1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/sched/clock.h>
12 #include <linux/blkdev.h>
13 #include <linux/elevator.h>
14 #include <linux/ktime.h>
15 #include <linux/rbtree.h>
16 #include <linux/ioprio.h>
17 #include <linux/blktrace_api.h>
18 #include <linux/blk-cgroup.h>
19 #include "blk.h"
20 #include "blk-wbt.h"
21 
22 /*
23  * tunables
24  */
25 /* max queue in one round of service */
26 static const int cfq_quantum = 8;
27 static const u64 cfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
28 /* maximum backwards seek, in KiB */
29 static const int cfq_back_max = 16 * 1024;
30 /* penalty of a backwards seek */
31 static const int cfq_back_penalty = 2;
32 static const u64 cfq_slice_sync = NSEC_PER_SEC / 10;
33 static u64 cfq_slice_async = NSEC_PER_SEC / 25;
34 static const int cfq_slice_async_rq = 2;
35 static u64 cfq_slice_idle = NSEC_PER_SEC / 125;
36 static u64 cfq_group_idle = NSEC_PER_SEC / 125;
37 static const u64 cfq_target_latency = (u64)NSEC_PER_SEC * 3/10; /* 300 ms */
38 static const int cfq_hist_divisor = 4;
39 
40 /*
41  * offset from end of queue service tree for idle class
42  */
43 #define CFQ_IDLE_DELAY		(NSEC_PER_SEC / 5)
44 /* offset from end of group service tree under time slice mode */
45 #define CFQ_SLICE_MODE_GROUP_DELAY (NSEC_PER_SEC / 5)
46 /* offset from end of group service under IOPS mode */
47 #define CFQ_IOPS_MODE_GROUP_DELAY (HZ / 5)
48 
49 /*
50  * below this threshold, we consider thinktime immediate
51  */
52 #define CFQ_MIN_TT		(2 * NSEC_PER_SEC / HZ)
53 
54 #define CFQ_SLICE_SCALE		(5)
55 #define CFQ_HW_QUEUE_MIN	(5)
56 #define CFQ_SERVICE_SHIFT       12
57 
58 #define CFQQ_SEEK_THR		(sector_t)(8 * 100)
59 #define CFQQ_CLOSE_THR		(sector_t)(8 * 1024)
60 #define CFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
61 #define CFQQ_SEEKY(cfqq)	(hweight32(cfqq->seek_history) > 32/8)
62 
63 #define RQ_CIC(rq)		icq_to_cic((rq)->elv.icq)
64 #define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elv.priv[0])
65 #define RQ_CFQG(rq)		(struct cfq_group *) ((rq)->elv.priv[1])
66 
67 static struct kmem_cache *cfq_pool;
68 
69 #define CFQ_PRIO_LISTS		IOPRIO_BE_NR
70 #define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
71 #define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
72 
73 #define sample_valid(samples)	((samples) > 80)
74 #define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
75 
76 /* blkio-related constants */
77 #define CFQ_WEIGHT_LEGACY_MIN	10
78 #define CFQ_WEIGHT_LEGACY_DFL	500
79 #define CFQ_WEIGHT_LEGACY_MAX	1000
80 
81 struct cfq_ttime {
82 	u64 last_end_request;
83 
84 	u64 ttime_total;
85 	u64 ttime_mean;
86 	unsigned long ttime_samples;
87 };
88 
89 /*
90  * Most of our rbtree usage is for sorting with min extraction, so
91  * if we cache the leftmost node we don't have to walk down the tree
92  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
93  * move this into the elevator for the rq sorting as well.
94  */
95 struct cfq_rb_root {
96 	struct rb_root_cached rb;
97 	struct rb_node *rb_rightmost;
98 	unsigned count;
99 	u64 min_vdisktime;
100 	struct cfq_ttime ttime;
101 };
102 #define CFQ_RB_ROOT	(struct cfq_rb_root) { .rb = RB_ROOT_CACHED, \
103 			.rb_rightmost = NULL,			     \
104 			.ttime = {.last_end_request = ktime_get_ns(),},}
105 
106 /*
107  * Per process-grouping structure
108  */
109 struct cfq_queue {
110 	/* reference count */
111 	int ref;
112 	/* various state flags, see below */
113 	unsigned int flags;
114 	/* parent cfq_data */
115 	struct cfq_data *cfqd;
116 	/* service_tree member */
117 	struct rb_node rb_node;
118 	/* service_tree key */
119 	u64 rb_key;
120 	/* prio tree member */
121 	struct rb_node p_node;
122 	/* prio tree root we belong to, if any */
123 	struct rb_root *p_root;
124 	/* sorted list of pending requests */
125 	struct rb_root sort_list;
126 	/* if fifo isn't expired, next request to serve */
127 	struct request *next_rq;
128 	/* requests queued in sort_list */
129 	int queued[2];
130 	/* currently allocated requests */
131 	int allocated[2];
132 	/* fifo list of requests in sort_list */
133 	struct list_head fifo;
134 
135 	/* time when queue got scheduled in to dispatch first request. */
136 	u64 dispatch_start;
137 	u64 allocated_slice;
138 	u64 slice_dispatch;
139 	/* time when first request from queue completed and slice started. */
140 	u64 slice_start;
141 	u64 slice_end;
142 	s64 slice_resid;
143 
144 	/* pending priority requests */
145 	int prio_pending;
146 	/* number of requests that are on the dispatch list or inside driver */
147 	int dispatched;
148 
149 	/* io prio of this group */
150 	unsigned short ioprio, org_ioprio;
151 	unsigned short ioprio_class, org_ioprio_class;
152 
153 	pid_t pid;
154 
155 	u32 seek_history;
156 	sector_t last_request_pos;
157 
158 	struct cfq_rb_root *service_tree;
159 	struct cfq_queue *new_cfqq;
160 	struct cfq_group *cfqg;
161 	/* Number of sectors dispatched from queue in single dispatch round */
162 	unsigned long nr_sectors;
163 };
164 
165 /*
166  * First index in the service_trees.
167  * IDLE is handled separately, so it has negative index
168  */
169 enum wl_class_t {
170 	BE_WORKLOAD = 0,
171 	RT_WORKLOAD = 1,
172 	IDLE_WORKLOAD = 2,
173 	CFQ_PRIO_NR,
174 };
175 
176 /*
177  * Second index in the service_trees.
178  */
179 enum wl_type_t {
180 	ASYNC_WORKLOAD = 0,
181 	SYNC_NOIDLE_WORKLOAD = 1,
182 	SYNC_WORKLOAD = 2
183 };
184 
185 struct cfqg_stats {
186 #ifdef CONFIG_CFQ_GROUP_IOSCHED
187 	/* number of ios merged */
188 	struct blkg_rwstat		merged;
189 	/* total time spent on device in ns, may not be accurate w/ queueing */
190 	struct blkg_rwstat		service_time;
191 	/* total time spent waiting in scheduler queue in ns */
192 	struct blkg_rwstat		wait_time;
193 	/* number of IOs queued up */
194 	struct blkg_rwstat		queued;
195 	/* total disk time and nr sectors dispatched by this group */
196 	struct blkg_stat		time;
197 #ifdef CONFIG_DEBUG_BLK_CGROUP
198 	/* time not charged to this cgroup */
199 	struct blkg_stat		unaccounted_time;
200 	/* sum of number of ios queued across all samples */
201 	struct blkg_stat		avg_queue_size_sum;
202 	/* count of samples taken for average */
203 	struct blkg_stat		avg_queue_size_samples;
204 	/* how many times this group has been removed from service tree */
205 	struct blkg_stat		dequeue;
206 	/* total time spent waiting for it to be assigned a timeslice. */
207 	struct blkg_stat		group_wait_time;
208 	/* time spent idling for this blkcg_gq */
209 	struct blkg_stat		idle_time;
210 	/* total time with empty current active q with other requests queued */
211 	struct blkg_stat		empty_time;
212 	/* fields after this shouldn't be cleared on stat reset */
213 	u64				start_group_wait_time;
214 	u64				start_idle_time;
215 	u64				start_empty_time;
216 	uint16_t			flags;
217 #endif	/* CONFIG_DEBUG_BLK_CGROUP */
218 #endif	/* CONFIG_CFQ_GROUP_IOSCHED */
219 };
220 
221 /* Per-cgroup data */
222 struct cfq_group_data {
223 	/* must be the first member */
224 	struct blkcg_policy_data cpd;
225 
226 	unsigned int weight;
227 	unsigned int leaf_weight;
228 };
229 
230 /* This is per cgroup per device grouping structure */
231 struct cfq_group {
232 	/* must be the first member */
233 	struct blkg_policy_data pd;
234 
235 	/* group service_tree member */
236 	struct rb_node rb_node;
237 
238 	/* group service_tree key */
239 	u64 vdisktime;
240 
241 	/*
242 	 * The number of active cfqgs and sum of their weights under this
243 	 * cfqg.  This covers this cfqg's leaf_weight and all children's
244 	 * weights, but does not cover weights of further descendants.
245 	 *
246 	 * If a cfqg is on the service tree, it's active.  An active cfqg
247 	 * also activates its parent and contributes to the children_weight
248 	 * of the parent.
249 	 */
250 	int nr_active;
251 	unsigned int children_weight;
252 
253 	/*
254 	 * vfraction is the fraction of vdisktime that the tasks in this
255 	 * cfqg are entitled to.  This is determined by compounding the
256 	 * ratios walking up from this cfqg to the root.
257 	 *
258 	 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
259 	 * vfractions on a service tree is approximately 1.  The sum may
260 	 * deviate a bit due to rounding errors and fluctuations caused by
261 	 * cfqgs entering and leaving the service tree.
262 	 */
263 	unsigned int vfraction;
264 
265 	/*
266 	 * There are two weights - (internal) weight is the weight of this
267 	 * cfqg against the sibling cfqgs.  leaf_weight is the wight of
268 	 * this cfqg against the child cfqgs.  For the root cfqg, both
269 	 * weights are kept in sync for backward compatibility.
270 	 */
271 	unsigned int weight;
272 	unsigned int new_weight;
273 	unsigned int dev_weight;
274 
275 	unsigned int leaf_weight;
276 	unsigned int new_leaf_weight;
277 	unsigned int dev_leaf_weight;
278 
279 	/* number of cfqq currently on this group */
280 	int nr_cfqq;
281 
282 	/*
283 	 * Per group busy queues average. Useful for workload slice calc. We
284 	 * create the array for each prio class but at run time it is used
285 	 * only for RT and BE class and slot for IDLE class remains unused.
286 	 * This is primarily done to avoid confusion and a gcc warning.
287 	 */
288 	unsigned int busy_queues_avg[CFQ_PRIO_NR];
289 	/*
290 	 * rr lists of queues with requests. We maintain service trees for
291 	 * RT and BE classes. These trees are subdivided in subclasses
292 	 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
293 	 * class there is no subclassification and all the cfq queues go on
294 	 * a single tree service_tree_idle.
295 	 * Counts are embedded in the cfq_rb_root
296 	 */
297 	struct cfq_rb_root service_trees[2][3];
298 	struct cfq_rb_root service_tree_idle;
299 
300 	u64 saved_wl_slice;
301 	enum wl_type_t saved_wl_type;
302 	enum wl_class_t saved_wl_class;
303 
304 	/* number of requests that are on the dispatch list or inside driver */
305 	int dispatched;
306 	struct cfq_ttime ttime;
307 	struct cfqg_stats stats;	/* stats for this cfqg */
308 
309 	/* async queue for each priority case */
310 	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
311 	struct cfq_queue *async_idle_cfqq;
312 
313 };
314 
315 struct cfq_io_cq {
316 	struct io_cq		icq;		/* must be the first member */
317 	struct cfq_queue	*cfqq[2];
318 	struct cfq_ttime	ttime;
319 	int			ioprio;		/* the current ioprio */
320 #ifdef CONFIG_CFQ_GROUP_IOSCHED
321 	uint64_t		blkcg_serial_nr; /* the current blkcg serial */
322 #endif
323 };
324 
325 /*
326  * Per block device queue structure
327  */
328 struct cfq_data {
329 	struct request_queue *queue;
330 	/* Root service tree for cfq_groups */
331 	struct cfq_rb_root grp_service_tree;
332 	struct cfq_group *root_group;
333 
334 	/*
335 	 * The priority currently being served
336 	 */
337 	enum wl_class_t serving_wl_class;
338 	enum wl_type_t serving_wl_type;
339 	u64 workload_expires;
340 	struct cfq_group *serving_group;
341 
342 	/*
343 	 * Each priority tree is sorted by next_request position.  These
344 	 * trees are used when determining if two or more queues are
345 	 * interleaving requests (see cfq_close_cooperator).
346 	 */
347 	struct rb_root prio_trees[CFQ_PRIO_LISTS];
348 
349 	unsigned int busy_queues;
350 	unsigned int busy_sync_queues;
351 
352 	int rq_in_driver;
353 	int rq_in_flight[2];
354 
355 	/*
356 	 * queue-depth detection
357 	 */
358 	int rq_queued;
359 	int hw_tag;
360 	/*
361 	 * hw_tag can be
362 	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
363 	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
364 	 *  0 => no NCQ
365 	 */
366 	int hw_tag_est_depth;
367 	unsigned int hw_tag_samples;
368 
369 	/*
370 	 * idle window management
371 	 */
372 	struct hrtimer idle_slice_timer;
373 	struct work_struct unplug_work;
374 
375 	struct cfq_queue *active_queue;
376 	struct cfq_io_cq *active_cic;
377 
378 	sector_t last_position;
379 
380 	/*
381 	 * tunables, see top of file
382 	 */
383 	unsigned int cfq_quantum;
384 	unsigned int cfq_back_penalty;
385 	unsigned int cfq_back_max;
386 	unsigned int cfq_slice_async_rq;
387 	unsigned int cfq_latency;
388 	u64 cfq_fifo_expire[2];
389 	u64 cfq_slice[2];
390 	u64 cfq_slice_idle;
391 	u64 cfq_group_idle;
392 	u64 cfq_target_latency;
393 
394 	/*
395 	 * Fallback dummy cfqq for extreme OOM conditions
396 	 */
397 	struct cfq_queue oom_cfqq;
398 
399 	u64 last_delayed_sync;
400 };
401 
402 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
403 static void cfq_put_queue(struct cfq_queue *cfqq);
404 
st_for(struct cfq_group * cfqg,enum wl_class_t class,enum wl_type_t type)405 static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
406 					    enum wl_class_t class,
407 					    enum wl_type_t type)
408 {
409 	if (!cfqg)
410 		return NULL;
411 
412 	if (class == IDLE_WORKLOAD)
413 		return &cfqg->service_tree_idle;
414 
415 	return &cfqg->service_trees[class][type];
416 }
417 
418 enum cfqq_state_flags {
419 	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
420 	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
421 	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
422 	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
423 	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
424 	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
425 	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
426 	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
427 	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
428 	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
429 	CFQ_CFQQ_FLAG_split_coop,	/* shared cfqq will be splitted */
430 	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
431 	CFQ_CFQQ_FLAG_wait_busy,	/* Waiting for next request */
432 };
433 
434 #define CFQ_CFQQ_FNS(name)						\
435 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
436 {									\
437 	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
438 }									\
439 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
440 {									\
441 	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
442 }									\
443 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
444 {									\
445 	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
446 }
447 
448 CFQ_CFQQ_FNS(on_rr);
449 CFQ_CFQQ_FNS(wait_request);
450 CFQ_CFQQ_FNS(must_dispatch);
451 CFQ_CFQQ_FNS(must_alloc_slice);
452 CFQ_CFQQ_FNS(fifo_expire);
453 CFQ_CFQQ_FNS(idle_window);
454 CFQ_CFQQ_FNS(prio_changed);
455 CFQ_CFQQ_FNS(slice_new);
456 CFQ_CFQQ_FNS(sync);
457 CFQ_CFQQ_FNS(coop);
458 CFQ_CFQQ_FNS(split_coop);
459 CFQ_CFQQ_FNS(deep);
460 CFQ_CFQQ_FNS(wait_busy);
461 #undef CFQ_CFQQ_FNS
462 
463 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
464 
465 /* cfqg stats flags */
466 enum cfqg_stats_flags {
467 	CFQG_stats_waiting = 0,
468 	CFQG_stats_idling,
469 	CFQG_stats_empty,
470 };
471 
472 #define CFQG_FLAG_FNS(name)						\
473 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats)	\
474 {									\
475 	stats->flags |= (1 << CFQG_stats_##name);			\
476 }									\
477 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats)	\
478 {									\
479 	stats->flags &= ~(1 << CFQG_stats_##name);			\
480 }									\
481 static inline int cfqg_stats_##name(struct cfqg_stats *stats)		\
482 {									\
483 	return (stats->flags & (1 << CFQG_stats_##name)) != 0;		\
484 }									\
485 
486 CFQG_FLAG_FNS(waiting)
CFQG_FLAG_FNS(idling)487 CFQG_FLAG_FNS(idling)
488 CFQG_FLAG_FNS(empty)
489 #undef CFQG_FLAG_FNS
490 
491 /* This should be called with the queue_lock held. */
492 static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
493 {
494 	u64 now;
495 
496 	if (!cfqg_stats_waiting(stats))
497 		return;
498 
499 	now = ktime_get_ns();
500 	if (now > stats->start_group_wait_time)
501 		blkg_stat_add(&stats->group_wait_time,
502 			      now - stats->start_group_wait_time);
503 	cfqg_stats_clear_waiting(stats);
504 }
505 
506 /* This should be called with the queue_lock held. */
cfqg_stats_set_start_group_wait_time(struct cfq_group * cfqg,struct cfq_group * curr_cfqg)507 static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
508 						 struct cfq_group *curr_cfqg)
509 {
510 	struct cfqg_stats *stats = &cfqg->stats;
511 
512 	if (cfqg_stats_waiting(stats))
513 		return;
514 	if (cfqg == curr_cfqg)
515 		return;
516 	stats->start_group_wait_time = ktime_get_ns();
517 	cfqg_stats_mark_waiting(stats);
518 }
519 
520 /* This should be called with the queue_lock held. */
cfqg_stats_end_empty_time(struct cfqg_stats * stats)521 static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
522 {
523 	u64 now;
524 
525 	if (!cfqg_stats_empty(stats))
526 		return;
527 
528 	now = ktime_get_ns();
529 	if (now > stats->start_empty_time)
530 		blkg_stat_add(&stats->empty_time,
531 			      now - stats->start_empty_time);
532 	cfqg_stats_clear_empty(stats);
533 }
534 
cfqg_stats_update_dequeue(struct cfq_group * cfqg)535 static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
536 {
537 	blkg_stat_add(&cfqg->stats.dequeue, 1);
538 }
539 
cfqg_stats_set_start_empty_time(struct cfq_group * cfqg)540 static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
541 {
542 	struct cfqg_stats *stats = &cfqg->stats;
543 
544 	if (blkg_rwstat_total(&stats->queued))
545 		return;
546 
547 	/*
548 	 * group is already marked empty. This can happen if cfqq got new
549 	 * request in parent group and moved to this group while being added
550 	 * to service tree. Just ignore the event and move on.
