1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Interface for controlling IO bandwidth on a request queue
4  *
5  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6  */
7 
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include <linux/blk-cgroup.h>
14 #include "blk.h"
15 
16 /* Max dispatch from a group in 1 round */
17 static int throtl_grp_quantum = 8;
18 
19 /* Total max dispatch from all groups in one round */
20 static int throtl_quantum = 32;
21 
22 /* Throttling is performed over a slice and after that slice is renewed */
23 #define DFL_THROTL_SLICE_HD (HZ / 10)
24 #define DFL_THROTL_SLICE_SSD (HZ / 50)
25 #define MAX_THROTL_SLICE (HZ)
26 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
27 #define MIN_THROTL_BPS (320 * 1024)
28 #define MIN_THROTL_IOPS (10)
29 #define DFL_LATENCY_TARGET (-1L)
30 #define DFL_IDLE_THRESHOLD (0)
31 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
32 #define LATENCY_FILTERED_SSD (0)
33 /*
34  * For HD, very small latency comes from sequential IO. Such IO is helpless to
35  * help determine if its IO is impacted by others, hence we ignore the IO
36  */
37 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
38 
39 static struct blkcg_policy blkcg_policy_throtl;
40 
41 /* A workqueue to queue throttle related work */
42 static struct workqueue_struct *kthrotld_workqueue;
43 
44 /*
45  * To implement hierarchical throttling, throtl_grps form a tree and bios
46  * are dispatched upwards level by level until they reach the top and get
47  * issued.  When dispatching bios from the children and local group at each
48  * level, if the bios are dispatched into a single bio_list, there's a risk
49  * of a local or child group which can queue many bios at once filling up
50  * the list starving others.
51  *
52  * To avoid such starvation, dispatched bios are queued separately
53  * according to where they came from.  When they are again dispatched to
54  * the parent, they're popped in round-robin order so that no single source
55  * hogs the dispatch window.
56  *
57  * throtl_qnode is used to keep the queued bios separated by their sources.
58  * Bios are queued to throtl_qnode which in turn is queued to
59  * throtl_service_queue and then dispatched in round-robin order.
60  *
61  * It's also used to track the reference counts on blkg's.  A qnode always
62  * belongs to a throtl_grp and gets queued on itself or the parent, so
63  * incrementing the reference of the associated throtl_grp when a qnode is
64  * queued and decrementing when dequeued is enough to keep the whole blkg
65  * tree pinned while bios are in flight.
66  */
67 struct throtl_qnode {
68 	struct list_head	node;		/* service_queue->queued[] */
69 	struct bio_list		bios;		/* queued bios */
70 	struct throtl_grp	*tg;		/* tg this qnode belongs to */
71 };
72 
73 struct throtl_service_queue {
74 	struct throtl_service_queue *parent_sq;	/* the parent service_queue */
75 
76 	/*
77 	 * Bios queued directly to this service_queue or dispatched from
78 	 * children throtl_grp's.
79 	 */
80 	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
81 	unsigned int		nr_queued[2];	/* number of queued bios */
82 
83 	/*
84 	 * RB tree of active children throtl_grp's, which are sorted by
85 	 * their ->disptime.
86 	 */
87 	struct rb_root		pending_tree;	/* RB tree of active tgs */
88 	struct rb_node		*first_pending;	/* first node in the tree */
89 	unsigned int		nr_pending;	/* # queued in the tree */
90 	unsigned long		first_pending_disptime;	/* disptime of the first tg */
91 	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
92 };
93 
94 enum tg_state_flags {
95 	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
96 	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
97 };
98 
99 #define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)
100 
101 enum {
102 	LIMIT_LOW,
103 	LIMIT_MAX,
104 	LIMIT_CNT,
105 };
106 
107 struct throtl_grp {
108 	/* must be the first member */
109 	struct blkg_policy_data pd;
110 
111 	/* active throtl group service_queue member */
112 	struct rb_node rb_node;
113 
114 	/* throtl_data this group belongs to */
115 	struct throtl_data *td;
116 
117 	/* this group's service queue */
118 	struct throtl_service_queue service_queue;
119 
120 	/*
121 	 * qnode_on_self is used when bios are directly queued to this
122 	 * throtl_grp so that local bios compete fairly with bios
123 	 * dispatched from children.  qnode_on_parent is used when bios are
124 	 * dispatched from this throtl_grp into its parent and will compete
125 	 * with the sibling qnode_on_parents and the parent's
126 	 * qnode_on_self.
127 	 */
128 	struct throtl_qnode qnode_on_self[2];
129 	struct throtl_qnode qnode_on_parent[2];
130 
131 	/*
132 	 * Dispatch time in jiffies. This is the estimated time when group
133 	 * will unthrottle and is ready to dispatch more bio. It is used as
134 	 * key to sort active groups in service tree.
