1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Interface for controlling IO bandwidth on a request queue
4 *
5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6 */
7
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include <linux/blk-cgroup.h>
14 #include "blk.h"
15
16 /* Max dispatch from a group in 1 round */
17 static int throtl_grp_quantum = 8;
18
19 /* Total max dispatch from all groups in one round */
20 static int throtl_quantum = 32;
21
22 /* Throttling is performed over a slice and after that slice is renewed */
23 #define DFL_THROTL_SLICE_HD (HZ / 10)
24 #define DFL_THROTL_SLICE_SSD (HZ / 50)
25 #define MAX_THROTL_SLICE (HZ)
26 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
27 #define MIN_THROTL_BPS (320 * 1024)
28 #define MIN_THROTL_IOPS (10)
29 #define DFL_LATENCY_TARGET (-1L)
30 #define DFL_IDLE_THRESHOLD (0)
31 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
32 #define LATENCY_FILTERED_SSD (0)
33 /*
34 * For HD, very small latency comes from sequential IO. Such IO is helpless to
35 * help determine if its IO is impacted by others, hence we ignore the IO
36 */
37 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
38
39 static struct blkcg_policy blkcg_policy_throtl;
40
41 /* A workqueue to queue throttle related work */
42 static struct workqueue_struct *kthrotld_workqueue;
43
44 /*
45 * To implement hierarchical throttling, throtl_grps form a tree and bios
46 * are dispatched upwards level by level until they reach the top and get
47 * issued. When dispatching bios from the children and local group at each
48 * level, if the bios are dispatched into a single bio_list, there's a risk
49 * of a local or child group which can queue many bios at once filling up
50 * the list starving others.
51 *
52 * To avoid such starvation, dispatched bios are queued separately
53 * according to where they came from. When they are again dispatched to
54 * the parent, they're popped in round-robin order so that no single source
55 * hogs the dispatch window.
56 *
57 * throtl_qnode is used to keep the queued bios separated by their sources.
58 * Bios are queued to throtl_qnode which in turn is queued to
59 * throtl_service_queue and then dispatched in round-robin order.
60 *
61 * It's also used to track the reference counts on blkg's. A qnode always
62 * belongs to a throtl_grp and gets queued on itself or the parent, so
63 * incrementing the reference of the associated throtl_grp when a qnode is
64 * queued and decrementing when dequeued is enough to keep the whole blkg
65 * tree pinned while bios are in flight.
66 */
67 struct throtl_qnode {
68 struct list_head node; /* service_queue->queued[] */
69 struct bio_list bios; /* queued bios */
70 struct throtl_grp *tg; /* tg this qnode belongs to */
71 };
72
73 struct throtl_service_queue {
74 struct throtl_service_queue *parent_sq; /* the parent service_queue */
75
76 /*
77 * Bios queued directly to this service_queue or dispatched from
78 * children throtl_grp's.
79 */
80 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */
81 unsigned int nr_queued[2]; /* number of queued bios */
82
83 /*
84 * RB tree of active children throtl_grp's, which are sorted by
85 * their ->disptime.
86 */
87 struct rb_root pending_tree; /* RB tree of active tgs */
88 struct rb_node *first_pending; /* first node in the tree */
89 unsigned int nr_pending; /* # queued in the tree */
90 unsigned long first_pending_disptime; /* disptime of the first tg */
91 struct timer_list pending_timer; /* fires on first_pending_disptime */
92 };
93
94 enum tg_state_flags {
95 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
96 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */
97 };
98
99 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
100
101 enum {
102 LIMIT_LOW,
103 LIMIT_MAX,
104 LIMIT_CNT,
105 };
106
107 struct throtl_grp {
108 /* must be the first member */
109 struct blkg_policy_data pd;
110
111 /* active throtl group service_queue member */
112 struct rb_node rb_node;
113
114 /* throtl_data this group belongs to */
115 struct throtl_data *td;
116
117 /* this group's service queue */
118 struct throtl_service_queue service_queue;
119
120 /*
121 * qnode_on_self is used when bios are directly queued to this
122 * throtl_grp so that local bios compete fairly with bios
123 * dispatched from children. qnode_on_parent is used when bios are
124 * dispatched from this throtl_grp into its parent and will compete
125 * with the sibling qnode_on_parents and the parent's
126 * qnode_on_self.
127 */
128 struct throtl_qnode qnode_on_self[2];
129 struct throtl_qnode qnode_on_parent[2];
130
131 /*
132 * Dispatch time in jiffies. This is the estimated time when group
133 * will unthrottle and is ready to dispatch more bio. It is used as
134 * key to sort active groups in service tree.
135 */
136 unsigned long disptime;
137
138 unsigned int flags;
139
140 /* are there any throtl rules between this group and td? */
141 bool has_rules[2];
142
143 /* internally used bytes per second rate limits */
144 uint64_t bps[2][LIMIT_CNT];
145 /* user configured bps limits */
146 uint64_t bps_conf[2][LIMIT_CNT];
147
148 /* internally used IOPS limits */
149 unsigned int iops[2][LIMIT_CNT];
150 /* user configured IOPS limits */
151 unsigned int iops_conf[2][LIMIT_CNT];
152
153 /* Number of bytes disptached in current slice */
154 uint64_t bytes_disp[2];
155 /* Number of bio's dispatched in current slice */
156 unsigned int io_disp[2];
157
158 unsigned long last_low_overflow_time[2];
159
160 uint64_t last_bytes_disp[2];
161 unsigned int last_io_disp[2];
162
163 unsigned long last_check_time;
164
165 unsigned long latency_target; /* us */
166 unsigned long latency_target_conf; /* us */
167 /* When did we start a new slice */
168 unsigned long slice_start[2];
169 unsigned long slice_end[2];
170
171 unsigned long last_finish_time; /* ns / 1024 */
172 unsigned long checked_last_finish_time; /* ns / 1024 */
173 unsigned long avg_idletime; /* ns / 1024 */
174 unsigned long idletime_threshold; /* us */
175 unsigned long idletime_threshold_conf; /* us */
176
177 unsigned int bio_cnt; /* total bios */
178 unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
179 unsigned long bio_cnt_reset_time;
180 };
181
182 /* We measure latency for request size from <= 4k to >= 1M */
183 #define LATENCY_BUCKET_SIZE 9
184
185 struct latency_bucket {
186 unsigned long total_latency; /* ns / 1024 */
187 int samples;
188 };
189
190 struct avg_latency_bucket {
191 unsigned long latency; /* ns / 1024 */
192 bool valid;
193 };
194
195 struct throtl_data
196 {
197 /* service tree for active throtl groups */
198 struct throtl_service_queue service_queue;
199
200 struct request_queue *queue;
201
202 /* Total Number of queued bios on READ and WRITE lists */
203 unsigned int nr_queued[2];
204
205 unsigned int throtl_slice;
206
207 /* Work for dispatching throttled bios */
208 struct work_struct dispatch_work;
209 unsigned int limit_index;
210 bool limit_valid[LIMIT_CNT];
211
212 unsigned long low_upgrade_time;
213 unsigned long low_downgrade_time;
214
215 unsigned int scale;
216
217 struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
218 struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
219 struct latency_bucket __percpu *latency_buckets[2];
220 unsigned long last_calculate_time;
221 unsigned long filtered_latency;
222
223 bool track_bio_latency;
224 };
225
226 static void throtl_pending_timer_fn(struct timer_list *t);
227
pd_to_tg(struct blkg_policy_data * pd)228 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
229 {
230 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
231 }
232
blkg_to_tg(struct blkcg_gq * blkg)233 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
234 {
235 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
236 }
237
tg_to_blkg(struct throtl_grp * tg)238 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
239 {
240 return pd_to_blkg(&tg->pd);
241 }
242
243 /**
244 * sq_to_tg - return the throl_grp the specified service queue belongs to
245 * @sq: the throtl_service_queue of interest
246 *
247 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
248 * embedded in throtl_data, %NULL is returned.
249 */
sq_to_tg(struct throtl_service_queue * sq)250 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
251 {
252 if (sq && sq->parent_sq)
253 return container_of(sq, struct throtl_grp, service_queue);
254 else
255 return NULL;
256 }
257
258 /**
259 * sq_to_td - return throtl_data the specified service queue belongs to
260 * @sq: the throtl_service_queue of interest
261 *
262 * A service_queue can be embedded in either a throtl_grp or throtl_data.
263 * Determine the associated throtl_data accordingly and return it.
264 */
sq_to_td(struct throtl_service_queue * sq)265 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
266 {
267 struct throtl_grp *tg = sq_to_tg(sq);
268
269 if (tg)
270 return tg->td;
271 else
272 return container_of(sq, struct throtl_data, service_queue);
273 }
274
275 /*
276 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
277 * make the IO dispatch more smooth.
278 * Scale up: linearly scale up according to lapsed time since upgrade. For
279 * every throtl_slice, the limit scales up 1/2 .low limit till the
280 * limit hits .max limit
281 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
282 */
throtl_adjusted_limit(uint64_t low,struct throtl_data * td)283 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
284 {
285 /* arbitrary value to avoid too big scale */
286 if (td->scale < 4096 && time_after_eq(jiffies,
287 td->low_upgrade_time + td->scale * td->throtl_slice))
288 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
289
290 return low + (low >> 1) * td->scale;
291 }
292
tg_bps_limit(struct throtl_grp * tg,int rw)293 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
294 {
295 struct blkcg_gq *blkg = tg_to_blkg(tg);
296 struct throtl_data *td;
297 uint64_t ret;
298
299 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
300 return U64_MAX;
301
302 td = tg->td;
303 ret = tg->bps[rw][td->limit_index];
304 if (ret == 0 && td->limit_index == LIMIT_LOW) {
305 /* intermediate node or iops isn't 0 */
306 if (!list_empty(&blkg->blkcg->css.children) ||
307 tg->iops[rw][td->limit_index])
308 return U64_MAX;
309 else
310 return MIN_THROTL_BPS;
311 }
312
313 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
314 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
315 uint64_t adjusted;
316
317 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
318 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
319 }
320 return ret;
321 }
322
tg_iops_limit(struct throtl_grp * tg,int rw)323 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
324 {
325 struct blkcg_gq *blkg = tg_to_blkg(tg);
326 struct throtl_data *td;
327 unsigned int ret;
328
329 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
330 return UINT_MAX;
331
332 td = tg->td;
333 ret = tg->iops[rw][td->limit_index];
334 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
335 /* intermediate node or bps isn't 0 */
336 if (!list_empty(&blkg->blkcg->css.children) ||
337 tg->bps[rw][td->limit_index])
338 return UINT_MAX;
339 else
340 return MIN_THROTL_IOPS;
341 }
342
343 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
344 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
345 uint64_t adjusted;
346
347 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
348 if (adjusted > UINT_MAX)
349 adjusted = UINT_MAX;
350 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
351 }
352 return ret;
353 }
354
355 #define request_bucket_index(sectors) \
356 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
357
358 /**
359 * throtl_log - log debug message via blktrace
360 * @sq: the service_queue being reported
361 * @fmt: printf format string
362 * @args: printf args
363 *
364 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
365 * throtl_grp; otherwise, just "throtl".
