1 /*
2 * buffered writeback throttling. loosely based on CoDel. We can't drop
3 * packets for IO scheduling, so the logic is something like this:
4 *
5 * - Monitor latencies in a defined window of time.
6 * - If the minimum latency in the above window exceeds some target, increment
7 * scaling step and scale down queue depth by a factor of 2x. The monitoring
8 * window is then shrunk to 100 / sqrt(scaling step + 1).
9 * - For any window where we don't have solid data on what the latencies
10 * look like, retain status quo.
11 * - If latencies look good, decrement scaling step.
12 * - If we're only doing writes, allow the scaling step to go negative. This
13 * will temporarily boost write performance, snapping back to a stable
14 * scaling step of 0 if reads show up or the heavy writers finish. Unlike
15 * positive scaling steps where we shrink the monitoring window, a negative
16 * scaling step retains the default step==0 window size.
17 *
18 * Copyright (C) 2016 Jens Axboe
19 *
20 */
21 #include <linux/kernel.h>
22 #include <linux/blk_types.h>
23 #include <linux/slab.h>
24 #include <linux/backing-dev.h>
25 #include <linux/swap.h>
26
27 #include "blk-wbt.h"
28 #include "blk-rq-qos.h"
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/wbt.h>
32
wbt_clear_state(struct request * rq)33 static inline void wbt_clear_state(struct request *rq)
34 {
35 rq->wbt_flags = 0;
36 }
37
wbt_flags(struct request * rq)38 static inline enum wbt_flags wbt_flags(struct request *rq)
39 {
40 return rq->wbt_flags;
41 }
42
wbt_is_tracked(struct request * rq)43 static inline bool wbt_is_tracked(struct request *rq)
44 {
45 return rq->wbt_flags & WBT_TRACKED;
46 }
47
wbt_is_read(struct request * rq)48 static inline bool wbt_is_read(struct request *rq)
49 {
50 return rq->wbt_flags & WBT_READ;
51 }
52
53 enum {
54 /*
55 * Default setting, we'll scale up (to 75% of QD max) or down (min 1)
56 * from here depending on device stats
57 */
58 RWB_DEF_DEPTH = 16,
59
60 /*
61 * 100msec window
62 */
63 RWB_WINDOW_NSEC = 100 * 1000 * 1000ULL,
64
65 /*
66 * Disregard stats, if we don't meet this minimum
67 */
68 RWB_MIN_WRITE_SAMPLES = 3,
69
70 /*
71 * If we have this number of consecutive windows with not enough
72 * information to scale up or down, scale up.
73 */
74 RWB_UNKNOWN_BUMP = 5,
75 };
76
rwb_enabled(struct rq_wb * rwb)77 static inline bool rwb_enabled(struct rq_wb *rwb)
78 {
79 return rwb && rwb->wb_normal != 0;
80 }
81
wb_timestamp(struct rq_wb * rwb,unsigned long * var)82 static void wb_timestamp(struct rq_wb *rwb, unsigned long *var)
83 {
84 if (rwb_enabled(rwb)) {
85 const unsigned long cur = jiffies;
86
87 if (cur != *var)
88 *var = cur;
89 }
90 }
91
92 /*
93 * If a task was rate throttled in balance_dirty_pages() within the last
94 * second or so, use that to indicate a higher cleaning rate.