551 	 */
552 	if (cfqg_stats_empty(stats))
553 		return;
554 
555 	stats->start_empty_time = ktime_get_ns();
556 	cfqg_stats_mark_empty(stats);
557 }
558 
cfqg_stats_update_idle_time(struct cfq_group * cfqg)559 static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
560 {
561 	struct cfqg_stats *stats = &cfqg->stats;
562 
563 	if (cfqg_stats_idling(stats)) {
564 		u64 now = ktime_get_ns();
565 
566 		if (now > stats->start_idle_time)
567 			blkg_stat_add(&stats->idle_time,
568 				      now - stats->start_idle_time);
569 		cfqg_stats_clear_idling(stats);
570 	}
571 }
572 
cfqg_stats_set_start_idle_time(struct cfq_group * cfqg)573 static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
574 {
575 	struct cfqg_stats *stats = &cfqg->stats;
576 
577 	BUG_ON(cfqg_stats_idling(stats));
578 
579 	stats->start_idle_time = ktime_get_ns();
580 	cfqg_stats_mark_idling(stats);
581 }
582 
cfqg_stats_update_avg_queue_size(struct cfq_group * cfqg)583 static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
584 {
585 	struct cfqg_stats *stats = &cfqg->stats;
586 
587 	blkg_stat_add(&stats->avg_queue_size_sum,
588 		      blkg_rwstat_total(&stats->queued));
589 	blkg_stat_add(&stats->avg_queue_size_samples, 1);
590 	cfqg_stats_update_group_wait_time(stats);
591 }
592 
593 #else	/* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
594 
cfqg_stats_set_start_group_wait_time(struct cfq_group * cfqg,struct cfq_group * curr_cfqg)595 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
cfqg_stats_end_empty_time(struct cfqg_stats * stats)596 static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
cfqg_stats_update_dequeue(struct cfq_group * cfqg)597 static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
cfqg_stats_set_start_empty_time(struct cfq_group * cfqg)598 static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
cfqg_stats_update_idle_time(struct cfq_group * cfqg)599 static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
cfqg_stats_set_start_idle_time(struct cfq_group * cfqg)600 static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
cfqg_stats_update_avg_queue_size(struct cfq_group * cfqg)601 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
602 
603 #endif	/* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
604 
605 #ifdef CONFIG_CFQ_GROUP_IOSCHED
606 
pd_to_cfqg(struct blkg_policy_data * pd)607 static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
608 {
609 	return pd ? container_of(pd, struct cfq_group, pd) : NULL;
610 }
611 
612 static struct cfq_group_data
cpd_to_cfqgd(struct blkcg_policy_data * cpd)613 *cpd_to_cfqgd(struct blkcg_policy_data *cpd)
614 {
615 	return cpd ? container_of(cpd, struct cfq_group_data, cpd) : NULL;
616 }
617 
cfqg_to_blkg(struct cfq_group * cfqg)618 static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
619 {
620 	return pd_to_blkg(&cfqg->pd);
621 }
622 
623 static struct blkcg_policy blkcg_policy_cfq;
624 
blkg_to_cfqg(struct blkcg_gq * blkg)625 static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
626 {
627 	return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
628 }
629 
blkcg_to_cfqgd(struct blkcg * blkcg)630 static struct cfq_group_data *blkcg_to_cfqgd(struct blkcg *blkcg)
631 {
632 	return cpd_to_cfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_cfq));
633 }
634 
cfqg_parent(struct cfq_group * cfqg)635 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg)
636 {
637 	struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent;
638 
639 	return pblkg ? blkg_to_cfqg(pblkg) : NULL;
640 }
641 
cfqg_is_descendant(struct cfq_group * cfqg,struct cfq_group * ancestor)642 static inline bool cfqg_is_descendant(struct cfq_group *cfqg,
643 				      struct cfq_group *ancestor)
644 {
645 	return cgroup_is_descendant(cfqg_to_blkg(cfqg)->blkcg->css.cgroup,
646 				    cfqg_to_blkg(ancestor)->blkcg->css.cgroup);
647 }
648 
cfqg_get(struct cfq_group * cfqg)649 static inline void cfqg_get(struct cfq_group *cfqg)
650 {
651 	return blkg_get(cfqg_to_blkg(cfqg));
652 }
653 
cfqg_put(struct cfq_group * cfqg)654 static inline void cfqg_put(struct cfq_group *cfqg)
655 {
656 	return blkg_put(cfqg_to_blkg(cfqg));
657 }
658 
659 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	do {			\
660 	blk_add_cgroup_trace_msg((cfqd)->queue,				\
661 			cfqg_to_blkg((cfqq)->cfqg)->blkcg,		\
662 			"cfq%d%c%c " fmt, (cfqq)->pid,			\
663 			cfq_cfqq_sync((cfqq)) ? 'S' : 'A',		\
664 			cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
665 			  ##args);					\
666 } while (0)
667 
668 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)	do {			\
669 	blk_add_cgroup_trace_msg((cfqd)->queue,				\
670 			cfqg_to_blkg(cfqg)->blkcg, fmt, ##args);	\
671 } while (0)
672 
cfqg_stats_update_io_add(struct cfq_group * cfqg,struct cfq_group * curr_cfqg,unsigned int op)673 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
674 					    struct cfq_group *curr_cfqg,
675 					    unsigned int op)
676 {
677 	blkg_rwstat_add(&cfqg->stats.queued, op, 1);
678 	cfqg_stats_end_empty_time(&cfqg->stats);
679 	cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
680 }
681 
cfqg_stats_update_timeslice_used(struct cfq_group * cfqg,uint64_t time,unsigned long unaccounted_time)682 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
683 			uint64_t time, unsigned long unaccounted_time)
684 {
685 	blkg_stat_add(&cfqg->stats.time, time);
686 #ifdef CONFIG_DEBUG_BLK_CGROUP
687 	blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
688 #endif
689 }
690 
cfqg_stats_update_io_remove(struct cfq_group * cfqg,unsigned int op)691 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg,
692 					       unsigned int op)
693 {
694 	blkg_rwstat_add(&cfqg->stats.queued, op, -1);
695 }
696 
cfqg_stats_update_io_merged(struct cfq_group * cfqg,unsigned int op)697 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg,
698 					       unsigned int op)
699 {
700 	blkg_rwstat_add(&cfqg->stats.merged, op, 1);
701 }
702 
cfqg_stats_update_completion(struct cfq_group * cfqg,u64 start_time_ns,u64 io_start_time_ns,unsigned int op)703 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
704 						u64 start_time_ns,
705 						u64 io_start_time_ns,
706 						unsigned int op)
707 {
708 	struct cfqg_stats *stats = &cfqg->stats;
709 	u64 now = ktime_get_ns();
710 
711 	if (now > io_start_time_ns)
712 		blkg_rwstat_add(&stats->service_time, op,
713 				now - io_start_time_ns);
714 	if (io_start_time_ns > start_time_ns)
715 		blkg_rwstat_add(&stats->wait_time, op,
716 				io_start_time_ns - start_time_ns);
717 }
718 
719 /* @stats = 0 */
cfqg_stats_reset(struct cfqg_stats * stats)720 static void cfqg_stats_reset(struct cfqg_stats *stats)
721 {
722 	/* queued stats shouldn't be cleared */
723 	blkg_rwstat_reset(&stats->merged);
724 	blkg_rwstat_reset(&stats->service_time);
725 	blkg_rwstat_reset(&stats->wait_time);
726 	blkg_stat_reset(&stats->time);
727 #ifdef CONFIG_DEBUG_BLK_CGROUP
728 	blkg_stat_reset(&stats->unaccounted_time);
729 	blkg_stat_reset(&stats->avg_queue_size_sum);
730 	blkg_stat_reset(&stats->avg_queue_size_samples);
731 	blkg_stat_reset(&stats->dequeue);
732 	blkg_stat_reset(&stats->group_wait_time);
733 	blkg_stat_reset(&stats->idle_time);
734 	blkg_stat_reset(&stats->empty_time);
735 #endif
736 }
737 
738 /* @to += @from */
cfqg_stats_add_aux(struct cfqg_stats * to,struct cfqg_stats * from)739 static void cfqg_stats_add_aux(struct cfqg_stats *to, struct cfqg_stats *from)
740 {
741 	/* queued stats shouldn't be cleared */
742 	blkg_rwstat_add_aux(&to->merged, &from->merged);
743 	blkg_rwstat_add_aux(&to->service_time, &from->service_time);
744 	blkg_rwstat_add_aux(&to->wait_time, &from->wait_time);
745 	blkg_stat_add_aux(&from->time, &from->time);
746 #ifdef CONFIG_DEBUG_BLK_CGROUP
747 	blkg_stat_add_aux(&to->unaccounted_time, &from->unaccounted_time);
748 	blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
749 	blkg_stat_add_aux(&to->avg_queue_size_samples, &from->avg_queue_size_samples);
750 	blkg_stat_add_aux(&to->dequeue, &from->dequeue);
751 	blkg_stat_add_aux(&to->group_wait_time, &from->group_wait_time);
752 	blkg_stat_add_aux(&to->idle_time, &from->idle_time);
753 	blkg_stat_add_aux(&to->empty_time, &from->empty_time);
754 #endif
755 }
756 
757 /*
758  * Transfer @cfqg's stats to its parent's aux counts so that the ancestors'
759  * recursive stats can still account for the amount used by this cfqg after
760  * it's gone.
761  */
cfqg_stats_xfer_dead(struct cfq_group * cfqg)762 static void cfqg_stats_xfer_dead(struct cfq_group *cfqg)
763 {
764 	struct cfq_group *parent = cfqg_parent(cfqg);
765 
766 	lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock);
767 
768 	if (unlikely(!parent))
769 		return;
770 
771 	cfqg_stats_add_aux(&parent->stats, &cfqg->stats);
772 	cfqg_stats_reset(&cfqg->stats);
773 }
774 
775 #else	/* CONFIG_CFQ_GROUP_IOSCHED */
776 
cfqg_parent(struct cfq_group * cfqg)777 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; }
cfqg_is_descendant(struct cfq_group * cfqg,struct cfq_group * ancestor)778 static inline bool cfqg_is_descendant(struct cfq_group *cfqg,
779 				      struct cfq_group *ancestor)
780 {
781 	return true;
782 }
cfqg_get(struct cfq_group * cfqg)783 static inline void cfqg_get(struct cfq_group *cfqg) { }
cfqg_put(struct cfq_group * cfqg)784 static inline void cfqg_put(struct cfq_group *cfqg) { }
785 
786 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
787 	blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid,	\
788 			cfq_cfqq_sync((cfqq)) ? 'S' : 'A',		\
789 			cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
790 				##args)
791 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)		do {} while (0)
792 
cfqg_stats_update_io_add(struct cfq_group * cfqg,struct cfq_group * curr_cfqg,unsigned int op)793 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
794 			struct cfq_group *curr_cfqg, unsigned int op) { }
cfqg_stats_update_timeslice_used(struct cfq_group * cfqg,uint64_t time,unsigned long unaccounted_time)795 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
796 			uint64_t time, unsigned long unaccounted_time) { }
cfqg_stats_update_io_remove(struct cfq_group * cfqg,unsigned int op)797 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg,
798 			unsigned int op) { }
cfqg_stats_update_io_merged(struct cfq_group * cfqg,unsigned int op)799 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg,
800 			unsigned int op) { }
cfqg_stats_update_completion(struct cfq_group * cfqg,u64 start_time_ns,u64 io_start_time_ns,unsigned int op)801 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
802 						u64 start_time_ns,
803 						u64 io_start_time_ns,
804 						unsigned int op) { }
805 
806 #endif	/* CONFIG_CFQ_GROUP_IOSCHED */
807 
808 #define cfq_log(cfqd, fmt, args...)	\
809 	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
810 
811 /* Traverses through cfq group service trees */
812 #define for_each_cfqg_st(cfqg, i, j, st) \
813 	for (i = 0; i <= IDLE_WORKLOAD; i++) \
814 		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
815 			: &cfqg->service_tree_idle; \
816 			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
817 			(i == IDLE_WORKLOAD && j == 0); \
818 			j++, st = i < IDLE_WORKLOAD ? \
819 			&cfqg->service_trees[i][j]: NULL) \
820 
cfq_io_thinktime_big(struct cfq_data * cfqd,struct cfq_ttime * ttime,bool group_idle)821 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
822 	struct cfq_ttime *ttime, bool group_idle)
823 {
824 	u64 slice;
825 	if (!sample_valid(ttime->ttime_samples))
826 		return false;
827 	if (group_idle)
828 		slice = cfqd->cfq_group_idle;
829 	else
830 		slice = cfqd->cfq_slice_idle;
831 	return ttime->ttime_mean > slice;
832 }
833 
iops_mode(struct cfq_data * cfqd)834 static inline bool iops_mode(struct cfq_data *cfqd)
835 {
836 	/*
837 	 * If we are not idling on queues and it is a NCQ drive, parallel
838 	 * execution of requests is on and measuring time is not possible
839 	 * in most of the cases until and unless we drive shallower queue
840 	 * depths and that becomes a performance bottleneck. In such cases
841 	 * switch to start providing fairness in terms of number of IOs.
842 	 */
843 	if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
844 		return true;
845 	else
846 		return false;
847 }
848 
cfqq_class(struct cfq_queue * cfqq)849 static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
850 {
851 	if (cfq_class_idle(cfqq))
852 		return IDLE_WORKLOAD;
853 	if (cfq_class_rt(cfqq))
854 		return RT_WORKLOAD;
855 	return BE_WORKLOAD;
856 }
857 
858 
cfqq_type(struct cfq_queue * cfqq)859 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
860 {
861 	if (!cfq_cfqq_sync(cfqq))
862 		return ASYNC_WORKLOAD;
863 	if (!cfq_cfqq_idle_window(cfqq))
864 		return SYNC_NOIDLE_WORKLOAD;
865 	return SYNC_WORKLOAD;
866 }
867 
cfq_group_busy_queues_wl(enum wl_class_t wl_class,struct cfq_data * cfqd,struct cfq_group * cfqg)868 static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
869 					struct cfq_data *cfqd,
870 					struct cfq_group *cfqg)
871 {
872 	if (wl_class == IDLE_WORKLOAD)
873 		return cfqg->service_tree_idle.count;
874 
875 	return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
876 		cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
877 		cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
878 }
879 
cfqg_busy_async_queues(struct cfq_data * cfqd,struct cfq_group * cfqg)880 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
881 					struct cfq_group *cfqg)
882 {
883 	return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
884 		cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
885 }
886 
887 static void cfq_dispatch_insert(struct request_queue *, struct request *);
888 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
889 				       struct cfq_io_cq *cic, struct bio *bio);
890 
icq_to_cic(struct io_cq * icq)891 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
892 {
893 	/* cic->icq is the first member, %NULL will convert to %NULL */
894 	return container_of(icq, struct cfq_io_cq, icq);
895 }
896 
cfq_cic_lookup(struct cfq_data * cfqd,struct io_context * ioc)897 static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
898 					       struct io_context *ioc)
899 {
900 	if (ioc)
901 		return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
902 	return NULL;
903 }
904 
cic_to_cfqq(struct cfq_io_cq * cic,bool is_sync)905 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
906 {
907 	return cic->cfqq[is_sync];
908 }
909 
cic_set_cfqq(struct cfq_io_cq * cic,struct cfq_queue * cfqq,bool is_sync)910 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
911 				bool is_sync)
912 {
913 	cic->cfqq[is_sync] = cfqq;
914 }
915 
cic_to_cfqd(struct cfq_io_cq * cic)916 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
917 {
918 	return cic->icq.q->elevator->elevator_data;
919 }
920 
921 /*
922  * scheduler run of queue, if there are requests pending and no one in the
923  * driver that will restart queueing
924  */
cfq_schedule_dispatch(struct cfq_data * cfqd)925 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
926 {
927 	if (cfqd->busy_queues) {
928 		cfq_log(cfqd, "schedule dispatch");
929 		kblockd_schedule_work(&cfqd->unplug_work);
930 	}
931 }
932 
933 /*
934  * Scale schedule slice based on io priority. Use the sync time slice only
935  * if a queue is marked sync and has sync io queued. A sync queue with async
936  * io only, should not get full sync slice length.
937  */
cfq_prio_slice(struct cfq_data * cfqd,bool sync,unsigned short prio)938 static inline u64 cfq_prio_slice(struct cfq_data *cfqd, bool sync,
939 				 unsigned short prio)
940 {
941 	u64 base_slice = cfqd->cfq_slice[sync];
942 	u64 slice = div_u64(base_slice, CFQ_SLICE_SCALE);
943 
944 	WARN_ON(prio >= IOPRIO_BE_NR);
945 
946 	return base_slice + (slice * (4 - prio));
947 }
948 
949 static inline u64
cfq_prio_to_slice(struct cfq_data * cfqd,struct cfq_queue * cfqq)950 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
951 {
952 	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
953 }
954 
955 /**
956  * cfqg_scale_charge - scale disk time charge according to cfqg weight
957  * @charge: disk time being charged
958  * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
959  *
960  * Scale @charge according to @vfraction, which is in range (0, 1].  The
961  * scaling is inversely proportional.
962  *
963  * scaled = charge / vfraction
964  *
965  * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
966  */
cfqg_scale_charge(u64 charge,unsigned int vfraction)967 static inline u64 cfqg_scale_charge(u64 charge,
968 				    unsigned int vfraction)
969 {
970 	u64 c = charge << CFQ_SERVICE_SHIFT;	/* make it fixed point */
971 
972 	/* charge / vfraction */
973 	c <<= CFQ_SERVICE_SHIFT;
974 	return div_u64(c, vfraction);
975 }
976 
max_vdisktime(u64 min_vdisktime,u64 vdisktime)977 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
978 {
979 	s64 delta = (s64)(vdisktime - min_vdisktime);
980 	if (delta > 0)
981 		min_vdisktime = vdisktime;
982 
983 	return min_vdisktime;
984 }
985 
update_min_vdisktime(struct cfq_rb_root * st)986 static void update_min_vdisktime(struct cfq_rb_root *st)
987 {
988 	if (!RB_EMPTY_ROOT(&st->rb.rb_root)) {
989 		struct cfq_group *cfqg = rb_entry_cfqg(st->rb.rb_leftmost);
990 
991 		st->min_vdisktime = max_vdisktime(st->min_vdisktime,
992 						  cfqg->vdisktime);
993 	}
994 }
995 
996 /*
997  * get averaged number of queues of RT/BE priority.
998  * average is updated, with a formula that gives more weight to higher numbers,
999  * to quickly follows sudden increases and decrease slowly
1000  */
1001 
cfq_group_get_avg_queues(struct cfq_data * cfqd,struct cfq_group * cfqg,bool rt)1002 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
1003 					struct cfq_group *cfqg, bool rt)
1004 {
1005 	unsigned min_q, max_q;
1006 	unsigned mult  = cfq_hist_divisor - 1;
1007 	unsigned round = cfq_hist_divisor / 2;
1008 	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
1009 
1010 	min_q = min(cfqg->busy_queues_avg[rt], busy);
1011 	max_q = max(cfqg->busy_queues_avg[rt], busy);
1012 	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
1013 		cfq_hist_divisor;
1014 	return cfqg->busy_queues_avg[rt];
1015 }
1016 
1017 static inline u64
cfq_group_slice(struct cfq_data * cfqd,struct cfq_group * cfqg)1018 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
1019 {
1020 	return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
1021 }
1022 
1023 static inline u64
cfq_scaled_cfqq_slice(struct cfq_data * cfqd,struct cfq_queue * cfqq)1024 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1025 {
1026 	u64 slice = cfq_prio_to_slice(cfqd, cfqq);
1027 	if (cfqd->cfq_latency) {
1028 		/*
1029 		 * interested queues (we consider only the ones with the same
1030 		 * priority class in the cfq group)
1031 		 */
1032 		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
1033 						cfq_class_rt(cfqq));
1034 		u64 sync_slice = cfqd->cfq_slice[1];
1035 		u64 expect_latency = sync_slice * iq;
1036 		u64 group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
1037 
1038 		if (expect_latency > group_slice) {
1039 			u64 base_low_slice = 2 * cfqd->cfq_slice_idle;
1040 			u64 low_slice;
1041 
1042 			/* scale low_slice according to IO priority
1043 			 * and sync vs async */
1044 			low_slice = div64_u64(base_low_slice*slice, sync_slice);
1045 			low_slice = min(slice, low_slice);
1046 			/* the adapted slice value is scaled to fit all iqs
1047 			 * into the target latency */
1048 			slice = div64_u64(slice*group_slice, expect_latency);
1049 			slice = max(slice, low_slice);
1050 		}
1051 	}
1052 	return slice;
1053 }
1054 
1055 static inline void
cfq_set_prio_slice(struct cfq_data * cfqd,struct cfq_queue * cfqq)1056 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1057 {
1058 	u64 slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1059 	u64 now = ktime_get_ns();
1060 
1061 	cfqq->slice_start = now;
1062 	cfqq->slice_end = now + slice;
1063 	cfqq->allocated_slice = slice;
1064 	cfq_log_cfqq(cfqd, cfqq, "set_slice=%llu", cfqq->slice_end - now);
1065 }
1066 
1067 /*
1068  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1069  * isn't valid until the first request from the dispatch is activated
1070  * and the slice time set.
1071  */
cfq_slice_used(struct cfq_queue * cfqq)1072 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1073 {
1074 	if (cfq_cfqq_slice_new(cfqq))
1075 		return false;
1076 	if (ktime_get_ns() < cfqq->slice_end)
1077 		return false;
1078 
1079 	return true;
1080 }
1081 
1082 /*
1083  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1084  * We choose the request that is closest to the head right now. Distance
1085  * behind the head is penalized and only allowed to a certain extent.
1086  */
1087 static struct request *
cfq_choose_req(struct cfq_data * cfqd,struct request * rq1,struct request * rq2,sector_t last)1088 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1089 {
1090 	sector_t s1, s2, d1 = 0, d2 = 0;
1091 	unsigned long back_max;
1092 #define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
1093 #define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
1094 	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1095 
1096 	if (rq1 == NULL || rq1 == rq2)
1097 		return rq2;
1098 	if (rq2 == NULL)
1099 		return rq1;
1100 
1101 	if (rq_is_sync(rq1) != rq_is_sync(rq2))
1102 		return rq_is_sync(rq1) ? rq1 : rq2;
1103 
1104 	if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1105 		return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1106 
1107 	s1 = blk_rq_pos(rq1);
1108 	s2 = blk_rq_pos(rq2);
1109 
1110 	/*
1111 	 * by definition, 1KiB is 2 sectors
1112 	 */
1113 	back_max = cfqd->cfq_back_max * 2;
1114 
1115 	/*
1116 	 * Strict one way elevator _except_ in the case where we allow
1117 	 * short backward seeks which are biased as twice the cost of a
1118 	 * similar forward seek.
1119 	 */
1120 	if (s1 >= last)
1121 		d1 = s1 - last;
1122 	else if (s1 + back_max >= last)
1123 		d1 = (last - s1) * cfqd->cfq_back_penalty;
1124 	else
1125 		wrap |= CFQ_RQ1_WRAP;
1126 
1127 	if (s2 >= last)
1128 		d2 = s2 - last;
1129 	else if (s2 + back_max >= last)
1130 		d2 = (last - s2) * cfqd->cfq_back_penalty;
1131 	else
1132 		wrap |= CFQ_RQ2_WRAP;
1133 
1134 	/* Found required data */
1135 
1136 	/*
1137 	 * By doing switch() on the bit mask "wrap" we avoid having to
1138 	 * check two variables for all permutations: --> faster!
1139 	 */
1140 	switch (wrap) {
1141 	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1142 		if (d1 < d2)
1143 			return rq1;
1144 		else if (d2 < d1)
1145 			return rq2;
1146 		else {
1147 			if (s1 >= s2)
1148 				return rq1;
1149 			else
1150 				return rq2;
1151 		}
1152 
1153 	case CFQ_RQ2_WRAP:
1154 		return rq1;
1155 	case CFQ_RQ1_WRAP:
1156 		return rq2;
1157 	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1158 	default:
1159 		/*
1160 		 * Since both rqs are wrapped,
1161 		 * start with the one that's further behind head
1162 		 * (--> only *one* back seek required),
1163 		 * since back seek takes more time than forward.
1164 		 */
1165 		if (s1 <= s2)
1166 			return rq1;
1167 		else
1168 			return rq2;
1169 	}
1170 }
1171 
cfq_rb_first(struct cfq_rb_root * root)1172 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1173 {
1174 	/* Service tree is empty */
1175 	if (!root->count)
1176 		return NULL;
1177 
1178 	return rb_entry(rb_first_cached(&root->rb), struct cfq_queue, rb_node);
1179 }
1180 
cfq_rb_first_group(struct cfq_rb_root * root)1181 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1182 {
1183 	return rb_entry_cfqg(rb_first_cached(&root->rb));
1184 }
1185 
cfq_rb_erase(struct rb_node * n,struct cfq_rb_root * root)1186 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1187 {
1188 	if (root->rb_rightmost == n)
1189 		root->rb_rightmost = rb_prev(n);
1190 
1191 	rb_erase_cached(n, &root->rb);
1192 	RB_CLEAR_NODE(n);
1193 
1194 	--root->count;
1195 }
1196 
1197 /*
1198  * would be nice to take fifo expire time into account as well
1199  */
1200 static struct request *
cfq_find_next_rq(struct cfq_data * cfqd,struct cfq_queue * cfqq,struct request * last)1201 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1202 		  struct request *last)
1203 {
1204 	struct rb_node *rbnext = rb_next(&last->rb_node);
1205 	struct rb_node *rbprev = rb_prev(&last->rb_node);
1206 	struct request *next = NULL, *prev = NULL;
1207 
1208 	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1209 
1210 	if (rbprev)
1211 		prev = rb_entry_rq(rbprev);
1212 
1213 	if (rbnext)
1214 		next = rb_entry_rq(rbnext);
1215 	else {
1216 		rbnext = rb_first(&cfqq->sort_list);
1217 		if (rbnext && rbnext != &last->rb_node)
1218 			next = rb_entry_rq(rbnext);
1219 	}
1220 
1221 	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1222 }
1223 
cfq_slice_offset(struct cfq_data * cfqd,struct cfq_queue * cfqq)1224 static u64 cfq_slice_offset(struct cfq_data *cfqd,
1225 			    struct cfq_queue *cfqq)
1226 {
1227 	/*
1228 	 * just an approximation, should be ok.