366 */
367 #define throtl_log(sq, fmt, args...) do { \
368 struct throtl_grp *__tg = sq_to_tg((sq)); \
369 struct throtl_data *__td = sq_to_td((sq)); \
370 \
371 (void)__td; \
372 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
373 break; \
374 if ((__tg)) { \
375 blk_add_cgroup_trace_msg(__td->queue, \
376 tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
377 } else { \
378 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
379 } \
380 } while (0)
381
throtl_bio_data_size(struct bio * bio)382 static inline unsigned int throtl_bio_data_size(struct bio *bio)
383 {
384 /* assume it's one sector */
385 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
386 return 512;
387 return bio->bi_iter.bi_size;
388 }
389
throtl_qnode_init(struct throtl_qnode * qn,struct throtl_grp * tg)390 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
391 {
392 INIT_LIST_HEAD(&qn->node);
393 bio_list_init(&qn->bios);
394 qn->tg = tg;
395 }
396
397 /**
398 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
399 * @bio: bio being added
400 * @qn: qnode to add bio to
401 * @queued: the service_queue->queued[] list @qn belongs to
402 *
403 * Add @bio to @qn and put @qn on @queued if it's not already on.
404 * @qn->tg's reference count is bumped when @qn is activated. See the
405 * comment on top of throtl_qnode definition for details.
406 */
throtl_qnode_add_bio(struct bio * bio,struct throtl_qnode * qn,struct list_head * queued)407 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
408 struct list_head *queued)
409 {
410 bio_list_add(&qn->bios, bio);
411 if (list_empty(&qn->node)) {
412 list_add_tail(&qn->node, queued);
413 blkg_get(tg_to_blkg(qn->tg));
414 }
415 }
416
417 /**
418 * throtl_peek_queued - peek the first bio on a qnode list
419 * @queued: the qnode list to peek
420 */
throtl_peek_queued(struct list_head * queued)421 static struct bio *throtl_peek_queued(struct list_head *queued)
422 {
423 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
424 struct bio *bio;
425
426 if (list_empty(queued))
427 return NULL;
428
429 bio = bio_list_peek(&qn->bios);
430 WARN_ON_ONCE(!bio);
431 return bio;
432 }
433
434 /**
435 * throtl_pop_queued - pop the first bio form a qnode list
436 * @queued: the qnode list to pop a bio from
437 * @tg_to_put: optional out argument for throtl_grp to put
438 *
439 * Pop the first bio from the qnode list @queued. After popping, the first
440 * qnode is removed from @queued if empty or moved to the end of @queued so
441 * that the popping order is round-robin.
442 *
443 * When the first qnode is removed, its associated throtl_grp should be put
444 * too. If @tg_to_put is NULL, this function automatically puts it;
445 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
446 * responsible for putting it.
447 */
throtl_pop_queued(struct list_head * queued,struct throtl_grp ** tg_to_put)448 static struct bio *throtl_pop_queued(struct list_head *queued,
449 struct throtl_grp **tg_to_put)
450 {
451 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
452 struct bio *bio;
453
454 if (list_empty(queued))
455 return NULL;
456
457 bio = bio_list_pop(&qn->bios);
458 WARN_ON_ONCE(!bio);
459
460 if (bio_list_empty(&qn->bios)) {
461 list_del_init(&qn->node);
462 if (tg_to_put)
463 *tg_to_put = qn->tg;
464 else
465 blkg_put(tg_to_blkg(qn->tg));
466 } else {
467 list_move_tail(&qn->node, queued);
468 }
469
470 return bio;
471 }
472
473 /* init a service_queue, assumes the caller zeroed it */
throtl_service_queue_init(struct throtl_service_queue * sq)474 static void throtl_service_queue_init(struct throtl_service_queue *sq)
475 {
476 INIT_LIST_HEAD(&sq->queued[0]);
477 INIT_LIST_HEAD(&sq->queued[1]);
478 sq->pending_tree = RB_ROOT;
479 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
480 }
481
throtl_pd_alloc(gfp_t gfp,int node)482 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
483 {
484 struct throtl_grp *tg;
485 int rw;
486
487 tg = kzalloc_node(sizeof(*tg), gfp, node);
488 if (!tg)
489 return NULL;
490
491 throtl_service_queue_init(&tg->service_queue);
492
493 for (rw = READ; rw <= WRITE; rw++) {
494 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
495 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
496 }
497
498 RB_CLEAR_NODE(&tg->rb_node);
499 tg->bps[READ][LIMIT_MAX] = U64_MAX;
500 tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
501 tg->iops[READ][LIMIT_MAX] = UINT_MAX;
502 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
503 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
504 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
505 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
506 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
507 /* LIMIT_LOW will have default value 0 */
508
509 tg->latency_target = DFL_LATENCY_TARGET;
510 tg->latency_target_conf = DFL_LATENCY_TARGET;
511 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
512 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
513
514 return &tg->pd;
515 }
516
throtl_pd_init(struct blkg_policy_data * pd)517 static void throtl_pd_init(struct blkg_policy_data *pd)
518 {
519 struct throtl_grp *tg = pd_to_tg(pd);
520 struct blkcg_gq *blkg = tg_to_blkg(tg);
521 struct throtl_data *td = blkg->q->td;
522 struct throtl_service_queue *sq = &tg->service_queue;
523
524 /*
525 * If on the default hierarchy, we switch to properly hierarchical
526 * behavior where limits on a given throtl_grp are applied to the
527 * whole subtree rather than just the group itself. e.g. If 16M
528 * read_bps limit is set on the root group, the whole system can't
529 * exceed 16M for the device.
530 *
531 * If not on the default hierarchy, the broken flat hierarchy
532 * behavior is retained where all throtl_grps are treated as if
533 * they're all separate root groups right below throtl_data.
534 * Limits of a group don't interact with limits of other groups
535 * regardless of the position of the group in the hierarchy.
536 */
537 sq->parent_sq = &td->service_queue;
538 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
539 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
540 tg->td = td;
541 }
542
543 /*
544 * Set has_rules[] if @tg or any of its parents have limits configured.
545 * This doesn't require walking up to the top of the hierarchy as the
546 * parent's has_rules[] is guaranteed to be correct.
547 */
tg_update_has_rules(struct throtl_grp * tg)548 static void tg_update_has_rules(struct throtl_grp *tg)
549 {
550 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
551 struct throtl_data *td = tg->td;
552 int rw;
553
554 for (rw = READ; rw <= WRITE; rw++)
555 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
556 (td->limit_valid[td->limit_index] &&
557 (tg_bps_limit(tg, rw) != U64_MAX ||
558 tg_iops_limit(tg, rw) != UINT_MAX));
559 }
560
throtl_pd_online(struct blkg_policy_data * pd)561 static void throtl_pd_online(struct blkg_policy_data *pd)
562 {
563 struct throtl_grp *tg = pd_to_tg(pd);
564 /*
565 * We don't want new groups to escape the limits of its ancestors.
566 * Update has_rules[] after a new group is brought online.
567 */
568 tg_update_has_rules(tg);
569 }
570
blk_throtl_update_limit_valid(struct throtl_data * td)571 static void blk_throtl_update_limit_valid(struct throtl_data *td)
572 {
573 struct cgroup_subsys_state *pos_css;
574 struct blkcg_gq *blkg;
575 bool low_valid = false;
576
577 rcu_read_lock();
578 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
579 struct throtl_grp *tg = blkg_to_tg(blkg);
580
581 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
582 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
583 low_valid = true;
584 break;
585 }
586 }
587 rcu_read_unlock();
588
589 td->limit_valid[LIMIT_LOW] = low_valid;
590 }
591
592 static void throtl_upgrade_state(struct throtl_data *td);
throtl_pd_offline(struct blkg_policy_data * pd)593 static void throtl_pd_offline(struct blkg_policy_data *pd)
594 {
595 struct throtl_grp *tg = pd_to_tg(pd);
596
597 tg->bps[READ][LIMIT_LOW] = 0;
598 tg->bps[WRITE][LIMIT_LOW] = 0;
599 tg->iops[READ][LIMIT_LOW] = 0;
600 tg->iops[WRITE][LIMIT_LOW] = 0;
601
602 blk_throtl_update_limit_valid(tg->td);
603
604 if (!tg->td->limit_valid[tg->td->limit_index])
605 throtl_upgrade_state(tg->td);
606 }
607
throtl_pd_free(struct blkg_policy_data * pd)608 static void throtl_pd_free(struct blkg_policy_data *pd)
609 {
610 struct throtl_grp *tg = pd_to_tg(pd);
611
612 del_timer_sync(&tg->service_queue.pending_timer);
613 kfree(tg);
614 }
615
616 static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue * parent_sq)617 throtl_rb_first(struct throtl_service_queue *parent_sq)
618 {
619 /* Service tree is empty */
620 if (!parent_sq->nr_pending)
621 return NULL;
622
623 if (!parent_sq->first_pending)
624 parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
625
626 if (parent_sq->first_pending)
627 return rb_entry_tg(parent_sq->first_pending);
628
629 return NULL;
630 }
631
rb_erase_init(struct rb_node * n,struct rb_root * root)632 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
633 {
634 rb_erase(n, root);
635 RB_CLEAR_NODE(n);
636 }
637
throtl_rb_erase(struct rb_node * n,struct throtl_service_queue * parent_sq)638 static void throtl_rb_erase(struct rb_node *n,
639 struct throtl_service_queue *parent_sq)
640 {
641 if (parent_sq->first_pending == n)
642 parent_sq->first_pending = NULL;
643 rb_erase_init(n, &parent_sq->pending_tree);
644 --parent_sq->nr_pending;
645 }
646
update_min_dispatch_time(struct throtl_service_queue * parent_sq)647 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
648 {
649 struct throtl_grp *tg;
650
651 tg = throtl_rb_first(parent_sq);
652 if (!tg)
653 return;
654
655 parent_sq->first_pending_disptime = tg->disptime;
656 }
657
tg_service_queue_add(struct throtl_grp * tg)658 static void tg_service_queue_add(struct throtl_grp *tg)
659 {
660 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
661 struct rb_node **node = &parent_sq->pending_tree.rb_node;
662 struct rb_node *parent = NULL;
663 struct throtl_grp *__tg;
664 unsigned long key = tg->disptime;
665 int left = 1;
666
667 while (*node != NULL) {
668 parent = *node;
669 __tg = rb_entry_tg(parent);
670
671 if (time_before(key, __tg->disptime))
672 node = &parent->rb_left;
673 else {
674 node = &parent->rb_right;
675 left = 0;
676 }
677 }
678
679 if (left)
680 parent_sq->first_pending = &tg->rb_node;
681
682 rb_link_node(&tg->rb_node, parent, node);
683 rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
684 }
685
__throtl_enqueue_tg(struct throtl_grp * tg)686 static void __throtl_enqueue_tg(struct throtl_grp *tg)
687 {
688 tg_service_queue_add(tg);
689 tg->flags |= THROTL_TG_PENDING;
690 tg->service_queue.parent_sq->nr_pending++;
691 }
692
throtl_enqueue_tg(struct throtl_grp * tg)693 static void throtl_enqueue_tg(struct throtl_grp *tg)
694 {
695 if (!(tg->flags & THROTL_TG_PENDING))
696 __throtl_enqueue_tg(tg);
697 }
698
__throtl_dequeue_tg(struct throtl_grp * tg)699 static void __throtl_dequeue_tg(struct throtl_grp *tg)
700 {
701 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
702 tg->flags &= ~THROTL_TG_PENDING;
703 }
704
throtl_dequeue_tg(struct throtl_grp * tg)705 static void throtl_dequeue_tg(struct throtl_grp *tg)
706 {
707 if (tg->flags & THROTL_TG_PENDING)
708 __throtl_dequeue_tg(tg);
709 }
710
711 /* Call with queue lock held */
throtl_schedule_pending_timer(struct throtl_service_queue * sq,unsigned long expires)712 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
713 unsigned long expires)
714 {
715 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
716
717 /*
718 * Since we are adjusting the throttle limit dynamically, the sleep
719 * time calculated according to previous limit might be invalid. It's
720 * possible the cgroup sleep time is very long and no other cgroups
721 * have IO running so notify the limit changes. Make sure the cgroup
722 * doesn't sleep too long to avoid the missed notification.