95 */
wb_recent_wait(struct rq_wb * rwb)96 static bool wb_recent_wait(struct rq_wb *rwb)
97 {
98 struct bdi_writeback *wb = &rwb->rqos.q->backing_dev_info->wb;
99
100 return time_before(jiffies, wb->dirty_sleep + HZ);
101 }
102
get_rq_wait(struct rq_wb * rwb,enum wbt_flags wb_acct)103 static inline struct rq_wait *get_rq_wait(struct rq_wb *rwb,
104 enum wbt_flags wb_acct)
105 {
106 if (wb_acct & WBT_KSWAPD)
107 return &rwb->rq_wait[WBT_RWQ_KSWAPD];
108 else if (wb_acct & WBT_DISCARD)
109 return &rwb->rq_wait[WBT_RWQ_DISCARD];
110
111 return &rwb->rq_wait[WBT_RWQ_BG];
112 }
113
rwb_wake_all(struct rq_wb * rwb)114 static void rwb_wake_all(struct rq_wb *rwb)
115 {
116 int i;
117
118 for (i = 0; i < WBT_NUM_RWQ; i++) {
119 struct rq_wait *rqw = &rwb->rq_wait[i];
120
121 if (wq_has_sleeper(&rqw->wait))
122 wake_up_all(&rqw->wait);
123 }
124 }
125
wbt_rqw_done(struct rq_wb * rwb,struct rq_wait * rqw,enum wbt_flags wb_acct)126 static void wbt_rqw_done(struct rq_wb *rwb, struct rq_wait *rqw,
127 enum wbt_flags wb_acct)
128 {
129 int inflight, limit;
130
131 inflight = atomic_dec_return(&rqw->inflight);
132
133 /*
134 * wbt got disabled with IO in flight. Wake up any potential
135 * waiters, we don't have to do more than that.
136 */
137 if (unlikely(!rwb_enabled(rwb))) {
138 rwb_wake_all(rwb);
139 return;
140 }
141
142 /*
143 * For discards, our limit is always the background. For writes, if
144 * the device does write back caching, drop further down before we
145 * wake people up.
146 */
147 if (wb_acct & WBT_DISCARD)
148 limit = rwb->wb_background;
149 else if (rwb->wc && !wb_recent_wait(rwb))
150 limit = 0;
151 else
152 limit = rwb->wb_normal;
153
154 /*
155 * Don't wake anyone up if we are above the normal limit.
156 */
157 if (inflight && inflight >= limit)
158 return;
159
160 if (wq_has_sleeper(&rqw->wait)) {
161 int diff = limit - inflight;
162
163 if (!inflight || diff >= rwb->wb_background / 2)
164 wake_up_all(&rqw->wait);
165 }
166 }
167
__wbt_done(struct rq_qos * rqos,enum wbt_flags wb_acct)168 static void __wbt_done(struct rq_qos *rqos, enum wbt_flags wb_acct)
169 {
170 struct rq_wb *rwb = RQWB(rqos);
171 struct rq_wait *rqw;
172
173 if (!(wb_acct & WBT_TRACKED))
174 return;
175
176 rqw = get_rq_wait(rwb, wb_acct);
177 wbt_rqw_done(rwb, rqw, wb_acct);
178 }
179
180 /*
181 * Called on completion of a request. Note that it's also called when
182 * a request is merged, when the request gets freed.
183 */
wbt_done(struct rq_qos * rqos,struct request * rq)184 static void wbt_done(struct rq_qos *rqos, struct request *rq)
185 {
186 struct rq_wb *rwb = RQWB(rqos);
187
188 if (!wbt_is_tracked(rq)) {
189 if (rwb->sync_cookie == rq) {
190 rwb->sync_issue = 0;
191 rwb->sync_cookie = NULL;
192 }
193
194 if (wbt_is_read(rq))
195 wb_timestamp(rwb, &rwb->last_comp);
196 } else {
197 WARN_ON_ONCE(rq == rwb->sync_cookie);
198 __wbt_done(rqos, wbt_flags(rq));
199 }
200 wbt_clear_state(rq);
201 }
202
stat_sample_valid(struct blk_rq_stat * stat)203 static inline bool stat_sample_valid(struct blk_rq_stat *stat)
204 {
205 /*
206 * We need at least one read sample, and a minimum of
207 * RWB_MIN_WRITE_SAMPLES. We require some write samples to know
208 * that it's writes impacting us, and not just some sole read on
209 * a device that is in a lower power state.