135 	 */
136 	unsigned long disptime;
137 
138 	unsigned int flags;
139 
140 	/* are there any throtl rules between this group and td? */
141 	bool has_rules[2];
142 
143 	/* internally used bytes per second rate limits */
144 	uint64_t bps[2][LIMIT_CNT];
145 	/* user configured bps limits */
146 	uint64_t bps_conf[2][LIMIT_CNT];
147 
148 	/* internally used IOPS limits */
149 	unsigned int iops[2][LIMIT_CNT];
150 	/* user configured IOPS limits */
151 	unsigned int iops_conf[2][LIMIT_CNT];
152 
153 	/* Number of bytes disptached in current slice */
154 	uint64_t bytes_disp[2];
155 	/* Number of bio's dispatched in current slice */
156 	unsigned int io_disp[2];
157 
158 	unsigned long last_low_overflow_time[2];
159 
160 	uint64_t last_bytes_disp[2];
161 	unsigned int last_io_disp[2];
162 
163 	unsigned long last_check_time;
164 
165 	unsigned long latency_target; /* us */
166 	unsigned long latency_target_conf; /* us */
167 	/* When did we start a new slice */
168 	unsigned long slice_start[2];
169 	unsigned long slice_end[2];
170 
171 	unsigned long last_finish_time; /* ns / 1024 */
172 	unsigned long checked_last_finish_time; /* ns / 1024 */
173 	unsigned long avg_idletime; /* ns / 1024 */
174 	unsigned long idletime_threshold; /* us */
175 	unsigned long idletime_threshold_conf; /* us */
176 
177 	unsigned int bio_cnt; /* total bios */
178 	unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
179 	unsigned long bio_cnt_reset_time;
180 };
181 
182 /* We measure latency for request size from <= 4k to >= 1M */
183 #define LATENCY_BUCKET_SIZE 9
184 
185 struct latency_bucket {
186 	unsigned long total_latency; /* ns / 1024 */
187 	int samples;
188 };
189 
190 struct avg_latency_bucket {
191 	unsigned long latency; /* ns / 1024 */
192 	bool valid;
193 };
194 
195 struct throtl_data
196 {
197 	/* service tree for active throtl groups */
198 	struct throtl_service_queue service_queue;
199 
200 	struct request_queue *queue;
201 
202 	/* Total Number of queued bios on READ and WRITE lists */
203 	unsigned int nr_queued[2];
204 
205 	unsigned int throtl_slice;
206 
207 	/* Work for dispatching throttled bios */
208 	struct work_struct dispatch_work;
209 	unsigned int limit_index;
210 	bool limit_valid[LIMIT_CNT];
211 
212 	unsigned long low_upgrade_time;
213 	unsigned long low_downgrade_time;
214 
215 	unsigned int scale;
216 
217 	struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
218 	struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
219 	struct latency_bucket __percpu *latency_buckets[2];
220 	unsigned long last_calculate_time;
221 	unsigned long filtered_latency;
222 
223 	bool track_bio_latency;
224 };
225 
226 static void throtl_pending_timer_fn(struct timer_list *t);
227 
pd_to_tg(struct blkg_policy_data * pd)228 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
229 {
230 	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
231 }
232 
blkg_to_tg(struct blkcg_gq * blkg)233 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
234 {
235 	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
236 }
237 
tg_to_blkg(struct throtl_grp * tg)238 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
239 {
240 	return pd_to_blkg(&tg->pd);
241 }
242 
243 /**
244  * sq_to_tg - return the throl_grp the specified service queue belongs to
245  * @sq: the throtl_service_queue of interest
246  *
247  * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
248  * embedded in throtl_data, %NULL is returned.
249  */
sq_to_tg(struct throtl_service_queue * sq)250 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
251 {
252 	if (sq && sq->parent_sq)
253 		return container_of(sq, struct throtl_grp, service_queue);
254 	else
255 		return NULL;
256 }
257 
258 /**
259  * sq_to_td - return throtl_data the specified service queue belongs to
260  * @sq: the throtl_service_queue of interest
261  *
262  * A service_queue can be embedded in either a throtl_grp or throtl_data.
263  * Determine the associated throtl_data accordingly and return it.
264  */
sq_to_td(struct throtl_service_queue * sq)265 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
266 {
267 	struct throtl_grp *tg = sq_to_tg(sq);
268 
269 	if (tg)
270 		return tg->td;
271 	else
272 		return container_of(sq, struct throtl_data, service_queue);
273 }
274 
275 /*
276  * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
277  * make the IO dispatch more smooth.
278  * Scale up: linearly scale up according to lapsed time since upgrade. For
279  *           every throtl_slice, the limit scales up 1/2 .low limit till the
280  *           limit hits .max limit
281  * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
282  */
throtl_adjusted_limit(uint64_t low,struct throtl_data * td)283 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
284 {
285 	/* arbitrary value to avoid too big scale */
286 	if (td->scale < 4096 && time_after_eq(jiffies,
287 	    td->low_upgrade_time + td->scale * td->throtl_slice))
288 		td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
289 
290 	return low + (low >> 1) * td->scale;
291 }
292 
tg_bps_limit(struct throtl_grp * tg,int rw)293 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
294 {
295 	struct blkcg_gq *blkg = tg_to_blkg(tg);
296 	struct throtl_data *td;
297 	uint64_t ret;
298 
299 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
300 		return U64_MAX;
301 
302 	td = tg->td;
303 	ret = tg->bps[rw][td->limit_index];
304 	if (ret == 0 && td->limit_index == LIMIT_LOW) {
305 		/* intermediate node or iops isn't 0 */
306 		if (!list_empty(&blkg->blkcg->css.children) ||
307 		    tg->iops[rw][td->limit_index])
308 			return U64_MAX;
309 		else
310 			return MIN_THROTL_BPS;
311 	}
312 
313 	if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
314 	    tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
315 		uint64_t adjusted;
316 
317 		adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
318 		ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
319 	}
320 	return ret;
321 }
322 
tg_iops_limit(struct throtl_grp * tg,int rw)323 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
324 {
325 	struct blkcg_gq *blkg = tg_to_blkg(tg);
326 	struct throtl_data *td;
327 	unsigned int ret;
328 
329 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
330 		return UINT_MAX;
331 
332 	td = tg->td;
333 	ret = tg->iops[rw][td->limit_index];
334 	if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
335 		/* intermediate node or bps isn't 0 */
336 		if (!list_empty(&blkg->blkcg->css.children) ||
337 		    tg->bps[rw][td->limit_index])
338 			return UINT_MAX;
339 		else
340 			return MIN_THROTL_IOPS;
341 	}
342 
343 	if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
344 	    tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
345 		uint64_t adjusted;
346 
347 		adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
348 		if (adjusted > UINT_MAX)
349 			adjusted = UINT_MAX;
350 		ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
351 	}
352 	return ret;
353 }
354 
355 #define request_bucket_index(sectors) \
356 	clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
357 
358 /**
359  * throtl_log - log debug message via blktrace
360  * @sq: the service_queue being reported
361  * @fmt: printf format string
362  * @args: printf args
363  *
364  * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
365  * throtl_grp; otherwise, just "throtl".