723 */
724 if (time_after(expires, max_expire))
725 expires = max_expire;
726 mod_timer(&sq->pending_timer, expires);
727 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
728 expires - jiffies, jiffies);
729 }
730
731 /**
732 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
733 * @sq: the service_queue to schedule dispatch for
734 * @force: force scheduling
735 *
736 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
737 * dispatch time of the first pending child. Returns %true if either timer
738 * is armed or there's no pending child left. %false if the current
739 * dispatch window is still open and the caller should continue
740 * dispatching.
741 *
742 * If @force is %true, the dispatch timer is always scheduled and this
743 * function is guaranteed to return %true. This is to be used when the
744 * caller can't dispatch itself and needs to invoke pending_timer
745 * unconditionally. Note that forced scheduling is likely to induce short
746 * delay before dispatch starts even if @sq->first_pending_disptime is not
747 * in the future and thus shouldn't be used in hot paths.
748 */
throtl_schedule_next_dispatch(struct throtl_service_queue * sq,bool force)749 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
750 bool force)
751 {
752 /* any pending children left? */
753 if (!sq->nr_pending)
754 return true;
755
756 update_min_dispatch_time(sq);
757
758 /* is the next dispatch time in the future? */
759 if (force || time_after(sq->first_pending_disptime, jiffies)) {
760 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
761 return true;
762 }
763
764 /* tell the caller to continue dispatching */
765 return false;
766 }
767
throtl_start_new_slice_with_credit(struct throtl_grp * tg,bool rw,unsigned long start)768 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
769 bool rw, unsigned long start)
770 {
771 tg->bytes_disp[rw] = 0;
772 tg->io_disp[rw] = 0;
773
774 /*
775 * Previous slice has expired. We must have trimmed it after last
776 * bio dispatch. That means since start of last slice, we never used
777 * that bandwidth. Do try to make use of that bandwidth while giving
778 * credit.
779 */
780 if (time_after_eq(start, tg->slice_start[rw]))
781 tg->slice_start[rw] = start;
782
783 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
784 throtl_log(&tg->service_queue,
785 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
786 rw == READ ? 'R' : 'W', tg->slice_start[rw],
787 tg->slice_end[rw], jiffies);
788 }
789
throtl_start_new_slice(struct throtl_grp * tg,bool rw)790 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
791 {
792 tg->bytes_disp[rw] = 0;
793 tg->io_disp[rw] = 0;
794 tg->slice_start[rw] = jiffies;
795 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
796 throtl_log(&tg->service_queue,
797 "[%c] new slice start=%lu end=%lu jiffies=%lu",
798 rw == READ ? 'R' : 'W', tg->slice_start[rw],
799 tg->slice_end[rw], jiffies);
800 }
801
throtl_set_slice_end(struct throtl_grp * tg,bool rw,unsigned long jiffy_end)802 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
803 unsigned long jiffy_end)
804 {
805 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
806 }
807
throtl_extend_slice(struct throtl_grp * tg,bool rw,unsigned long jiffy_end)808 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
809 unsigned long jiffy_end)
810 {
811 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
812 throtl_log(&tg->service_queue,
813 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
814 rw == READ ? 'R' : 'W', tg->slice_start[rw],
815 tg->slice_end[rw], jiffies);
816 }
817
818 /* Determine if previously allocated or extended slice is complete or not */
throtl_slice_used(struct throtl_grp * tg,bool rw)819 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
820 {
821 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
822 return false;
823
824 return true;
825 }
826
827 /* Trim the used slices and adjust slice start accordingly */
throtl_trim_slice(struct throtl_grp * tg,bool rw)828 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
829 {
830 unsigned long nr_slices, time_elapsed, io_trim;
831 u64 bytes_trim, tmp;
832
833 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
834
835 /*
836 * If bps are unlimited (-1), then time slice don't get
837 * renewed. Don't try to trim the slice if slice is used. A new
838 * slice will start when appropriate.
839 */
840 if (throtl_slice_used(tg, rw))
841 return;
842
843 /*
844 * A bio has been dispatched. Also adjust slice_end. It might happen
845 * that initially cgroup limit was very low resulting in high
846 * slice_end, but later limit was bumped up and bio was dispached
847 * sooner, then we need to reduce slice_end. A high bogus slice_end
848 * is bad because it does not allow new slice to start.
849 */
850
851 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
852
853 time_elapsed = jiffies - tg->slice_start[rw];
854
855 nr_slices = time_elapsed / tg->td->throtl_slice;
856
857 if (!nr_slices)
858 return;
859 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
860 do_div(tmp, HZ);
861 bytes_trim = tmp;
862
863 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
864 HZ;
865
866 if (!bytes_trim && !io_trim)
867 return;
868
869 if (tg->bytes_disp[rw] >= bytes_trim)
870 tg->bytes_disp[rw] -= bytes_trim;
871 else
872 tg->bytes_disp[rw] = 0;
873
874 if (tg->io_disp[rw] >= io_trim)
875 tg->io_disp[rw] -= io_trim;
876 else
877 tg->io_disp[rw] = 0;
878
879 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
880
881 throtl_log(&tg->service_queue,
882 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
883 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
884 tg->slice_start[rw], tg->slice_end[rw], jiffies);
885 }
886
tg_with_in_iops_limit(struct throtl_grp * tg,struct bio * bio,unsigned long * wait)887 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
888 unsigned long *wait)
889 {
890 bool rw = bio_data_dir(bio);
891 unsigned int io_allowed;
892 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
893 u64 tmp;
894
895 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
896
897 /* Slice has just started. Consider one slice interval */
898 if (!jiffy_elapsed)
899 jiffy_elapsed_rnd = tg->td->throtl_slice;
900
901 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
902
903 /*
904 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
905 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
906 * will allow dispatch after 1 second and after that slice should
907 * have been trimmed.
908 */
909
910 tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
911 do_div(tmp, HZ);
912
913 if (tmp > UINT_MAX)
914 io_allowed = UINT_MAX;
915 else
916 io_allowed = tmp;
917
918 if (tg->io_disp[rw] + 1 <= io_allowed) {
919 if (wait)
920 *wait = 0;
921 return true;
922 }
923
924 /* Calc approx time to dispatch */
925 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
926
927 if (wait)
928 *wait = jiffy_wait;
929 return false;
930 }
931
tg_with_in_bps_limit(struct throtl_grp * tg,struct bio * bio,unsigned long * wait)932 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
933 unsigned long *wait)
934 {
935 bool rw = bio_data_dir(bio);
936 u64 bytes_allowed, extra_bytes, tmp;
937 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
938 unsigned int bio_size = throtl_bio_data_size(bio);
939
940 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
941
942 /* Slice has just started. Consider one slice interval */
943 if (!jiffy_elapsed)
944 jiffy_elapsed_rnd = tg->td->throtl_slice;
945
946 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
947
948 tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
949 do_div(tmp, HZ);
950 bytes_allowed = tmp;
951
952 if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
953 if (wait)
954 *wait = 0;
955 return true;
956 }
957
958 /* Calc approx time to dispatch */
959 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
960 jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
961
962 if (!jiffy_wait)
963 jiffy_wait = 1;
964
965 /*
966 * This wait time is without taking into consideration the rounding
967 * up we did. Add that time also.
968 */
969 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
970 if (wait)
971 *wait = jiffy_wait;
972 return false;
973 }
974
975 /*
976 * Returns whether one can dispatch a bio or not. Also returns approx number
977 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
978 */
tg_may_dispatch(struct throtl_grp * tg,struct bio * bio,unsigned long * wait)979 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
980 unsigned long *wait)
981 {
982 bool rw = bio_data_dir(bio);
983 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
984
985 /*
986 * Currently whole state machine of group depends on first bio
987 * queued in the group bio list. So one should not be calling
988 * this function with a different bio if there are other bios
989 * queued.