210 */
211 return (stat[READ].nr_samples >= 1 &&
212 stat[WRITE].nr_samples >= RWB_MIN_WRITE_SAMPLES);
213 }
214
rwb_sync_issue_lat(struct rq_wb * rwb)215 static u64 rwb_sync_issue_lat(struct rq_wb *rwb)
216 {
217 u64 now, issue = READ_ONCE(rwb->sync_issue);
218
219 if (!issue || !rwb->sync_cookie)
220 return 0;
221
222 now = ktime_to_ns(ktime_get());
223 return now - issue;
224 }
225
226 enum {
227 LAT_OK = 1,
228 LAT_UNKNOWN,
229 LAT_UNKNOWN_WRITES,
230 LAT_EXCEEDED,
231 };
232
latency_exceeded(struct rq_wb * rwb,struct blk_rq_stat * stat)233 static int latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat)
234 {
235 struct backing_dev_info *bdi = rwb->rqos.q->backing_dev_info;
236 struct rq_depth *rqd = &rwb->rq_depth;
237 u64 thislat;
238
239 /*
240 * If our stored sync issue exceeds the window size, or it
241 * exceeds our min target AND we haven't logged any entries,
242 * flag the latency as exceeded. wbt works off completion latencies,
243 * but for a flooded device, a single sync IO can take a long time
244 * to complete after being issued. If this time exceeds our
245 * monitoring window AND we didn't see any other completions in that
246 * window, then count that sync IO as a violation of the latency.
247 */
248 thislat = rwb_sync_issue_lat(rwb);
249 if (thislat > rwb->cur_win_nsec ||
250 (thislat > rwb->min_lat_nsec && !stat[READ].nr_samples)) {
251 trace_wbt_lat(bdi, thislat);
252 return LAT_EXCEEDED;
253 }
254
255 /*
256 * No read/write mix, if stat isn't valid
257 */
258 if (!stat_sample_valid(stat)) {
259 /*
260 * If we had writes in this stat window and the window is
261 * current, we're only doing writes. If a task recently
262 * waited or still has writes in flights, consider us doing
263 * just writes as well.
264 */
265 if (stat[WRITE].nr_samples || wb_recent_wait(rwb) ||
266 wbt_inflight(rwb))
267 return LAT_UNKNOWN_WRITES;
268 return LAT_UNKNOWN;
269 }
270
271 /*
272 * If the 'min' latency exceeds our target, step down.
273 */
274 if (stat[READ].min > rwb->min_lat_nsec) {
275 trace_wbt_lat(bdi, stat[READ].min);
276 trace_wbt_stat(bdi, stat);
277 return LAT_EXCEEDED;
278 }
279
280 if (rqd->scale_step)
281 trace_wbt_stat(bdi, stat);
282
283 return LAT_OK;
284 }
285
rwb_trace_step(struct rq_wb * rwb,const char * msg)286 static void rwb_trace_step(struct rq_wb *rwb, const char *msg)
287 {
288 struct backing_dev_info *bdi = rwb->rqos.q->backing_dev_info;
289 struct rq_depth *rqd = &rwb->rq_depth;
290
291 trace_wbt_step(bdi, msg, rqd->scale_step, rwb->cur_win_nsec,
292 rwb->wb_background, rwb->wb_normal, rqd->max_depth);
293 }
294
calc_wb_limits(struct rq_wb * rwb)295 static void calc_wb_limits(struct rq_wb *rwb)
296 {
297 if (rwb->min_lat_nsec == 0) {