1229 	 */
1230 	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1231 		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1232 }
1233 
1234 static inline s64
cfqg_key(struct cfq_rb_root * st,struct cfq_group * cfqg)1235 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1236 {
1237 	return cfqg->vdisktime - st->min_vdisktime;
1238 }
1239 
1240 static void
__cfq_group_service_tree_add(struct cfq_rb_root * st,struct cfq_group * cfqg)1241 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1242 {
1243 	struct rb_node **node = &st->rb.rb_root.rb_node;
1244 	struct rb_node *parent = NULL;
1245 	struct cfq_group *__cfqg;
1246 	s64 key = cfqg_key(st, cfqg);
1247 	bool leftmost = true, rightmost = true;
1248 
1249 	while (*node != NULL) {
1250 		parent = *node;
1251 		__cfqg = rb_entry_cfqg(parent);
1252 
1253 		if (key < cfqg_key(st, __cfqg)) {
1254 			node = &parent->rb_left;
1255 			rightmost = false;
1256 		} else {
1257 			node = &parent->rb_right;
1258 			leftmost = false;
1259 		}
1260 	}
1261 
1262 	if (rightmost)
1263 		st->rb_rightmost = &cfqg->rb_node;
1264 
1265 	rb_link_node(&cfqg->rb_node, parent, node);
1266 	rb_insert_color_cached(&cfqg->rb_node, &st->rb, leftmost);
1267 }
1268 
1269 /*
1270  * This has to be called only on activation of cfqg
1271  */
1272 static void
cfq_update_group_weight(struct cfq_group * cfqg)1273 cfq_update_group_weight(struct cfq_group *cfqg)
1274 {
1275 	if (cfqg->new_weight) {
1276 		cfqg->weight = cfqg->new_weight;
1277 		cfqg->new_weight = 0;
1278 	}
1279 }
1280 
1281 static void
cfq_update_group_leaf_weight(struct cfq_group * cfqg)1282 cfq_update_group_leaf_weight(struct cfq_group *cfqg)
1283 {
1284 	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1285 
1286 	if (cfqg->new_leaf_weight) {
1287 		cfqg->leaf_weight = cfqg->new_leaf_weight;
1288 		cfqg->new_leaf_weight = 0;
1289 	}
1290 }
1291 
1292 static void
cfq_group_service_tree_add(struct cfq_rb_root * st,struct cfq_group * cfqg)1293 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1294 {
1295 	unsigned int vfr = 1 << CFQ_SERVICE_SHIFT;	/* start with 1 */
1296 	struct cfq_group *pos = cfqg;
1297 	struct cfq_group *parent;
1298 	bool propagate;
1299 
1300 	/* add to the service tree */
1301 	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1302 
1303 	/*
1304 	 * Update leaf_weight.  We cannot update weight at this point
1305 	 * because cfqg might already have been activated and is
1306 	 * contributing its current weight to the parent's child_weight.
1307 	 */
1308 	cfq_update_group_leaf_weight(cfqg);
1309 	__cfq_group_service_tree_add(st, cfqg);
1310 
1311 	/*
1312 	 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1313 	 * entitled to.  vfraction is calculated by walking the tree
1314 	 * towards the root calculating the fraction it has at each level.
1315 	 * The compounded ratio is how much vfraction @cfqg owns.
1316 	 *
1317 	 * Start with the proportion tasks in this cfqg has against active
1318 	 * children cfqgs - its leaf_weight against children_weight.
1319 	 */
1320 	propagate = !pos->nr_active++;
1321 	pos->children_weight += pos->leaf_weight;
1322 	vfr = vfr * pos->leaf_weight / pos->children_weight;
1323 
1324 	/*
1325 	 * Compound ->weight walking up the tree.  Both activation and
1326 	 * vfraction calculation are done in the same loop.  Propagation
1327 	 * stops once an already activated node is met.  vfraction
1328 	 * calculation should always continue to the root.
1329 	 */
1330 	while ((parent = cfqg_parent(pos))) {
1331 		if (propagate) {
1332 			cfq_update_group_weight(pos);
1333 			propagate = !parent->nr_active++;
1334 			parent->children_weight += pos->weight;
1335 		}
1336 		vfr = vfr * pos->weight / parent->children_weight;
1337 		pos = parent;
1338 	}
1339 
1340 	cfqg->vfraction = max_t(unsigned, vfr, 1);
1341 }
1342 
cfq_get_cfqg_vdisktime_delay(struct cfq_data * cfqd)1343 static inline u64 cfq_get_cfqg_vdisktime_delay(struct cfq_data *cfqd)
1344 {
1345 	if (!iops_mode(cfqd))
1346 		return CFQ_SLICE_MODE_GROUP_DELAY;
1347 	else
1348 		return CFQ_IOPS_MODE_GROUP_DELAY;
1349 }
1350 
1351 static void
cfq_group_notify_queue_add(struct cfq_data * cfqd,struct cfq_group * cfqg)1352 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1353 {
1354 	struct cfq_rb_root *st = &cfqd->grp_service_tree;
1355 	struct cfq_group *__cfqg;
1356 	struct rb_node *n;
1357 
1358 	cfqg->nr_cfqq++;
1359 	if (!RB_EMPTY_NODE(&cfqg->rb_node))
1360 		return;
1361 
1362 	/*
1363 	 * Currently put the group at the end. Later implement something
1364 	 * so that groups get lesser vtime based on their weights, so that
1365 	 * if group does not loose all if it was not continuously backlogged.
1366 	 */
1367 	n = st->rb_rightmost;
1368 	if (n) {
1369 		__cfqg = rb_entry_cfqg(n);
1370 		cfqg->vdisktime = __cfqg->vdisktime +
1371 			cfq_get_cfqg_vdisktime_delay(cfqd);
1372 	} else
1373 		cfqg->vdisktime = st->min_vdisktime;
1374 	cfq_group_service_tree_add(st, cfqg);
1375 }
1376 
1377 static void
cfq_group_service_tree_del(struct cfq_rb_root * st,struct cfq_group * cfqg)1378 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1379 {
1380 	struct cfq_group *pos = cfqg;
1381 	bool propagate;
1382 
1383 	/*
1384 	 * Undo activation from cfq_group_service_tree_add().  Deactivate
1385 	 * @cfqg and propagate deactivation upwards.
1386 	 */
1387 	propagate = !--pos->nr_active;
1388 	pos->children_weight -= pos->leaf_weight;
1389 
1390 	while (propagate) {
1391 		struct cfq_group *parent = cfqg_parent(pos);
1392 
1393 		/* @pos has 0 nr_active at this point */
1394 		WARN_ON_ONCE(pos->children_weight);
1395 		pos->vfraction = 0;
1396 
1397 		if (!parent)
1398 			break;
1399 
1400 		propagate = !--parent->nr_active;
1401 		parent->children_weight -= pos->weight;
1402 		pos = parent;
1403 	}
1404 
1405 	/* remove from the service tree */
1406 	if (!RB_EMPTY_NODE(&cfqg->rb_node))
1407 		cfq_rb_erase(&cfqg->rb_node, st);
1408 }
1409 
1410 static void
cfq_group_notify_queue_del(struct cfq_data * cfqd,struct cfq_group * cfqg)1411 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1412 {
1413 	struct cfq_rb_root *st = &cfqd->grp_service_tree;
1414 
1415 	BUG_ON(cfqg->nr_cfqq < 1);
1416 	cfqg->nr_cfqq--;
1417 
1418 	/* If there are other cfq queues under this group, don't delete it */
1419 	if (cfqg->nr_cfqq)
1420 		return;
1421 
1422 	cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1423 	cfq_group_service_tree_del(st, cfqg);
1424 	cfqg->saved_wl_slice = 0;
1425 	cfqg_stats_update_dequeue(cfqg);
1426 }
1427 
cfq_cfqq_slice_usage(struct cfq_queue * cfqq,u64 * unaccounted_time)1428 static inline u64 cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1429 				       u64 *unaccounted_time)
1430 {
1431 	u64 slice_used;
1432 	u64 now = ktime_get_ns();
1433 
1434 	/*
1435 	 * Queue got expired before even a single request completed or
1436 	 * got expired immediately after first request completion.
1437 	 */
1438 	if (!cfqq->slice_start || cfqq->slice_start == now) {
1439 		/*
1440 		 * Also charge the seek time incurred to the group, otherwise
1441 		 * if there are mutiple queues in the group, each can dispatch
1442 		 * a single request on seeky media and cause lots of seek time
1443 		 * and group will never know it.
1444 		 */
1445 		slice_used = max_t(u64, (now - cfqq->dispatch_start),
1446 					jiffies_to_nsecs(1));
1447 	} else {
1448 		slice_used = now - cfqq->slice_start;
1449 		if (slice_used > cfqq->allocated_slice) {
1450 			*unaccounted_time = slice_used - cfqq->allocated_slice;
1451 			slice_used = cfqq->allocated_slice;
1452 		}
1453 		if (cfqq->slice_start > cfqq->dispatch_start)
1454 			*unaccounted_time += cfqq->slice_start -
1455 					cfqq->dispatch_start;
1456 	}
1457 
1458 	return slice_used;
1459 }
1460 
cfq_group_served(struct cfq_data * cfqd,struct cfq_group * cfqg,struct cfq_queue * cfqq)1461 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1462 				struct cfq_queue *cfqq)
1463 {
1464 	struct cfq_rb_root *st = &cfqd->grp_service_tree;
1465 	u64 used_sl, charge, unaccounted_sl = 0;
1466 	int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1467 			- cfqg->service_tree_idle.count;
1468 	unsigned int vfr;
1469 	u64 now = ktime_get_ns();
1470 
1471 	BUG_ON(nr_sync < 0);
1472 	used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1473 
1474 	if (iops_mode(cfqd))
1475 		charge = cfqq->slice_dispatch;
1476 	else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1477 		charge = cfqq->allocated_slice;
1478 
1479 	/*
1480 	 * Can't update vdisktime while on service tree and cfqg->vfraction
1481 	 * is valid only while on it.  Cache vfr, leave the service tree,
1482 	 * update vdisktime and go back on.  The re-addition to the tree
1483 	 * will also update the weights as necessary.
1484 	 */
1485 	vfr = cfqg->vfraction;
1486 	cfq_group_service_tree_del(st, cfqg);
1487 	cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
1488 	cfq_group_service_tree_add(st, cfqg);
1489 
1490 	/* This group is being expired. Save the context */
1491 	if (cfqd->workload_expires > now) {
1492 		cfqg->saved_wl_slice = cfqd->workload_expires - now;
1493 		cfqg->saved_wl_type = cfqd->serving_wl_type;
1494 		cfqg->saved_wl_class = cfqd->serving_wl_class;
1495 	} else
1496 		cfqg->saved_wl_slice = 0;
1497 
1498 	cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1499 					st->min_vdisktime);
1500 	cfq_log_cfqq(cfqq->cfqd, cfqq,
1501 		     "sl_used=%llu disp=%llu charge=%llu iops=%u sect=%lu",
1502 		     used_sl, cfqq->slice_dispatch, charge,
1503 		     iops_mode(cfqd), cfqq->nr_sectors);
1504 	cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1505 	cfqg_stats_set_start_empty_time(cfqg);
1506 }
1507 
1508 /**
1509  * cfq_init_cfqg_base - initialize base part of a cfq_group
1510  * @cfqg: cfq_group to initialize
1511  *
1512  * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1513  * is enabled or not.
1514  */
cfq_init_cfqg_base(struct cfq_group * cfqg)1515 static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1516 {
1517 	struct cfq_rb_root *st;
1518 	int i, j;
1519 
1520 	for_each_cfqg_st(cfqg, i, j, st)
1521 		*st = CFQ_RB_ROOT;
1522 	RB_CLEAR_NODE(&cfqg->rb_node);
1523 
1524 	cfqg->ttime.last_end_request = ktime_get_ns();
1525 }
1526 
1527 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1528 static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val,
1529 			    bool on_dfl, bool reset_dev, bool is_leaf_weight);
1530 
cfqg_stats_exit(struct cfqg_stats * stats)1531 static void cfqg_stats_exit(struct cfqg_stats *stats)
1532 {
1533 	blkg_rwstat_exit(&stats->merged);
1534 	blkg_rwstat_exit(&stats->service_time);
1535 	blkg_rwstat_exit(&stats->wait_time);
1536 	blkg_rwstat_exit(&stats->queued);
1537 	blkg_stat_exit(&stats->time);
1538 #ifdef CONFIG_DEBUG_BLK_CGROUP
1539 	blkg_stat_exit(&stats->unaccounted_time);
1540 	blkg_stat_exit(&stats->avg_queue_size_sum);
1541 	blkg_stat_exit(&stats->avg_queue_size_samples);
1542 	blkg_stat_exit(&stats->dequeue);
1543 	blkg_stat_exit(&stats->group_wait_time);
1544 	blkg_stat_exit(&stats->idle_time);
1545 	blkg_stat_exit(&stats->empty_time);
1546 #endif
1547 }
1548 
cfqg_stats_init(struct cfqg_stats * stats,gfp_t gfp)1549 static int cfqg_stats_init(struct cfqg_stats *stats, gfp_t gfp)
1550 {
1551 	if (blkg_rwstat_init(&stats->merged, gfp) ||
1552 	    blkg_rwstat_init(&stats->service_time, gfp) ||
1553 	    blkg_rwstat_init(&stats->wait_time, gfp) ||
1554 	    blkg_rwstat_init(&stats->queued, gfp) ||
1555 	    blkg_stat_init(&stats->time, gfp))
1556 		goto err;
1557 
1558 #ifdef CONFIG_DEBUG_BLK_CGROUP
1559 	if (blkg_stat_init(&stats->unaccounted_time, gfp) ||
1560 	    blkg_stat_init(&stats->avg_queue_size_sum, gfp) ||
1561 	    blkg_stat_init(&stats->avg_queue_size_samples, gfp) ||
1562 	    blkg_stat_init(&stats->dequeue, gfp) ||
1563 	    blkg_stat_init(&stats->group_wait_time, gfp) ||
1564 	    blkg_stat_init(&stats->idle_time, gfp) ||
1565 	    blkg_stat_init(&stats->empty_time, gfp))
1566 		goto err;
1567 #endif
1568 	return 0;
1569 err:
1570 	cfqg_stats_exit(stats);
1571 	return -ENOMEM;
1572 }
1573 
cfq_cpd_alloc(gfp_t gfp)1574 static struct blkcg_policy_data *cfq_cpd_alloc(gfp_t gfp)
1575 {
1576 	struct cfq_group_data *cgd;
1577 
1578 	cgd = kzalloc(sizeof(*cgd), gfp);
1579 	if (!cgd)
1580 		return NULL;
1581 	return &cgd->cpd;
1582 }
1583 
cfq_cpd_init(struct blkcg_policy_data * cpd)1584 static void cfq_cpd_init(struct blkcg_policy_data *cpd)
1585 {
1586 	struct cfq_group_data *cgd = cpd_to_cfqgd(cpd);
1587 	unsigned int weight = cgroup_subsys_on_dfl(io_cgrp_subsys) ?
1588 			      CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL;
1589 
1590 	if (cpd_to_blkcg(cpd) == &blkcg_root)
1591 		weight *= 2;
1592 
1593 	cgd->weight = weight;
1594 	cgd->leaf_weight = weight;
1595 }
1596 
cfq_cpd_free(struct blkcg_policy_data * cpd)1597 static void cfq_cpd_free(struct blkcg_policy_data *cpd)
1598 {
1599 	kfree(cpd_to_cfqgd(cpd));
1600 }
1601 
cfq_cpd_bind(struct blkcg_policy_data * cpd)1602 static void cfq_cpd_bind(struct blkcg_policy_data *cpd)
1603 {
1604 	struct blkcg *blkcg = cpd_to_blkcg(cpd);
1605 	bool on_dfl = cgroup_subsys_on_dfl(io_cgrp_subsys);
1606 	unsigned int weight = on_dfl ? CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL;
1607 
1608 	if (blkcg == &blkcg_root)
1609 		weight *= 2;
1610 
1611 	WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, false));
1612 	WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, true));
1613 }
1614 
cfq_pd_alloc(gfp_t gfp,int node)1615 static struct blkg_policy_data *cfq_pd_alloc(gfp_t gfp, int node)
1616 {
1617 	struct cfq_group *cfqg;
1618 
1619 	cfqg = kzalloc_node(sizeof(*cfqg), gfp, node);
1620 	if (!cfqg)
1621 		return NULL;
1622 
1623 	cfq_init_cfqg_base(cfqg);
1624 	if (cfqg_stats_init(&cfqg->stats, gfp)) {
1625 		kfree(cfqg);
1626 		return NULL;
1627 	}
1628 
1629 	return &cfqg->pd;
1630 }
1631 
cfq_pd_init(struct blkg_policy_data * pd)1632 static void cfq_pd_init(struct blkg_policy_data *pd)
1633 {
1634 	struct cfq_group *cfqg = pd_to_cfqg(pd);
1635 	struct cfq_group_data *cgd = blkcg_to_cfqgd(pd->blkg->blkcg);
1636 
1637 	cfqg->weight = cgd->weight;
1638 	cfqg->leaf_weight = cgd->leaf_weight;
1639 }
1640 
cfq_pd_offline(struct blkg_policy_data * pd)1641 static void cfq_pd_offline(struct blkg_policy_data *pd)
1642 {
1643 	struct cfq_group *cfqg = pd_to_cfqg(pd);
1644 	int i;
1645 
1646 	for (i = 0; i < IOPRIO_BE_NR; i++) {
1647 		if (cfqg->async_cfqq[0][i])
1648 			cfq_put_queue(cfqg->async_cfqq[0][i]);
1649 		if (cfqg->async_cfqq[1][i])
1650 			cfq_put_queue(cfqg->async_cfqq[1][i]);
1651 	}
1652 
1653 	if (cfqg->async_idle_cfqq)
1654 		cfq_put_queue(cfqg->async_idle_cfqq);
1655 
1656 	/*
1657 	 * @blkg is going offline and will be ignored by
1658 	 * blkg_[rw]stat_recursive_sum().  Transfer stats to the parent so
1659 	 * that they don't get lost.  If IOs complete after this point, the
1660 	 * stats for them will be lost.  Oh well...