366  */
367 #define throtl_log(sq, fmt, args...)	do {				\
368 	struct throtl_grp *__tg = sq_to_tg((sq));			\
369 	struct throtl_data *__td = sq_to_td((sq));			\
370 									\
371 	(void)__td;							\
372 	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
373 		break;							\
374 	if ((__tg)) {							\
375 		blk_add_cgroup_trace_msg(__td->queue,			\
376 			tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
377 	} else {							\
378 		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
379 	}								\
380 } while (0)
381 
throtl_bio_data_size(struct bio * bio)382 static inline unsigned int throtl_bio_data_size(struct bio *bio)
383 {
384 	/* assume it's one sector */
385 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
386 		return 512;
387 	return bio->bi_iter.bi_size;
388 }
389 
throtl_qnode_init(struct throtl_qnode * qn,struct throtl_grp * tg)390 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
391 {
392 	INIT_LIST_HEAD(&qn->node);
393 	bio_list_init(&qn->bios);
394 	qn->tg = tg;
395 }
396 
397 /**
398  * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
399  * @bio: bio being added
400  * @qn: qnode to add bio to
401  * @queued: the service_queue->queued[] list @qn belongs to
402  *
403  * Add @bio to @qn and put @qn on @queued if it's not already on.
404  * @qn->tg's reference count is bumped when @qn is activated.  See the
405  * comment on top of throtl_qnode definition for details.
406  */
throtl_qnode_add_bio(struct bio * bio,struct throtl_qnode * qn,struct list_head * queued)407 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
408 				 struct list_head *queued)
409 {
410 	bio_list_add(&qn->bios, bio);
411 	if (list_empty(&qn->node)) {
412 		list_add_tail(&qn->node, queued);
413 		blkg_get(tg_to_blkg(qn->tg));
414 	}
415 }
416 
417 /**
418  * throtl_peek_queued - peek the first bio on a qnode list
419  * @queued: the qnode list to peek
420  */
throtl_peek_queued(struct list_head * queued)421 static struct bio *throtl_peek_queued(struct list_head *queued)
422 {
423 	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
424 	struct bio *bio;
425 
426 	if (list_empty(queued))
427 		return NULL;
428 
429 	bio = bio_list_peek(&qn->bios);
430 	WARN_ON_ONCE(!bio);
431 	return bio;
432 }
433 
434 /**
435  * throtl_pop_queued - pop the first bio form a qnode list
436  * @queued: the qnode list to pop a bio from
437  * @tg_to_put: optional out argument for throtl_grp to put
438  *
439  * Pop the first bio from the qnode list @queued.  After popping, the first
440  * qnode is removed from @queued if empty or moved to the end of @queued so
441  * that the popping order is round-robin.
442  *
443  * When the first qnode is removed, its associated throtl_grp should be put
444  * too.  If @tg_to_put is NULL, this function automatically puts it;
445  * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
446  * responsible for putting it.
447  */
throtl_pop_queued(struct list_head * queued,struct throtl_grp ** tg_to_put)448 static struct bio *throtl_pop_queued(struct list_head *queued,
449 				     struct throtl_grp **tg_to_put)
450 {
451 	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
452 	struct bio *bio;
453 
454 	if (list_empty(queued))
455 		return NULL;
456 
457 	bio = bio_list_pop(&qn->bios);
458 	WARN_ON_ONCE(!bio);
459 
460 	if (bio_list_empty(&qn->bios)) {
461 		list_del_init(&qn->node);
462 		if (tg_to_put)
463 			*tg_to_put = qn->tg;
464 		else
465 			blkg_put(tg_to_blkg(qn->tg));
466 	} else {
467 		list_move_tail(&qn->node, queued);
468 	}
469 
470 	return bio;
471 }
472 
473 /* init a service_queue, assumes the caller zeroed it */
throtl_service_queue_init(struct throtl_service_queue * sq)474 static void throtl_service_queue_init(struct throtl_service_queue *sq)
475 {
476 	INIT_LIST_HEAD(&sq->queued[0]);
477 	INIT_LIST_HEAD(&sq->queued[1]);
478 	sq->pending_tree = RB_ROOT;
479 	timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
480 }
481 
throtl_pd_alloc(gfp_t gfp,int node)482 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
483 {
484 	struct throtl_grp *tg;
485 	int rw;
486 
487 	tg = kzalloc_node(sizeof(*tg), gfp, node);
488 	if (!tg)
489 		return NULL;
490 
491 	throtl_service_queue_init(&tg->service_queue);
492 
493 	for (rw = READ; rw <= WRITE; rw++) {
494 		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
495 		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
496 	}
497 
498 	RB_CLEAR_NODE(&tg->rb_node);
499 	tg->bps[READ][LIMIT_MAX] = U64_MAX;
500 	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
501 	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
502 	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
503 	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
504 	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
505 	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
506 	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
507 	/* LIMIT_LOW will have default value 0 */
508 
509 	tg->latency_target = DFL_LATENCY_TARGET;
510 	tg->latency_target_conf = DFL_LATENCY_TARGET;
511 	tg->idletime_threshold = DFL_IDLE_THRESHOLD;
512 	tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
513 
514 	return &tg->pd;
515 }
516 
throtl_pd_init(struct blkg_policy_data * pd)517 static void throtl_pd_init(struct blkg_policy_data *pd)
518 {
519 	struct throtl_grp *tg = pd_to_tg(pd);
520 	struct blkcg_gq *blkg = tg_to_blkg(tg);
521 	struct throtl_data *td = blkg->q->td;
522 	struct throtl_service_queue *sq = &tg->service_queue;
523 
524 	/*
525 	 * If on the default hierarchy, we switch to properly hierarchical
526 	 * behavior where limits on a given throtl_grp are applied to the
527 	 * whole subtree rather than just the group itself.  e.g. If 16M
528 	 * read_bps limit is set on the root group, the whole system can't
529 	 * exceed 16M for the device.