298 rwb->wb_normal = rwb->wb_background = 0;
299 } else if (rwb->rq_depth.max_depth <= 2) {
300 rwb->wb_normal = rwb->rq_depth.max_depth;
301 rwb->wb_background = 1;
302 } else {
303 rwb->wb_normal = (rwb->rq_depth.max_depth + 1) / 2;
304 rwb->wb_background = (rwb->rq_depth.max_depth + 3) / 4;
305 }
306 }
307
scale_up(struct rq_wb * rwb)308 static void scale_up(struct rq_wb *rwb)
309 {
310 rq_depth_scale_up(&rwb->rq_depth);
311 calc_wb_limits(rwb);
312 rwb->unknown_cnt = 0;
313 rwb_wake_all(rwb);
314 rwb_trace_step(rwb, "scale up");
315 }
316
scale_down(struct rq_wb * rwb,bool hard_throttle)317 static void scale_down(struct rq_wb *rwb, bool hard_throttle)
318 {
319 rq_depth_scale_down(&rwb->rq_depth, hard_throttle);
320 calc_wb_limits(rwb);
321 rwb->unknown_cnt = 0;
322 rwb_trace_step(rwb, "scale down");
323 }
324
rwb_arm_timer(struct rq_wb * rwb)325 static void rwb_arm_timer(struct rq_wb *rwb)
326 {
327 struct rq_depth *rqd = &rwb->rq_depth;
328
329 if (rqd->scale_step > 0) {
330 /*
331 * We should speed this up, using some variant of a fast
332 * integer inverse square root calculation. Since we only do
333 * this for every window expiration, it's not a huge deal,
334 * though.
335 */
336 rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4,
337 int_sqrt((rqd->scale_step + 1) << 8));
338 } else {
339 /*
340 * For step < 0, we don't want to increase/decrease the
341 * window size.
342 */
343 rwb->cur_win_nsec = rwb->win_nsec;
344 }
345
346 blk_stat_activate_nsecs(rwb->cb, rwb->cur_win_nsec);
347 }
348
wb_timer_fn(struct blk_stat_callback * cb)349 static void wb_timer_fn(struct blk_stat_callback *cb)
350 {
351 struct rq_wb *rwb = cb->data;
352 struct rq_depth *rqd = &rwb->rq_depth;
353 unsigned int inflight = wbt_inflight(rwb);
354 int status;
355
356 status = latency_exceeded(rwb, cb->stat);
357
358 trace_wbt_timer(rwb->rqos.q->backing_dev_info, status, rqd->scale_step,
359 inflight);
360
361 /*
362 * If we exceeded the latency target, step down. If we did not,
363 * step one level up. If we don't know enough to say either exceeded
364 * or ok, then don't do anything.
365 */
366 switch (status) {
367 case LAT_EXCEEDED:
368 scale_down(rwb, true);
369 break;
370 case LAT_OK:
371 scale_up(rwb);
372 break;
373 case LAT_UNKNOWN_WRITES:
374 /*
375 * We started a the center step, but don't have a valid
376 * read/write sample, but we do have writes going on.
377 * Allow step to go negative, to increase write perf.
378 */
379 scale_up(rwb);
380 break;
381 case LAT_UNKNOWN:
382 if (++rwb->unknown_cnt < RWB_UNKNOWN_BUMP)
383 break;
384 /*
385 * We get here when previously scaled reduced depth, and we
386 * currently don't have a valid read/write sample. For that
387 * case, slowly return to center state (step == 0).