1661 	 */
1662 	cfqg_stats_xfer_dead(cfqg);
1663 }
1664 
cfq_pd_free(struct blkg_policy_data * pd)1665 static void cfq_pd_free(struct blkg_policy_data *pd)
1666 {
1667 	struct cfq_group *cfqg = pd_to_cfqg(pd);
1668 
1669 	cfqg_stats_exit(&cfqg->stats);
1670 	return kfree(cfqg);
1671 }
1672 
cfq_pd_reset_stats(struct blkg_policy_data * pd)1673 static void cfq_pd_reset_stats(struct blkg_policy_data *pd)
1674 {
1675 	struct cfq_group *cfqg = pd_to_cfqg(pd);
1676 
1677 	cfqg_stats_reset(&cfqg->stats);
1678 }
1679 
cfq_lookup_cfqg(struct cfq_data * cfqd,struct blkcg * blkcg)1680 static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
1681 					 struct blkcg *blkcg)
1682 {
1683 	struct blkcg_gq *blkg;
1684 
1685 	blkg = blkg_lookup(blkcg, cfqd->queue);
1686 	if (likely(blkg))
1687 		return blkg_to_cfqg(blkg);
1688 	return NULL;
1689 }
1690 
cfq_link_cfqq_cfqg(struct cfq_queue * cfqq,struct cfq_group * cfqg)1691 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1692 {
1693 	cfqq->cfqg = cfqg;
1694 	/* cfqq reference on cfqg */
1695 	cfqg_get(cfqg);
1696 }
1697 
cfqg_prfill_weight_device(struct seq_file * sf,struct blkg_policy_data * pd,int off)1698 static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1699 				     struct blkg_policy_data *pd, int off)
1700 {
1701 	struct cfq_group *cfqg = pd_to_cfqg(pd);
1702 
1703 	if (!cfqg->dev_weight)
1704 		return 0;
1705 	return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1706 }
1707 
cfqg_print_weight_device(struct seq_file * sf,void * v)1708 static int cfqg_print_weight_device(struct seq_file *sf, void *v)
1709 {
1710 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1711 			  cfqg_prfill_weight_device, &blkcg_policy_cfq,
1712 			  0, false);
1713 	return 0;
1714 }
1715 
cfqg_prfill_leaf_weight_device(struct seq_file * sf,struct blkg_policy_data * pd,int off)1716 static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1717 					  struct blkg_policy_data *pd, int off)
1718 {
1719 	struct cfq_group *cfqg = pd_to_cfqg(pd);
1720 
1721 	if (!cfqg->dev_leaf_weight)
1722 		return 0;
1723 	return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1724 }
1725 
cfqg_print_leaf_weight_device(struct seq_file * sf,void * v)1726 static int cfqg_print_leaf_weight_device(struct seq_file *sf, void *v)
1727 {
1728 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1729 			  cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq,
1730 			  0, false);
1731 	return 0;
1732 }
1733 
cfq_print_weight(struct seq_file * sf,void * v)1734 static int cfq_print_weight(struct seq_file *sf, void *v)
1735 {
1736 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1737 	struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1738 	unsigned int val = 0;
1739 
1740 	if (cgd)
1741 		val = cgd->weight;
1742 
1743 	seq_printf(sf, "%u\n", val);
1744 	return 0;
1745 }
1746 
cfq_print_leaf_weight(struct seq_file * sf,void * v)1747 static int cfq_print_leaf_weight(struct seq_file *sf, void *v)
1748 {
1749 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1750 	struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1751 	unsigned int val = 0;
1752 
1753 	if (cgd)
1754 		val = cgd->leaf_weight;
1755 
1756 	seq_printf(sf, "%u\n", val);
1757 	return 0;
1758 }
1759 
__cfqg_set_weight_device(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool on_dfl,bool is_leaf_weight)1760 static ssize_t __cfqg_set_weight_device(struct kernfs_open_file *of,
1761 					char *buf, size_t nbytes, loff_t off,
1762 					bool on_dfl, bool is_leaf_weight)
1763 {
1764 	unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN;
1765 	unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX;
1766 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1767 	struct blkg_conf_ctx ctx;
1768 	struct cfq_group *cfqg;
1769 	struct cfq_group_data *cfqgd;
1770 	int ret;
1771 	u64 v;
1772 
1773 	ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1774 	if (ret)
1775 		return ret;
1776 
1777 	if (sscanf(ctx.body, "%llu", &v) == 1) {
1778 		/* require "default" on dfl */
1779 		ret = -ERANGE;
1780 		if (!v && on_dfl)
1781 			goto out_finish;
1782 	} else if (!strcmp(strim(ctx.body), "default")) {
1783 		v = 0;
1784 	} else {
1785 		ret = -EINVAL;
1786 		goto out_finish;
1787 	}
1788 
1789 	cfqg = blkg_to_cfqg(ctx.blkg);
1790 	cfqgd = blkcg_to_cfqgd(blkcg);
1791 
1792 	ret = -ERANGE;
1793 	if (!v || (v >= min && v <= max)) {
1794 		if (!is_leaf_weight) {
1795 			cfqg->dev_weight = v;
1796 			cfqg->new_weight = v ?: cfqgd->weight;
1797 		} else {
1798 			cfqg->dev_leaf_weight = v;
1799 			cfqg->new_leaf_weight = v ?: cfqgd->leaf_weight;
1800 		}
1801 		ret = 0;
1802 	}
1803 out_finish:
1804 	blkg_conf_finish(&ctx);
1805 	return ret ?: nbytes;
1806 }
1807 
cfqg_set_weight_device(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1808 static ssize_t cfqg_set_weight_device(struct kernfs_open_file *of,
1809 				      char *buf, size_t nbytes, loff_t off)
1810 {
1811 	return __cfqg_set_weight_device(of, buf, nbytes, off, false, false);
1812 }
1813 
cfqg_set_leaf_weight_device(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1814 static ssize_t cfqg_set_leaf_weight_device(struct kernfs_open_file *of,
1815 					   char *buf, size_t nbytes, loff_t off)
1816 {
1817 	return __cfqg_set_weight_device(of, buf, nbytes, off, false, true);
1818 }
1819 
__cfq_set_weight(struct cgroup_subsys_state * css,u64 val,bool on_dfl,bool reset_dev,bool is_leaf_weight)1820 static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val,
1821 			    bool on_dfl, bool reset_dev, bool is_leaf_weight)
1822 {
1823 	unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN;
1824 	unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX;
1825 	struct blkcg *blkcg = css_to_blkcg(css);
1826 	struct blkcg_gq *blkg;
1827 	struct cfq_group_data *cfqgd;
1828 	int ret = 0;
1829 
1830 	if (val < min || val > max)
1831 		return -ERANGE;
1832 
1833 	spin_lock_irq(&blkcg->lock);
1834 	cfqgd = blkcg_to_cfqgd(blkcg);
1835 	if (!cfqgd) {
1836 		ret = -EINVAL;
1837 		goto out;
1838 	}
1839 
1840 	if (!is_leaf_weight)
1841 		cfqgd->weight = val;
1842 	else
1843 		cfqgd->leaf_weight = val;
1844 
1845 	hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
1846 		struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1847 
1848 		if (!cfqg)
1849 			continue;
1850 
1851 		if (!is_leaf_weight) {
1852 			if (reset_dev)
1853 				cfqg->dev_weight = 0;
1854 			if (!cfqg->dev_weight)
1855 				cfqg->new_weight = cfqgd->weight;
1856 		} else {
1857 			if (reset_dev)
1858 				cfqg->dev_leaf_weight = 0;
1859 			if (!cfqg->dev_leaf_weight)
1860 				cfqg->new_leaf_weight = cfqgd->leaf_weight;
1861 		}
1862 	}
1863 
1864 out:
1865 	spin_unlock_irq(&blkcg->lock);
1866 	return ret;
1867 }
1868 
cfq_set_weight(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)1869 static int cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1870 			  u64 val)
1871 {
1872 	return __cfq_set_weight(css, val, false, false, false);
1873 }
1874 
cfq_set_leaf_weight(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)1875 static int cfq_set_leaf_weight(struct cgroup_subsys_state *css,
1876 			       struct cftype *cft, u64 val)
1877 {
1878 	return __cfq_set_weight(css, val, false, false, true);
1879 }
1880 
cfqg_print_stat(struct seq_file * sf,void * v)1881 static int cfqg_print_stat(struct seq_file *sf, void *v)
1882 {
1883 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
1884 			  &blkcg_policy_cfq, seq_cft(sf)->private, false);
1885 	return 0;
1886 }
1887 
cfqg_print_rwstat(struct seq_file * sf,void * v)1888 static int cfqg_print_rwstat(struct seq_file *sf, void *v)
1889 {
1890 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
1891 			  &blkcg_policy_cfq, seq_cft(sf)->private, true);
1892 	return 0;
1893 }
1894 
cfqg_prfill_stat_recursive(struct seq_file * sf,struct blkg_policy_data * pd,int off)1895 static u64 cfqg_prfill_stat_recursive(struct seq_file *sf,
1896 				      struct blkg_policy_data *pd, int off)
1897 {
1898 	u64 sum = blkg_stat_recursive_sum(pd_to_blkg(pd),
1899 					  &blkcg_policy_cfq, off);
1900 	return __blkg_prfill_u64(sf, pd, sum);
1901 }
1902 
cfqg_prfill_rwstat_recursive(struct seq_file * sf,struct blkg_policy_data * pd,int off)1903 static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf,
1904 					struct blkg_policy_data *pd, int off)
1905 {
1906 	struct blkg_rwstat sum = blkg_rwstat_recursive_sum(pd_to_blkg(pd),
1907 							&blkcg_policy_cfq, off);
1908 	return __blkg_prfill_rwstat(sf, pd, &sum);
1909 }
1910 
cfqg_print_stat_recursive(struct seq_file * sf,void * v)1911 static int cfqg_print_stat_recursive(struct seq_file *sf, void *v)
1912 {
1913 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1914 			  cfqg_prfill_stat_recursive, &blkcg_policy_cfq,
1915 			  seq_cft(sf)->private, false);
1916 	return 0;
1917 }
1918 
cfqg_print_rwstat_recursive(struct seq_file * sf,void * v)1919 static int cfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
1920 {
1921 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1922 			  cfqg_prfill_rwstat_recursive, &blkcg_policy_cfq,
1923 			  seq_cft(sf)->private, true);
1924 	return 0;
1925 }
1926 
cfqg_prfill_sectors(struct seq_file * sf,struct blkg_policy_data * pd,int off)1927 static u64 cfqg_prfill_sectors(struct seq_file *sf, struct blkg_policy_data *pd,
1928 			       int off)
1929 {
1930 	u64 sum = blkg_rwstat_total(&pd->blkg->stat_bytes);
1931 
1932 	return __blkg_prfill_u64(sf, pd, sum >> 9);
1933 }
1934 
cfqg_print_stat_sectors(struct seq_file * sf,void * v)1935 static int cfqg_print_stat_sectors(struct seq_file *sf, void *v)
1936 {
1937 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1938 			  cfqg_prfill_sectors, &blkcg_policy_cfq, 0, false);
1939 	return 0;
1940 }
1941 
cfqg_prfill_sectors_recursive(struct seq_file * sf,struct blkg_policy_data * pd,int off)1942 static u64 cfqg_prfill_sectors_recursive(struct seq_file *sf,
1943 					 struct blkg_policy_data *pd, int off)
1944 {
1945 	struct blkg_rwstat tmp = blkg_rwstat_recursive_sum(pd->blkg, NULL,
1946 					offsetof(struct blkcg_gq, stat_bytes));
1947 	u64 sum = atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_READ]) +
1948 		atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_WRITE]);
1949 
1950 	return __blkg_prfill_u64(sf, pd, sum >> 9);
1951 }
1952 
cfqg_print_stat_sectors_recursive(struct seq_file * sf,void * v)1953 static int cfqg_print_stat_sectors_recursive(struct seq_file *sf, void *v)
1954 {
1955 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1956 			  cfqg_prfill_sectors_recursive, &blkcg_policy_cfq, 0,
1957 			  false);
1958 	return 0;
1959 }
1960 
1961 #ifdef CONFIG_DEBUG_BLK_CGROUP
cfqg_prfill_avg_queue_size(struct seq_file * sf,struct blkg_policy_data * pd,int off)1962 static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1963 				      struct blkg_policy_data *pd, int off)
1964 {
1965 	struct cfq_group *cfqg = pd_to_cfqg(pd);
1966 	u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1967 	u64 v = 0;
1968 
1969 	if (samples) {
1970 		v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1971 		v = div64_u64(v, samples);
1972 	}
1973 	__blkg_prfill_u64(sf, pd, v);
1974 	return 0;
1975 }
1976 
1977 /* print avg_queue_size */
cfqg_print_avg_queue_size(struct seq_file * sf,void * v)1978 static int cfqg_print_avg_queue_size(struct seq_file *sf, void *v)
1979 {
1980 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1981 			  cfqg_prfill_avg_queue_size, &blkcg_policy_cfq,
1982 			  0, false);
1983 	return 0;
1984 }
1985 #endif	/* CONFIG_DEBUG_BLK_CGROUP */
1986 
1987 static struct cftype cfq_blkcg_legacy_files[] = {
1988 	/* on root, weight is mapped to leaf_weight */
1989 	{
1990 		.name = "weight_device",
1991 		.flags = CFTYPE_ONLY_ON_ROOT,
1992 		.seq_show = cfqg_print_leaf_weight_device,
1993 		.write = cfqg_set_leaf_weight_device,
1994 	},
1995 	{
1996 		.name = "weight",
1997 		.flags = CFTYPE_ONLY_ON_ROOT,
1998 		.seq_show = cfq_print_leaf_weight,
1999 		.write_u64 = cfq_set_leaf_weight,
2000 	},
2001 
2002 	/* no such mapping necessary for !roots */
2003 	{
2004 		.name = "weight_device",
2005 		.flags = CFTYPE_NOT_ON_ROOT,
2006 		.seq_show = cfqg_print_weight_device,
2007 		.write = cfqg_set_weight_device,
2008 	},
2009 	{
2010 		.name = "weight",
2011 		.flags = CFTYPE_NOT_ON_ROOT,
2012 		.seq_show = cfq_print_weight,
2013 		.write_u64 = cfq_set_weight,
2014 	},
2015 
2016 	{
2017 		.name = "leaf_weight_device",
2018 		.seq_show = cfqg_print_leaf_weight_device,
2019 		.write = cfqg_set_leaf_weight_device,
2020 	},
2021 	{
2022 		.name = "leaf_weight",
2023 		.seq_show = cfq_print_leaf_weight,
2024 		.write_u64 = cfq_set_leaf_weight,
2025 	},
2026 
2027 	/* statistics, covers only the tasks in the cfqg */
2028 	{
2029 		.name = "time",
2030 		.private = offsetof(struct cfq_group, stats.time),
2031 		.seq_show = cfqg_print_stat,
2032 	},
2033 	{
2034 		.name = "sectors",
2035 		.seq_show = cfqg_print_stat_sectors,
2036 	},
2037 	{
2038 		.name = "io_service_bytes",
2039 		.private = (unsigned long)&blkcg_policy_cfq,
2040 		.seq_show = blkg_print_stat_bytes,
2041 	},
2042 	{
2043 		.name = "io_serviced",
2044 		.private = (unsigned long)&blkcg_policy_cfq,
2045 		.seq_show = blkg_print_stat_ios,
2046 	},
2047 	{
2048 		.name = "io_service_time",
2049 		.private = offsetof(struct cfq_group, stats.service_time),
2050 		.seq_show = cfqg_print_rwstat,
2051 	},
2052 	{
2053 		.name = "io_wait_time",
2054 		.private = offsetof(struct cfq_group, stats.wait_time),
2055 		.seq_show = cfqg_print_rwstat,
2056 	},
2057 	{
2058 		.name = "io_merged",
2059 		.private = offsetof(struct cfq_group, stats.merged),
2060 		.seq_show = cfqg_print_rwstat,
2061 	},
2062 	{
2063 		.name = "io_queued",
2064 		.private = offsetof(struct cfq_group, stats.queued),
2065 		.seq_show = cfqg_print_rwstat,
2066 	},
2067 
2068 	/* the same statictics which cover the cfqg and its descendants */
2069 	{
2070 		.name = "time_recursive",
2071 		.private = offsetof(struct cfq_group, stats.time),
2072 		.seq_show = cfqg_print_stat_recursive,
2073 	},
2074 	{
2075 		.name = "sectors_recursive",
2076 		.seq_show = cfqg_print_stat_sectors_recursive,
2077 	},
2078 	{
2079 		.name = "io_service_bytes_recursive",
2080 		.private = (unsigned long)&blkcg_policy_cfq,
2081 		.seq_show = blkg_print_stat_bytes_recursive,
2082 	},
2083 	{
2084 		.name = "io_serviced_recursive",
2085 		.private = (unsigned long)&blkcg_policy_cfq,
2086 		.seq_show = blkg_print_stat_ios_recursive,
2087 	},
2088 	{
2089 		.name = "io_service_time_recursive",
2090 		.private = offsetof(struct cfq_group, stats.service_time),
2091 		.seq_show = cfqg_print_rwstat_recursive,
2092 	},
2093 	{
2094 		.name = "io_wait_time_recursive",
2095 		.private = offsetof(struct cfq_group, stats.wait_time),
2096 		.seq_show = cfqg_print_rwstat_recursive,
2097 	},
2098 	{
2099 		.name = "io_merged_recursive",
2100 		.private = offsetof(struct cfq_group, stats.merged),
2101 		.seq_show = cfqg_print_rwstat_recursive,
2102 	},
2103 	{
2104 		.name = "io_queued_recursive",
2105 		.private = offsetof(struct cfq_group, stats.queued),
2106 		.seq_show = cfqg_print_rwstat_recursive,
2107 	},
2108 #ifdef CONFIG_DEBUG_BLK_CGROUP
2109 	{
2110 		.name = "avg_queue_size",
2111 		.seq_show = cfqg_print_avg_queue_size,
2112 	},
2113 	{
2114 		.name = "group_wait_time",
2115 		.private = offsetof(struct cfq_group, stats.group_wait_time),
2116 		.seq_show = cfqg_print_stat,
2117 	},
2118 	{
2119 		.name = "idle_time",
2120 		.private = offsetof(struct cfq_group, stats.idle_time),
2121 		.seq_show = cfqg_print_stat,
2122 	},
2123 	{
2124 		.name = "empty_time",
2125 		.private = offsetof(struct cfq_group, stats.empty_time),
2126 		.seq_show = cfqg_print_stat,
2127 	},
2128 	{
2129 		.name = "dequeue",
2130 		.private = offsetof(struct cfq_group, stats.dequeue),
2131 		.seq_show = cfqg_print_stat,
2132 	},
2133 	{
2134 		.name = "unaccounted_time",
2135 		.private = offsetof(struct cfq_group, stats.unaccounted_time),
2136 		.seq_show = cfqg_print_stat,
2137 	},
2138 #endif	/* CONFIG_DEBUG_BLK_CGROUP */
2139 	{ }	/* terminate */
2140 };
2141 
cfq_print_weight_on_dfl(struct seq_file * sf,void * v)2142 static int cfq_print_weight_on_dfl(struct seq_file *sf, void *v)
2143 {
2144 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2145 	struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
2146 
2147 	seq_printf(sf, "default %u\n", cgd->weight);
2148 	blkcg_print_blkgs(sf, blkcg, cfqg_prfill_weight_device,
2149 			  &blkcg_policy_cfq, 0, false);
2150 	return 0;
2151 }
2152 
cfq_set_weight_on_dfl(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2153 static ssize_t cfq_set_weight_on_dfl(struct kernfs_open_file *of,
2154 				     char *buf, size_t nbytes, loff_t off)
2155 {
2156 	char *endp;
2157 	int ret;
2158 	u64 v;
2159 
2160 	buf = strim(buf);
2161 
2162 	/* "WEIGHT" or "default WEIGHT" sets the default weight */
2163 	v = simple_strtoull(buf, &endp, 0);
2164 	if (*endp == '\0' || sscanf(buf, "default %llu", &v) == 1) {
2165 		ret = __cfq_set_weight(of_css(of), v, true, false, false);
2166 		return ret ?: nbytes;
2167 	}
2168 
2169 	/* "MAJ:MIN WEIGHT" */
2170 	return __cfqg_set_weight_device(of, buf, nbytes, off, true, false);
2171 }
2172 
2173 static struct cftype cfq_blkcg_files[] = {
2174 	{
2175 		.name = "weight",
2176 		.flags = CFTYPE_NOT_ON_ROOT,
2177 		.seq_show = cfq_print_weight_on_dfl,
2178 		.write = cfq_set_weight_on_dfl,
2179 	},
2180 	{ }	/* terminate */
2181 };
2182 
2183 #else /* GROUP_IOSCHED */
cfq_lookup_cfqg(struct cfq_data * cfqd,struct blkcg * blkcg)2184 static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
2185 					 struct blkcg *blkcg)
2186 {
2187 	return cfqd->root_group;
2188 }
2189 
2190 static inline void
cfq_link_cfqq_cfqg(struct cfq_queue * cfqq,struct cfq_group * cfqg)2191 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
2192 	cfqq->cfqg = cfqg;
2193 }
2194 
2195 #endif /* GROUP_IOSCHED */
2196 
2197 /*
2198  * The cfqd->service_trees holds all pending cfq_queue's that have
2199  * requests waiting to be processed. It is sorted in the order that
2200  * we will service the queues.
2201  */
cfq_service_tree_add(struct cfq_data * cfqd,struct cfq_queue * cfqq,bool add_front)2202 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2203 				 bool add_front)
2204 {
2205 	struct rb_node **p, *parent;
2206 	struct cfq_queue *__cfqq;
2207 	u64 rb_key;
2208 	struct cfq_rb_root *st;
2209 	bool leftmost = true;
2210 	int new_cfqq = 1;
2211 	u64 now = ktime_get_ns();
2212 
2213 	st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
2214 	if (cfq_class_idle(cfqq)) {
2215 		rb_key = CFQ_IDLE_DELAY;
2216 		parent = st->rb_rightmost;
2217 		if (parent && parent != &cfqq->rb_node) {
2218 			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2219 			rb_key += __cfqq->rb_key;
2220 		} else
2221 			rb_key += now;
2222 	} else if (!add_front) {
2223 		/*
2224 		 * Get our rb key offset. Subtract any residual slice
2225 		 * value carried from last service. A negative resid
2226 		 * count indicates slice overrun, and this should position
2227 		 * the next service time further away in the tree.
2228 		 */
2229 		rb_key = cfq_slice_offset(cfqd, cfqq) + now;
2230 		rb_key -= cfqq->slice_resid;
2231 		cfqq->slice_resid = 0;
2232 	} else {
2233 		rb_key = -NSEC_PER_SEC;
2234 		__cfqq = cfq_rb_first(st);
2235 		rb_key += __cfqq ? __cfqq->rb_key : now;
2236 	}
2237 
2238 	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2239 		new_cfqq = 0;
2240 		/*
2241 		 * same position, nothing more to do
2242 		 */
2243 		if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
2244 			return;
2245 
2246 		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2247 		cfqq->service_tree = NULL;
2248 	}
2249 
2250 	parent = NULL;
2251 	cfqq->service_tree = st;
2252 	p = &st->rb.rb_root.rb_node;
2253 	while (*p) {
2254 		parent = *p;
2255 		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2256 
2257 		/*
2258 		 * sort by key, that represents service time.
2259 		 */
2260 		if (rb_key < __cfqq->rb_key)
2261 			p = &parent->rb_left;
2262 		else {
2263 			p = &parent->rb_right;
2264 			leftmost = false;
2265 		}
2266 	}
2267 
2268 	cfqq->rb_key = rb_key;
2269 	rb_link_node(&cfqq->rb_node, parent, p);
2270 	rb_insert_color_cached(&cfqq->rb_node, &st->rb, leftmost);
2271 	st->count++;
2272 	if (add_front || !new_cfqq)
2273 		return;
2274 	cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
2275 }
2276 
2277 static struct cfq_queue *
cfq_prio_tree_lookup(struct cfq_data * cfqd,struct rb_root * root,sector_t sector,struct rb_node ** ret_parent,struct rb_node *** rb_link)2278 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
2279 		     sector_t sector, struct rb_node **ret_parent,
2280 		     struct rb_node ***rb_link)
2281 {
2282 	struct rb_node **p, *parent;
2283 	struct cfq_queue *cfqq = NULL;
2284 
2285 	parent = NULL;
2286 	p = &root->rb_node;
2287 	while (*p) {
2288 		struct rb_node **n;
2289 
2290 		parent = *p;
2291 		cfqq = rb_entry(parent, struct cfq_queue, p_node);
2292 
2293 		/*
2294 		 * Sort strictly based on sector.  Smallest to the left,
2295 		 * largest to the right.
2296 		 */
2297 		if (sector > blk_rq_pos(cfqq->next_rq))
2298 			n = &(*p)->rb_right;
2299 		else if (sector < blk_rq_pos(cfqq->next_rq))
2300 			n = &(*p)->rb_left;
2301 		else
2302 			break;
2303 		p = n;
2304 		cfqq = NULL;
2305 	}
2306 
2307 	*ret_parent = parent;
2308 	if (rb_link)
2309 		*rb_link = p;
2310 	return cfqq;
2311 }
2312 
cfq_prio_tree_add(struct cfq_data * cfqd,struct cfq_queue * cfqq)2313 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2314 {
2315 	struct rb_node **p, *parent;
2316 	struct cfq_queue *__cfqq;
2317 
2318 	if (cfqq->p_root) {
2319 		rb_erase(&cfqq->p_node, cfqq->p_root);
2320 		cfqq->p_root = NULL;
2321 	}
2322 
2323 	if (cfq_class_idle(cfqq))
2324 		return;
2325 	if (!cfqq->next_rq)
2326 		return;
2327 
2328 	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2329 	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
2330 				      blk_rq_pos(cfqq->next_rq), &parent, &p);
2331 	if (!__cfqq) {
2332 		rb_link_node(&cfqq->p_node, parent, p);
2333 		rb_insert_color(&cfqq->p_node, cfqq->p_root);
2334 	} else
2335 		cfqq->p_root = NULL;
2336 }
2337 
2338 /*
2339  * Update cfqq's position in the service tree.
2340  */
cfq_resort_rr_list(struct cfq_data * cfqd,struct cfq_queue * cfqq)2341 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2342 {
2343 	/*
2344 	 * Resorting requires the cfqq to be on the RR list already.
2345 	 */
2346 	if (cfq_cfqq_on_rr(cfqq)) {
2347 		cfq_service_tree_add(cfqd, cfqq, 0);
2348 		cfq_prio_tree_add(cfqd, cfqq);
2349 	}
2350 }
2351 
2352 /*
2353  * add to busy list of queues for service, trying to be fair in ordering
2354  * the pending list according to last request service
2355  */
cfq_add_cfqq_rr(struct cfq_data * cfqd,struct cfq_queue * cfqq)2356 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2357 {
2358 	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
2359 	BUG_ON(cfq_cfqq_on_rr(cfqq));
2360 	cfq_mark_cfqq_on_rr(cfqq);
2361 	cfqd->busy_queues++;
2362 	if (cfq_cfqq_sync(cfqq))
2363 		cfqd->busy_sync_queues++;
2364 
2365 	cfq_resort_rr_list(cfqd, cfqq);
2366 }
2367 
2368 /*
2369  * Called when the cfqq no longer has requests pending, remove it from
2370  * the service tree.
2371  */
cfq_del_cfqq_rr(struct cfq_data * cfqd,struct cfq_queue * cfqq)2372 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2373 {
2374 	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2375 	BUG_ON(!cfq_cfqq_on_rr(cfqq));
2376 	cfq_clear_cfqq_on_rr(cfqq);
2377 
2378 	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2379 		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2380 		cfqq->service_tree = NULL;
2381 	}
2382 	if (cfqq->p_root) {
2383 		rb_erase(&cfqq->p_node, cfqq->p_root);
2384 		cfqq->p_root = NULL;
2385 	}
2386 
2387 	cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2388 	BUG_ON(!cfqd->busy_queues);
2389 	cfqd->busy_queues--;
2390 	if (cfq_cfqq_sync(cfqq))
2391 		cfqd->busy_sync_queues--;
2392 }
2393 
2394 /*
2395  * rb tree support functions
2396  */
cfq_del_rq_rb(struct request * rq)2397 static void cfq_del_rq_rb(struct request *rq)
2398 {
2399 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2400 	const int sync = rq_is_sync(rq);
2401 
2402 	BUG_ON(!cfqq->queued[sync]);
2403 	cfqq->queued[sync]--;
2404 
2405 	elv_rb_del(&cfqq->sort_list, rq);
2406 
2407 	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2408 		/*
2409 		 * Queue will be deleted from service tree when we actually
2410 		 * expire it later. Right now just remove it from prio tree
2411 		 * as it is empty.