990 */
991 BUG_ON(tg->service_queue.nr_queued[rw] &&
992 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
993
994 /* If tg->bps = -1, then BW is unlimited */
995 if (tg_bps_limit(tg, rw) == U64_MAX &&
996 tg_iops_limit(tg, rw) == UINT_MAX) {
997 if (wait)
998 *wait = 0;
999 return true;
1000 }
1001
1002 /*
1003 * If previous slice expired, start a new one otherwise renew/extend
1004 * existing slice to make sure it is at least throtl_slice interval
1005 * long since now. New slice is started only for empty throttle group.
1006 * If there is queued bio, that means there should be an active
1007 * slice and it should be extended instead.
1008 */
1009 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1010 throtl_start_new_slice(tg, rw);
1011 else {
1012 if (time_before(tg->slice_end[rw],
1013 jiffies + tg->td->throtl_slice))
1014 throtl_extend_slice(tg, rw,
1015 jiffies + tg->td->throtl_slice);
1016 }
1017
1018 if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
1019 tg_with_in_iops_limit(tg, bio, &iops_wait)) {
1020 if (wait)
1021 *wait = 0;
1022 return true;
1023 }
1024
1025 max_wait = max(bps_wait, iops_wait);
1026
1027 if (wait)
1028 *wait = max_wait;
1029
1030 if (time_before(tg->slice_end[rw], jiffies + max_wait))
1031 throtl_extend_slice(tg, rw, jiffies + max_wait);
1032
1033 return false;
1034 }
1035
throtl_charge_bio(struct throtl_grp * tg,struct bio * bio)1036 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1037 {
1038 bool rw = bio_data_dir(bio);
1039 unsigned int bio_size = throtl_bio_data_size(bio);
1040
1041 /* Charge the bio to the group */
1042 tg->bytes_disp[rw] += bio_size;
1043 tg->io_disp[rw]++;
1044 tg->last_bytes_disp[rw] += bio_size;
1045 tg->last_io_disp[rw]++;
1046
1047 /*
1048 * BIO_THROTTLED is used to prevent the same bio to be throttled
1049 * more than once as a throttled bio will go through blk-throtl the
1050 * second time when it eventually gets issued. Set it when a bio
1051 * is being charged to a tg.
1052 */
1053 if (!bio_flagged(bio, BIO_THROTTLED))
1054 bio_set_flag(bio, BIO_THROTTLED);
1055 }
1056
1057 /**
1058 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1059 * @bio: bio to add
1060 * @qn: qnode to use
1061 * @tg: the target throtl_grp
1062 *
1063 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
1064 * tg->qnode_on_self[] is used.
1065 */
throtl_add_bio_tg(struct bio * bio,struct throtl_qnode * qn,struct throtl_grp * tg)1066 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1067 struct throtl_grp *tg)
1068 {
1069 struct throtl_service_queue *sq = &tg->service_queue;
1070 bool rw = bio_data_dir(bio);
1071
1072 if (!qn)
1073 qn = &tg->qnode_on_self[rw];
1074
1075 /*
1076 * If @tg doesn't currently have any bios queued in the same
1077 * direction, queueing @bio can change when @tg should be
1078 * dispatched. Mark that @tg was empty. This is automatically
1079 * cleaered on the next tg_update_disptime().
1080 */
1081 if (!sq->nr_queued[rw])
1082 tg->flags |= THROTL_TG_WAS_EMPTY;
1083
1084 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1085
1086 sq->nr_queued[rw]++;
1087 throtl_enqueue_tg(tg);
1088 }
1089
tg_update_disptime(struct throtl_grp * tg)1090 static void tg_update_disptime(struct throtl_grp *tg)
1091 {
1092 struct throtl_service_queue *sq = &tg->service_queue;
1093 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1094 struct bio *bio;
1095
1096 bio = throtl_peek_queued(&sq->queued[READ]);
1097 if (bio)
1098 tg_may_dispatch(tg, bio, &read_wait);
1099
1100 bio = throtl_peek_queued(&sq->queued[WRITE]);
1101 if (bio)
1102 tg_may_dispatch(tg, bio, &write_wait);
1103
1104 min_wait = min(read_wait, write_wait);
1105 disptime = jiffies + min_wait;
1106
1107 /* Update dispatch time */
1108 throtl_dequeue_tg(tg);
1109 tg->disptime = disptime;
1110 throtl_enqueue_tg(tg);
1111
1112 /* see throtl_add_bio_tg() */
1113 tg->flags &= ~THROTL_TG_WAS_EMPTY;
1114 }
1115
start_parent_slice_with_credit(struct throtl_grp * child_tg,struct throtl_grp * parent_tg,bool rw)1116 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1117 struct throtl_grp *parent_tg, bool rw)
1118 {
1119 if (throtl_slice_used(parent_tg, rw)) {
1120 throtl_start_new_slice_with_credit(parent_tg, rw,
1121 child_tg->slice_start[rw]);
1122 }
1123
1124 }
1125
tg_dispatch_one_bio(struct throtl_grp * tg,bool rw)1126 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1127 {
1128 struct throtl_service_queue *sq = &tg->service_queue;
1129 struct throtl_service_queue *parent_sq = sq->parent_sq;
1130 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1131 struct throtl_grp *tg_to_put = NULL;
1132 struct bio *bio;
1133
1134 /*
1135 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1136 * from @tg may put its reference and @parent_sq might end up
1137 * getting released prematurely. Remember the tg to put and put it
1138 * after @bio is transferred to @parent_sq.
1139 */
1140 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1141 sq->nr_queued[rw]--;
1142
1143 throtl_charge_bio(tg, bio);
1144
1145 /*
1146 * If our parent is another tg, we just need to transfer @bio to
1147 * the parent using throtl_add_bio_tg(). If our parent is
1148 * @td->service_queue, @bio is ready to be issued. Put it on its
1149 * bio_lists[] and decrease total number queued. The caller is
1150 * responsible for issuing these bios.
1151 */
1152 if (parent_tg) {
1153 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1154 start_parent_slice_with_credit(tg, parent_tg, rw);
1155 } else {
1156 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1157 &parent_sq->queued[rw]);
1158 BUG_ON(tg->td->nr_queued[rw] <= 0);
1159 tg->td->nr_queued[rw]--;
1160 }
1161
1162 throtl_trim_slice(tg, rw);
1163
1164 if (tg_to_put)
1165 blkg_put(tg_to_blkg(tg_to_put));
1166 }
1167
throtl_dispatch_tg(struct throtl_grp * tg)1168 static int throtl_dispatch_tg(struct throtl_grp *tg)
1169 {
1170 struct throtl_service_queue *sq = &tg->service_queue;
1171 unsigned int nr_reads = 0, nr_writes = 0;
1172 unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1173 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1174 struct bio *bio;
1175
1176 /* Try to dispatch 75% READS and 25% WRITES */
1177
1178 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1179 tg_may_dispatch(tg, bio, NULL)) {
1180
1181 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1182 nr_reads++;
1183
1184 if (nr_reads >= max_nr_reads)
1185 break;
1186 }
1187
1188 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1189 tg_may_dispatch(tg, bio, NULL)) {
1190
1191 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1192 nr_writes++;
1193
1194 if (nr_writes >= max_nr_writes)
1195 break;
1196 }
1197
1198 return nr_reads + nr_writes;
1199 }
1200
throtl_select_dispatch(struct throtl_service_queue * parent_sq)1201 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1202 {
1203 unsigned int nr_disp = 0;
1204
1205 while (1) {
1206 struct throtl_grp *tg = throtl_rb_first(parent_sq);
1207 struct throtl_service_queue *sq;
1208
1209 if (!tg)
1210 break;
1211
1212 if (time_before(jiffies, tg->disptime))
1213 break;
1214
1215 throtl_dequeue_tg(tg);
1216
1217 nr_disp += throtl_dispatch_tg(tg);
1218
1219 sq = &tg->service_queue;
1220 if (sq->nr_queued[0] || sq->nr_queued[1])
1221 tg_update_disptime(tg);
1222
1223 if (nr_disp >= throtl_quantum)
1224 break;
1225 }
1226
1227 return nr_disp;
1228 }
1229
1230 static bool throtl_can_upgrade(struct throtl_data *td,
1231 struct throtl_grp *this_tg);
1232 /**
1233 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1234 * @arg: the throtl_service_queue being serviced
1235 *
1236 * This timer is armed when a child throtl_grp with active bio's become
1237 * pending and queued on the service_queue's pending_tree and expires when
1238 * the first child throtl_grp should be dispatched. This function
1239 * dispatches bio's from the children throtl_grps to the parent
1240 * service_queue.
1241 *
1242 * If the parent's parent is another throtl_grp, dispatching is propagated
1243 * by either arming its pending_timer or repeating dispatch directly. If
1244 * the top-level service_tree is reached, throtl_data->dispatch_work is
1245 * kicked so that the ready bio's are issued.
1246 */
throtl_pending_timer_fn(struct timer_list * t)1247 static void throtl_pending_timer_fn(struct timer_list *t)
1248 {
1249 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1250 struct throtl_grp *tg = sq_to_tg(sq);
1251 struct throtl_data *td = sq_to_td(sq);
1252 struct request_queue *q = td->queue;
1253 struct throtl_service_queue *parent_sq;
1254 bool dispatched;
1255 int ret;
1256
1257 spin_lock_irq(q->queue_lock);
1258 if (throtl_can_upgrade(td, NULL))
1259 throtl_upgrade_state(td);
1260
1261 again:
1262 parent_sq = sq->parent_sq;
1263 dispatched = false;
1264
1265 while (true) {
1266 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1267 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1268 sq->nr_queued[READ], sq->nr_queued[WRITE]);
1269
1270 ret = throtl_select_dispatch(sq);
1271 if (ret) {
1272 throtl_log(sq, "bios disp=%u", ret);
1273 dispatched = true;
1274 }
1275
1276 if (throtl_schedule_next_dispatch(sq, false))
1277 break;
1278
1279 /* this dispatch windows is still open, relax and repeat */
1280 spin_unlock_irq(q->queue_lock);
1281 cpu_relax();
1282 spin_lock_irq(q->queue_lock);
1283 }
1284
1285 if (!dispatched)
1286 goto out_unlock;
1287
1288 if (parent_sq) {
1289 /* @parent_sq is another throl_grp, propagate dispatch */
1290 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1291 tg_update_disptime(tg);
1292 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1293 /* window is already open, repeat dispatching */
1294 sq = parent_sq;
1295 tg = sq_to_tg(sq);
1296 goto again;
1297 }
1298 }
1299 } else {
1300 /* reached the top-level, queue issueing */
1301 queue_work(kthrotld_workqueue, &td->dispatch_work);
1302 }
1303 out_unlock:
1304 spin_unlock_irq(q->queue_lock);
1305 }
1306
1307 /**
1308 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1309 * @work: work item being executed
1310 *
1311 * This function is queued for execution when bio's reach the bio_lists[]
1312 * of throtl_data->service_queue. Those bio's are ready and issued by this
1313 * function.