388 */
389 if (rqd->scale_step > 0)
390 scale_up(rwb);
391 else if (rqd->scale_step < 0)
392 scale_down(rwb, false);
393 break;
394 default:
395 break;
396 }
397
398 /*
399 * Re-arm timer, if we have IO in flight
400 */
401 if (rqd->scale_step || inflight)
402 rwb_arm_timer(rwb);
403 }
404
__wbt_update_limits(struct rq_wb * rwb)405 static void __wbt_update_limits(struct rq_wb *rwb)
406 {
407 struct rq_depth *rqd = &rwb->rq_depth;
408
409 rqd->scale_step = 0;
410 rqd->scaled_max = false;
411
412 rq_depth_calc_max_depth(rqd);
413 calc_wb_limits(rwb);
414
415 rwb_wake_all(rwb);
416 }
417
wbt_update_limits(struct request_queue * q)418 void wbt_update_limits(struct request_queue *q)
419 {
420 struct rq_qos *rqos = wbt_rq_qos(q);
421 if (!rqos)
422 return;
423 __wbt_update_limits(RQWB(rqos));
424 }
425
wbt_get_min_lat(struct request_queue * q)426 u64 wbt_get_min_lat(struct request_queue *q)
427 {
428 struct rq_qos *rqos = wbt_rq_qos(q);
429 if (!rqos)
430 return 0;
431 return RQWB(rqos)->min_lat_nsec;
432 }
433
wbt_set_min_lat(struct request_queue * q,u64 val)434 void wbt_set_min_lat(struct request_queue *q, u64 val)
435 {
436 struct rq_qos *rqos = wbt_rq_qos(q);
437 if (!rqos)
438 return;
439 RQWB(rqos)->min_lat_nsec = val;
440 RQWB(rqos)->enable_state = WBT_STATE_ON_MANUAL;
441 __wbt_update_limits(RQWB(rqos));
442 }
443
444
close_io(struct rq_wb * rwb)445 static bool close_io(struct rq_wb *rwb)
446 {
447 const unsigned long now = jiffies;
448
449 return time_before(now, rwb->last_issue + HZ / 10) ||
450 time_before(now, rwb->last_comp + HZ / 10);
451 }
452
453 #define REQ_HIPRIO (REQ_SYNC | REQ_META | REQ_PRIO)
454
get_limit(struct rq_wb * rwb,unsigned long rw)455 static inline unsigned int get_limit(struct rq_wb *rwb, unsigned long rw)
456 {
457 unsigned int limit;
458
459 /*
460 * If we got disabled, just return UINT_MAX. This ensures that
461 * we'll properly inc a new IO, and dec+wakeup at the end.
462 */
463 if (!rwb_enabled(rwb))
464 return UINT_MAX;
465
466 if ((rw & REQ_OP_MASK) == REQ_OP_DISCARD)
467 return rwb->wb_background;
468
469 /*
470 * At this point we know it's a buffered write. If this is
471 * kswapd trying to free memory, or REQ_SYNC is set, then
472 * it's WB_SYNC_ALL writeback, and we'll use the max limit for
473 * that. If the write is marked as a background write, then use
474 * the idle limit, or go to normal if we haven't had competing
475 * IO for a bit.
476 */
477 if ((rw & REQ_HIPRIO) || wb_recent_wait(rwb) || current_is_kswapd())
478 limit = rwb->rq_depth.max_depth;
479 else if ((rw & REQ_BACKGROUND) || close_io(rwb)) {
480 /*
481 * If less than 100ms since we completed unrelated IO,
482 * limit us to half the depth for background writeback.
483 */
484 limit = rwb->wb_background;
485 } else
486 limit = rwb->wb_normal;
487
488 return limit;
489 }
490
491 struct wbt_wait_data {
492 struct wait_queue_entry wq;
493 struct task_struct *task;
494 struct rq_wb *rwb;
495 struct rq_wait *rqw;
496 unsigned long rw;
497 bool got_token;
498 };
499
wbt_wake_function(struct wait_queue_entry * curr,unsigned int mode,int wake_flags,void * key)500 static int wbt_wake_function(struct wait_queue_entry *curr, unsigned int mode,
501 int wake_flags, void *key)
502 {
503 struct wbt_wait_data *data = container_of(curr, struct wbt_wait_data,
504 wq);
505
506 /*
507 * If we fail to get a budget, return -1 to interrupt the wake up
508 * loop in __wake_up_common.
509 */
510 if (!rq_wait_inc_below(data->rqw, get_limit(data->rwb, data->rw)))
511 return -1;
512
513 data->got_token = true;
514 list_del_init(&curr->entry);
515 wake_up_process(data->task);
516 return 1;
517 }
518
519 /*
520 * Block if we will exceed our limit, or if we are currently waiting for
521 * the timer to kick off queuing again.