2412 		 */
2413 		if (cfqq->p_root) {
2414 			rb_erase(&cfqq->p_node, cfqq->p_root);
2415 			cfqq->p_root = NULL;
2416 		}
2417 	}
2418 }
2419 
cfq_add_rq_rb(struct request * rq)2420 static void cfq_add_rq_rb(struct request *rq)
2421 {
2422 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2423 	struct cfq_data *cfqd = cfqq->cfqd;
2424 	struct request *prev;
2425 
2426 	cfqq->queued[rq_is_sync(rq)]++;
2427 
2428 	elv_rb_add(&cfqq->sort_list, rq);
2429 
2430 	if (!cfq_cfqq_on_rr(cfqq))
2431 		cfq_add_cfqq_rr(cfqd, cfqq);
2432 
2433 	/*
2434 	 * check if this request is a better next-serve candidate
2435 	 */
2436 	prev = cfqq->next_rq;
2437 	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2438 
2439 	/*
2440 	 * adjust priority tree position, if ->next_rq changes
2441 	 */
2442 	if (prev != cfqq->next_rq)
2443 		cfq_prio_tree_add(cfqd, cfqq);
2444 
2445 	BUG_ON(!cfqq->next_rq);
2446 }
2447 
cfq_reposition_rq_rb(struct cfq_queue * cfqq,struct request * rq)2448 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2449 {
2450 	elv_rb_del(&cfqq->sort_list, rq);
2451 	cfqq->queued[rq_is_sync(rq)]--;
2452 	cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2453 	cfq_add_rq_rb(rq);
2454 	cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2455 				 rq->cmd_flags);
2456 }
2457 
2458 static struct request *
cfq_find_rq_fmerge(struct cfq_data * cfqd,struct bio * bio)2459 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2460 {
2461 	struct task_struct *tsk = current;
2462 	struct cfq_io_cq *cic;
2463 	struct cfq_queue *cfqq;
2464 
2465 	cic = cfq_cic_lookup(cfqd, tsk->io_context);
2466 	if (!cic)
2467 		return NULL;
2468 
2469 	cfqq = cic_to_cfqq(cic, op_is_sync(bio->bi_opf));
2470 	if (cfqq)
2471 		return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio));
2472 
2473 	return NULL;
2474 }
2475 
cfq_activate_request(struct request_queue * q,struct request * rq)2476 static void cfq_activate_request(struct request_queue *q, struct request *rq)
2477 {
2478 	struct cfq_data *cfqd = q->elevator->elevator_data;
2479 
2480 	cfqd->rq_in_driver++;
2481 	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2482 						cfqd->rq_in_driver);
2483 
2484 	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2485 }
2486 
cfq_deactivate_request(struct request_queue * q,struct request * rq)2487 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2488 {
2489 	struct cfq_data *cfqd = q->elevator->elevator_data;
2490 
2491 	WARN_ON(!cfqd->rq_in_driver);
2492 	cfqd->rq_in_driver--;
2493 	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2494 						cfqd->rq_in_driver);
2495 }
2496 
cfq_remove_request(struct request * rq)2497 static void cfq_remove_request(struct request *rq)
2498 {
2499 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2500 
2501 	if (cfqq->next_rq == rq)
2502 		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2503 
2504 	list_del_init(&rq->queuelist);
2505 	cfq_del_rq_rb(rq);
2506 
2507 	cfqq->cfqd->rq_queued--;
2508 	cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2509 	if (rq->cmd_flags & REQ_PRIO) {
2510 		WARN_ON(!cfqq->prio_pending);
2511 		cfqq->prio_pending--;
2512 	}
2513 }
2514 
cfq_merge(struct request_queue * q,struct request ** req,struct bio * bio)2515 static enum elv_merge cfq_merge(struct request_queue *q, struct request **req,
2516 		     struct bio *bio)
2517 {
2518 	struct cfq_data *cfqd = q->elevator->elevator_data;
2519 	struct request *__rq;
2520 
2521 	__rq = cfq_find_rq_fmerge(cfqd, bio);
2522 	if (__rq && elv_bio_merge_ok(__rq, bio)) {
2523 		*req = __rq;
2524 		return ELEVATOR_FRONT_MERGE;
2525 	}
2526 
2527 	return ELEVATOR_NO_MERGE;
2528 }
2529 
cfq_merged_request(struct request_queue * q,struct request * req,enum elv_merge type)2530 static void cfq_merged_request(struct request_queue *q, struct request *req,
2531 			       enum elv_merge type)
2532 {
2533 	if (type == ELEVATOR_FRONT_MERGE) {
2534 		struct cfq_queue *cfqq = RQ_CFQQ(req);
2535 
2536 		cfq_reposition_rq_rb(cfqq, req);
2537 	}
2538 }
2539 
cfq_bio_merged(struct request_queue * q,struct request * req,struct bio * bio)2540 static void cfq_bio_merged(struct request_queue *q, struct request *req,
2541 				struct bio *bio)
2542 {
2543 	cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_opf);
2544 }
2545 
2546 static void
cfq_merged_requests(struct request_queue * q,struct request * rq,struct request * next)2547 cfq_merged_requests(struct request_queue *q, struct request *rq,
2548 		    struct request *next)
2549 {
2550 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2551 	struct cfq_data *cfqd = q->elevator->elevator_data;
2552 
2553 	/*
2554 	 * reposition in fifo if next is older than rq
2555 	 */
2556 	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2557 	    next->fifo_time < rq->fifo_time &&
2558 	    cfqq == RQ_CFQQ(next)) {
2559 		list_move(&rq->queuelist, &next->queuelist);
2560 		rq->fifo_time = next->fifo_time;
2561 	}
2562 
2563 	if (cfqq->next_rq == next)
2564 		cfqq->next_rq = rq;
2565 	cfq_remove_request(next);
2566 	cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
2567 
2568 	cfqq = RQ_CFQQ(next);
2569 	/*
2570 	 * all requests of this queue are merged to other queues, delete it
2571 	 * from the service tree. If it's the active_queue,
2572 	 * cfq_dispatch_requests() will choose to expire it or do idle
2573 	 */
2574 	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2575 	    cfqq != cfqd->active_queue)
2576 		cfq_del_cfqq_rr(cfqd, cfqq);
2577 }
2578 
cfq_allow_bio_merge(struct request_queue * q,struct request * rq,struct bio * bio)2579 static int cfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2580 			       struct bio *bio)
2581 {
2582 	struct cfq_data *cfqd = q->elevator->elevator_data;
2583 	bool is_sync = op_is_sync(bio->bi_opf);
2584 	struct cfq_io_cq *cic;
2585 	struct cfq_queue *cfqq;
2586 
2587 	/*
2588 	 * Disallow merge of a sync bio into an async request.
2589 	 */
2590 	if (is_sync && !rq_is_sync(rq))
2591 		return false;
2592 
2593 	/*
2594 	 * Lookup the cfqq that this bio will be queued with and allow
2595 	 * merge only if rq is queued there.
2596 	 */
2597 	cic = cfq_cic_lookup(cfqd, current->io_context);
2598 	if (!cic)
2599 		return false;
2600 
2601 	cfqq = cic_to_cfqq(cic, is_sync);
2602 	return cfqq == RQ_CFQQ(rq);
2603 }
2604 
cfq_allow_rq_merge(struct request_queue * q,struct request * rq,struct request * next)2605 static int cfq_allow_rq_merge(struct request_queue *q, struct request *rq,
2606 			      struct request *next)
2607 {
2608 	return RQ_CFQQ(rq) == RQ_CFQQ(next);
2609 }
2610 
cfq_del_timer(struct cfq_data * cfqd,struct cfq_queue * cfqq)2611 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2612 {
2613 	hrtimer_try_to_cancel(&cfqd->idle_slice_timer);
2614 	cfqg_stats_update_idle_time(cfqq->cfqg);
2615 }
2616 
__cfq_set_active_queue(struct cfq_data * cfqd,struct cfq_queue * cfqq)2617 static void __cfq_set_active_queue(struct cfq_data *cfqd,
2618 				   struct cfq_queue *cfqq)
2619 {
2620 	if (cfqq) {
2621 		cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2622 				cfqd->serving_wl_class, cfqd->serving_wl_type);
2623 		cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2624 		cfqq->slice_start = 0;
2625 		cfqq->dispatch_start = ktime_get_ns();
2626 		cfqq->allocated_slice = 0;
2627 		cfqq->slice_end = 0;
2628 		cfqq->slice_dispatch = 0;
2629 		cfqq->nr_sectors = 0;
2630 
2631 		cfq_clear_cfqq_wait_request(cfqq);
2632 		cfq_clear_cfqq_must_dispatch(cfqq);
2633 		cfq_clear_cfqq_must_alloc_slice(cfqq);
2634 		cfq_clear_cfqq_fifo_expire(cfqq);
2635 		cfq_mark_cfqq_slice_new(cfqq);
2636 
2637 		cfq_del_timer(cfqd, cfqq);
2638 	}
2639 
2640 	cfqd->active_queue = cfqq;
2641 }
2642 
2643 /*
2644  * current cfqq expired its slice (or was too idle), select new one
2645  */
2646 static void
__cfq_slice_expired(struct cfq_data * cfqd,struct cfq_queue * cfqq,bool timed_out)2647 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2648 		    bool timed_out)
2649 {
2650 	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2651 
2652 	if (cfq_cfqq_wait_request(cfqq))
2653 		cfq_del_timer(cfqd, cfqq);
2654 
2655 	cfq_clear_cfqq_wait_request(cfqq);
2656 	cfq_clear_cfqq_wait_busy(cfqq);
2657 
2658 	/*
2659 	 * If this cfqq is shared between multiple processes, check to
2660 	 * make sure that those processes are still issuing I/Os within
2661 	 * the mean seek distance.  If not, it may be time to break the
2662 	 * queues apart again.
2663 	 */
2664 	if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2665 		cfq_mark_cfqq_split_coop(cfqq);
2666 
2667 	/*
2668 	 * store what was left of this slice, if the queue idled/timed out
2669 	 */
2670 	if (timed_out) {
2671 		if (cfq_cfqq_slice_new(cfqq))
2672 			cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2673 		else
2674 			cfqq->slice_resid = cfqq->slice_end - ktime_get_ns();
2675 		cfq_log_cfqq(cfqd, cfqq, "resid=%lld", cfqq->slice_resid);
2676 	}
2677 
2678 	cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2679 
2680 	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2681 		cfq_del_cfqq_rr(cfqd, cfqq);
2682 
2683 	cfq_resort_rr_list(cfqd, cfqq);
2684 
2685 	if (cfqq == cfqd->active_queue)
2686 		cfqd->active_queue = NULL;
2687 
2688 	if (cfqd->active_cic) {
2689 		put_io_context(cfqd->active_cic->icq.ioc);
2690 		cfqd->active_cic = NULL;
2691 	}
2692 }
2693 
cfq_slice_expired(struct cfq_data * cfqd,bool timed_out)2694 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2695 {
2696 	struct cfq_queue *cfqq = cfqd->active_queue;
2697 
2698 	if (cfqq)
2699 		__cfq_slice_expired(cfqd, cfqq, timed_out);
2700 }
2701 
2702 /*
2703  * Get next queue for service. Unless we have a queue preemption,
2704  * we'll simply select the first cfqq in the service tree.
2705  */
cfq_get_next_queue(struct cfq_data * cfqd)2706 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2707 {
2708 	struct cfq_rb_root *st = st_for(cfqd->serving_group,
2709 			cfqd->serving_wl_class, cfqd->serving_wl_type);
2710 
2711 	if (!cfqd->rq_queued)
2712 		return NULL;
2713 
2714 	/* There is nothing to dispatch */
2715 	if (!st)
2716 		return NULL;
2717 	if (RB_EMPTY_ROOT(&st->rb.rb_root))
2718 		return NULL;
2719 	return cfq_rb_first(st);
2720 }
2721 
cfq_get_next_queue_forced(struct cfq_data * cfqd)2722 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2723 {
2724 	struct cfq_group *cfqg;
2725 	struct cfq_queue *cfqq;
2726 	int i, j;
2727 	struct cfq_rb_root *st;
2728 
2729 	if (!cfqd->rq_queued)
2730 		return NULL;
2731 
2732 	cfqg = cfq_get_next_cfqg(cfqd);
2733 	if (!cfqg)
2734 		return NULL;
2735 
2736 	for_each_cfqg_st(cfqg, i, j, st) {
2737 		cfqq = cfq_rb_first(st);
2738 		if (cfqq)
2739 			return cfqq;
2740 	}
2741 	return NULL;
2742 }
2743 
2744 /*
2745  * Get and set a new active queue for service.
2746  */
cfq_set_active_queue(struct cfq_data * cfqd,struct cfq_queue * cfqq)2747 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2748 					      struct cfq_queue *cfqq)
2749 {
2750 	if (!cfqq)
2751 		cfqq = cfq_get_next_queue(cfqd);
2752 
2753 	__cfq_set_active_queue(cfqd, cfqq);
2754 	return cfqq;
2755 }
2756 
cfq_dist_from_last(struct cfq_data * cfqd,struct request * rq)2757 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2758 					  struct request *rq)
2759 {
2760 	if (blk_rq_pos(rq) >= cfqd->last_position)
2761 		return blk_rq_pos(rq) - cfqd->last_position;
2762 	else
2763 		return cfqd->last_position - blk_rq_pos(rq);
2764 }
2765 
cfq_rq_close(struct cfq_data * cfqd,struct cfq_queue * cfqq,struct request * rq)2766 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2767 			       struct request *rq)
2768 {
2769 	return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2770 }
2771 
cfqq_close(struct cfq_data * cfqd,struct cfq_queue * cur_cfqq)2772 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2773 				    struct cfq_queue *cur_cfqq)
2774 {
2775 	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2776 	struct rb_node *parent, *node;
2777 	struct cfq_queue *__cfqq;
2778 	sector_t sector = cfqd->last_position;
2779 
2780 	if (RB_EMPTY_ROOT(root))
2781 		return NULL;
2782 
2783 	/*
2784 	 * First, if we find a request starting at the end of the last
2785 	 * request, choose it.
2786 	 */
2787 	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2788 	if (__cfqq)
2789 		return __cfqq;
2790 
2791 	/*
2792 	 * If the exact sector wasn't found, the parent of the NULL leaf
2793 	 * will contain the closest sector.
2794 	 */
2795 	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
2796 	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2797 		return __cfqq;
2798 
2799 	if (blk_rq_pos(__cfqq->next_rq) < sector)
2800 		node = rb_next(&__cfqq->p_node);
2801 	else
2802 		node = rb_prev(&__cfqq->p_node);
2803 	if (!node)
2804 		return NULL;
2805 
2806 	__cfqq = rb_entry(node, struct cfq_queue, p_node);
2807 	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2808 		return __cfqq;
2809 
2810 	return NULL;
2811 }
2812 
2813 /*
2814  * cfqd - obvious
2815  * cur_cfqq - passed in so that we don't decide that the current queue is
2816  * 	      closely cooperating with itself.
2817  *
2818  * So, basically we're assuming that that cur_cfqq has dispatched at least
2819  * one request, and that cfqd->last_position reflects a position on the disk
2820  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
2821  * assumption.
2822  */
cfq_close_cooperator(struct cfq_data * cfqd,struct cfq_queue * cur_cfqq)2823 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2824 					      struct cfq_queue *cur_cfqq)
2825 {
2826 	struct cfq_queue *cfqq;
2827 
2828 	if (cfq_class_idle(cur_cfqq))
2829 		return NULL;
2830 	if (!cfq_cfqq_sync(cur_cfqq))
2831 		return NULL;
2832 	if (CFQQ_SEEKY(cur_cfqq))
2833 		return NULL;
2834 
2835 	/*
2836 	 * Don't search priority tree if it's the only queue in the group.
2837 	 */
2838 	if (cur_cfqq->cfqg->nr_cfqq == 1)
2839 		return NULL;
2840 
2841 	/*
2842 	 * We should notice if some of the queues are cooperating, eg
2843 	 * working closely on the same area of the disk. In that case,
2844 	 * we can group them together and don't waste time idling.
2845 	 */
2846 	cfqq = cfqq_close(cfqd, cur_cfqq);
2847 	if (!cfqq)
2848 		return NULL;
2849 
2850 	/* If new queue belongs to different cfq_group, don't choose it */
2851 	if (cur_cfqq->cfqg != cfqq->cfqg)
2852 		return NULL;
2853 
2854 	/*
2855 	 * It only makes sense to merge sync queues.
2856 	 */
2857 	if (!cfq_cfqq_sync(cfqq))
2858 		return NULL;
2859 	if (CFQQ_SEEKY(cfqq))
2860 		return NULL;
2861 
2862 	/*
2863 	 * Do not merge queues of different priority classes
2864 	 */
2865 	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2866 		return NULL;
2867 
2868 	return cfqq;
2869 }
2870 
2871 /*
2872  * Determine whether we should enforce idle window for this queue.
2873  */
2874 
cfq_should_idle(struct cfq_data * cfqd,struct cfq_queue * cfqq)2875 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2876 {
2877 	enum wl_class_t wl_class = cfqq_class(cfqq);
2878 	struct cfq_rb_root *st = cfqq->service_tree;
2879 
2880 	BUG_ON(!st);
2881 	BUG_ON(!st->count);
2882 
2883 	if (!cfqd->cfq_slice_idle)
2884 		return false;
2885 
2886 	/* We never do for idle class queues. */
2887 	if (wl_class == IDLE_WORKLOAD)
2888 		return false;
2889 
2890 	/* We do for queues that were marked with idle window flag. */
2891 	if (cfq_cfqq_idle_window(cfqq) &&
2892 	   !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2893 		return true;
2894 
2895 	/*
2896 	 * Otherwise, we do only if they are the last ones
2897 	 * in their service tree.
2898 	 */
2899 	if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2900 	   !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2901 		return true;
2902 	cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
2903 	return false;
2904 }
2905 
cfq_arm_slice_timer(struct cfq_data * cfqd)2906 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2907 {
2908 	struct cfq_queue *cfqq = cfqd->active_queue;
2909 	struct cfq_rb_root *st = cfqq->service_tree;
2910 	struct cfq_io_cq *cic;
2911 	u64 sl, group_idle = 0;
2912 	u64 now = ktime_get_ns();
2913 
2914 	/*
2915 	 * SSD device without seek penalty, disable idling. But only do so
2916 	 * for devices that support queuing, otherwise we still have a problem
2917 	 * with sync vs async workloads.
2918 	 */
2919 	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag &&
2920 		!cfqd->cfq_group_idle)
2921 		return;
2922 
2923 	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2924 	WARN_ON(cfq_cfqq_slice_new(cfqq));
2925 
2926 	/*
2927 	 * idle is disabled, either manually or by past process history
2928 	 */
2929 	if (!cfq_should_idle(cfqd, cfqq)) {
2930 		/* no queue idling. Check for group idling */
2931 		if (cfqd->cfq_group_idle)
2932 			group_idle = cfqd->cfq_group_idle;
2933 		else
2934 			return;
2935 	}
2936 
2937 	/*
2938 	 * still active requests from this queue, don't idle
2939 	 */
2940 	if (cfqq->dispatched)
2941 		return;
2942 
2943 	/*
2944 	 * task has exited, don't wait
2945 	 */
2946 	cic = cfqd->active_cic;
2947 	if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2948 		return;
2949 
2950 	/*
2951 	 * If our average think time is larger than the remaining time
2952 	 * slice, then don't idle. This avoids overrunning the allotted
2953 	 * time slice.
2954 	 */
2955 	if (sample_valid(cic->ttime.ttime_samples) &&
2956 	    (cfqq->slice_end - now < cic->ttime.ttime_mean)) {
2957 		cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%llu",
2958 			     cic->ttime.ttime_mean);
2959 		return;
2960 	}
2961 
2962 	/*
2963 	 * There are other queues in the group or this is the only group and
2964 	 * it has too big thinktime, don't do group idle.
2965 	 */
2966 	if (group_idle &&
2967 	    (cfqq->cfqg->nr_cfqq > 1 ||
2968 	     cfq_io_thinktime_big(cfqd, &st->ttime, true)))
2969 		return;
2970 
2971 	cfq_mark_cfqq_wait_request(cfqq);
2972 
2973 	if (group_idle)
2974 		sl = cfqd->cfq_group_idle;
2975 	else
2976 		sl = cfqd->cfq_slice_idle;
2977 
2978 	hrtimer_start(&cfqd->idle_slice_timer, ns_to_ktime(sl),
2979 		      HRTIMER_MODE_REL);
2980 	cfqg_stats_set_start_idle_time(cfqq->cfqg);
2981 	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %llu group_idle: %d", sl,
2982 			group_idle ? 1 : 0);
2983 }
2984 
2985 /*
2986  * Move request from internal lists to the request queue dispatch list.
2987  */
cfq_dispatch_insert(struct request_queue * q,struct request * rq)2988 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2989 {
2990 	struct cfq_data *cfqd = q->elevator->elevator_data;
2991 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2992 
2993 	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2994 
2995 	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2996 	cfq_remove_request(rq);
2997 	cfqq->dispatched++;
2998 	(RQ_CFQG(rq))->dispatched++;
2999 	elv_dispatch_sort(q, rq);
3000 
3001 	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
3002 	cfqq->nr_sectors += blk_rq_sectors(rq);
3003 }
3004 
3005 /*
3006  * return expired entry, or NULL to just start from scratch in rbtree
3007  */
cfq_check_fifo(struct cfq_queue * cfqq)3008 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
3009 {
3010 	struct request *rq = NULL;
3011 
3012 	if (cfq_cfqq_fifo_expire(cfqq))
3013 		return NULL;
3014 
3015 	cfq_mark_cfqq_fifo_expire(cfqq);
3016 
3017 	if (list_empty(&cfqq->fifo))
3018 		return NULL;
3019 
3020 	rq = rq_entry_fifo(cfqq->fifo.next);
3021 	if (ktime_get_ns() < rq->fifo_time)
3022 		rq = NULL;
3023 
3024 	return rq;
3025 }
3026 
3027 static inline int
cfq_prio_to_maxrq(struct cfq_data * cfqd,struct cfq_queue * cfqq)3028 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3029 {
3030 	const int base_rq = cfqd->cfq_slice_async_rq;
3031 
3032 	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
3033 
3034 	return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
3035 }
3036 
3037 /*
3038  * Must be called with the queue_lock held.
