new(cfqq);
4267 }
4268
4269 /*
4270 * Should we wait for next request to come in before we expire
4271 * the queue.
4272 */
4273 if (cfq_should_wait_busy(cfqd, cfqq)) {
4274 u64 extend_sl = cfqd->cfq_slice_idle;
4275 if (!cfqd->cfq_slice_idle)
4276 extend_sl = cfqd->cfq_group_idle;
4277 cfqq->slice_end = now + extend_sl;
4278 cfq_mark_cfqq_wait_busy(cfqq);
4279 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
4280 }
4281
4282 /*
4283 * Idling is not enabled on:
4284 * - expired queues
4285 * - idle-priority queues
4286 * - async queues
4287 * - queues with still some requests queued
4288 * - when there is a close cooperator
4289 */
4290 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
4291 cfq_slice_expired(cfqd, 1);
4292 else if (sync && cfqq_empty &&
4293 !cfq_close_cooperator(cfqd, cfqq)) {
4294 cfq_arm_slice_timer(cfqd);
4295 }
4296 }
4297
4298 if (!cfqd->rq_in_driver)
4299 cfq_schedule_dispatch(cfqd);
4300 }
4301
cfqq_boost_on_prio(struct cfq_queue * cfqq,unsigned int op)4302 static void cfqq_boost_on_prio(struct cfq_queue *cfqq, unsigned int op)
4303 {
4304 /*
4305 * If REQ_PRIO is set, boost class and prio level, if it's below
4306 * BE/NORM. If prio is not set, restore the potentially boosted
4307 * class/prio level.
4308 */
4309 if (!(op & REQ_PRIO)) {
4310 cfqq->ioprio_class = cfqq->org_ioprio_class;
4311 cfqq->ioprio = cfqq->org_ioprio;
4312 } else {
4313 if (cfq_class_idle(cfqq))
4314 cfqq->ioprio_class = IOPRIO_CLASS_BE;
4315 if (cfqq->ioprio > IOPRIO_NORM)
4316 cfqq->ioprio = IOPRIO_NORM;
4317 }
4318 }
4319
__cfq_may_queue(struct cfq_queue * cfqq)4320 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
4321 {
4322 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
4323 cfq_mark_cfqq_must_alloc_slice(cfqq);
4324 return ELV_MQUEUE_MUST;
4325 }
4326
4327 return ELV_MQUEUE_MAY;
4328 }
4329
cfq_may_queue(struct request_queue * q,unsigned int op)4330 static int cfq_may_queue(struct request_queue *q, unsigned int op)
4331 {
4332 struct cfq_data *cfqd = q->elevator->elevator_data;
4333 struct task_struct *tsk = current;
4334 struct cfq_io_cq *cic;
4335 struct cfq_queue *cfqq;
4336
4337 /*
4338 * don't force setup of a queue from here, as a call to may_queue
4339 * does not necessarily imply that a request actually will be queued.
4340 * so just lookup a possibly existing queue, or return 'may queue'
4341 * if that fails
4342 */
4343 cic = cfq_cic_lookup(cfqd, tsk->io_context);
4344 if (!cic)
4345 return ELV_MQUEUE_MAY;
4346
4347 cfqq = cic_to_cfqq(cic, op_is_sync(op));
4348 if (cfqq) {
4349 cfq_init_prio_data(cfqq, cic);
4350 cfqq_boost_on_prio(cfqq, op);
4351
4352 return __cfq_may_queue(cfqq);
4353 }
4354
4355 return ELV_MQUEUE_MAY;
4356 }
4357
4358 /*
4359 * queue lock held here
4360 */
cfq_put_request(struct request * rq)4361 static void cfq_put_request(struct request *rq)
4362 {
4363 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4364
4365 if (cfqq) {
4366 const int rw = rq_data_dir(rq);
4367
4368 BUG_ON(!cfqq->allocated[rw]);
4369 cfqq->allocated[rw]--;
4370
4371 /* Put down rq reference on cfqg */
4372 cfqg_put(RQ_CFQG(rq));
4373 rq->elv.priv[0] = NULL;
4374 rq->elv.priv[1] = NULL;
4375
4376 cfq_put_queue(cfqq);
4377 }
4378 }
4379
4380 static struct cfq_queue *
cfq_merge_cfqqs(struct cfq_data * cfqd,struct cfq_io_cq * cic,struct cfq_queue * cfqq)4381 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
4382 struct cfq_queue *cfqq)
4383 {
4384 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
4385 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
4386 cfq_mark_cfqq_coop(cfqq->new_cfqq);
4387 cfq_put_queue(cfqq);
4388 return cic_to_cfqq(cic, 1);
4389 }
4390
4391 /*
4392 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4393 * was the last process referring to said cfqq.