522 */
__wbt_wait(struct rq_wb * rwb,enum wbt_flags wb_acct,unsigned long rw,spinlock_t * lock)523 static void __wbt_wait(struct rq_wb *rwb, enum wbt_flags wb_acct,
524 unsigned long rw, spinlock_t *lock)
525 __releases(lock)
526 __acquires(lock)
527 {
528 struct rq_wait *rqw = get_rq_wait(rwb, wb_acct);
529 struct wbt_wait_data data = {
530 .wq = {
531 .func = wbt_wake_function,
532 .entry = LIST_HEAD_INIT(data.wq.entry),
533 },
534 .task = current,
535 .rwb = rwb,
536 .rqw = rqw,
537 .rw = rw,
538 };
539 bool has_sleeper;
540
541 has_sleeper = wq_has_sleeper(&rqw->wait);
542 if (!has_sleeper && rq_wait_inc_below(rqw, get_limit(rwb, rw)))
543 return;
544
545 prepare_to_wait_exclusive(&rqw->wait, &data.wq, TASK_UNINTERRUPTIBLE);
546 do {
547 if (data.got_token)
548 break;
549
550 if (!has_sleeper &&
551 rq_wait_inc_below(rqw, get_limit(rwb, rw))) {
552 finish_wait(&rqw->wait, &data.wq);
553
554 /*
555 * We raced with wbt_wake_function() getting a token,
556 * which means we now have two. Put our local token
557 * and wake anyone else potentially waiting for one.
558 */
559 if (data.got_token)
560 wbt_rqw_done(rwb, rqw, wb_acct);
561 break;
562 }
563
564 if (lock) {
565 spin_unlock_irq(lock);
566 io_schedule();
567 spin_lock_irq(lock);
568 } else
569 io_schedule();
570
571 has_sleeper = false;
572 } while (1);
573
574 finish_wait(&rqw->wait, &data.wq);
575 }
576
wbt_should_throttle(struct rq_wb * rwb,struct bio * bio)577 static inline bool wbt_should_throttle(struct rq_wb *rwb, struct bio *bio)
578 {
579 switch (bio_op(bio)) {
580 case REQ_OP_WRITE:
581 /*
582 * Don't throttle WRITE_ODIRECT
583 */
584 if ((bio->bi_opf & (REQ_SYNC | REQ_IDLE)) ==
585 (REQ_SYNC | REQ_IDLE))
586 return false;
587 /* fallthrough */
588 case REQ_OP_DISCARD:
589 return true;
590 default:
591 return false;
592 }
593 }
594
bio_to_wbt_flags(struct rq_wb * rwb,struct bio * bio)595 static enum wbt_flags bio_to_wbt_flags(struct rq_wb *rwb, struct bio *bio)
596 {
597 enum wbt_flags flags = 0;
598
599 if (!rwb_enabled(rwb))
600 return 0;
601
602 if (bio_op(bio) == REQ_OP_READ) {
603 flags = WBT_READ;
604 } else if (wbt_should_throttle(rwb, bio)) {
605 if (current_is_kswapd())
606 flags |= WBT_KSWAPD;
607 if (bio_op(bio) == REQ_OP_DISCARD)
608 flags |= WBT_DISCARD;
609 flags |= WBT_TRACKED;
610 }
611 return flags;
612 }
613
wbt_cleanup(struct rq_qos * rqos,struct bio * bio)614 static void wbt_cleanup(struct rq_qos *rqos, struct bio *bio)
615 {
616 struct rq_wb *rwb = RQWB(rqos);
617 enum wbt_flags flags = bio_to_wbt_flags(rwb, bio);
618 __wbt_done(rqos, flags);
619 }
620
621 /*
622 * Returns true if the IO request should be accounted, false if not.