1314 */
blk_throtl_dispatch_work_fn(struct work_struct * work)1315 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1316 {
1317 struct throtl_data *td = container_of(work, struct throtl_data,
1318 dispatch_work);
1319 struct throtl_service_queue *td_sq = &td->service_queue;
1320 struct request_queue *q = td->queue;
1321 struct bio_list bio_list_on_stack;
1322 struct bio *bio;
1323 struct blk_plug plug;
1324 int rw;
1325
1326 bio_list_init(&bio_list_on_stack);
1327
1328 spin_lock_irq(q->queue_lock);
1329 for (rw = READ; rw <= WRITE; rw++)
1330 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1331 bio_list_add(&bio_list_on_stack, bio);
1332 spin_unlock_irq(q->queue_lock);
1333
1334 if (!bio_list_empty(&bio_list_on_stack)) {
1335 blk_start_plug(&plug);
1336 while((bio = bio_list_pop(&bio_list_on_stack)))
1337 generic_make_request(bio);
1338 blk_finish_plug(&plug);
1339 }
1340 }
1341
tg_prfill_conf_u64(struct seq_file * sf,struct blkg_policy_data * pd,int off)1342 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1343 int off)
1344 {
1345 struct throtl_grp *tg = pd_to_tg(pd);
1346 u64 v = *(u64 *)((void *)tg + off);
1347
1348 if (v == U64_MAX)
1349 return 0;
1350 return __blkg_prfill_u64(sf, pd, v);
1351 }
1352
tg_prfill_conf_uint(struct seq_file * sf,struct blkg_policy_data * pd,int off)1353 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1354 int off)
1355 {
1356 struct throtl_grp *tg = pd_to_tg(pd);
1357 unsigned int v = *(unsigned int *)((void *)tg + off);
1358
1359 if (v == UINT_MAX)
1360 return 0;
1361 return __blkg_prfill_u64(sf, pd, v);
1362 }
1363
tg_print_conf_u64(struct seq_file * sf,void * v)1364 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1365 {
1366 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1367 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1368 return 0;
1369 }
1370
tg_print_conf_uint(struct seq_file * sf,void * v)1371 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1372 {
1373 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1374 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1375 return 0;
1376 }
1377
tg_conf_updated(struct throtl_grp * tg,bool global)1378 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1379 {
1380 struct throtl_service_queue *sq = &tg->service_queue;
1381 struct cgroup_subsys_state *pos_css;
1382 struct blkcg_gq *blkg;
1383
1384 throtl_log(&tg->service_queue,
1385 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1386 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1387 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1388
1389 /*
1390 * Update has_rules[] flags for the updated tg's subtree. A tg is
1391 * considered to have rules if either the tg itself or any of its
1392 * ancestors has rules. This identifies groups without any
1393 * restrictions in the whole hierarchy and allows them to bypass
1394 * blk-throttle.
1395 */
1396 blkg_for_each_descendant_pre(blkg, pos_css,
1397 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1398 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1399 struct throtl_grp *parent_tg;
1400
1401 tg_update_has_rules(this_tg);
1402 /* ignore root/second level */
1403 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1404 !blkg->parent->parent)
1405 continue;
1406 parent_tg = blkg_to_tg(blkg->parent);
1407 /*
1408 * make sure all children has lower idle time threshold and
1409 * higher latency target
1410 */
1411 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1412 parent_tg->idletime_threshold);
1413 this_tg->latency_target = max(this_tg->latency_target,
1414 parent_tg->latency_target);
1415 }
1416
1417 /*
1418 * We're already holding queue_lock and know @tg is valid. Let's
1419 * apply the new config directly.
1420 *
1421 * Restart the slices for both READ and WRITES. It might happen
1422 * that a group's limit are dropped suddenly and we don't want to
1423 * account recently dispatched IO with new low rate.
1424 */
1425 throtl_start_new_slice(tg, 0);
1426 throtl_start_new_slice(tg, 1);
1427
1428 if (tg->flags & THROTL_TG_PENDING) {
1429 tg_update_disptime(tg);
1430 throtl_schedule_next_dispatch(sq->parent_sq, true);
1431 }
1432 }
1433
tg_set_conf(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool is_u64)1434 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1435 char *buf, size_t nbytes, loff_t off, bool is_u64)
1436 {
1437 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1438 struct blkg_conf_ctx ctx;
1439 struct throtl_grp *tg;
1440 int ret;
1441 u64 v;
1442
1443 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1444 if (ret)
1445 return ret;
1446
1447 ret = -EINVAL;
1448 if (sscanf(ctx.body, "%llu", &v) != 1)
1449 goto out_finish;
1450 if (!v)
1451 v = U64_MAX;
1452
1453 tg = blkg_to_tg(ctx.blkg);
1454
1455 if (is_u64)
1456 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1457 else
1458 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1459
1460 tg_conf_updated(tg, false);
1461 ret = 0;
1462 out_finish:
1463 blkg_conf_finish(&ctx);
1464 return ret ?: nbytes;
1465 }
1466
tg_set_conf_u64(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1467 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1468 char *buf, size_t nbytes, loff_t off)
1469 {
1470 return tg_set_conf(of, buf, nbytes, off, true);
1471 }
1472
tg_set_conf_uint(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1473 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1474 char *buf, size_t nbytes, loff_t off)
1475 {
1476 return tg_set_conf(of, buf, nbytes, off, false);
1477 }
1478
1479 static struct cftype throtl_legacy_files[] = {
1480 {
1481 .name = "throttle.read_bps_device",
1482 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1483 .seq_show = tg_print_conf_u64,
1484 .write = tg_set_conf_u64,
1485 },
1486 {
1487 .name = "throttle.write_bps_device",
1488 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1489 .seq_show = tg_print_conf_u64,
1490 .write = tg_set_conf_u64,
1491 },
1492 {
1493 .name = "throttle.read_iops_device",
1494 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1495 .seq_show = tg_print_conf_uint,
1496 .write = tg_set_conf_uint,
1497 },
1498 {
1499 .name = "throttle.write_iops_device",
1500 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1501 .seq_show = tg_print_conf_uint,
1502 .write = tg_set_conf_uint,
1503 },
1504 {
1505 .name = "throttle.io_service_bytes",
1506 .private = (unsigned long)&blkcg_policy_throtl,
1507 .seq_show = blkg_print_stat_bytes,
1508 },
1509 {
1510 .name = "throttle.io_service_bytes_recursive",
1511 .private = (unsigned long)&blkcg_policy_throtl,
1512 .seq_show = blkg_print_stat_bytes_recursive,
1513 },
1514 {
1515 .name = "throttle.io_serviced",
1516 .private = (unsigned long)&blkcg_policy_throtl,
1517 .seq_show = blkg_print_stat_ios,
1518 },
1519 {
1520 .name = "throttle.io_serviced_recursive",
1521 .private = (unsigned long)&blkcg_policy_throtl,
1522 .seq_show = blkg_print_stat_ios_recursive,
1523 },
1524 { } /* terminate */
1525 };
1526
tg_prfill_limit(struct seq_file * sf,struct blkg_policy_data * pd,int off)1527 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1528 int off)
1529 {
1530 struct throtl_grp *tg = pd_to_tg(pd);
1531 const char *dname = blkg_dev_name(pd->blkg);
1532 char bufs[4][21] = { "max", "max", "max", "max" };
1533 u64 bps_dft;
1534 unsigned int iops_dft;
1535 char idle_time[26] = "";
1536 char latency_time[26] = "";
1537
1538 if (!dname)
1539 return 0;
1540
1541 if (off == LIMIT_LOW) {
1542 bps_dft = 0;
1543 iops_dft = 0;
1544 } else {
1545 bps_dft = U64_MAX;
1546 iops_dft = UINT_MAX;
1547 }
1548
1549 if (tg->bps_conf[READ][off] == bps_dft &&
1550 tg->bps_conf[WRITE][off] == bps_dft &&
1551 tg->iops_conf[READ][off] == iops_dft &&
1552 tg->iops_conf[WRITE][off] == iops_dft &&
1553 (off != LIMIT_LOW ||
1554 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1555 tg->latency_target_conf == DFL_LATENCY_TARGET)))
1556 return 0;
1557
1558 if (tg->bps_conf[READ][off] != U64_MAX)
1559 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1560 tg->bps_conf[READ][off]);
1561 if (tg->bps_conf[WRITE][off] != U64_MAX)
1562 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1563 tg->bps_conf[WRITE][off]);
1564 if (tg->iops_conf[READ][off] != UINT_MAX)
1565 snprintf(bufs[2], sizeof(bufs[2]), "%u",
1566 tg->iops_conf[READ][off]);
1567 if (tg->iops_conf[WRITE][off] != UINT_MAX)
1568 snprintf(bufs[3], sizeof(bufs[3]), "%u",
1569 tg->iops_conf[WRITE][off]);
1570 if (off == LIMIT_LOW) {
1571 if (tg->idletime_threshold_conf == ULONG_MAX)
1572 strcpy(idle_time, " idle=max");
1573 else
1574 snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1575 tg->idletime_threshold_conf);
1576
1577 if (tg->latency_target_conf == ULONG_MAX)
1578 strcpy(latency_time, " latency=max");
1579 else
1580 snprintf(latency_time, sizeof(latency_time),
1581 " latency=%lu", tg->latency_target_conf);
1582 }
1583
1584 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1585 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1586 latency_time);
1587 return 0;
1588 }
1589
tg_print_limit(struct seq_file * sf,void * v)1590 static int tg_print_limit(struct seq_file *sf, void *v)
1591 {
1592 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1593 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1594 return 0;
1595 }
1596
tg_set_limit(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1597 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1598 char *buf, size_t nbytes, loff_t off)
1599 {
1600 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1601 struct blkg_conf_ctx ctx;