530 	 *
531 	 * If not on the default hierarchy, the broken flat hierarchy
532 	 * behavior is retained where all throtl_grps are treated as if
533 	 * they're all separate root groups right below throtl_data.
534 	 * Limits of a group don't interact with limits of other groups
535 	 * regardless of the position of the group in the hierarchy.
536 	 */
537 	sq->parent_sq = &td->service_queue;
538 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
539 		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
540 	tg->td = td;
541 }
542 
543 /*
544  * Set has_rules[] if @tg or any of its parents have limits configured.
545  * This doesn't require walking up to the top of the hierarchy as the
546  * parent's has_rules[] is guaranteed to be correct.
547  */
tg_update_has_rules(struct throtl_grp * tg)548 static void tg_update_has_rules(struct throtl_grp *tg)
549 {
550 	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
551 	struct throtl_data *td = tg->td;
552 	int rw;
553 
554 	for (rw = READ; rw <= WRITE; rw++)
555 		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
556 			(td->limit_valid[td->limit_index] &&
557 			 (tg_bps_limit(tg, rw) != U64_MAX ||
558 			  tg_iops_limit(tg, rw) != UINT_MAX));
559 }
560 
throtl_pd_online(struct blkg_policy_data * pd)561 static void throtl_pd_online(struct blkg_policy_data *pd)
562 {
563 	struct throtl_grp *tg = pd_to_tg(pd);
564 	/*
565 	 * We don't want new groups to escape the limits of its ancestors.
566 	 * Update has_rules[] after a new group is brought online.
567 	 */
568 	tg_update_has_rules(tg);
569 }
570 
blk_throtl_update_limit_valid(struct throtl_data * td)571 static void blk_throtl_update_limit_valid(struct throtl_data *td)
572 {
573 	struct cgroup_subsys_state *pos_css;
574 	struct blkcg_gq *blkg;
575 	bool low_valid = false;
576 
577 	rcu_read_lock();
578 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
579 		struct throtl_grp *tg = blkg_to_tg(blkg);
580 
581 		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
582 		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
583 			low_valid = true;
584 			break;
585 		}
586 	}
587 	rcu_read_unlock();
588 
589 	td->limit_valid[LIMIT_LOW] = low_valid;
590 }
591 
592 static void throtl_upgrade_state(struct throtl_data *td);
throtl_pd_offline(struct blkg_policy_data * pd)593 static void throtl_pd_offline(struct blkg_policy_data *pd)
594 {
595 	struct throtl_grp *tg = pd_to_tg(pd);
596 
597 	tg->bps[READ][LIMIT_LOW] = 0;
598 	tg->bps[WRITE][LIMIT_LOW] = 0;
599 	tg->iops[READ][LIMIT_LOW] = 0;
600 	tg->iops[WRITE][LIMIT_LOW] = 0;
601 
602 	blk_throtl_update_limit_valid(tg->td);
603 
604 	if (!tg->td->limit_valid[tg->td->limit_index])
605 		throtl_upgrade_state(tg->td);
606 }
607 
throtl_pd_free(struct blkg_policy_data * pd)608 static void throtl_pd_free(struct blkg_policy_data *pd)
609 {
610 	struct throtl_grp *tg = pd_to_tg(pd);
611 
612 	del_timer_sync(&tg->service_queue.pending_timer);
613 	kfree(tg);
614 }
615 
616 static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue * parent_sq)617 throtl_rb_first(struct throtl_service_queue *parent_sq)
618 {
619 	/* Service tree is empty */
620 	if (!parent_sq->nr_pending)
621 		return NULL;
622 
623 	if (!parent_sq->first_pending)
624 		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
625 
626 	if (parent_sq->first_pending)
627 		return rb_entry_tg(parent_sq->first_pending);
628 
629 	return NULL;
630 }
631 
rb_erase_init(struct rb_node * n,struct rb_root * root)632 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
633 {
634 	rb_erase(n, root);
635 	RB_CLEAR_NODE(n);
636 }
637 
throtl_rb_erase(struct rb_node * n,struct throtl_service_queue * parent_sq)638 static void throtl_rb_erase(struct rb_node *n,
639 			    struct throtl_service_queue *parent_sq)
640 {
641 	if (parent_sq->first_pending == n)
642 		parent_sq->first_pending = NULL;
643 	rb_erase_init(n, &parent_sq->pending_tree);
644 	--parent_sq->nr_pending;
645 }
646 
update_min_dispatch_time(struct throtl_service_queue * parent_sq)647 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
648 {
649 	struct throtl_grp *tg;
650 
651 	tg = throtl_rb_first(parent_sq);
652 	if (!tg)
653 		return;
654 
655 	parent_sq->first_pending_disptime = tg->disptime;
656 }
657 
tg_service_queue_add(struct throtl_grp * tg)658 static void tg_service_queue_add(struct throtl_grp *tg)
659 {
660 	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
661 	struct rb_node **node = &parent_sq->pending_tree.rb_node;
662 	struct rb_node *parent = NULL;
663 	struct throtl_grp *__tg;
664 	unsigned long key = tg->disptime;
665 	int left = 1;
666 
667 	while (*node != NULL) {
668 		parent = *node;
669 		__tg = rb_entry_tg(parent);
670 
671 		if (time_before(key, __tg->disptime))
672 			node = &parent->rb_left;
673 		else {
674 			node = &parent->rb_right;
675 			left = 0;
676 		}
677 	}
678 
679 	if (left)
680 		parent_sq->first_pending = &tg->rb_node;
681 
682 	rb_link_node(&tg->rb_node, parent, node);
683 	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
684 }
685 
__throtl_enqueue_tg(struct throtl_grp * tg)686 static void __throtl_enqueue_tg(struct throtl_grp *tg)
687 {
688 	tg_service_queue_add(tg);
689 	tg->flags |= THROTL_TG_PENDING;
690 	tg->service_queue.parent_sq->nr_pending++;
691 }
692 
throtl_enqueue_tg(struct throtl_grp * tg)693 static void throtl_enqueue_tg(struct throtl_grp *tg)
694 {
695 	if (!(tg->flags & THROTL_TG_PENDING))
696 		__throtl_enqueue_tg(tg);
697 }
698 
__throtl_dequeue_tg(struct throtl_grp * tg)699 static void __throtl_dequeue_tg(struct throtl_grp *tg)
700 {