623 * May sleep, if we have exceeded the writeback limits. Caller can pass
624 * in an irq held spinlock, if it holds one when calling this function.
625 * If we do sleep, we'll release and re-grab it.
626 */
wbt_wait(struct rq_qos * rqos,struct bio * bio,spinlock_t * lock)627 static void wbt_wait(struct rq_qos *rqos, struct bio *bio, spinlock_t *lock)
628 {
629 struct rq_wb *rwb = RQWB(rqos);
630 enum wbt_flags flags;
631
632 flags = bio_to_wbt_flags(rwb, bio);
633 if (!(flags & WBT_TRACKED)) {
634 if (flags & WBT_READ)
635 wb_timestamp(rwb, &rwb->last_issue);
636 return;
637 }
638
639 __wbt_wait(rwb, flags, bio->bi_opf, lock);
640
641 if (!blk_stat_is_active(rwb->cb))
642 rwb_arm_timer(rwb);
643 }
644
wbt_track(struct rq_qos * rqos,struct request * rq,struct bio * bio)645 static void wbt_track(struct rq_qos *rqos, struct request *rq, struct bio *bio)
646 {
647 struct rq_wb *rwb = RQWB(rqos);
648 rq->wbt_flags |= bio_to_wbt_flags(rwb, bio);
649 }
650
wbt_issue(struct rq_qos * rqos,struct request * rq)651 void wbt_issue(struct rq_qos *rqos, struct request *rq)
652 {
653 struct rq_wb *rwb = RQWB(rqos);
654
655 if (!rwb_enabled(rwb))
656 return;
657
658 /*
659 * Track sync issue, in case it takes a long time to complete. Allows us
660 * to react quicker, if a sync IO takes a long time to complete. Note
661 * that this is just a hint. The request can go away when it completes,
662 * so it's important we never dereference it. We only use the address to
663 * compare with, which is why we store the sync_issue time locally.
664 */
665 if (wbt_is_read(rq) && !rwb->sync_issue) {
666 rwb->sync_cookie = rq;
667 rwb->sync_issue = rq->io_start_time_ns;
668 }
669 }
670
wbt_requeue(struct rq_qos * rqos,struct request * rq)671 void wbt_requeue(struct rq_qos *rqos, struct request *rq)
672 {
673 struct rq_wb *rwb = RQWB(rqos);
674 if (!rwb_enabled(rwb))
675 return;
676 if (rq == rwb->sync_cookie) {
677 rwb->sync_issue = 0;
678 rwb->sync_cookie = NULL;
679 }
680 }
681
wbt_set_queue_depth(struct request_queue * q,unsigned int depth)682 void wbt_set_queue_depth(struct request_queue *q, unsigned int depth)
683 {
684 struct rq_qos *rqos = wbt_rq_qos(q);
685 if (rqos) {
686 RQWB(rqos)->rq_depth.queue_depth = depth;
687 __wbt_update_limits(RQWB(rqos));
688 }
689 }
690
wbt_set_write_cache(struct request_queue * q,bool write_cache_on)691 void wbt_set_write_cache(struct request_queue *q, bool write_cache_on)
692 {
693 struct rq_qos *rqos = wbt_rq_qos(q);
694 if (rqos)
695 RQWB(rqos)->wc = write_cache_on;
696 }
697
698 /*
699 * Enable wbt if defaults are configured that way
700 */
wbt_enable_default(struct request_queue * q)701 void wbt_enable_default(struct request_queue *q)
702 {
703 struct rq_qos *rqos = wbt_rq_qos(q);
704 /* Throttling already enabled? */
705 if (rqos)
706 return;
707
708 /* Queue not registered? Maybe shutting down... */
709 if (!test_bit(QUEUE_FLAG_REGISTERED, &q->queue_flags))
710 return;
711
712 if ((q->mq_ops && IS_ENABLED(CONFIG_BLK_WBT_MQ)) ||
713 (q->request_fn && IS_ENABLED(CONFIG_BLK_WBT_SQ)))
714 wbt_init(q);
715 }
716 EXPORT_SYMBOL_GPL(wbt_enable_default);
717
wbt_default_latency_nsec(struct request_queue * q)718 u64 wbt_default_latency_nsec(struct request_queue *q)
719 {
720 /*
721 * We default to 2msec for non-rotational storage, and 75msec
722 * for rotational storage.