1602 struct throtl_grp *tg;
1603 u64 v[4];
1604 unsigned long idle_time;
1605 unsigned long latency_time;
1606 int ret;
1607 int index = of_cft(of)->private;
1608
1609 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1610 if (ret)
1611 return ret;
1612
1613 tg = blkg_to_tg(ctx.blkg);
1614
1615 v[0] = tg->bps_conf[READ][index];
1616 v[1] = tg->bps_conf[WRITE][index];
1617 v[2] = tg->iops_conf[READ][index];
1618 v[3] = tg->iops_conf[WRITE][index];
1619
1620 idle_time = tg->idletime_threshold_conf;
1621 latency_time = tg->latency_target_conf;
1622 while (true) {
1623 char tok[27]; /* wiops=18446744073709551616 */
1624 char *p;
1625 u64 val = U64_MAX;
1626 int len;
1627
1628 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1629 break;
1630 if (tok[0] == '\0')
1631 break;
1632 ctx.body += len;
1633
1634 ret = -EINVAL;
1635 p = tok;
1636 strsep(&p, "=");
1637 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1638 goto out_finish;
1639
1640 ret = -ERANGE;
1641 if (!val)
1642 goto out_finish;
1643
1644 ret = -EINVAL;
1645 if (!strcmp(tok, "rbps"))
1646 v[0] = val;
1647 else if (!strcmp(tok, "wbps"))
1648 v[1] = val;
1649 else if (!strcmp(tok, "riops"))
1650 v[2] = min_t(u64, val, UINT_MAX);
1651 else if (!strcmp(tok, "wiops"))
1652 v[3] = min_t(u64, val, UINT_MAX);
1653 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1654 idle_time = val;
1655 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1656 latency_time = val;
1657 else
1658 goto out_finish;
1659 }
1660
1661 tg->bps_conf[READ][index] = v[0];
1662 tg->bps_conf[WRITE][index] = v[1];
1663 tg->iops_conf[READ][index] = v[2];
1664 tg->iops_conf[WRITE][index] = v[3];
1665
1666 if (index == LIMIT_MAX) {
1667 tg->bps[READ][index] = v[0];
1668 tg->bps[WRITE][index] = v[1];
1669 tg->iops[READ][index] = v[2];
1670 tg->iops[WRITE][index] = v[3];
1671 }
1672 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1673 tg->bps_conf[READ][LIMIT_MAX]);
1674 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1675 tg->bps_conf[WRITE][LIMIT_MAX]);
1676 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1677 tg->iops_conf[READ][LIMIT_MAX]);
1678 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1679 tg->iops_conf[WRITE][LIMIT_MAX]);
1680 tg->idletime_threshold_conf = idle_time;
1681 tg->latency_target_conf = latency_time;
1682
1683 /* force user to configure all settings for low limit */
1684 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1685 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1686 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1687 tg->latency_target_conf == DFL_LATENCY_TARGET) {
1688 tg->bps[READ][LIMIT_LOW] = 0;
1689 tg->bps[WRITE][LIMIT_LOW] = 0;
1690 tg->iops[READ][LIMIT_LOW] = 0;
1691 tg->iops[WRITE][LIMIT_LOW] = 0;
1692 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1693 tg->latency_target = DFL_LATENCY_TARGET;
1694 } else if (index == LIMIT_LOW) {
1695 tg->idletime_threshold = tg->idletime_threshold_conf;
1696 tg->latency_target = tg->latency_target_conf;
1697 }
1698
1699 blk_throtl_update_limit_valid(tg->td);
1700 if (tg->td->limit_valid[LIMIT_LOW]) {
1701 if (index == LIMIT_LOW)
1702 tg->td->limit_index = LIMIT_LOW;
1703 } else
1704 tg->td->limit_index = LIMIT_MAX;
1705 tg_conf_updated(tg, index == LIMIT_LOW &&
1706 tg->td->limit_valid[LIMIT_LOW]);
1707 ret = 0;
1708 out_finish:
1709 blkg_conf_finish(&ctx);
1710 return ret ?: nbytes;
1711 }
1712
1713 static struct cftype throtl_files[] = {
1714 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1715 {
1716 .name = "low",
1717 .flags = CFTYPE_NOT_ON_ROOT,
1718 .seq_show = tg_print_limit,
1719 .write = tg_set_limit,
1720 .private = LIMIT_LOW,
1721 },
1722 #endif
1723 {
1724 .name = "max",
1725 .flags = CFTYPE_NOT_ON_ROOT,
1726 .seq_show = tg_print_limit,
1727 .write = tg_set_limit,
1728 .private = LIMIT_MAX,
1729 },
1730 { } /* terminate */
1731 };
1732
throtl_shutdown_wq(struct request_queue * q)1733 static void throtl_shutdown_wq(struct request_queue *q)
1734 {
1735 struct throtl_data *td = q->td;
1736
1737 cancel_work_sync(&td->dispatch_work);
1738 }
1739
1740 static struct blkcg_policy blkcg_policy_throtl = {
1741 .dfl_cftypes = throtl_files,
1742 .legacy_cftypes = throtl_legacy_files,
1743
1744 .pd_alloc_fn = throtl_pd_alloc,
1745 .pd_init_fn = throtl_pd_init,
1746 .pd_online_fn = throtl_pd_online,
1747 .pd_offline_fn = throtl_pd_offline,
1748 .pd_free_fn = throtl_pd_free,
1749 };
1750
__tg_last_low_overflow_time(struct throtl_grp * tg)1751 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1752 {
1753 unsigned long rtime = jiffies, wtime = jiffies;
1754
1755 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1756 rtime = tg->last_low_overflow_time[READ];
1757 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1758 wtime = tg->last_low_overflow_time[WRITE];
1759 return min(rtime, wtime);
1760 }
1761
1762 /* tg should not be an intermediate node */
tg_last_low_overflow_time(struct throtl_grp * tg)1763 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1764 {
1765 struct throtl_service_queue *parent_sq;
1766 struct throtl_grp *parent = tg;
1767 unsigned long ret = __tg_last_low_overflow_time(tg);
1768
1769 while (true) {
1770 parent_sq = parent->service_queue.parent_sq;
1771 parent = sq_to_tg(parent_sq);
1772 if (!parent)
1773 break;
1774
1775 /*
1776 * The parent doesn't have low limit, it always reaches low
1777 * limit. Its overflow time is useless for children
1778 */
1779 if (!parent->bps[READ][LIMIT_LOW] &&
1780 !parent->iops[READ][LIMIT_LOW] &&
1781 !parent->bps[WRITE][LIMIT_LOW] &&
1782 !parent->iops[WRITE][LIMIT_LOW])
1783 continue;
1784 if (time_after(__tg_last_low_overflow_time(parent), ret))
1785 ret = __tg_last_low_overflow_time(parent);
1786 }
1787 return ret;
1788 }
1789
throtl_tg_is_idle(struct throtl_grp * tg)1790 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1791 {
1792 /*
1793 * cgroup is idle if:
1794 * - single idle is too long, longer than a fixed value (in case user
1795 * configure a too big threshold) or 4 times of idletime threshold
1796 * - average think time is more than threshold
1797 * - IO latency is largely below threshold
1798 */
1799 unsigned long time;
1800 bool ret;
1801
1802 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1803 ret = tg->latency_target == DFL_LATENCY_TARGET ||
1804 tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1805 (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1806 tg->avg_idletime > tg->idletime_threshold ||
1807 (tg->latency_target && tg->bio_cnt &&
1808 tg->bad_bio_cnt * 5 < tg->bio_cnt);
1809 throtl_log(&tg->service_queue,
1810 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1811 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1812 tg->bio_cnt, ret, tg->td->scale);
1813 return ret;
1814 }
1815
throtl_tg_can_upgrade(struct throtl_grp * tg)1816 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1817 {
1818 struct throtl_service_queue *sq = &tg->service_queue;
1819 bool read_limit, write_limit;
1820
1821 /*
1822 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1823 * reaches), it's ok to upgrade to next limit
1824 */
1825 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1826 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1827 if (!read_limit && !write_limit)
1828 return true;
1829 if (read_limit && sq->nr_queued[READ] &&
1830 (!write_limit || sq->nr_queued[WRITE]))
1831 return true;
1832 if (write_limit && sq->nr_queued[WRITE] &&
1833 (!read_limit || sq->nr_queued[READ]))
1834 return true;
1835
1836 if (time_after_eq(jiffies,
1837 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1838 throtl_tg_is_idle(tg))
1839 return true;
1840 return false;
1841 }
1842
throtl_hierarchy_can_upgrade(struct throtl_grp * tg)1843 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1844 {
1845 while (true) {
1846 if (throtl_tg_can_upgrade(tg))
1847 return true;
1848 tg = sq_to_tg(tg->service_queue.parent_sq);
1849 if (!tg || !tg_to_blkg(tg)->parent)
1850 return false;
1851 }
1852 return false;
1853 }
1854
throtl_can_upgrade(struct throtl_data * td,struct throtl_grp * this_tg)1855 static bool throtl_can_upgrade(struct throtl_data *td,
1856 struct throtl_grp *this_tg)
1857 {
1858 struct cgroup_subsys_state *pos_css;
1859 struct blkcg_gq *blkg;
1860
1861 if (td->limit_index != LIMIT_LOW)
1862 return false;
1863
1864 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1865 return false;
1866
1867 rcu_read_lock();
1868 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1869 struct throtl_grp *tg = blkg_to_tg(blkg);
1870
1871 if (tg == this_tg)
1872 continue;
1873 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1874 continue;
1875 if (!throtl_hierarchy_can_upgrade(tg)) {
1876 rcu_read_unlock();
1877 return false;
1878 }
1879 }
1880 rcu_read_unlock();
1881 return true;
1882 }
1883
throtl_upgrade_check(struct throtl_grp * tg)1884 static void throtl_upgrade_check(struct throtl_grp *tg)
1885 {
1886 unsigned long now = jiffies;
1887
1888 if (tg->td->limit_index != LIMIT_LOW)
1889 return;
1890
1891 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1892 return;
1893
1894 tg->last_check_time = now;
1895
1896 if (!time_after_eq(now,
1897 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1898 return;
1899
1900 if (throtl_can_upgrade(tg->td, NULL))
1901 throtl_upgrade_state(tg->td);
1902 }
1903
throtl_upgrade_state(struct throtl_data * td)1904 static void throtl_upgrade_state(struct throtl_data *td)
1905 {
1906 struct cgroup_subsys_state *pos_css;