701 	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
702 	tg->flags &= ~THROTL_TG_PENDING;
703 }
704 
throtl_dequeue_tg(struct throtl_grp * tg)705 static void throtl_dequeue_tg(struct throtl_grp *tg)
706 {
707 	if (tg->flags & THROTL_TG_PENDING)
708 		__throtl_dequeue_tg(tg);
709 }
710 
711 /* Call with queue lock held */
throtl_schedule_pending_timer(struct throtl_service_queue * sq,unsigned long expires)712 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
713 					  unsigned long expires)
714 {
715 	unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
716 
717 	/*
718 	 * Since we are adjusting the throttle limit dynamically, the sleep
719 	 * time calculated according to previous limit might be invalid. It's
720 	 * possible the cgroup sleep time is very long and no other cgroups
721 	 * have IO running so notify the limit changes. Make sure the cgroup
722 	 * doesn't sleep too long to avoid the missed notification.
723 	 */
724 	if (time_after(expires, max_expire))
725 		expires = max_expire;
726 	mod_timer(&sq->pending_timer, expires);
727 	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
728 		   expires - jiffies, jiffies);
729 }
730 
731 /**
732  * throtl_schedule_next_dispatch - schedule the next dispatch cycle
733  * @sq: the service_queue to schedule dispatch for
734  * @force: force scheduling
735  *
736  * Arm @sq->pending_timer so that the next dispatch cycle starts on the
737  * dispatch time of the first pending child.  Returns %true if either timer
738  * is armed or there's no pending child left.  %false if the current
739  * dispatch window is still open and the caller should continue
740  * dispatching.
741  *
742  * If @force is %true, the dispatch timer is always scheduled and this
743  * function is guaranteed to return %true.  This is to be used when the
744  * caller can't dispatch itself and needs to invoke pending_timer
745  * unconditionally.  Note that forced scheduling is likely to induce short
746  * delay before dispatch starts even if @sq->first_pending_disptime is not
747  * in the future and thus shouldn't be used in hot paths.
748  */
throtl_schedule_next_dispatch(struct throtl_service_queue * sq,bool force)749 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
750 					  bool force)
751 {
752 	/* any pending children left? */
753 	if (!sq->nr_pending)
754 		return true;
755 
756 	update_min_dispatch_time(sq);
757 
758 	/* is the next dispatch time in the future? */
759 	if (force || time_after(sq->first_pending_disptime, jiffies)) {
760 		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
761 		return true;
762 	}
763 
764 	/* tell the caller to continue dispatching */
765 	return false;
766 }
767 
throtl_start_new_slice_with_credit(struct throtl_grp * tg,bool rw,unsigned long start)768 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
769 		bool rw, unsigned long start)
770 {
771 	tg->bytes_disp[rw] = 0;
772 	tg->io_disp[rw] = 0;
773 
774 	/*
775 	 * Previous slice has expired. We must have trimmed it after last
776 	 * bio dispatch. That means since start of last slice, we never used
777 	 * that bandwidth. Do try to make use of that bandwidth while giving
778 	 * credit.
779 	 */
780 	if (time_after_eq(start, tg->slice_start[rw]))
781 		tg->slice_start[rw] = start;
782 
783 	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
784 	throtl_log(&tg->service_queue,
785 		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
786 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
787 		   tg->slice_end[rw], jiffies);
788 }
789 
throtl_start_new_slice(struct throtl_grp * tg,bool rw)790 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
791 {
792 	tg->bytes_disp[rw] = 0;
793 	tg->io_disp[rw] = 0;
794 	tg->slice_start[rw] = jiffies;
795 	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
796 	throtl_log(&tg->service_queue,
797 		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
798 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
799 		   tg->slice_end[rw], jiffies);
800 }
801 
throtl_set_slice_end(struct throtl_grp * tg,bool rw,unsigned long jiffy_end)802 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
803 					unsigned long jiffy_end)
804 {
805 	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
806 }
807 
throtl_extend_slice(struct throtl_grp * tg,bool rw,unsigned long jiffy_end)808 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
809 				       unsigned long jiffy_end)
810 {
811 	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
812 	throtl_log(&tg->service_queue,
813 		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
814 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
815 		   tg->slice_end[rw], jiffies);
816 }
817 
818 /* Determine if previously allocated or extended slice is complete or not */
throtl_slice_used(struct throtl_grp * tg,bool rw)819 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
820 {
821 	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
822 		return false;
823 
824 	return true;
825 }
826 
827 /* Trim the used slices and adjust slice start accordingly */
throtl_trim_slice(struct throtl_grp * tg,bool rw)828 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
829 {
830 	unsigned long nr_slices, time_elapsed, io_trim;
831 	u64 bytes_trim, tmp;
832 
833 	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
834 
835 	/*
836 	 * If bps are unlimited (-1), then time slice don't get
837 	 * renewed. Don't try to trim the slice if slice is used. A new
838 	 * slice will start when appropriate.