4394 */
4395 static struct cfq_queue *
split_cfqq(struct cfq_io_cq * cic,struct cfq_queue * cfqq)4396 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4397 {
4398 if (cfqq_process_refs(cfqq) == 1) {
4399 cfqq->pid = current->pid;
4400 cfq_clear_cfqq_coop(cfqq);
4401 cfq_clear_cfqq_split_coop(cfqq);
4402 return cfqq;
4403 }
4404
4405 cic_set_cfqq(cic, NULL, 1);
4406
4407 cfq_put_cooperator(cfqq);
4408
4409 cfq_put_queue(cfqq);
4410 return NULL;
4411 }
4412 /*
4413 * Allocate cfq data structures associated with this request.
4414 */
4415 static int
cfq_set_request(struct request_queue * q,struct request * rq,struct bio * bio,gfp_t gfp_mask)4416 cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4417 gfp_t gfp_mask)
4418 {
4419 struct cfq_data *cfqd = q->elevator->elevator_data;
4420 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4421 const int rw = rq_data_dir(rq);
4422 const bool is_sync = rq_is_sync(rq);
4423 struct cfq_queue *cfqq;
4424
4425 spin_lock_irq(q->queue_lock);
4426
4427 check_ioprio_changed(cic, bio);
4428 check_blkcg_changed(cic, bio);
4429 new_queue:
4430 cfqq = cic_to_cfqq(cic, is_sync);
4431 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4432 if (cfqq)
4433 cfq_put_queue(cfqq);
4434 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio);
4435 cic_set_cfqq(cic, cfqq, is_sync);
4436 } else {
4437 /*
4438 * If the queue was seeky for too long, break it apart.
4439 */
4440 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4441 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4442 cfqq = split_cfqq(cic, cfqq);
4443 if (!cfqq)
4444 goto new_queue;
4445 }
4446
4447 /*
4448 * Check to see if this queue is scheduled to merge with
4449 * another, closely cooperating queue. The merging of
4450 * queues happens here as it must be done in process context.
4451 * The reference on new_cfqq was taken in merge_cfqqs.