1907 struct blkcg_gq *blkg;
1908
1909 throtl_log(&td->service_queue, "upgrade to max");
1910 td->limit_index = LIMIT_MAX;
1911 td->low_upgrade_time = jiffies;
1912 td->scale = 0;
1913 rcu_read_lock();
1914 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1915 struct throtl_grp *tg = blkg_to_tg(blkg);
1916 struct throtl_service_queue *sq = &tg->service_queue;
1917
1918 tg->disptime = jiffies - 1;
1919 throtl_select_dispatch(sq);
1920 throtl_schedule_next_dispatch(sq, true);
1921 }
1922 rcu_read_unlock();
1923 throtl_select_dispatch(&td->service_queue);
1924 throtl_schedule_next_dispatch(&td->service_queue, true);
1925 queue_work(kthrotld_workqueue, &td->dispatch_work);
1926 }
1927
throtl_downgrade_state(struct throtl_data * td,int new)1928 static void throtl_downgrade_state(struct throtl_data *td, int new)
1929 {
1930 td->scale /= 2;
1931
1932 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1933 if (td->scale) {
1934 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1935 return;
1936 }
1937
1938 td->limit_index = new;
1939 td->low_downgrade_time = jiffies;
1940 }
1941
throtl_tg_can_downgrade(struct throtl_grp * tg)1942 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1943 {
1944 struct throtl_data *td = tg->td;
1945 unsigned long now = jiffies;
1946
1947 /*
1948 * If cgroup is below low limit, consider downgrade and throttle other
1949 * cgroups
1950 */
1951 if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1952 time_after_eq(now, tg_last_low_overflow_time(tg) +
1953 td->throtl_slice) &&
1954 (!throtl_tg_is_idle(tg) ||
1955 !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1956 return true;
1957 return false;
1958 }
1959
throtl_hierarchy_can_downgrade(struct throtl_grp * tg)1960 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1961 {
1962 while (true) {
1963 if (!throtl_tg_can_downgrade(tg))
1964 return false;
1965 tg = sq_to_tg(tg->service_queue.parent_sq);
1966 if (!tg || !tg_to_blkg(tg)->parent)
1967 break;
1968 }
1969 return true;
1970 }
1971
throtl_downgrade_check(struct throtl_grp * tg)1972 static void throtl_downgrade_check(struct throtl_grp *tg)
1973 {
1974 uint64_t bps;
1975 unsigned int iops;
1976 unsigned long elapsed_time;
1977 unsigned long now = jiffies;
1978
1979 if (tg->td->limit_index != LIMIT_MAX ||
1980 !tg->td->limit_valid[LIMIT_LOW])
1981 return;
1982 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1983 return;
1984 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1985 return;
1986
1987 elapsed_time = now - tg->last_check_time;
1988 tg->last_check_time = now;
1989
1990 if (time_before(now, tg_last_low_overflow_time(tg) +
1991 tg->td->throtl_slice))
1992 return;
1993
1994 if (tg->bps[READ][LIMIT_LOW]) {
1995 bps = tg->last_bytes_disp[READ] * HZ;
1996 do_div(bps, elapsed_time);
1997 if (bps >= tg->bps[READ][LIMIT_LOW])
1998 tg->last_low_overflow_time[READ] = now;
1999 }
2000
2001 if (tg->bps[WRITE][LIMIT_LOW]) {
2002 bps = tg->last_bytes_disp[WRITE] * HZ;
2003 do_div(bps, elapsed_time);
2004 if (bps >= tg->bps[WRITE][LIMIT_LOW])
2005 tg->last_low_overflow_time[WRITE] = now;
2006 }
2007
2008 if (tg->iops[READ][LIMIT_LOW]) {
2009 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2010 if (iops >= tg->iops[READ][LIMIT_LOW])
2011 tg->last_low_overflow_time[READ] = now;
2012 }
2013
2014 if (tg->iops[WRITE][LIMIT_LOW]) {
2015 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2016 if (iops >= tg->iops[WRITE][LIMIT_LOW])
2017 tg->last_low_overflow_time[WRITE] = now;
2018 }
2019
2020 /*
2021 * If cgroup is below low limit, consider downgrade and throttle other
2022 * cgroups
2023 */
2024 if (throtl_hierarchy_can_downgrade(tg))
2025 throtl_downgrade_state(tg->td, LIMIT_LOW);
2026
2027 tg->last_bytes_disp[READ] = 0;
2028 tg->last_bytes_disp[WRITE] = 0;
2029 tg->last_io_disp[READ] = 0;
2030 tg->last_io_disp[WRITE] = 0;
2031 }
2032
blk_throtl_update_idletime(struct throtl_grp * tg)2033 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2034 {
2035 unsigned long now = ktime_get_ns() >> 10;
2036 unsigned long last_finish_time = tg->last_finish_time;
2037
2038 if (now <= last_finish_time || last_finish_time == 0 ||
2039 last_finish_time == tg->checked_last_finish_time)
2040 return;
2041
2042 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2043 tg->checked_last_finish_time = last_finish_time;
2044 }
2045
2046 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
throtl_update_latency_buckets(struct throtl_data * td)2047 static void throtl_update_latency_buckets(struct throtl_data *td)
2048 {
2049 struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2050 int i, cpu, rw;
2051 unsigned long last_latency[2] = { 0 };
2052 unsigned long latency[2];
2053
2054 if (!blk_queue_nonrot(td->queue))
2055 return;
2056 if (time_before(jiffies, td->last_calculate_time + HZ))
2057 return;
2058 td->last_calculate_time = jiffies;
2059
2060 memset(avg_latency, 0, sizeof(avg_latency));
2061 for (rw = READ; rw <= WRITE; rw++) {
2062 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2063 struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2064
2065 for_each_possible_cpu(cpu) {
2066 struct latency_bucket *bucket;
2067
2068 /* this isn't race free, but ok in practice */
2069 bucket = per_cpu_ptr(td->latency_buckets[rw],
2070 cpu);
2071 tmp->total_latency += bucket[i].total_latency;
2072 tmp->samples += bucket[i].samples;
2073 bucket[i].total_latency = 0;
2074 bucket[i].samples = 0;
2075 }
2076
2077 if (tmp->samples >= 32) {
2078 int samples = tmp->samples;
2079
2080 latency[rw] = tmp->total_latency;
2081
2082 tmp->total_latency = 0;
2083 tmp->samples = 0;
2084 latency[rw] /= samples;
2085 if (latency[rw] == 0)
2086 continue;
2087 avg_latency[rw][i].latency = latency[rw];
2088 }
2089 }
2090 }
2091
2092 for (rw = READ; rw <= WRITE; rw++) {
2093 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2094 if (!avg_latency[rw][i].latency) {
2095 if (td->avg_buckets[rw][i].latency < last_latency[rw])
2096 td->avg_buckets[rw][i].latency =
2097 last_latency[rw];
2098 continue;
2099 }
2100
2101 if (!td->avg_buckets[rw][i].valid)
2102 latency[rw] = avg_latency[rw][i].latency;
2103 else
2104 latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2105 avg_latency[rw][i].latency) >> 3;
2106
2107 td->avg_buckets[rw][i].latency = max(latency[rw],
2108 last_latency[rw]);
2109 td->avg_buckets[rw][i].valid = true;
2110 last_latency[rw] = td->avg_buckets[rw][i].latency;
2111 }
2112 }
2113
2114 for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2115 throtl_log(&td->service_queue,
2116 "Latency bucket %d: read latency=%ld, read valid=%d, "
2117 "write latency=%ld, write valid=%d", i,
2118 td->avg_buckets[READ][i].latency,
2119 td->avg_buckets[READ][i].valid,
2120 td->avg_buckets[WRITE][i].latency,
2121 td->avg_buckets[WRITE][i].valid);
2122 }
2123 #else
throtl_update_latency_buckets(struct throtl_data * td)2124 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2125 {
2126 }
2127 #endif
2128
blk_throtl_assoc_bio(struct throtl_grp * tg,struct bio * bio)2129 static void blk_throtl_assoc_bio(struct throtl_grp *tg, struct bio *bio)
2130 {
2131 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2132 /* fallback to root_blkg if we fail to get a blkg ref */
2133 if (bio->bi_css && (bio_associate_blkg(bio, tg_to_blkg(tg)) == -ENODEV))
2134 bio_associate_blkg(bio, bio->bi_disk->queue->root_blkg);
2135 bio_issue_init(&bio->bi_issue, bio_sectors(bio));
2136 #endif
2137 }
2138
blk_throtl_bio(struct request_queue * q,struct blkcg_gq * blkg,struct bio * bio)2139 bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
2140 struct bio *bio)
2141 {
2142 struct throtl_qnode *qn = NULL;
2143 struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
2144 struct throtl_service_queue *sq;
2145 bool rw = bio_data_dir(bio);
2146 bool throttled = false;
2147 struct throtl_data *td = tg->td;
2148
2149 WARN_ON_ONCE(!rcu_read_lock_held());
2150
2151 /* see throtl_charge_bio() */
2152 if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
2153 goto out;
2154
2155 spin_lock_irq(q->queue_lock);
2156
2157 throtl_update_latency_buckets(td);
2158
2159 if (unlikely(blk_queue_bypass(q)))
2160 goto out_unlock;
2161
2162 blk_throtl_assoc_bio(tg, bio);
2163 blk_throtl_update_idletime(tg);
2164
2165 sq = &tg->service_queue;
2166
2167 again:
2168 while (true) {
2169 if (tg->last_low_overflow_time[rw] == 0)
2170 tg->last_low_overflow_time[rw] = jiffies;
2171 throtl_downgrade_check(tg);
2172 throtl_upgrade_check(tg);
2173 /* throtl is FIFO - if bios are already queued, should queue */
2174 if (sq->nr_queued[rw])
2175 break;
2176
2177 /* if above limits, break to queue */
2178 if (!tg_may_dispatch(tg, bio, NULL)) {
2179 tg->last_low_overflow_time[rw] = jiffies;
2180 if (throtl_can_upgrade(td, tg)) {
2181 throtl_upgrade_state(td);
2182 goto again;
2183 }
2184 break;
2185 }
2186
2187 /* within limits, let's charge and dispatch directly */
2188 throtl_charge_bio(tg, bio);
2189
2190 /*
2191 * We need to trim slice even when bios are not being queued
2192 * otherwise it might happen that a bio is not queued for
2193 * a long time and slice keeps on extending and trim is not
2194 * called for a long time. Now if limits are reduced suddenly
2195 * we take into account all the IO dispatched so far at new
2196 * low rate and * newly queued IO gets a really long dispatch
2197 * time.
2198 *
2199 * So keep on trimming slice even if bio is not queued.
2200 */
2201 throtl_trim_slice(tg, rw);
2202
2203 /*
2204 * @bio passed through this layer without being throttled.