723 */
724 if (blk_queue_nonrot(q))
725 return 2000000ULL;
726 else
727 return 75000000ULL;
728 }
729
wbt_data_dir(const struct request * rq)730 static int wbt_data_dir(const struct request *rq)
731 {
732 const int op = req_op(rq);
733
734 if (op == REQ_OP_READ)
735 return READ;
736 else if (op_is_write(op))
737 return WRITE;
738
739 /* don't account */
740 return -1;
741 }
742
wbt_exit(struct rq_qos * rqos)743 static void wbt_exit(struct rq_qos *rqos)
744 {
745 struct rq_wb *rwb = RQWB(rqos);
746 struct request_queue *q = rqos->q;
747
748 blk_stat_remove_callback(q, rwb->cb);
749 blk_stat_free_callback(rwb->cb);
750 kfree(rwb);
751 }
752
753 /*
754 * Disable wbt, if enabled by default.
755 */
wbt_disable_default(struct request_queue * q)756 void wbt_disable_default(struct request_queue *q)
757 {
758 struct rq_qos *rqos = wbt_rq_qos(q);
759 struct rq_wb *rwb;
760 if (!rqos)
761 return;
762 rwb = RQWB(rqos);
763 if (rwb->enable_state == WBT_STATE_ON_DEFAULT)
764 rwb->wb_normal = 0;
765 }
766 EXPORT_SYMBOL_GPL(wbt_disable_default);
767
768
769 static struct rq_qos_ops wbt_rqos_ops = {
770 .throttle = wbt_wait,
771 .issue = wbt_issue,
772 .track = wbt_track,
773 .requeue = wbt_requeue,
774 .done = wbt_done,
775 .cleanup = wbt_cleanup,
776 .exit = wbt_exit,
777 };
778
wbt_init(struct request_queue * q)779 int wbt_init(struct request_queue *q)
780 {
781 struct rq_wb *rwb;
782 int i;
783
784 rwb = kzalloc(sizeof(*rwb), GFP_KERNEL);
785 if (!rwb)
786 return -ENOMEM;
787
788 rwb->cb = blk_stat_alloc_callback(wb_timer_fn, wbt_data_dir, 2, rwb);
789 if (!rwb->cb) {
790 kfree(rwb);
791 return -ENOMEM;
792 }
793
794 for (i = 0; i < WBT_NUM_RWQ; i++)
795 rq_wait_init(&rwb->rq_wait[i]);
796
797 rwb->rqos.id = RQ_QOS_WBT;
798 rwb->rqos.ops = &wbt_rqos_ops;
799 rwb->rqos.q = q;
800 rwb->last_comp = rwb->last_issue = jiffies;
801 rwb->win_nsec = RWB_WINDOW_NSEC;
802 rwb->enable_state = WBT_STATE_ON_DEFAULT;
803 rwb->wc = 1;
804 rwb->rq_depth.default_depth = RWB_DEF_DEPTH;
805 __wbt_update_limits(rwb);
806
807 /*
808 * Assign rwb and add the stats callback.
809 */
810 rq_qos_add(q, &rwb->rqos);
811 blk_stat_add_callback(q, rwb->cb);
812
813 rwb->min_lat_nsec = wbt_default_latency_nsec(q);
814
815 wbt_set_queue_depth(q, blk_queue_depth(q));
816 wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
817
818 return 0;
819 }
820