4452 */
4453 if (cfqq->new_cfqq)
4454 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4455 }
4456
4457 cfqq->allocated[rw]++;
4458
4459 cfqq->ref++;
4460 cfqg_get(cfqq->cfqg);
4461 rq->elv.priv[0] = cfqq;
4462 rq->elv.priv[1] = cfqq->cfqg;
4463 spin_unlock_irq(q->queue_lock);
4464
4465 return 0;
4466 }
4467
cfq_kick_queue(struct work_struct * work)4468 static void cfq_kick_queue(struct work_struct *work)
4469 {
4470 struct cfq_data *cfqd =
4471 container_of(work, struct cfq_data, unplug_work);
4472 struct request_queue *q = cfqd->queue;
4473
4474 spin_lock_irq(q->queue_lock);
4475 __blk_run_queue(cfqd->queue);
4476 spin_unlock_irq(q->queue_lock);
4477 }
4478
4479 /*
4480 * Timer running if the active_queue is currently idling inside its time slice
4481 */
cfq_idle_slice_timer(struct hrtimer * timer)4482 static enum hrtimer_restart cfq_idle_slice_timer(struct hrtimer *timer)
4483 {
4484 struct cfq_data *cfqd = container_of(timer, struct cfq_data,
4485 idle_slice_timer);
4486 struct cfq_queue *cfqq;
4487 unsigned long flags;
4488 int timed_out = 1;
4489
4490 cfq_log(cfqd, "idle timer fired");
4491
4492 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4493
4494 cfqq = cfqd->active_queue;
4495 if (cfqq) {
4496 timed_out = 0;
4497
4498 /*
4499 * We saw a request before the queue expired, let it through
4500 */
4501 if (cfq_cfqq_must_dispatch(cfqq))
4502 goto out_kick;
4503
4504 /*
4505 * expired
4506 */
4507 if (cfq_slice_used(cfqq))
4508 goto expire;
4509
4510 /*
4511 * only expire and reinvoke request handler, if there are
4512 * other queues with pending requests
4513 */
4514 if (!cfqd->busy_queues)
4515 goto out_cont;
4516
4517 /*
4518 * not expired and it has a request pending, let it dispatch
4519 */
4520 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4521 goto out_kick;
4522
4523 /*
4524 * Queue depth flag is reset only when the idle didn't succeed
4525 */
4526 cfq_clear_cfqq_deep(cfqq);
4527 }
4528 expire:
4529 cfq_slice_expired(cfqd, timed_out);
4530 out_kick:
4531 cfq_schedule_dispatch(cfqd);
4532 out_cont:
4533 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4534 return HRTIMER_NORESTART;
4535 }
4536
cfq_shutdown_timer_wq(struct cfq_data * cfqd)4537 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4538 {
4539 hrtimer_cancel(&cfqd->idle_slice_timer);
4540 cancel_work_sync(&cfqd->unplug_work);
4541 }
4542
cfq_exit_queue(struct elevator_queue * e)4543 static void cfq_exit_queue(struct elevator_queue *e)
4544 {
4545 struct cfq_data *cfqd = e->elevator_data;
4546 struct request_queue *q = cfqd->queue;
4547
4548 cfq_shutdown_timer_wq(cfqd);
4549
4550 spin_lock_irq(q->queue_lock);
4551
4552 if (cfqd->active_queue)
4553 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4554
4555 spin_unlock_irq(q->queue_lock);
4556
4557 cfq_shutdown_timer_wq(cfqd);
4558
4559 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4560 blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4561 #else
4562 kfree(cfqd->root_group);
4563 #endif
4564 kfree(cfqd);
4565 }
4566
cfq_init_queue(struct request_queue * q,struct elevator_type * e)4567 static int cfq_init_queue(struct request_queue *q, struct elevator_type *e)
4568 {
4569 struct cfq_data *cfqd;
4570 struct blkcg_gq *blkg __maybe_unused;
4571 int i, ret;
4572 struct elevator_queue *eq;
4573
4574 eq = elevator_alloc(q, e);
4575 if (!eq)
4576 return -ENOMEM;
4577
4578 cfqd = kzalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
4579 if (!cfqd) {
4580 kobject_put(&eq->kobj);
4581 return -ENOMEM;
4582 }
4583 eq->elevator_data = cfqd;
4584
4585 cfqd->queue = q;
4586 spin_lock_irq(q->queue_lock);
4587 q->elevator = eq;
4588 spin_unlock_irq(q->queue_lock);
4589
4590 /* Init root service tree */
4591 cfqd->grp_service_tree = CFQ_RB_ROOT;
4592
4593 /* Init root group and prefer root group over other groups by default */
4594 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4595 ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4596 if (ret)
4597 goto out_free;
4598
4599 cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4600 #else
4601 ret = -ENOMEM;
4602 cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4603 GFP_KERNEL, cfqd->queue->node);
4604 if (!cfqd->root_group)
4605 goto out_free;
4606
4607 cfq_init_cfqg_base(cfqd->root_group);
4608 cfqd->root_group->weight = 2 * CFQ_WEIGHT_LEGACY_DFL;
4609 cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_LEGACY_DFL;
4610 #endif
4611
4612 /*
4613 * Not strictly needed (since RB_ROOT just clears the node and we
4614 * zeroed cfqd on alloc), but better be safe in case someone decides
4615 * to add magic to the rb code
4616 */
4617 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4618 cfqd->prio_trees[i] = RB_ROOT;
4619
4620 /*
4621 * Our fallback cfqq if cfq_get_queue() runs into OOM issues.