2205 * Climb up the ladder. If we''re already at the top, it
2206 * can be executed directly.
2207 */
2208 qn = &tg->qnode_on_parent[rw];
2209 sq = sq->parent_sq;
2210 tg = sq_to_tg(sq);
2211 if (!tg)
2212 goto out_unlock;
2213 }
2214
2215 /* out-of-limit, queue to @tg */
2216 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2217 rw == READ ? 'R' : 'W',
2218 tg->bytes_disp[rw], bio->bi_iter.bi_size,
2219 tg_bps_limit(tg, rw),
2220 tg->io_disp[rw], tg_iops_limit(tg, rw),
2221 sq->nr_queued[READ], sq->nr_queued[WRITE]);
2222
2223 tg->last_low_overflow_time[rw] = jiffies;
2224
2225 td->nr_queued[rw]++;
2226 throtl_add_bio_tg(bio, qn, tg);
2227 throttled = true;
2228
2229 /*
2230 * Update @tg's dispatch time and force schedule dispatch if @tg
2231 * was empty before @bio. The forced scheduling isn't likely to
2232 * cause undue delay as @bio is likely to be dispatched directly if
2233 * its @tg's disptime is not in the future.
2234 */
2235 if (tg->flags & THROTL_TG_WAS_EMPTY) {
2236 tg_update_disptime(tg);
2237 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2238 }
2239
2240 out_unlock:
2241 spin_unlock_irq(q->queue_lock);
2242 out:
2243 bio_set_flag(bio, BIO_THROTTLED);
2244
2245 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2246 if (throttled || !td->track_bio_latency)
2247 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2248 #endif
2249 return throttled;
2250 }
2251
2252 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
throtl_track_latency(struct throtl_data * td,sector_t size,int op,unsigned long time)2253 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2254 int op, unsigned long time)
2255 {
2256 struct latency_bucket *latency;
2257 int index;
2258
2259 if (!td || td->limit_index != LIMIT_LOW ||
2260 !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2261 !blk_queue_nonrot(td->queue))
2262 return;
2263
2264 index = request_bucket_index(size);
2265
2266 latency = get_cpu_ptr(td->latency_buckets[op]);
2267 latency[index].total_latency += time;
2268 latency[index].samples++;
2269 put_cpu_ptr(td->latency_buckets[op]);
2270 }
2271
blk_throtl_stat_add(struct request * rq,u64 time_ns)2272 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2273 {
2274 struct request_queue *q = rq->q;
2275 struct throtl_data *td = q->td;
2276
2277 throtl_track_latency(td, rq->throtl_size, req_op(rq), time_ns >> 10);
2278 }
2279
blk_throtl_bio_endio(struct bio * bio)2280 void blk_throtl_bio_endio(struct bio *bio)
2281 {
2282 struct blkcg_gq *blkg;
2283 struct throtl_grp *tg;
2284 u64 finish_time_ns;
2285 unsigned long finish_time;
2286 unsigned long start_time;
2287 unsigned long lat;
2288 int rw = bio_data_dir(bio);
2289
2290 blkg = bio->bi_blkg;
2291 if (!blkg)
2292 return;
2293 tg = blkg_to_tg(blkg);
2294
2295 finish_time_ns = ktime_get_ns();
2296 tg->last_finish_time = finish_time_ns >> 10;
2297
2298 start_time = bio_issue_time(&bio->bi_issue) >> 10;
2299 finish_time = __bio_issue_time(finish_time_ns) >> 10;
2300 if (!start_time || finish_time <= start_time)
2301 return;
2302
2303 lat = finish_time - start_time;
2304 /* this is only for bio based driver */
2305 if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2306 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2307 bio_op(bio), lat);
2308
2309 if (tg->latency_target && lat >= tg->td->filtered_latency) {
2310 int bucket;
2311 unsigned int threshold;
2312
2313 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2314 threshold = tg->td->avg_buckets[rw][bucket].latency +
2315 tg->latency_target;
2316 if (lat > threshold)
2317 tg->bad_bio_cnt++;
2318 /*
2319 * Not race free, could get wrong count, which means cgroups
2320 * will be throttled
2321 */
2322 tg->bio_cnt++;
2323 }
2324
2325 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2326 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2327 tg->bio_cnt /= 2;
2328 tg->bad_bio_cnt /= 2;
2329 }
2330 }
2331 #endif
2332
2333 /*
2334 * Dispatch all bios from all children tg's queued on @parent_sq. On
2335 * return, @parent_sq is guaranteed to not have any active children tg's
2336 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
2337 */
tg_drain_bios(struct throtl_service_queue * parent_sq)2338 static void tg_drain_bios(struct throtl_service_queue *parent_sq)
2339 {
2340 struct throtl_grp *tg;
2341
2342 while ((tg = throtl_rb_first(parent_sq))) {
2343 struct throtl_service_queue *sq = &tg->service_queue;
2344 struct bio *bio;
2345
2346 throtl_dequeue_tg(tg);
2347
2348 while ((bio = throtl_peek_queued(&sq->queued[READ])))
2349 tg_dispatch_one_bio(tg, bio_data_dir(bio));
2350 while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2351 tg_dispatch_one_bio(tg, bio_data_dir(bio));
2352 }
2353 }
2354
2355 /**
2356 * blk_throtl_drain - drain throttled bios
2357 * @q: request_queue to drain throttled bios for
2358 *
2359 * Dispatch all currently throttled bios on @q through ->make_request_fn().
2360 */
blk_throtl_drain(struct request_queue * q)2361 void blk_throtl_drain(struct request_queue *q)
2362 __releases(q->queue_lock) __acquires(q->queue_lock)
2363 {
2364 struct throtl_data *td = q->td;
2365 struct blkcg_gq *blkg;
2366 struct cgroup_subsys_state *pos_css;
2367 struct bio *bio;
2368 int rw;
2369
2370 queue_lockdep_assert_held(q);
2371 rcu_read_lock();
2372
2373 /*
2374 * Drain each tg while doing post-order walk on the blkg tree, so
2375 * that all bios are propagated to td->service_queue. It'd be
2376 * better to walk service_queue tree directly but blkg walk is
2377 * easier.
2378 */
2379 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2380 tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
2381
2382 /* finally, transfer bios from top-level tg's into the td */
2383 tg_drain_bios(&td->service_queue);
2384
2385 rcu_read_unlock();
2386 spin_unlock_irq(q->queue_lock);
2387
2388 /* all bios now should be in td->service_queue, issue them */
2389 for (rw = READ; rw <= WRITE; rw++)
2390 while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
2391 NULL)))
2392 generic_make_request(bio);
2393
2394 spin_lock_irq(q->queue_lock);
2395 }
2396
blk_throtl_init(struct request_queue * q)2397 int blk_throtl_init(struct request_queue *q)
2398 {
2399 struct throtl_data *td;
2400 int ret;
2401
2402 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2403 if (!td)
2404 return -ENOMEM;
2405 td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2406 LATENCY_BUCKET_SIZE, __alignof__(u64));
2407 if (!td->latency_buckets[READ]) {
2408 kfree(td);
2409 return -ENOMEM;
2410 }
2411 td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2412 LATENCY_BUCKET_SIZE, __alignof__(u64));
2413 if (!td->latency_buckets[WRITE]) {
2414 free_percpu(td->latency_buckets[READ]);
2415 kfree(td);
2416 return -ENOMEM;
2417 }
2418
2419 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2420 throtl_service_queue_init(&td->service_queue);
2421
2422 q->td = td;
2423 td->queue = q;
2424
2425 td->limit_valid[LIMIT_MAX] = true;
2426 td->limit_index = LIMIT_MAX;
2427 td->low_upgrade_time = jiffies;
2428 td->low_downgrade_time = jiffies;
2429
2430 /* activate policy */
2431 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2432 if (ret) {
2433 free_percpu(td->latency_buckets[READ]);
2434 free_percpu(td->latency_buckets[WRITE]);
2435 kfree(td);
2436 }
2437 return ret;
2438 }
2439
blk_throtl_exit(struct request_queue * q)2440 void blk_throtl_exit(struct request_queue *q)
2441 {
2442 BUG_ON(!q->td);
2443 throtl_shutdown_wq(q);
2444 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2445 free_percpu(q->td->latency_buckets[READ]);
2446 free_percpu(q->td->latency_buckets[WRITE]);
2447 kfree(q->td);
2448 }
2449
blk_throtl_register_queue(struct request_queue * q)2450 void blk_throtl_register_queue(struct request_queue *q)
2451 {
2452 struct throtl_data *td;
2453 int i;
2454
2455 td = q->td;
2456 BUG_ON(!td);
2457
2458 if (blk_queue_nonrot(q)) {
2459 td->throtl_slice = DFL_THROTL_SLICE_SSD;
2460 td->filtered_latency = LATENCY_FILTERED_SSD;
2461 } else {
2462 td->throtl_slice = DFL_THROTL_SLICE_HD;
2463 td->filtered_latency = LATENCY_FILTERED_HD;
2464 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2465 td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2466 td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2467 }
2468 }
2469 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2470 /* if no low limit, use previous default */
2471 td->throtl_slice = DFL_THROTL_SLICE_HD;
2472 #endif
2473
2474 td->track_bio_latency = !queue_is_rq_based(q);
2475 if (!td->track_bio_latency)
2476 blk_stat_enable_accounting(q);
2477 }
2478
2479 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
blk_throtl_sample_time_show(struct request_queue * q,char * page)2480 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2481 {
2482 if (!q->td)
2483 return -EINVAL;
2484 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2485 }
2486
blk_throtl_sample_time_store(struct request_queue * q,const char * page,size_t count)2487 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2488 const char *page, size_t count)
2489 {
2490 unsigned long v;
2491 unsigned long t;
2492
2493 if (!q->td)
2494 return -EINVAL;
2495 if (kstrtoul(page, 10, &v))
2496 return -EINVAL;
2497 t = msecs_to_jiffies(v);
2498 if (t == 0 || t > MAX_THROTL_SLICE)
2499 return -EINVAL;
2500 q->td->throtl_slice = t;
2501 return count;
2502 }
2503 #endif
2504
throtl_init(void)2505 static int __init throtl_init(void)
2506 {
2507 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2508 if (!kthrotld_workqueue)
2509 panic("Failed to create kthrotld\n");
2510
2511 return blkcg_policy_register(&blkcg_policy_throtl);
2512 }
2513
2514 module_init(throtl_init);
2515