839 	 */
840 	if (throtl_slice_used(tg, rw))
841 		return;
842 
843 	/*
844 	 * A bio has been dispatched. Also adjust slice_end. It might happen
845 	 * that initially cgroup limit was very low resulting in high
846 	 * slice_end, but later limit was bumped up and bio was dispached
847 	 * sooner, then we need to reduce slice_end. A high bogus slice_end
848 	 * is bad because it does not allow new slice to start.
849 	 */
850 
851 	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
852 
853 	time_elapsed = jiffies - tg->slice_start[rw];
854 
855 	nr_slices = time_elapsed / tg->td->throtl_slice;
856 
857 	if (!nr_slices)
858 		return;
859 	tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
860 	do_div(tmp, HZ);
861 	bytes_trim = tmp;
862 
863 	io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
864 		HZ;
865 
866 	if (!bytes_trim && !io_trim)
867 		return;
868 
869 	if (tg->bytes_disp[rw] >= bytes_trim)
870 		tg->bytes_disp[rw] -= bytes_trim;
871 	else
872 		tg->bytes_disp[rw] = 0;
873 
874 	if (tg->io_disp[rw] >= io_trim)
875 		tg->io_disp[rw] -= io_trim;
876 	else
877 		tg->io_disp[rw] = 0;
878 
879 	tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
880 
881 	throtl_log(&tg->service_queue,
882 		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
883 		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
884 		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
885 }
886 
tg_with_in_iops_limit(struct throtl_grp * tg,struct bio * bio,unsigned long * wait)887 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
888 				  unsigned long *wait)
889 {
890 	bool rw = bio_data_dir(bio);
891 	unsigned int io_allowed;
892 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
893 	u64 tmp;
894 
895 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
896 
897 	/* Slice has just started. Consider one slice interval */
898 	if (!jiffy_elapsed)
899 		jiffy_elapsed_rnd = tg->td->throtl_slice;
900 
901 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
902 
903 	/*
904 	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
905 	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
906 	 * will allow dispatch after 1 second and after that slice should
907 	 * have been trimmed.
908 	 */
909 
910 	tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
911 	do_div(tmp, HZ);
912 
913 	if (tmp > UINT_MAX)
914 		io_allowed = UINT_MAX;
915 	else
916 		io_allowed = tmp;
917 
918 	if (tg->io_disp[rw] + 1 <= io_allowed) {
919 		if (wait)
920 			*wait = 0;
921 		return true;
922 	}
923 
924 	/* Calc approx time to dispatch */
925 	jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
926 
927 	if (wait)
928 		*wait = jiffy_wait;
929 	return false;
930 }
931 
tg_with_in_bps_limit(struct throtl_grp * tg,struct bio * bio,unsigned long * wait)932 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
933 				 unsigned long *wait)
934 {
935 	bool rw = bio_data_dir(bio);
936 	u64 bytes_allowed, extra_bytes, tmp;
937 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
938 	unsigned int bio_size = throtl_bio_data_size(bio);
939 
940 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
941 
942 	/* Slice has just started. Consider one slice interval */
943 	if (!jiffy_elapsed)
944 		jiffy_elapsed_rnd = tg->td->throtl_slice;
945 
946 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
947 
948 	tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
949 	do_div(tmp, HZ);
950 	bytes_allowed = tmp;
951 
952 	if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
953 		if (wait)
954 			*wait = 0;
955 		return true;
956 	}
957 
958 	/* Calc approx time to dispatch */
959 	extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
960 	jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
961 
962 	if (!jiffy_wait)
963 		jiffy_wait = 1;
964 
965 	/*
966 	 * This wait time is without taking into consideration the rounding
967 	 * up we did. Add that time also.
968 	 */
969 	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
970 	if (wait)
971 		*wait = jiffy_wait;
972 	return false;
973 }
974 
975 /*
976  * Returns whether one can dispatch a bio or not. Also returns approx number
977  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
978  */
tg_may_dispatch(struct throtl_grp * tg,struct bio * bio,unsigned long * wait)979 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
980 			    unsigned long *wait)
981 {
982 	bool rw = bio_data_dir(bio);
983 	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
984 
985 	/*
986  	 * Currently whole state machine of group depends on first bio
987 	 * queued in the group bio list. So one should not be calling
988 	 * this function with a different bio if there are other bios
989 	 * queued.
990 	 */
991 	BUG_ON(tg->service_queue.nr_queued[rw] &&
992 	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
993 
994 	/* If tg->bps = -1, then BW is unlimited */
995 	if (tg_bps_limit(tg, rw) == U64_MAX &&
996 	    tg_iops_limit(tg, rw) == UINT_MAX) {
997 		if (wait)
998 			*wait = 0;
999 		return true;
1000 	}
1001 
1002 	/*
1003 	 * If previous slice expired, start a new one otherwise renew/extend
1004 	 * existing slice to make sure it is at least throtl_slice interval
1005 	 * long since now. New slice is started only for empty throttle group.
1006 	 * If there is queued bio, that means there should be an active
1007 	 * slice and it should be extended instead.