3039  */
cfqq_process_refs(struct cfq_queue * cfqq)3040 static int cfqq_process_refs(struct cfq_queue *cfqq)
3041 {
3042 	int process_refs, io_refs;
3043 
3044 	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
3045 	process_refs = cfqq->ref - io_refs;
3046 	BUG_ON(process_refs < 0);
3047 	return process_refs;
3048 }
3049 
cfq_setup_merge(struct cfq_queue * cfqq,struct cfq_queue * new_cfqq)3050 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
3051 {
3052 	int process_refs, new_process_refs;
3053 	struct cfq_queue *__cfqq;
3054 
3055 	/*
3056 	 * If there are no process references on the new_cfqq, then it is
3057 	 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
3058 	 * chain may have dropped their last reference (not just their
3059 	 * last process reference).
3060 	 */
3061 	if (!cfqq_process_refs(new_cfqq))
3062 		return;
3063 
3064 	/* Avoid a circular list and skip interim queue merges */
3065 	while ((__cfqq = new_cfqq->new_cfqq)) {
3066 		if (__cfqq == cfqq)
3067 			return;
3068 		new_cfqq = __cfqq;
3069 	}
3070 
3071 	process_refs = cfqq_process_refs(cfqq);
3072 	new_process_refs = cfqq_process_refs(new_cfqq);
3073 	/*
3074 	 * If the process for the cfqq has gone away, there is no
3075 	 * sense in merging the queues.
3076 	 */
3077 	if (process_refs == 0 || new_process_refs == 0)
3078 		return;
3079 
3080 	/*
3081 	 * Merge in the direction of the lesser amount of work.
3082 	 */
3083 	if (new_process_refs >= process_refs) {
3084 		cfqq->new_cfqq = new_cfqq;
3085 		new_cfqq->ref += process_refs;
3086 	} else {
3087 		new_cfqq->new_cfqq = cfqq;
3088 		cfqq->ref += new_process_refs;
3089 	}
3090 }
3091 
cfq_choose_wl_type(struct cfq_data * cfqd,struct cfq_group * cfqg,enum wl_class_t wl_class)3092 static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
3093 			struct cfq_group *cfqg, enum wl_class_t wl_class)
3094 {
3095 	struct cfq_queue *queue;
3096 	int i;
3097 	bool key_valid = false;
3098 	u64 lowest_key = 0;
3099 	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
3100 
3101 	for (i = 0; i <= SYNC_WORKLOAD; ++i) {
3102 		/* select the one with lowest rb_key */
3103 		queue = cfq_rb_first(st_for(cfqg, wl_class, i));
3104 		if (queue &&
3105 		    (!key_valid || queue->rb_key < lowest_key)) {
3106 			lowest_key = queue->rb_key;
3107 			cur_best = i;
3108 			key_valid = true;
3109 		}
3110 	}
3111 
3112 	return cur_best;
3113 }
3114 
3115 static void
choose_wl_class_and_type(struct cfq_data * cfqd,struct cfq_group * cfqg)3116 choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
3117 {
3118 	u64 slice;
3119 	unsigned count;
3120 	struct cfq_rb_root *st;
3121 	u64 group_slice;
3122 	enum wl_class_t original_class = cfqd->serving_wl_class;
3123 	u64 now = ktime_get_ns();
3124 
3125 	/* Choose next priority. RT > BE > IDLE */
3126 	if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
3127 		cfqd->serving_wl_class = RT_WORKLOAD;
3128 	else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
3129 		cfqd->serving_wl_class = BE_WORKLOAD;
3130 	else {
3131 		cfqd->serving_wl_class = IDLE_WORKLOAD;
3132 		cfqd->workload_expires = now + jiffies_to_nsecs(1);
3133 		return;
3134 	}
3135 
3136 	if (original_class != cfqd->serving_wl_class)
3137 		goto new_workload;
3138 
3139 	/*
3140 	 * For RT and BE, we have to choose also the type
3141 	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
3142 	 * expiration time
3143 	 */
3144 	st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3145 	count = st->count;
3146 
3147 	/*
3148 	 * check workload expiration, and that we still have other queues ready
3149 	 */
3150 	if (count && !(now > cfqd->workload_expires))
3151 		return;
3152 
3153 new_workload:
3154 	/* otherwise select new workload type */
3155 	cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
3156 					cfqd->serving_wl_class);
3157 	st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3158 	count = st->count;
3159 
3160 	/*
3161 	 * the workload slice is computed as a fraction of target latency
3162 	 * proportional to the number of queues in that workload, over
3163 	 * all the queues in the same priority class
3164 	 */
3165 	group_slice = cfq_group_slice(cfqd, cfqg);
3166 
3167 	slice = div_u64(group_slice * count,
3168 		max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
3169 		      cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
3170 					cfqg)));
3171 
3172 	if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
3173 		u64 tmp;
3174 
3175 		/*
3176 		 * Async queues are currently system wide. Just taking
3177 		 * proportion of queues with-in same group will lead to higher
3178 		 * async ratio system wide as generally root group is going
3179 		 * to have higher weight. A more accurate thing would be to
3180 		 * calculate system wide asnc/sync ratio.
3181 		 */
3182 		tmp = cfqd->cfq_target_latency *
3183 			cfqg_busy_async_queues(cfqd, cfqg);
3184 		tmp = div_u64(tmp, cfqd->busy_queues);
3185 		slice = min_t(u64, slice, tmp);
3186 
3187 		/* async workload slice is scaled down according to
3188 		 * the sync/async slice ratio. */
3189 		slice = div64_u64(slice*cfqd->cfq_slice[0], cfqd->cfq_slice[1]);
3190 	} else
3191 		/* sync workload slice is at least 2 * cfq_slice_idle */
3192 		slice = max(slice, 2 * cfqd->cfq_slice_idle);
3193 
3194 	slice = max_t(u64, slice, CFQ_MIN_TT);
3195 	cfq_log(cfqd, "workload slice:%llu", slice);
3196 	cfqd->workload_expires = now + slice;
3197 }
3198 
cfq_get_next_cfqg(struct cfq_data * cfqd)3199 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
3200 {
3201 	struct cfq_rb_root *st = &cfqd->grp_service_tree;
3202 	struct cfq_group *cfqg;
3203 
3204 	if (RB_EMPTY_ROOT(&st->rb.rb_root))
3205 		return NULL;
3206 	cfqg = cfq_rb_first_group(st);
3207 	update_min_vdisktime(st);
3208 	return cfqg;
3209 }
3210 
cfq_choose_cfqg(struct cfq_data * cfqd)3211 static void cfq_choose_cfqg(struct cfq_data *cfqd)
3212 {
3213 	struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
3214 	u64 now = ktime_get_ns();
3215 
3216 	cfqd->serving_group = cfqg;
3217 
3218 	/* Restore the workload type data */
3219 	if (cfqg->saved_wl_slice) {
3220 		cfqd->workload_expires = now + cfqg->saved_wl_slice;
3221 		cfqd->serving_wl_type = cfqg->saved_wl_type;
3222 		cfqd->serving_wl_class = cfqg->saved_wl_class;
3223 	} else
3224 		cfqd->workload_expires = now - 1;
3225 
3226 	choose_wl_class_and_type(cfqd, cfqg);
3227 }
3228 
3229 /*
3230  * Select a queue for service. If we have a current active queue,
3231  * check whether to continue servicing it, or retrieve and set a new one.
3232  */
cfq_select_queue(struct cfq_data * cfqd)3233 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
3234 {
3235 	struct cfq_queue *cfqq, *new_cfqq = NULL;
3236 	u64 now = ktime_get_ns();
3237 
3238 	cfqq = cfqd->active_queue;
3239 	if (!cfqq)
3240 		goto new_queue;
3241 
3242 	if (!cfqd->rq_queued)
3243 		return NULL;
3244 
3245 	/*
3246 	 * We were waiting for group to get backlogged. Expire the queue
3247 	 */
3248 	if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
3249 		goto expire;
3250 
3251 	/*
3252 	 * The active queue has run out of time, expire it and select new.
3253 	 */
3254 	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
3255 		/*
3256 		 * If slice had not expired at the completion of last request
3257 		 * we might not have turned on wait_busy flag. Don't expire
3258 		 * the queue yet. Allow the group to get backlogged.
3259 		 *
3260 		 * The very fact that we have used the slice, that means we
3261 		 * have been idling all along on this queue and it should be
3262 		 * ok to wait for this request to complete.
3263 		 */
3264 		if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
3265 		    && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3266 			cfqq = NULL;
3267 			goto keep_queue;
3268 		} else
3269 			goto check_group_idle;
3270 	}
3271 
3272 	/*
3273 	 * The active queue has requests and isn't expired, allow it to
3274 	 * dispatch.
3275 	 */
3276 	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3277 		goto keep_queue;
3278 
3279 	/*
3280 	 * If another queue has a request waiting within our mean seek
3281 	 * distance, let it run.  The expire code will check for close
3282 	 * cooperators and put the close queue at the front of the service
3283 	 * tree.  If possible, merge the expiring queue with the new cfqq.
3284 	 */
3285 	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
3286 	if (new_cfqq) {
3287 		if (!cfqq->new_cfqq)
3288 			cfq_setup_merge(cfqq, new_cfqq);
3289 		goto expire;
3290 	}
3291 
3292 	/*
3293 	 * No requests pending. If the active queue still has requests in
3294 	 * flight or is idling for a new request, allow either of these
3295 	 * conditions to happen (or time out) before selecting a new queue.
3296 	 */
3297 	if (hrtimer_active(&cfqd->idle_slice_timer)) {
3298 		cfqq = NULL;
3299 		goto keep_queue;
3300 	}
3301 
3302 	/*
3303 	 * This is a deep seek queue, but the device is much faster than
3304 	 * the queue can deliver, don't idle
3305 	 **/
3306 	if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
3307 	    (cfq_cfqq_slice_new(cfqq) ||
3308 	    (cfqq->slice_end - now > now - cfqq->slice_start))) {
3309 		cfq_clear_cfqq_deep(cfqq);
3310 		cfq_clear_cfqq_idle_window(cfqq);
3311 	}
3312 
3313 	if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3314 		cfqq = NULL;
3315 		goto keep_queue;
3316 	}
3317 
3318 	/*
3319 	 * If group idle is enabled and there are requests dispatched from
3320 	 * this group, wait for requests to complete.
3321 	 */
3322 check_group_idle:
3323 	if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
3324 	    cfqq->cfqg->dispatched &&
3325 	    !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
3326 		cfqq = NULL;
3327 		goto keep_queue;
3328 	}
3329 
3330 expire:
3331 	cfq_slice_expired(cfqd, 0);
3332 new_queue:
3333 	/*
3334 	 * Current queue expired. Check if we have to switch to a new
3335 	 * service tree
3336 	 */
3337 	if (!new_cfqq)
3338 		cfq_choose_cfqg(cfqd);
3339 
3340 	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
3341 keep_queue:
3342 	return cfqq;
3343 }
3344 
__cfq_forced_dispatch_cfqq(struct cfq_queue * cfqq)3345 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
3346 {
3347 	int dispatched = 0;
3348 
3349 	while (cfqq->next_rq) {
3350 		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
3351 		dispatched++;
3352 	}
3353 
3354 	BUG_ON(!list_empty(&cfqq->fifo));
3355 
3356 	/* By default cfqq is not expired if it is empty. Do it explicitly */
3357 	__cfq_slice_expired(cfqq->cfqd, cfqq, 0);
3358 	return dispatched;
3359 }
3360 
3361 /*
3362  * Drain our current requests. Used for barriers and when switching
3363  * io schedulers on-the-fly.
3364  */
cfq_forced_dispatch(struct cfq_data * cfqd)3365 static int cfq_forced_dispatch(struct cfq_data *cfqd)
3366 {
3367 	struct cfq_queue *cfqq;
3368 	int dispatched = 0;
3369 
3370 	/* Expire the timeslice of the current active queue first */
3371 	cfq_slice_expired(cfqd, 0);
3372 	while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
3373 		__cfq_set_active_queue(cfqd, cfqq);
3374 		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3375 	}
3376 
3377 	BUG_ON(cfqd->busy_queues);
3378 
3379 	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3380 	return dispatched;
3381 }
3382 
cfq_slice_used_soon(struct cfq_data * cfqd,struct cfq_queue * cfqq)3383 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3384 	struct cfq_queue *cfqq)
3385 {
3386 	u64 now = ktime_get_ns();
3387 
3388 	/* the queue hasn't finished any request, can't estimate */
3389 	if (cfq_cfqq_slice_new(cfqq))
3390 		return true;
3391 	if (now + cfqd->cfq_slice_idle * cfqq->dispatched > cfqq->slice_end)
3392 		return true;
3393 
3394 	return false;
3395 }
3396 
cfq_may_dispatch(struct cfq_data * cfqd,struct cfq_queue * cfqq)3397 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3398 {
3399 	unsigned int max_dispatch;
3400 
3401 	if (cfq_cfqq_must_dispatch(cfqq))
3402 		return true;
3403 
3404 	/*
3405 	 * Drain async requests before we start sync IO
3406 	 */
3407 	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3408 		return false;
3409 
3410 	/*
3411 	 * If this is an async queue and we have sync IO in flight, let it wait
3412 	 */
3413 	if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3414 		return false;
3415 
3416 	max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3417 	if (cfq_class_idle(cfqq))
3418 		max_dispatch = 1;
3419 
3420 	/*
3421 	 * Does this cfqq already have too much IO in flight?
3422 	 */
3423 	if (cfqq->dispatched >= max_dispatch) {
3424 		bool promote_sync = false;
3425 		/*
3426 		 * idle queue must always only have a single IO in flight
3427 		 */
3428 		if (cfq_class_idle(cfqq))
3429 			return false;
3430 
3431 		/*
3432 		 * If there is only one sync queue
3433 		 * we can ignore async queue here and give the sync
3434 		 * queue no dispatch limit. The reason is a sync queue can
3435 		 * preempt async queue, limiting the sync queue doesn't make
3436 		 * sense. This is useful for aiostress test.
3437 		 */
3438 		if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3439 			promote_sync = true;
3440 
3441 		/*
3442 		 * We have other queues, don't allow more IO from this one
3443 		 */
3444 		if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3445 				!promote_sync)
3446 			return false;
3447 
3448 		/*
3449 		 * Sole queue user, no limit
3450 		 */
3451 		if (cfqd->busy_queues == 1 || promote_sync)
3452 			max_dispatch = -1;
3453 		else
3454 			/*
3455 			 * Normally we start throttling cfqq when cfq_quantum/2
3456 			 * requests have been dispatched. But we can drive
3457 			 * deeper queue depths at the beginning of slice
3458 			 * subjected to upper limit of cfq_quantum.
3459 			 * */
3460 			max_dispatch = cfqd->cfq_quantum;
3461 	}
3462 
3463 	/*
3464 	 * Async queues must wait a bit before being allowed dispatch.
3465 	 * We also ramp up the dispatch depth gradually for async IO,
3466 	 * based on the last sync IO we serviced
3467 	 */
3468 	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3469 		u64 last_sync = ktime_get_ns() - cfqd->last_delayed_sync;
3470 		unsigned int depth;
3471 
3472 		depth = div64_u64(last_sync, cfqd->cfq_slice[1]);
3473 		if (!depth && !cfqq->dispatched)
3474 			depth = 1;
3475 		if (depth < max_dispatch)
3476 			max_dispatch = depth;
3477 	}
3478 
3479 	/*
3480 	 * If we're below the current max, allow a dispatch
3481 	 */
3482 	return cfqq->dispatched < max_dispatch;
3483 }
3484 
3485 /*
3486  * Dispatch a request from cfqq, moving them to the request queue
3487  * dispatch list.
3488  */
cfq_dispatch_request(struct cfq_data * cfqd,struct cfq_queue * cfqq)3489 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3490 {
3491 	struct request *rq;
3492 
3493 	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3494 
3495 	rq = cfq_check_fifo(cfqq);
3496 	if (rq)
3497 		cfq_mark_cfqq_must_dispatch(cfqq);
3498 
3499 	if (!cfq_may_dispatch(cfqd, cfqq))
3500 		return false;
3501 
3502 	/*
3503 	 * follow expired path, else get first next available
3504 	 */
3505 	if (!rq)
3506 		rq = cfqq->next_rq;
3507 	else
3508 		cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
3509 
3510 	/*
3511 	 * insert request into driver dispatch list
3512 	 */
3513 	cfq_dispatch_insert(cfqd->queue, rq);
3514 
3515 	if (!cfqd->active_cic) {
3516 		struct cfq_io_cq *cic = RQ_CIC(rq);
3517 
3518 		atomic_long_inc(&cic->icq.ioc->refcount);
3519 		cfqd->active_cic = cic;
3520 	}
3521 
3522 	return true;
3523 }
3524 
3525 /*
3526  * Find the cfqq that we need to service and move a request from that to the
3527  * dispatch list
3528  */
cfq_dispatch_requests(struct request_queue * q,int force)3529 static int cfq_dispatch_requests(struct request_queue *q, int force)
3530 {
3531 	struct cfq_data *cfqd = q->elevator->elevator_data;
3532 	struct cfq_queue *cfqq;
3533 
3534 	if (!cfqd->busy_queues)
3535 		return 0;
3536 
3537 	if (unlikely(force))
3538 		return cfq_forced_dispatch(cfqd);
3539 
3540 	cfqq = cfq_select_queue(cfqd);
3541 	if (!cfqq)
3542 		return 0;
3543 
3544 	/*
3545 	 * Dispatch a request from this cfqq, if it is allowed
3546 	 */
3547 	if (!cfq_dispatch_request(cfqd, cfqq))
3548 		return 0;
3549 
3550 	cfqq->slice_dispatch++;
3551 	cfq_clear_cfqq_must_dispatch(cfqq);
3552 
3553 	/*
3554 	 * expire an async queue immediately if it has used up its slice. idle
3555 	 * queue always expire after 1 dispatch round.
3556 	 */
3557 	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3558 	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3559 	    cfq_class_idle(cfqq))) {
3560 		cfqq->slice_end = ktime_get_ns() + 1;
3561 		cfq_slice_expired(cfqd, 0);
3562 	}
3563 
3564 	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3565 	return 1;
3566 }
3567 
3568 /*
3569  * task holds one reference to the queue, dropped when task exits. each rq
3570  * in-flight on this queue also holds a reference, dropped when rq is freed.
3571  *
3572  * Each cfq queue took a reference on the parent group. Drop it now.
3573  * queue lock must be held here.
3574  */
cfq_put_queue(struct cfq_queue * cfqq)3575 static void cfq_put_queue(struct cfq_queue *cfqq)
3576 {
3577 	struct cfq_data *cfqd = cfqq->cfqd;
3578 	struct cfq_group *cfqg;
3579 
3580 	BUG_ON(cfqq->ref <= 0);
3581 
3582 	cfqq->ref--;
3583 	if (cfqq->ref)
3584 		return;
3585 
3586 	cfq_log_cfqq(cfqd, cfqq, "put_queue");
3587 	BUG_ON(rb_first(&cfqq->sort_list));
3588 	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3589 	cfqg = cfqq->cfqg;
3590 
3591 	if (unlikely(cfqd->active_queue == cfqq)) {
3592 		__cfq_slice_expired(cfqd, cfqq, 0);
3593 		cfq_schedule_dispatch(cfqd);
3594 	}
3595 
3596 	BUG_ON(cfq_cfqq_on_rr(cfqq));
3597 	kmem_cache_free(cfq_pool, cfqq);
3598 	cfqg_put(cfqg);
3599 }
3600 
cfq_put_cooperator(struct cfq_queue * cfqq)3601 static void cfq_put_cooperator(struct cfq_queue *cfqq)
3602 {
3603 	struct cfq_queue *__cfqq, *next;
3604 
3605 	/*
3606 	 * If this queue was scheduled to merge with another queue, be
3607 	 * sure to drop the reference taken on that queue (and others in
3608 	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
3609 	 */
3610 	__cfqq = cfqq->new_cfqq;
3611 	while (__cfqq) {
3612 		if (__cfqq == cfqq) {
3613 			WARN(1, "cfqq->new_cfqq loop detected\n");
3614 			break;
3615 		}
3616 		next = __cfqq->new_cfqq;
3617 		cfq_put_queue(__cfqq);
3618 		__cfqq = next;
3619 	}
3620 }
3621 
cfq_exit_cfqq(struct cfq_data * cfqd,struct cfq_queue * cfqq)3622 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3623 {
3624 	if (unlikely(cfqq == cfqd->active_queue)) {
3625 		__cfq_slice_expired(cfqd, cfqq, 0);
3626 		cfq_schedule_dispatch(cfqd);
3627 	}
3628 
3629 	cfq_put_cooperator(cfqq);
3630 
3631 	cfq_put_queue(cfqq);
3632 }
3633 
cfq_init_icq(struct io_cq * icq)3634 static void cfq_init_icq(struct io_cq *icq)
3635 {
3636 	struct cfq_io_cq *cic = icq_to_cic(icq);
3637 
3638 	cic->ttime.last_end_request = ktime_get_ns();
3639 }
3640 
cfq_exit_icq(struct io_cq * icq)3641 static void cfq_exit_icq(struct io_cq *icq)
3642 {
3643 	struct cfq_io_cq *cic = icq_to_cic(icq);
3644 	struct cfq_data *cfqd = cic_to_cfqd(cic);
3645 
3646 	if (cic_to_cfqq(cic, false)) {
3647 		cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, false));
3648 		cic_set_cfqq(cic, NULL, false);
3649 	}
3650 
3651 	if (cic_to_cfqq(cic, true)) {
3652 		cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, true));
3653 		cic_set_cfqq(cic, NULL, true);
3654 	}
3655 }
3656 
cfq_init_prio_data(struct cfq_queue * cfqq,struct cfq_io_cq * cic)3657 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3658 {
3659 	struct task_struct *tsk = current;
3660 	int ioprio_class;
3661 
3662 	if (!cfq_cfqq_prio_changed(cfqq))
3663 		return;
3664 
3665 	ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3666 	switch (ioprio_class) {
3667 	default:
3668 		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3669 		/* fall through */
3670 	case IOPRIO_CLASS_NONE:
3671 		/*
3672 		 * no prio set, inherit CPU scheduling settings
3673 		 */
3674 		cfqq->ioprio = task_nice_ioprio(tsk);
3675 		cfqq->ioprio_class = task_nice_ioclass(tsk);
3676 		break;
3677 	case IOPRIO_CLASS_RT:
3678 		cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3679 		cfqq->ioprio_class = IOPRIO_CLASS_RT;
3680 		break;
3681 	case IOPRIO_CLASS_BE:
3682 		cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3683 		cfqq->ioprio_class = IOPRIO_CLASS_BE;
3684 		break;
3685 	case IOPRIO_CLASS_IDLE:
3686 		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3687 		cfqq->ioprio = 7;
3688 		cfq_clear_cfqq_idle_window(cfqq);
3689 		break;
3690 	}
3691 
3692 	/*
3693 	 * keep track of original prio settings in case we have to temporarily
3694 	 * elevate the priority of this queue
3695 	 */
3696 	cfqq->org_ioprio = cfqq->ioprio;
3697 	cfqq->org_ioprio_class = cfqq->ioprio_class;
3698 	cfq_clear_cfqq_prio_changed(cfqq);
3699 }
3700 
check_ioprio_changed(struct cfq_io_cq * cic,struct bio * bio)3701 static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3702 {
3703 	int ioprio = cic->icq.ioc->ioprio;
3704 	struct cfq_data *cfqd = cic_to_cfqd(cic);
3705 	struct cfq_queue *cfqq;
3706 
3707 	/*
3708 	 * Check whether ioprio has changed.  The condition may trigger
3709 	 * spuriously on a newly created cic but there's no harm.