4622 * Grab a permanent reference to it, so that the normal code flow
4623 * will not attempt to free it. oom_cfqq is linked to root_group
4624 * but shouldn't hold a reference as it'll never be unlinked. Lose
4625 * the reference from linking right away.
4626 */
4627 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4628 cfqd->oom_cfqq.ref++;
4629
4630 spin_lock_irq(q->queue_lock);
4631 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4632 cfqg_put(cfqd->root_group);
4633 spin_unlock_irq(q->queue_lock);
4634
4635 hrtimer_init(&cfqd->idle_slice_timer, CLOCK_MONOTONIC,
4636 HRTIMER_MODE_REL);
4637 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4638
4639 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4640
4641 cfqd->cfq_quantum = cfq_quantum;
4642 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4643 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4644 cfqd->cfq_back_max = cfq_back_max;
4645 cfqd->cfq_back_penalty = cfq_back_penalty;
4646 cfqd->cfq_slice[0] = cfq_slice_async;
4647 cfqd->cfq_slice[1] = cfq_slice_sync;
4648 cfqd->cfq_target_latency = cfq_target_latency;
4649 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4650 cfqd->cfq_slice_idle = cfq_slice_idle;
4651 cfqd->cfq_group_idle = cfq_group_idle;
4652 cfqd->cfq_latency = 1;
4653 cfqd->hw_tag = -1;
4654 /*
4655 * we optimistically start assuming sync ops weren't delayed in last
4656 * second, in order to have larger depth for async operations.
4657 */
4658 cfqd->last_delayed_sync = ktime_get_ns() - NSEC_PER_SEC;
4659 return 0;
4660
4661 out_free:
4662 kfree(cfqd);
4663 kobject_put(&eq->kobj);
4664 return ret;
4665 }
4666
cfq_registered_queue(struct request_queue * q)4667 static void cfq_registered_queue(struct request_queue *q)
4668 {
4669 struct elevator_queue *e = q->elevator;
4670 struct cfq_data *cfqd = e->elevator_data;
4671
4672 /*
4673 * Default to IOPS mode with no idling for SSDs
4674 */
4675 if (blk_queue_nonrot(q))
4676 cfqd->cfq_slice_idle = 0;
4677 wbt_disable_default(q);
4678 }
4679
4680 /*
4681 * sysfs parts below -->
4682 */
4683 static ssize_t
cfq_var_show(unsigned int var,char * page)4684 cfq_var_show(unsigned int var, char *page)
4685 {
4686 return sprintf(page, "%u\n", var);
4687 }
4688
4689 static void
cfq_var_store(unsigned int * var,const char * page)4690 cfq_var_store(unsigned int *var, const char *page)
4691 {
4692 char *p = (char *) page;
4693
4694 *var = simple_strtoul(p, &p, 10);
4695 }
4696
4697 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4698 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4699 { \
4700 struct cfq_data *cfqd = e->elevator_data; \
4701 u64 __data = __VAR; \
4702 if (__CONV) \
4703 __data = div_u64(__data, NSEC_PER_MSEC); \
4704 return cfq_var_show(__data, (page)); \
4705 }
4706 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4707 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4708 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4709 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4710 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4711 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4712 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4713 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4714 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4715 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4716 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4717 SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4718 #undef SHOW_FUNCTION