1008 	 */
1009 	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1010 		throtl_start_new_slice(tg, rw);
1011 	else {
1012 		if (time_before(tg->slice_end[rw],
1013 		    jiffies + tg->td->throtl_slice))
1014 			throtl_extend_slice(tg, rw,
1015 				jiffies + tg->td->throtl_slice);
1016 	}
1017 
1018 	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
1019 	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
1020 		if (wait)
1021 			*wait = 0;
1022 		return true;
1023 	}
1024 
1025 	max_wait = max(bps_wait, iops_wait);
1026 
1027 	if (wait)
1028 		*wait = max_wait;
1029 
1030 	if (time_before(tg->slice_end[rw], jiffies + max_wait))
1031 		throtl_extend_slice(tg, rw, jiffies + max_wait);
1032 
1033 	return false;
1034 }
1035 
throtl_charge_bio(struct throtl_grp * tg,struct bio * bio)1036 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1037 {
1038 	bool rw = bio_data_dir(bio);
1039 	unsigned int bio_size = throtl_bio_data_size(bio);
1040 
1041 	/* Charge the bio to the group */
1042 	tg->bytes_disp[rw] += bio_size;
1043 	tg->io_disp[rw]++;
1044 	tg->last_bytes_disp[rw] += bio_size;
1045 	tg->last_io_disp[rw]++;
1046 
1047 	/*
1048 	 * BIO_THROTTLED is used to prevent the same bio to be throttled
1049 	 * more than once as a throttled bio will go through blk-throtl the
1050 	 * second time when it eventually gets issued.  Set it when a bio
1051 	 * is being charged to a tg.
1052 	 */
1053 	if (!bio_flagged(bio, BIO_THROTTLED))
1054 		bio_set_flag(bio, BIO_THROTTLED);
1055 }
1056 
1057 /**
1058  * throtl_add_bio_tg - add a bio to the specified throtl_grp
1059  * @bio: bio to add
1060  * @qn: qnode to use
1061  * @tg: the target throtl_grp
1062  *
1063  * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
1064  * tg->qnode_on_self[] is used.
1065  */
throtl_add_bio_tg(struct bio * bio,struct throtl_qnode * qn,struct throtl_grp * tg)1066 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1067 			      struct throtl_grp *tg)
1068 {
1069 	struct throtl_service_queue *sq = &tg->service_queue;
1070 	bool rw = bio_data_dir(bio);
1071 
1072 	if (!qn)
1073 		qn = &tg->qnode_on_self[rw];
1074 
1075 	/*
1076 	 * If @tg doesn't currently have any bios queued in the same
1077 	 * direction, queueing @bio can change when @tg should be
1078 	 * dispatched.  Mark that @tg was empty.  This is automatically
1079 	 * cleaered on the next tg_update_disptime().
1080 	 */
1081 	if (!sq->nr_queued[rw])
1082 		tg->flags |= THROTL_TG_WAS_EMPTY;
1083 
1084 	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1085 
1086 	sq->nr_queued[rw]++;
1087 	throtl_enqueue_tg(tg);
1088 }
1089 
tg_update_disptime(struct throtl_grp * tg)1090 static void tg_update_disptime(struct throtl_grp *tg)
1091 {
1092 	struct throtl_service_queue *sq = &tg->service_queue;
1093 	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1094 	struct bio *bio;
1095 
1096 	bio = throtl_peek_queued(&sq->queued[READ]);
1097 	if (bio)
1098 		tg_may_dispatch(tg, bio, &read_wait);
1099 
1100 	bio = throtl_peek_queued(&sq->queued[WRITE]);
1101 	if (bio)
1102 		tg_may_dispatch(tg, bio, &write_wait);
1103 
1104 	min_wait = min(read_wait, write_wait);
1105 	disptime = jiffies + min_wait;
1106 
1107 	/* Update dispatch time */
1108 	throtl_dequeue_tg(tg);
1109 	tg->disptime = disptime;
1110 	throtl_enqueue_tg(tg);
1111 
1112 	/* see throtl_add_bio_tg() */
1113 	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1114 }
1115 
start_parent_slice_with_credit(struct throtl_grp * child_tg,struct throtl_grp * parent_tg,bool rw)1116 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1117 					struct throtl_grp *parent_tg, bool rw)
1118 {
1119 	if (throtl_slice_used(parent_tg, rw)) {
1120 		throtl_start_new_slice_with_credit(parent_tg, rw,
1121 				child_tg->slice_start[rw]);
1122 	}
1123 
1124 }
1125 
tg_dispatch_one_bio(struct throtl_grp * tg,bool rw)1126 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1127 {
1128 	struct throtl_service_queue *sq = &tg->service_queue;
1129 	struct throtl_service_queue *parent_sq = sq->parent_sq;
1130 	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1131 	struct throtl_grp *tg_to_put = NULL;
1132 	struct bio *bio;
1133 
1134 	/*
1135 	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1136 	 * from @tg may put its reference and @parent_sq might end up
1137 	 * getting released prematurely.  Remember the tg to put and put it
1138 	 * after @bio is transferred to @parent_sq.
1139 	 */
1140 	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1141 	sq->nr_queued[rw]--;
1142 
1143 	throtl_charge_bio(tg, bio);
1144 
1145 	/*
1146 	 * If our parent is another tg, we just need to transfer @bio to
1147 	 * the parent using throtl_add_bio_tg().  If our parent is
1148 	 * @td->service_queue, @bio is ready to be issued.  Put it on its
1149 	 * bio_lists[] and decrease total number queued.  The caller is
1150 	 * responsible for issuing these bios.