3710 	 */
3711 	if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3712 		return;
3713 
3714 	cfqq = cic_to_cfqq(cic, false);
3715 	if (cfqq) {
3716 		cfq_put_queue(cfqq);
3717 		cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio);
3718 		cic_set_cfqq(cic, cfqq, false);
3719 	}
3720 
3721 	cfqq = cic_to_cfqq(cic, true);
3722 	if (cfqq)
3723 		cfq_mark_cfqq_prio_changed(cfqq);
3724 
3725 	cic->ioprio = ioprio;
3726 }
3727 
cfq_init_cfqq(struct cfq_data * cfqd,struct cfq_queue * cfqq,pid_t pid,bool is_sync)3728 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3729 			  pid_t pid, bool is_sync)
3730 {
3731 	RB_CLEAR_NODE(&cfqq->rb_node);
3732 	RB_CLEAR_NODE(&cfqq->p_node);
3733 	INIT_LIST_HEAD(&cfqq->fifo);
3734 
3735 	cfqq->ref = 0;
3736 	cfqq->cfqd = cfqd;
3737 
3738 	cfq_mark_cfqq_prio_changed(cfqq);
3739 
3740 	if (is_sync) {
3741 		if (!cfq_class_idle(cfqq))
3742 			cfq_mark_cfqq_idle_window(cfqq);
3743 		cfq_mark_cfqq_sync(cfqq);
3744 	}
3745 	cfqq->pid = pid;
3746 }
3747 
3748 #ifdef CONFIG_CFQ_GROUP_IOSCHED
check_blkcg_changed(struct cfq_io_cq * cic,struct bio * bio)3749 static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3750 {
3751 	struct cfq_data *cfqd = cic_to_cfqd(cic);
3752 	struct cfq_queue *cfqq;
3753 	uint64_t serial_nr;
3754 
3755 	rcu_read_lock();
3756 	serial_nr = bio_blkcg(bio)->css.serial_nr;
3757 	rcu_read_unlock();
3758 
3759 	/*
3760 	 * Check whether blkcg has changed.  The condition may trigger
3761 	 * spuriously on a newly created cic but there's no harm.
3762 	 */
3763 	if (unlikely(!cfqd) || likely(cic->blkcg_serial_nr == serial_nr))
3764 		return;
3765 
3766 	/*
3767 	 * Drop reference to queues.  New queues will be assigned in new
3768 	 * group upon arrival of fresh requests.
3769 	 */
3770 	cfqq = cic_to_cfqq(cic, false);
3771 	if (cfqq) {
3772 		cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3773 		cic_set_cfqq(cic, NULL, false);
3774 		cfq_put_queue(cfqq);
3775 	}
3776 
3777 	cfqq = cic_to_cfqq(cic, true);
3778 	if (cfqq) {
3779 		cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3780 		cic_set_cfqq(cic, NULL, true);
3781 		cfq_put_queue(cfqq);
3782 	}
3783 
3784 	cic->blkcg_serial_nr = serial_nr;
3785 }
3786 #else
check_blkcg_changed(struct cfq_io_cq * cic,struct bio * bio)3787 static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3788 {
3789 }
3790 #endif  /* CONFIG_CFQ_GROUP_IOSCHED */
3791 
3792 static struct cfq_queue **
cfq_async_queue_prio(struct cfq_group * cfqg,int ioprio_class,int ioprio)3793 cfq_async_queue_prio(struct cfq_group *cfqg, int ioprio_class, int ioprio)
3794 {
3795 	switch (ioprio_class) {
3796 	case IOPRIO_CLASS_RT:
3797 		return &cfqg->async_cfqq[0][ioprio];
3798 	case IOPRIO_CLASS_NONE:
3799 		ioprio = IOPRIO_NORM;
3800 		/* fall through */
3801 	case IOPRIO_CLASS_BE:
3802 		return &cfqg->async_cfqq[1][ioprio];
3803 	case IOPRIO_CLASS_IDLE:
3804 		return &cfqg->async_idle_cfqq;
3805 	default:
3806 		BUG();
3807 	}
3808 }
3809 
3810 static struct cfq_queue *
cfq_get_queue(struct cfq_data * cfqd,bool is_sync,struct cfq_io_cq * cic,struct bio * bio)3811 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3812 	      struct bio *bio)
3813 {
3814 	int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3815 	int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3816 	struct cfq_queue **async_cfqq = NULL;
3817 	struct cfq_queue *cfqq;
3818 	struct cfq_group *cfqg;
3819 
3820 	rcu_read_lock();
3821 	cfqg = cfq_lookup_cfqg(cfqd, bio_blkcg(bio));
3822 	if (!cfqg) {
3823 		cfqq = &cfqd->oom_cfqq;
3824 		goto out;
3825 	}
3826 
3827 	if (!is_sync) {
3828 		if (!ioprio_valid(cic->ioprio)) {
3829 			struct task_struct *tsk = current;
3830 			ioprio = task_nice_ioprio(tsk);
3831 			ioprio_class = task_nice_ioclass(tsk);
3832 		}
3833 		async_cfqq = cfq_async_queue_prio(cfqg, ioprio_class, ioprio);
3834 		cfqq = *async_cfqq;
3835 		if (cfqq)
3836 			goto out;
3837 	}
3838 
3839 	cfqq = kmem_cache_alloc_node(cfq_pool,
3840 				     GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
3841 				     cfqd->queue->node);
3842 	if (!cfqq) {
3843 		cfqq = &cfqd->oom_cfqq;
3844 		goto out;
3845 	}
3846 
3847 	/* cfq_init_cfqq() assumes cfqq->ioprio_class is initialized. */
3848 	cfqq->ioprio_class = IOPRIO_CLASS_NONE;
3849 	cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3850 	cfq_init_prio_data(cfqq, cic);
3851 	cfq_link_cfqq_cfqg(cfqq, cfqg);
3852 	cfq_log_cfqq(cfqd, cfqq, "alloced");
3853 
3854 	if (async_cfqq) {
3855 		/* a new async queue is created, pin and remember */
3856 		cfqq->ref++;
3857 		*async_cfqq = cfqq;
3858 	}
3859 out:
3860 	cfqq->ref++;
3861 	rcu_read_unlock();
3862 	return cfqq;
3863 }
3864 
3865 static void
__cfq_update_io_thinktime(struct cfq_ttime * ttime,u64 slice_idle)3866 __cfq_update_io_thinktime(struct cfq_ttime *ttime, u64 slice_idle)
3867 {
3868 	u64 elapsed = ktime_get_ns() - ttime->last_end_request;
3869 	elapsed = min(elapsed, 2UL * slice_idle);
3870 
3871 	ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3872 	ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed,  8);
3873 	ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
3874 				     ttime->ttime_samples);
3875 }
3876 
3877 static void
cfq_update_io_thinktime(struct cfq_data * cfqd,struct cfq_queue * cfqq,struct cfq_io_cq * cic)3878 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3879 			struct cfq_io_cq *cic)
3880 {
3881 	if (cfq_cfqq_sync(cfqq)) {
3882 		__cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3883 		__cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3884 			cfqd->cfq_slice_idle);
3885 	}
3886 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3887 	__cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3888 #endif
3889 }
3890 
3891 static void
cfq_update_io_seektime(struct cfq_data * cfqd,struct cfq_queue * cfqq,struct request * rq)3892 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3893 		       struct request *rq)
3894 {
3895 	sector_t sdist = 0;
3896 	sector_t n_sec = blk_rq_sectors(rq);
3897 	if (cfqq->last_request_pos) {
3898 		if (cfqq->last_request_pos < blk_rq_pos(rq))
3899 			sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3900 		else
3901 			sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3902 	}
3903 
3904 	cfqq->seek_history <<= 1;
3905 	if (blk_queue_nonrot(cfqd->queue))
3906 		cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3907 	else
3908 		cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3909 }
3910 
req_noidle(struct request * req)3911 static inline bool req_noidle(struct request *req)
3912 {
3913 	return req_op(req) == REQ_OP_WRITE &&
3914 		(req->cmd_flags & (REQ_SYNC | REQ_IDLE)) == REQ_SYNC;
3915 }
3916 
3917 /*
3918  * Disable idle window if the process thinks too long or seeks so much that
3919  * it doesn't matter
3920  */
3921 static void
cfq_update_idle_window(struct cfq_data * cfqd,struct cfq_queue * cfqq,struct cfq_io_cq * cic)3922 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3923 		       struct cfq_io_cq *cic)
3924 {
3925 	int old_idle, enable_idle;
3926 
3927 	/*
3928 	 * Don't idle for async or idle io prio class
3929 	 */
3930 	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3931 		return;
3932 
3933 	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3934 
3935 	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3936 		cfq_mark_cfqq_deep(cfqq);
3937 
3938 	if (cfqq->next_rq && req_noidle(cfqq->next_rq))
3939 		enable_idle = 0;
3940 	else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3941 		 !cfqd->cfq_slice_idle ||
3942 		 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3943 		enable_idle = 0;
3944 	else if (sample_valid(cic->ttime.ttime_samples)) {
3945 		if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3946 			enable_idle = 0;
3947 		else
3948 			enable_idle = 1;
3949 	}
3950 
3951 	if (old_idle != enable_idle) {
3952 		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3953 		if (enable_idle)
3954 			cfq_mark_cfqq_idle_window(cfqq);
3955 		else
3956 			cfq_clear_cfqq_idle_window(cfqq);
3957 	}
3958 }
3959 
3960 /*
3961  * Check if new_cfqq should preempt the currently active queue. Return 0 for
3962  * no or if we aren't sure, a 1 will cause a preempt.
3963  */
3964 static bool
cfq_should_preempt(struct cfq_data * cfqd,struct cfq_queue * new_cfqq,struct request * rq)3965 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3966 		   struct request *rq)
3967 {
3968 	struct cfq_queue *cfqq;
3969 
3970 	cfqq = cfqd->active_queue;
3971 	if (!cfqq)
3972 		return false;
3973 
3974 	if (cfq_class_idle(new_cfqq))
3975 		return false;
3976 
3977 	if (cfq_class_idle(cfqq))
3978 		return true;
3979 
3980 	/*
3981 	 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3982 	 */
3983 	if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3984 		return false;
3985 
3986 	/*
3987 	 * if the new request is sync, but the currently running queue is
3988 	 * not, let the sync request have priority.
3989 	 */
3990 	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
3991 		return true;
3992 
3993 	/*
3994 	 * Treat ancestors of current cgroup the same way as current cgroup.
3995 	 * For anybody else we disallow preemption to guarantee service
3996 	 * fairness among cgroups.
3997 	 */
3998 	if (!cfqg_is_descendant(cfqq->cfqg, new_cfqq->cfqg))
3999 		return false;
4000 
4001 	if (cfq_slice_used(cfqq))
4002 		return true;
4003 
4004 	/*
4005 	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
4006 	 */
4007 	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
4008 		return true;
4009 
4010 	WARN_ON_ONCE(cfqq->ioprio_class != new_cfqq->ioprio_class);
4011 	/* Allow preemption only if we are idling on sync-noidle tree */
4012 	if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
4013 	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
4014 	    RB_EMPTY_ROOT(&cfqq->sort_list))
4015 		return true;
4016 
4017 	/*
4018 	 * So both queues are sync. Let the new request get disk time if
4019 	 * it's a metadata request and the current queue is doing regular IO.
4020 	 */
4021 	if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
4022 		return true;
4023 
4024 	/* An idle queue should not be idle now for some reason */
4025 	if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
4026 		return true;
4027 
4028 	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
4029 		return false;
4030 
4031 	/*
4032 	 * if this request is as-good as one we would expect from the
4033 	 * current cfqq, let it preempt
4034 	 */
4035 	if (cfq_rq_close(cfqd, cfqq, rq))
4036 		return true;
4037 
4038 	return false;
4039 }
4040 
4041 /*
4042  * cfqq preempts the active queue. if we allowed preempt with no slice left,
4043  * let it have half of its nominal slice.
4044  */
cfq_preempt_queue(struct cfq_data * cfqd,struct cfq_queue * cfqq)4045 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4046 {
4047 	enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
4048 
4049 	cfq_log_cfqq(cfqd, cfqq, "preempt");
4050 	cfq_slice_expired(cfqd, 1);
4051 
4052 	/*
4053 	 * workload type is changed, don't save slice, otherwise preempt
4054 	 * doesn't happen
4055 	 */
4056 	if (old_type != cfqq_type(cfqq))
4057 		cfqq->cfqg->saved_wl_slice = 0;
4058 
4059 	/*
4060 	 * Put the new queue at the front of the of the current list,
4061 	 * so we know that it will be selected next.
4062 	 */
4063 	BUG_ON(!cfq_cfqq_on_rr(cfqq));
4064 
4065 	cfq_service_tree_add(cfqd, cfqq, 1);
4066 
4067 	cfqq->slice_end = 0;
4068 	cfq_mark_cfqq_slice_new(cfqq);
4069 }
4070 
4071 /*
4072  * Called when a new fs request (rq) is added (to cfqq). Check if there's
4073  * something we should do about it
4074  */
4075 static void
cfq_rq_enqueued(struct cfq_data * cfqd,struct cfq_queue * cfqq,struct request * rq)4076 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
4077 		struct request *rq)
4078 {
4079 	struct cfq_io_cq *cic = RQ_CIC(rq);
4080 
4081 	cfqd->rq_queued++;
4082 	if (rq->cmd_flags & REQ_PRIO)
4083 		cfqq->prio_pending++;
4084 
4085 	cfq_update_io_thinktime(cfqd, cfqq, cic);
4086 	cfq_update_io_seektime(cfqd, cfqq, rq);
4087 	cfq_update_idle_window(cfqd, cfqq, cic);
4088 
4089 	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4090 
4091 	if (cfqq == cfqd->active_queue) {
4092 		/*
4093 		 * Remember that we saw a request from this process, but
4094 		 * don't start queuing just yet. Otherwise we risk seeing lots
4095 		 * of tiny requests, because we disrupt the normal plugging
4096 		 * and merging. If the request is already larger than a single
4097 		 * page, let it rip immediately. For that case we assume that
4098 		 * merging is already done. Ditto for a busy system that
4099 		 * has other work pending, don't risk delaying until the
4100 		 * idle timer unplug to continue working.
4101 		 */
4102 		if (cfq_cfqq_wait_request(cfqq)) {
4103 			if (blk_rq_bytes(rq) > PAGE_SIZE ||
4104 			    cfqd->busy_queues > 1) {
4105 				cfq_del_timer(cfqd, cfqq);
4106 				cfq_clear_cfqq_wait_request(cfqq);
4107 				__blk_run_queue(cfqd->queue);
4108 			} else {
4109 				cfqg_stats_update_idle_time(cfqq->cfqg);
4110 				cfq_mark_cfqq_must_dispatch(cfqq);
4111 			}
4112 		}
4113 	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
4114 		/*
4115 		 * not the active queue - expire current slice if it is
4116 		 * idle and has expired it's mean thinktime or this new queue
4117 		 * has some old slice time left and is of higher priority or
4118 		 * this new queue is RT and the current one is BE
4119 		 */
4120 		cfq_preempt_queue(cfqd, cfqq);
4121 		__blk_run_queue(cfqd->queue);
4122 	}
4123 }
4124 
cfq_insert_request(struct request_queue * q,struct request * rq)4125 static void cfq_insert_request(struct request_queue *q, struct request *rq)
4126 {
4127 	struct cfq_data *cfqd = q->elevator->elevator_data;
4128 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
4129 
4130 	cfq_log_cfqq(cfqd, cfqq, "insert_request");
4131 	cfq_init_prio_data(cfqq, RQ_CIC(rq));
4132 
4133 	rq->fifo_time = ktime_get_ns() + cfqd->cfq_fifo_expire[rq_is_sync(rq)];
4134 	list_add_tail(&rq->queuelist, &cfqq->fifo);
4135 	cfq_add_rq_rb(rq);
4136 	cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
4137 				 rq->cmd_flags);
4138 	cfq_rq_enqueued(cfqd, cfqq, rq);
4139 }
4140 
4141 /*
4142  * Update hw_tag based on peak queue depth over 50 samples under
4143  * sufficient load.
4144  */
cfq_update_hw_tag(struct cfq_data * cfqd)4145 static void cfq_update_hw_tag(struct cfq_data *cfqd)
4146 {
4147 	struct cfq_queue *cfqq = cfqd->active_queue;
4148 
4149 	if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
4150 		cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
4151 
4152 	if (cfqd->hw_tag == 1)
4153 		return;
4154 
4155 	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
4156 	    cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
4157 		return;
4158 
4159 	/*
4160 	 * If active queue hasn't enough requests and can idle, cfq might not
4161 	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
4162 	 * case
4163 	 */
4164 	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
4165 	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
4166 	    CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
4167 		return;
4168 
4169 	if (cfqd->hw_tag_samples++ < 50)
4170 		return;
4171 
4172 	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
4173 		cfqd->hw_tag = 1;
4174 	else
4175 		cfqd->hw_tag = 0;
4176 }
4177 
cfq_should_wait_busy(struct cfq_data * cfqd,struct cfq_queue * cfqq)4178 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4179 {
4180 	struct cfq_io_cq *cic = cfqd->active_cic;
4181 	u64 now = ktime_get_ns();
4182 
4183 	/* If the queue already has requests, don't wait */
4184 	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4185 		return false;
4186 
4187 	/* If there are other queues in the group, don't wait */
4188 	if (cfqq->cfqg->nr_cfqq > 1)
4189 		return false;
4190 
4191 	/* the only queue in the group, but think time is big */
4192 	if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
4193 		return false;
4194 
4195 	if (cfq_slice_used(cfqq))
4196 		return true;
4197 
4198 	/* if slice left is less than think time, wait busy */
4199 	if (cic && sample_valid(cic->ttime.ttime_samples)
4200 	    && (cfqq->slice_end - now < cic->ttime.ttime_mean))
4201 		return true;
4202 
4203 	/*
4204 	 * If think times is less than a jiffy than ttime_mean=0 and above
4205 	 * will not be true. It might happen that slice has not expired yet
4206 	 * but will expire soon (4-5 ns) during select_queue(). To cover the
4207 	 * case where think time is less than a jiffy, mark the queue wait
4208 	 * busy if only 1 jiffy is left in the slice.
4209 	 */
4210 	if (cfqq->slice_end - now <= jiffies_to_nsecs(1))
4211 		return true;
4212 
4213 	return false;
4214 }
4215 
cfq_completed_request(struct request_queue * q,struct request * rq)4216 static void cfq_completed_request(struct request_queue *q, struct request *rq)
4217 {
4218 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
4219 	struct cfq_data *cfqd = cfqq->cfqd;
4220 	const int sync = rq_is_sync(rq);
4221 	u64 now = ktime_get_ns();
4222 
4223 	cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", req_noidle(rq));
4224 
4225 	cfq_update_hw_tag(cfqd);
4226 
4227 	WARN_ON(!cfqd->rq_in_driver);
4228 	WARN_ON(!cfqq->dispatched);
4229 	cfqd->rq_in_driver--;
4230 	cfqq->dispatched--;
4231 	(RQ_CFQG(rq))->dispatched--;
4232 	cfqg_stats_update_completion(cfqq->cfqg, rq->start_time_ns,
4233 				     rq->io_start_time_ns, rq->cmd_flags);
4234 
4235 	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
4236 
4237 	if (sync) {
4238 		struct cfq_rb_root *st;
4239 
4240 		RQ_CIC(rq)->ttime.last_end_request = now;
4241 
4242 		if (cfq_cfqq_on_rr(cfqq))
4243 			st = cfqq->service_tree;
4244 		else
4245 			st = st_for(cfqq->cfqg, cfqq_class(cfqq),
4246 					cfqq_type(cfqq));
4247 
4248 		st->ttime.last_end_request = now;
4249 		if (rq->start_time_ns + cfqd->cfq_fifo_expire[1] <= now)
4250 			cfqd->last_delayed_sync = now;
4251 	}
4252 
4253 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4254 	cfqq->cfqg->ttime.last_end_request = now;
4255 #endif
4256 
4257 	/*
4258 	 * If this is the active queue, check if it needs to be expired,
4259 	 * or if we want to idle in case it has no pending requests.
4260 	 */
4261 	if (cfqd->active_queue == cfqq) {
4262 		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
4263 
4264 		if (cfq_cfqq_slice_new(cfqq)) {
4265 			cfq_set_prio_slice(cfqd, cfqq);
4266 			cfq_clear_cfqq_slice_new(cfqq);
4267 		}
4268 
4269 		/*
4270 		 * Should we wait for next request to come in before we expire
4271 		 * the queue.
4272 		 */
4273 		if (cfq_should_wait_busy(cfqd, cfqq)) {
4274 			u64 extend_sl = cfqd->cfq_slice_idle;
4275 			if (!cfqd->cfq_slice_idle)
4276 				extend_sl = cfqd->cfq_group_idle;
4277 			cfqq->slice_end = now + extend_sl;
4278 			cfq_mark_cfqq_wait_busy(cfqq);
4279 			cfq_log_cfqq(cfqd, cfqq, "will busy wait");
4280 		}
4281 
4282 		/*
4283 		 * Idling is not enabled on:
4284 		 * - expired queues
4285 		 * - idle-priority queues
4286 		 * - async queues
4287 		 * - queues with still some requests queued
4288 		 * - when there is a close cooperator
4289 		 */
4290 		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
4291 			cfq_slice_expired(cfqd, 1);
4292 		else if (sync && cfqq_empty &&
4293 			 !cfq_close_cooperator(cfqd, cfqq)) {
4294 			cfq_arm_slice_timer(cfqd);
4295 		}
4296 	}
4297 
4298 	if (!cfqd->rq_in_driver)
4299 		cfq_schedule_dispatch(cfqd);
4300 }
4301 
cfqq_boost_on_prio(struct cfq_queue * cfqq,unsigned int op)4302 static void cfqq_boost_on_prio(struct cfq_queue *cfqq, unsigned int op)
4303 {
4304 	/*
4305 	 * If REQ_PRIO is set, boost class and prio level, if it's below
4306 	 * BE/NORM. If prio is not set, restore the potentially boosted
4307 	 * class/prio level.