4719
4720 #define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
4721 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4722 { \
4723 struct cfq_data *cfqd = e->elevator_data; \
4724 u64 __data = __VAR; \
4725 __data = div_u64(__data, NSEC_PER_USEC); \
4726 return cfq_var_show(__data, (page)); \
4727 }
4728 USEC_SHOW_FUNCTION(cfq_slice_idle_us_show, cfqd->cfq_slice_idle);
4729 USEC_SHOW_FUNCTION(cfq_group_idle_us_show, cfqd->cfq_group_idle);
4730 USEC_SHOW_FUNCTION(cfq_slice_sync_us_show, cfqd->cfq_slice[1]);
4731 USEC_SHOW_FUNCTION(cfq_slice_async_us_show, cfqd->cfq_slice[0]);
4732 USEC_SHOW_FUNCTION(cfq_target_latency_us_show, cfqd->cfq_target_latency);
4733 #undef USEC_SHOW_FUNCTION
4734
4735 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4736 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4737 { \
4738 struct cfq_data *cfqd = e->elevator_data; \
4739 unsigned int __data, __min = (MIN), __max = (MAX); \
4740 \
4741 cfq_var_store(&__data, (page)); \
4742 if (__data < __min) \
4743 __data = __min; \
4744 else if (__data > __max) \
4745 __data = __max; \
4746 if (__CONV) \
4747 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
4748 else \
4749 *(__PTR) = __data; \
4750 return count; \
4751 }
4752 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4753 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4754 UINT_MAX, 1);
4755 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4756 UINT_MAX, 1);
4757 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4758 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4759 UINT_MAX, 0);
4760 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4761 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4762 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4763 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4764 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4765 UINT_MAX, 0);
4766 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4767 STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4768 #undef STORE_FUNCTION
4769
4770 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
4771 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4772 { \
4773 struct cfq_data *cfqd = e->elevator_data; \
4774 unsigned int __data, __min = (MIN), __max = (MAX); \
4775 \
4776 cfq_var_store(&__data, (page)); \
4777 if (__data < __min) \
4778 __data = __min; \
4779 else if (__data > __max) \
4780 __data = __max; \
4781 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
4782 return count; \
4783 }
4784 USEC_STORE_FUNCTION(cfq_slice_idle_us_store, &cfqd->cfq_slice_idle, 0, UINT_MAX);
4785 USEC_STORE_FUNCTION(cfq_group_idle_us_store, &cfqd->cfq_group_idle, 0, UINT_MAX);
4786 USEC_STORE_FUNCTION(cfq_slice_sync_us_store, &cfqd->cfq_slice[1], 1, UINT_MAX);
4787 USEC_STORE_FUNCTION(cfq_slice_async_us_store, &cfqd->cfq_slice[0], 1, UINT_MAX);
4788 USEC_STORE_FUNCTION(cfq_target_latency_us_store, &cfqd->cfq_target_latency, 1, UINT_MAX);
4789 #undef USEC_STORE_FUNCTION
4790
4791 #define CFQ_ATTR(name) \
4792 __ATTR(name, 0644, cfq_##name##_show, cfq_##name##_store)
4793
4794 static struct elv_fs_entry cfq_attrs[] = {
4795 CFQ_ATTR(quantum),
4796 CFQ_ATTR(fifo_expire_sync),
4797 CFQ_ATTR(fifo_expire_async),
4798 CFQ_ATTR(back_seek_max),
4799 CFQ_ATTR(back_seek_penalty),
4800 CFQ_ATTR(slice_sync),