4308 	 */
4309 	if (!(op & REQ_PRIO)) {
4310 		cfqq->ioprio_class = cfqq->org_ioprio_class;
4311 		cfqq->ioprio = cfqq->org_ioprio;
4312 	} else {
4313 		if (cfq_class_idle(cfqq))
4314 			cfqq->ioprio_class = IOPRIO_CLASS_BE;
4315 		if (cfqq->ioprio > IOPRIO_NORM)
4316 			cfqq->ioprio = IOPRIO_NORM;
4317 	}
4318 }
4319 
__cfq_may_queue(struct cfq_queue * cfqq)4320 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
4321 {
4322 	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
4323 		cfq_mark_cfqq_must_alloc_slice(cfqq);
4324 		return ELV_MQUEUE_MUST;
4325 	}
4326 
4327 	return ELV_MQUEUE_MAY;
4328 }
4329 
cfq_may_queue(struct request_queue * q,unsigned int op)4330 static int cfq_may_queue(struct request_queue *q, unsigned int op)
4331 {
4332 	struct cfq_data *cfqd = q->elevator->elevator_data;
4333 	struct task_struct *tsk = current;
4334 	struct cfq_io_cq *cic;
4335 	struct cfq_queue *cfqq;
4336 
4337 	/*
4338 	 * don't force setup of a queue from here, as a call to may_queue
4339 	 * does not necessarily imply that a request actually will be queued.
4340 	 * so just lookup a possibly existing queue, or return 'may queue'
4341 	 * if that fails
4342 	 */
4343 	cic = cfq_cic_lookup(cfqd, tsk->io_context);
4344 	if (!cic)
4345 		return ELV_MQUEUE_MAY;
4346 
4347 	cfqq = cic_to_cfqq(cic, op_is_sync(op));
4348 	if (cfqq) {
4349 		cfq_init_prio_data(cfqq, cic);
4350 		cfqq_boost_on_prio(cfqq, op);
4351 
4352 		return __cfq_may_queue(cfqq);
4353 	}
4354 
4355 	return ELV_MQUEUE_MAY;
4356 }
4357 
4358 /*
4359  * queue lock held here
4360  */
cfq_put_request(struct request * rq)4361 static void cfq_put_request(struct request *rq)
4362 {
4363 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
4364 
4365 	if (cfqq) {
4366 		const int rw = rq_data_dir(rq);
4367 
4368 		BUG_ON(!cfqq->allocated[rw]);
4369 		cfqq->allocated[rw]--;
4370 
4371 		/* Put down rq reference on cfqg */
4372 		cfqg_put(RQ_CFQG(rq));
4373 		rq->elv.priv[0] = NULL;
4374 		rq->elv.priv[1] = NULL;
4375 
4376 		cfq_put_queue(cfqq);
4377 	}
4378 }
4379 
4380 static struct cfq_queue *
cfq_merge_cfqqs(struct cfq_data * cfqd,struct cfq_io_cq * cic,struct cfq_queue * cfqq)4381 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
4382 		struct cfq_queue *cfqq)
4383 {
4384 	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
4385 	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
4386 	cfq_mark_cfqq_coop(cfqq->new_cfqq);
4387 	cfq_put_queue(cfqq);
4388 	return cic_to_cfqq(cic, 1);
4389 }
4390 
4391 /*
4392  * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4393  * was the last process referring to said cfqq.
4394  */
4395 static struct cfq_queue *
split_cfqq(struct cfq_io_cq * cic,struct cfq_queue * cfqq)4396 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4397 {
4398 	if (cfqq_process_refs(cfqq) == 1) {
4399 		cfqq->pid = current->pid;
4400 		cfq_clear_cfqq_coop(cfqq);
4401 		cfq_clear_cfqq_split_coop(cfqq);
4402 		return cfqq;
4403 	}
4404 
4405 	cic_set_cfqq(cic, NULL, 1);
4406 
4407 	cfq_put_cooperator(cfqq);
4408 
4409 	cfq_put_queue(cfqq);
4410 	return NULL;
4411 }
4412 /*
4413  * Allocate cfq data structures associated with this request.
4414  */
4415 static int
cfq_set_request(struct request_queue * q,struct request * rq,struct bio * bio,gfp_t gfp_mask)4416 cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4417 		gfp_t gfp_mask)
4418 {
4419 	struct cfq_data *cfqd = q->elevator->elevator_data;
4420 	struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4421 	const int rw = rq_data_dir(rq);
4422 	const bool is_sync = rq_is_sync(rq);
4423 	struct cfq_queue *cfqq;
4424 
4425 	spin_lock_irq(q->queue_lock);
4426 
4427 	check_ioprio_changed(cic, bio);
4428 	check_blkcg_changed(cic, bio);
4429 new_queue:
4430 	cfqq = cic_to_cfqq(cic, is_sync);
4431 	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4432 		if (cfqq)
4433 			cfq_put_queue(cfqq);
4434 		cfqq = cfq_get_queue(cfqd, is_sync, cic, bio);
4435 		cic_set_cfqq(cic, cfqq, is_sync);
4436 	} else {
4437 		/*
4438 		 * If the queue was seeky for too long, break it apart.
4439 		 */
4440 		if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4441 			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4442 			cfqq = split_cfqq(cic, cfqq);
4443 			if (!cfqq)
4444 				goto new_queue;
4445 		}
4446 
4447 		/*
4448 		 * Check to see if this queue is scheduled to merge with
4449 		 * another, closely cooperating queue.  The merging of
4450 		 * queues happens here as it must be done in process context.
4451 		 * The reference on new_cfqq was taken in merge_cfqqs.
4452 		 */
4453 		if (cfqq->new_cfqq)
4454 			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4455 	}
4456 
4457 	cfqq->allocated[rw]++;
4458 
4459 	cfqq->ref++;
4460 	cfqg_get(cfqq->cfqg);
4461 	rq->elv.priv[0] = cfqq;
4462 	rq->elv.priv[1] = cfqq->cfqg;
4463 	spin_unlock_irq(q->queue_lock);
4464 
4465 	return 0;
4466 }
4467 
cfq_kick_queue(struct work_struct * work)4468 static void cfq_kick_queue(struct work_struct *work)
4469 {
4470 	struct cfq_data *cfqd =
4471 		container_of(work, struct cfq_data, unplug_work);
4472 	struct request_queue *q = cfqd->queue;
4473 
4474 	spin_lock_irq(q->queue_lock);
4475 	__blk_run_queue(cfqd->queue);
4476 	spin_unlock_irq(q->queue_lock);
4477 }
4478 
4479 /*
4480  * Timer running if the active_queue is currently idling inside its time slice
4481  */
cfq_idle_slice_timer(struct hrtimer * timer)4482 static enum hrtimer_restart cfq_idle_slice_timer(struct hrtimer *timer)
4483 {
4484 	struct cfq_data *cfqd = container_of(timer, struct cfq_data,
4485 					     idle_slice_timer);
4486 	struct cfq_queue *cfqq;
4487 	unsigned long flags;
4488 	int timed_out = 1;
4489 
4490 	cfq_log(cfqd, "idle timer fired");
4491 
4492 	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4493 
4494 	cfqq = cfqd->active_queue;
4495 	if (cfqq) {
4496 		timed_out = 0;
4497 
4498 		/*
4499 		 * We saw a request before the queue expired, let it through
4500 		 */
4501 		if (cfq_cfqq_must_dispatch(cfqq))
4502 			goto out_kick;
4503 
4504 		/*
4505 		 * expired
4506 		 */
4507 		if (cfq_slice_used(cfqq))
4508 			goto expire;
4509 
4510 		/*
4511 		 * only expire and reinvoke request handler, if there are
4512 		 * other queues with pending requests
4513 		 */
4514 		if (!cfqd->busy_queues)
4515 			goto out_cont;
4516 
4517 		/*
4518 		 * not expired and it has a request pending, let it dispatch
4519 		 */
4520 		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4521 			goto out_kick;
4522 
4523 		/*
4524 		 * Queue depth flag is reset only when the idle didn't succeed
4525 		 */
4526 		cfq_clear_cfqq_deep(cfqq);
4527 	}
4528 expire:
4529 	cfq_slice_expired(cfqd, timed_out);
4530 out_kick:
4531 	cfq_schedule_dispatch(cfqd);
4532 out_cont:
4533 	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4534 	return HRTIMER_NORESTART;
4535 }
4536 
cfq_shutdown_timer_wq(struct cfq_data * cfqd)4537 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4538 {
4539 	hrtimer_cancel(&cfqd->idle_slice_timer);
4540 	cancel_work_sync(&cfqd->unplug_work);
4541 }
4542 
cfq_exit_queue(struct elevator_queue * e)4543 static void cfq_exit_queue(struct elevator_queue *e)
4544 {
4545 	struct cfq_data *cfqd = e->elevator_data;
4546 	struct request_queue *q = cfqd->queue;
4547 
4548 	cfq_shutdown_timer_wq(cfqd);
4549 
4550 	spin_lock_irq(q->queue_lock);
4551 
4552 	if (cfqd->active_queue)
4553 		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4554 
4555 	spin_unlock_irq(q->queue_lock);
4556 
4557 	cfq_shutdown_timer_wq(cfqd);
4558 
4559 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4560 	blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4561 #else
4562 	kfree(cfqd->root_group);
4563 #endif
4564 	kfree(cfqd);
4565 }
4566 
cfq_init_queue(struct request_queue * q,struct elevator_type * e)4567 static int cfq_init_queue(struct request_queue *q, struct elevator_type *e)
4568 {
4569 	struct cfq_data *cfqd;
4570 	struct blkcg_gq *blkg __maybe_unused;
4571 	int i, ret;
4572 	struct elevator_queue *eq;
4573 
4574 	eq = elevator_alloc(q, e);
4575 	if (!eq)
4576 		return -ENOMEM;
4577 
4578 	cfqd = kzalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
4579 	if (!cfqd) {
4580 		kobject_put(&eq->kobj);
4581 		return -ENOMEM;
4582 	}
4583 	eq->elevator_data = cfqd;
4584 
4585 	cfqd->queue = q;
4586 	spin_lock_irq(q->queue_lock);
4587 	q->elevator = eq;
4588 	spin_unlock_irq(q->queue_lock);
4589 
4590 	/* Init root service tree */
4591 	cfqd->grp_service_tree = CFQ_RB_ROOT;
4592 
4593 	/* Init root group and prefer root group over other groups by default */
4594 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4595 	ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4596 	if (ret)
4597 		goto out_free;
4598 
4599 	cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4600 #else
4601 	ret = -ENOMEM;
4602 	cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4603 					GFP_KERNEL, cfqd->queue->node);
4604 	if (!cfqd->root_group)
4605 		goto out_free;
4606 
4607 	cfq_init_cfqg_base(cfqd->root_group);
4608 	cfqd->root_group->weight = 2 * CFQ_WEIGHT_LEGACY_DFL;
4609 	cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_LEGACY_DFL;
4610 #endif
4611 
4612 	/*
4613 	 * Not strictly needed (since RB_ROOT just clears the node and we
4614 	 * zeroed cfqd on alloc), but better be safe in case someone decides
4615 	 * to add magic to the rb code
4616 	 */
4617 	for (i = 0; i < CFQ_PRIO_LISTS; i++)
4618 		cfqd->prio_trees[i] = RB_ROOT;
4619 
4620 	/*
4621 	 * Our fallback cfqq if cfq_get_queue() runs into OOM issues.
4622 	 * Grab a permanent reference to it, so that the normal code flow
4623 	 * will not attempt to free it.  oom_cfqq is linked to root_group
4624 	 * but shouldn't hold a reference as it'll never be unlinked.  Lose
4625 	 * the reference from linking right away.
4626 	 */
4627 	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4628 	cfqd->oom_cfqq.ref++;
4629 
4630 	spin_lock_irq(q->queue_lock);
4631 	cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4632 	cfqg_put(cfqd->root_group);
4633 	spin_unlock_irq(q->queue_lock);
4634 
4635 	hrtimer_init(&cfqd->idle_slice_timer, CLOCK_MONOTONIC,
4636 		     HRTIMER_MODE_REL);
4637 	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4638 
4639 	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4640 
4641 	cfqd->cfq_quantum = cfq_quantum;
4642 	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4643 	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4644 	cfqd->cfq_back_max = cfq_back_max;
4645 	cfqd->cfq_back_penalty = cfq_back_penalty;
4646 	cfqd->cfq_slice[0] = cfq_slice_async;
4647 	cfqd->cfq_slice[1] = cfq_slice_sync;
4648 	cfqd->cfq_target_latency = cfq_target_latency;
4649 	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4650 	cfqd->cfq_slice_idle = cfq_slice_idle;
4651 	cfqd->cfq_group_idle = cfq_group_idle;
4652 	cfqd->cfq_latency = 1;
4653 	cfqd->hw_tag = -1;
4654 	/*
4655 	 * we optimistically start assuming sync ops weren't delayed in last
4656 	 * second, in order to have larger depth for async operations.
4657 	 */
4658 	cfqd->last_delayed_sync = ktime_get_ns() - NSEC_PER_SEC;
4659 	return 0;
4660 
4661 out_free:
4662 	kfree(cfqd);
4663 	kobject_put(&eq->kobj);
4664 	return ret;
4665 }
4666 
cfq_registered_queue(struct request_queue * q)4667 static void cfq_registered_queue(struct request_queue *q)
4668 {
4669 	struct elevator_queue *e = q->elevator;
4670 	struct cfq_data *cfqd = e->elevator_data;
4671 
4672 	/*
4673 	 * Default to IOPS mode with no idling for SSDs
4674 	 */
4675 	if (blk_queue_nonrot(q))
4676 		cfqd->cfq_slice_idle = 0;
4677 	wbt_disable_default(q);
4678 }
4679 
4680 /*
4681  * sysfs parts below -->
4682  */
4683 static ssize_t
cfq_var_show(unsigned int var,char * page)4684 cfq_var_show(unsigned int var, char *page)
4685 {
4686 	return sprintf(page, "%u\n", var);
4687 }
4688 
4689 static void
cfq_var_store(unsigned int * var,const char * page)4690 cfq_var_store(unsigned int *var, const char *page)
4691 {
4692 	char *p = (char *) page;
4693 
4694 	*var = simple_strtoul(p, &p, 10);
4695 }
4696 
4697 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
4698 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
4699 {									\
4700 	struct cfq_data *cfqd = e->elevator_data;			\
4701 	u64 __data = __VAR;						\
4702 	if (__CONV)							\
4703 		__data = div_u64(__data, NSEC_PER_MSEC);			\
4704 	return cfq_var_show(__data, (page));				\
4705 }
4706 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4707 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4708 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4709 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4710 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4711 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4712 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4713 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4714 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4715 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4716 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4717 SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4718 #undef SHOW_FUNCTION
4719 
4720 #define USEC_SHOW_FUNCTION(__FUNC, __VAR)				\
4721 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
4722 {									\
4723 	struct cfq_data *cfqd = e->elevator_data;			\
4724 	u64 __data = __VAR;						\
4725 	__data = div_u64(__data, NSEC_PER_USEC);			\
4726 	return cfq_var_show(__data, (page));				\
4727 }
4728 USEC_SHOW_FUNCTION(cfq_slice_idle_us_show, cfqd->cfq_slice_idle);
4729 USEC_SHOW_FUNCTION(cfq_group_idle_us_show, cfqd->cfq_group_idle);
4730 USEC_SHOW_FUNCTION(cfq_slice_sync_us_show, cfqd->cfq_slice[1]);
4731 USEC_SHOW_FUNCTION(cfq_slice_async_us_show, cfqd->cfq_slice[0]);
4732 USEC_SHOW_FUNCTION(cfq_target_latency_us_show, cfqd->cfq_target_latency);
4733 #undef USEC_SHOW_FUNCTION
4734 
4735 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
4736 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
4737 {									\
4738 	struct cfq_data *cfqd = e->elevator_data;			\
4739 	unsigned int __data, __min = (MIN), __max = (MAX);		\
4740 									\
4741 	cfq_var_store(&__data, (page));					\
4742 	if (__data < __min)						\
4743 		__data = __min;						\
4744 	else if (__data > __max)					\
4745 		__data = __max;						\
4746 	if (__CONV)							\
4747 		*(__PTR) = (u64)__data * NSEC_PER_MSEC;			\
4748 	else								\
4749 		*(__PTR) = __data;					\
4750 	return count;							\
4751 }
4752 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4753 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4754 		UINT_MAX, 1);
4755 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4756 		UINT_MAX, 1);
4757 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4758 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4759 		UINT_MAX, 0);
4760 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4761 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4762 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4763 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4764 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4765 		UINT_MAX, 0);
4766 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4767 STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4768 #undef STORE_FUNCTION
4769 
4770 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)			\
4771 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
4772 {									\
4773 	struct cfq_data *cfqd = e->elevator_data;			\
4774 	unsigned int __data, __min = (MIN), __max = (MAX);		\
4775 									\
4776 	cfq_var_store(&__data, (page));					\
4777 	if (__data < __min)						\
4778 		__data = __min;						\
4779 	else if (__data > __max)					\
4780 		__data = __max;						\
4781 	*(__PTR) = (u64)__data * NSEC_PER_USEC;				\
4782 	return count;							\
4783 }
4784 USEC_STORE_FUNCTION(cfq_slice_idle_us_store, &cfqd->cfq_slice_idle, 0, UINT_MAX);
4785 USEC_STORE_FUNCTION(cfq_group_idle_us_store, &cfqd->cfq_group_idle, 0, UINT_MAX);
4786 USEC_STORE_FUNCTION(cfq_slice_sync_us_store, &cfqd->cfq_slice[1], 1, UINT_MAX);
4787 USEC_STORE_FUNCTION(cfq_slice_async_us_store, &cfqd->cfq_slice[0], 1, UINT_MAX);
4788 USEC_STORE_FUNCTION(cfq_target_latency_us_store, &cfqd->cfq_target_latency, 1, UINT_MAX);
4789 #undef USEC_STORE_FUNCTION
4790 
4791 #define CFQ_ATTR(name) \
4792 	__ATTR(name, 0644, cfq_##name##_show, cfq_##name##_store)
4793 
4794 static struct elv_fs_entry cfq_attrs[] = {
4795 	CFQ_ATTR(quantum),
4796 	CFQ_ATTR(fifo_expire_sync),
4797 	CFQ_ATTR(fifo_expire_async),
4798 	CFQ_ATTR(back_seek_max),
4799 	CFQ_ATTR(back_seek_penalty),
4800 	CFQ_ATTR(slice_sync),
4801 	CFQ_ATTR(slice_sync_us),
4802 	CFQ_ATTR(slice_async),
4803 	CFQ_ATTR(slice_async_us),
4804 	CFQ_ATTR(slice_async_rq),
4805 	CFQ_ATTR(slice_idle),
4806 	CFQ_ATTR(slice_idle_us),
4807 	CFQ_ATTR(group_idle),
4808 	CFQ_ATTR(group_idle_us),
4809 	CFQ_ATTR(low_latency),
4810 	CFQ_ATTR(target_latency),
4811 	CFQ_ATTR(target_latency_us),
4812 	__ATTR_NULL
4813 };
4814 
4815 static struct elevator_type iosched_cfq = {
4816 	.ops.sq = {
4817 		.elevator_merge_fn = 		cfq_merge,
4818 		.elevator_merged_fn =		cfq_merged_request,
4819 		.elevator_merge_req_fn =	cfq_merged_requests,
4820 		.elevator_allow_bio_merge_fn =	cfq_allow_bio_merge,
4821 		.elevator_allow_rq_merge_fn =	cfq_allow_rq_merge,
4822 		.elevator_bio_merged_fn =	cfq_bio_merged,
4823 		.elevator_dispatch_fn =		cfq_dispatch_requests,
4824 		.elevator_add_req_fn =		cfq_insert_request,
4825 		.elevator_activate_req_fn =	cfq_activate_request,
4826 		.elevator_deactivate_req_fn =	cfq_deactivate_request,
4827 		.elevator_completed_req_fn =	cfq_completed_request,
4828 		.elevator_former_req_fn =	elv_rb_former_request,
4829 		.elevator_latter_req_fn =	elv_rb_latter_request,
4830 		.elevator_init_icq_fn =		cfq_init_icq,
4831 		.elevator_exit_icq_fn =		cfq_exit_icq,
4832 		.elevator_set_req_fn =		cfq_set_request,
4833 		.elevator_put_req_fn =		cfq_put_request,
4834 		.elevator_may_queue_fn =	cfq_may_queue,
4835 		.elevator_init_fn =		cfq_init_queue,
4836 		.elevator_exit_fn =		cfq_exit_queue,
4837 		.elevator_registered_fn =	cfq_registered_queue,
4838 	},
4839 	.icq_size	=	sizeof(struct cfq_io_cq),
4840 	.icq_align	=	__alignof__(struct cfq_io_cq),
4841 	.elevator_attrs =	cfq_attrs,
4842 	.elevator_name	=	"cfq",
4843 	.elevator_owner =	THIS_MODULE,
4844 };
4845 
4846 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4847 static struct blkcg_policy blkcg_policy_cfq = {
4848 	.dfl_cftypes		= cfq_blkcg_files,
4849 	.legacy_cftypes		= cfq_blkcg_legacy_files,
4850 
4851 	.cpd_alloc_fn		= cfq_cpd_alloc,
4852 	.cpd_init_fn		= cfq_cpd_init,
4853 	.cpd_free_fn		= cfq_cpd_free,
4854 	.cpd_bind_fn		= cfq_cpd_bind,
4855 
4856 	.pd_alloc_fn		= cfq_pd_alloc,
4857 	.pd_init_fn		= cfq_pd_init,
4858 	.pd_offline_fn		= cfq_pd_offline,
4859 	.pd_free_fn		= cfq_pd_free,
4860 	.pd_reset_stats_fn	= cfq_pd_reset_stats,
4861 };
4862 #endif
4863 
cfq_init(void)4864 static int __init cfq_init(void)
4865 {
4866 	int ret;
4867 
4868 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4869 	ret = blkcg_policy_register(&blkcg_policy_cfq);
4870 	if (ret)
4871 		return ret;
4872 #else
4873 	cfq_group_idle = 0;
4874 #endif
4875 
4876 	ret = -ENOMEM;
4877 	cfq_pool = KMEM_CACHE(cfq_queue, 0);
4878 	if (!cfq_pool)
4879 		goto err_pol_unreg;
4880 
4881 	ret = elv_register(&iosched_cfq);
4882 	if (ret)
4883 		goto err_free_pool;
4884 
4885 	return 0;
4886 
4887 err_free_pool:
4888 	kmem_cache_destroy(cfq_pool);
4889 err_pol_unreg:
4890 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4891 	blkcg_policy_unregister(&blkcg_policy_cfq);
4892 #endif
4893 	return ret;
4894 }
4895 
cfq_exit(void)4896 static void __exit cfq_exit(void)
4897 {
4898 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4899 	blkcg_policy_unregister(&blkcg_policy_cfq);
4900 #endif
4901 	elv_unregister(&iosched_cfq);
4902 	kmem_cache_destroy(cfq_pool);
4903 }
4904 
4905 module_init(cfq_init);
4906 module_exit(cfq_exit);
4907 
4908 MODULE_AUTHOR("Jens Axboe");
4909 MODULE_LICENSE("GPL");
4910 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
4911