4801 CFQ_ATTR(slice_sync_us),
4802 CFQ_ATTR(slice_async),
4803 CFQ_ATTR(slice_async_us),
4804 CFQ_ATTR(slice_async_rq),
4805 CFQ_ATTR(slice_idle),
4806 CFQ_ATTR(slice_idle_us),
4807 CFQ_ATTR(group_idle),
4808 CFQ_ATTR(group_idle_us),
4809 CFQ_ATTR(low_latency),
4810 CFQ_ATTR(target_latency),
4811 CFQ_ATTR(target_latency_us),
4812 __ATTR_NULL
4813 };
4814
4815 static struct elevator_type iosched_cfq = {
4816 .ops.sq = {
4817 .elevator_merge_fn = cfq_merge,
4818 .elevator_merged_fn = cfq_merged_request,
4819 .elevator_merge_req_fn = cfq_merged_requests,
4820 .elevator_allow_bio_merge_fn = cfq_allow_bio_merge,
4821 .elevator_allow_rq_merge_fn = cfq_allow_rq_merge,
4822 .elevator_bio_merged_fn = cfq_bio_merged,
4823 .elevator_dispatch_fn = cfq_dispatch_requests,
4824 .elevator_add_req_fn = cfq_insert_request,
4825 .elevator_activate_req_fn = cfq_activate_request,
4826 .elevator_deactivate_req_fn = cfq_deactivate_request,
4827 .elevator_completed_req_fn = cfq_completed_request,
4828 .elevator_former_req_fn = elv_rb_former_request,
4829 .elevator_latter_req_fn = elv_rb_latter_request,
4830 .elevator_init_icq_fn = cfq_init_icq,
4831 .elevator_exit_icq_fn = cfq_exit_icq,
4832 .elevator_set_req_fn = cfq_set_request,
4833 .elevator_put_req_fn = cfq_put_request,
4834 .elevator_may_queue_fn = cfq_may_queue,
4835 .elevator_init_fn = cfq_init_queue,
4836 .elevator_exit_fn = cfq_exit_queue,
4837 .elevator_registered_fn = cfq_registered_queue,
4838 },
4839 .icq_size = sizeof(struct cfq_io_cq),
4840 .icq_align = __alignof__(struct cfq_io_cq),
4841 .elevator_attrs = cfq_attrs,
4842 .elevator_name = "cfq",
4843 .elevator_owner = THIS_MODULE,
4844 };
4845
4846 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4847 static struct blkcg_policy blkcg_policy_cfq = {
4848 .dfl_cftypes = cfq_blkcg_files,
4849 .legacy_cftypes = cfq_blkcg_legacy_files,
4850
4851 .cpd_alloc_fn = cfq_cpd_alloc,
4852 .cpd_init_fn = cfq_cpd_init,
4853 .cpd_free_fn = cfq_cpd_free,
4854 .cpd_bind_fn = cfq_cpd_bind,
4855
4856 .pd_alloc_fn = cfq_pd_alloc,
4857 .pd_init_fn = cfq_pd_init,
4858 .pd_offline_fn = cfq_pd_offline,
4859 .pd_free_fn = cfq_pd_free,
4860 .pd_reset_stats_fn = cfq_pd_reset_stats,
4861 };
4862 #endif
4863
cfq_init(void)4864 static int __init cfq_init(void)
4865 {
4866 int ret;
4867
4868 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4869 ret = blkcg_policy_register(&blkcg_policy_cfq);
4870 if (ret)
4871 return ret;
4872 #else
4873 cfq_group_idle = 0;
4874 #endif
4875
4876 ret = -ENOMEM;
4877 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4878 if (!cfq_pool)
4879 goto err_pol_unreg;
4880
4881 ret = elv_register(&iosched_cfq);
4882 if (ret)
4883 goto err_free_pool;
4884
4885 return 0;
4886
4887 err_free_pool:
4888 kmem_cache_destroy(cfq_pool);
4889 err_pol_unreg:
4890 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4891 blkcg_policy_unregister(&blkcg_policy_cfq);
4892 #endif
4893 return ret;
4894 }
4895
cfq_exit(void)4896 static void __exit cfq_exit(void)
4897 {
4898 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4899 blkcg_policy_unregister(&blkcg_policy_cfq);
4900 #endif
4901 elv_unregister(&iosched_cfq);
4902 kmem_cache_destroy(cfq_pool);
4903 }
4904
4905 module_init(cfq_init);
4906 module_exit(cfq_exit);
4907
4908 MODULE_AUTHOR("Jens Axboe");
4909 MODULE_LICENSE("GPL");
4910 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
4911