1151 	 */
1152 	if (parent_tg) {
1153 		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1154 		start_parent_slice_with_credit(tg, parent_tg, rw);
1155 	} else {
1156 		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1157 				     &parent_sq->queued[rw]);
1158 		BUG_ON(tg->td->nr_queued[rw] <= 0);
1159 		tg->td->nr_queued[rw]--;
1160 	}
1161 
1162 	throtl_trim_slice(tg, rw);
1163 
1164 	if (tg_to_put)
1165 		blkg_put(tg_to_blkg(tg_to_put));
1166 }
1167 
throtl_dispatch_tg(struct throtl_grp * tg)1168 static int throtl_dispatch_tg(struct throtl_grp *tg)
1169 {
1170 	struct throtl_service_queue *sq = &tg->service_queue;
1171 	unsigned int nr_reads = 0, nr_writes = 0;
1172 	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1173 	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1174 	struct bio *bio;
1175 
1176 	/* Try to dispatch 75% READS and 25% WRITES */
1177 
1178 	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1179 	       tg_may_dispatch(tg, bio, NULL)) {
1180 
1181 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1182 		nr_reads++;
1183 
1184 		if (nr_reads >= max_nr_reads)
1185 			break;
1186 	}
1187 
1188 	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1189 	       tg_may_dispatch(tg, bio, NULL)) {
1190 
1191 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1192 		nr_writes++;
1193 
1194 		if (nr_writes >= max_nr_writes)
1195 			break;
1196 	}
1197 
1198 	return nr_reads + nr_writes;
1199 }
1200 
throtl_select_dispatch(struct throtl_service_queue * parent_sq)1201 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1202 {
1203 	unsigned int nr_disp = 0;
1204 
1205 	while (1) {
1206 		struct throtl_grp *tg = throtl_rb_first(parent_sq);
1207 		struct throtl_service_queue *sq;
1208 
1209 		if (!tg)
1210 			break;
1211 
1212 		if (time_before(jiffies, tg->disptime))
1213 			break;
1214 
1215 		throtl_dequeue_tg(tg);
1216 
1217 		nr_disp += throtl_dispatch_tg(tg);
1218 
1219 		sq = &tg->service_queue;
1220 		if (sq->nr_queued[0] || sq->nr_queued[1])
1221 			tg_update_disptime(tg);
1222 
1223 		if (nr_disp >= throtl_quantum)
1224 			break;
1225 	}
1226 
1227 	return nr_disp;
1228 }
1229 
1230 static bool throtl_can_upgrade(struct throtl_data *td,
1231 	struct throtl_grp *this_tg);
1232 /**
1233  * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1234  * @arg: the throtl_service_queue being serviced
1235  *
1236  * This timer is armed when a child throtl_grp with active bio's become
1237  * pending and queued on the service_queue's pending_tree and expires when
1238  * the first child throtl_grp should be dispatched.  This function
1239  * dispatches bio's from the children throtl_grps to the parent
1240  * service_queue.
1241  *
1242  * If the parent's parent is another throtl_grp, dispatching is propagated
1243  * by either arming its pending_timer or repeating dispatch directly.  If
1244  * the top-level service_tree is reached, throtl_data->dispatch_work is
1245  * kicked so that the ready bio's are issued.
1246  */
throtl_pending_timer_fn(struct timer_list * t)1247 static void throtl_pending_timer_fn(struct timer_list *t)
1248 {
1249 	struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1250 	struct throtl_grp *tg = sq_to_tg(sq);
1251 	struct throtl_data *td = sq_to_td(sq);
1252 	struct request_queue *q = td->queue;
1253 	struct throtl_service_queue *parent_sq;
1254 	bool dispatched;
1255 	int ret;
1256 
1257 	spin_lock_irq(q->queue_lock);
1258 	if (throtl_can_upgrade(td, NULL))
1259 		throtl_upgrade_state(td);
1260 
1261 again:
1262 	parent_sq = sq->parent_sq;
1263 	dispatched = false;
1264 
1265 	while (true) {
1266 		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1267 			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
1268 			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1269 
1270 		ret = throtl_select_dispatch(sq);
1271 		if (ret) {
1272 			throtl_log(sq, "bios disp=%u", ret);
1273 			dispatched = true;
1274 		}
1275 
1276 		if (throtl_schedule_next_dispatch(sq, false))
1277 			break;
1278 
1279 		/* this dispatch windows is still open, relax and repeat */
1280 		spin_unlock_irq(q->queue_lock);
1281 		cpu_relax();
1282 		spin_lock_irq(q->queue_lock);
1283 	}
1284 
1285 	if (!dispatched)
1286 		goto out_unlock;
1287 
1288 	if (parent_sq) {
1289 		/* @parent_sq is another throl_grp, propagate dispatch */
1290 		if (tg->flags & THROTL_TG_WAS_EMPTY) {
1291 			tg_update_disptime(tg);
1292 			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1293 				/* window is already open, repeat dispatching */
1294 				sq = parent_sq;
1295 				tg = sq_to_tg(sq);
1296 				goto again;
1297 			}
1298 		}
1299 	} else {
1300 		/* reached the top-level, queue issueing */
1301 		queue_work(kthrotld_workqueue, &td->dispatch_work);
1302 	}
1303 out_unlock:
1304 	spin_unlock_irq(q->queue_lock);
1305 }
1306 
1307 /**
1308  * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1309  * @work: work item being executed
1310  *
1311  * This function is queued for execution when bio's reach the bio_lists[]
1312  * of throtl_data->service_queue.  Those bio's are ready and issued by this
1313  * function.
1314  */
blk_throtl_dispatch_work_fn(struct work_struct * work)1315 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1316 {
1317 	struct throtl_data *td = container_of(work, struct throtl_data,
1318 					      dispatch_work);
1319 	struct throtl_service_queue *td_sq = &td->service_queue;
1320 	struct request_queue *q = td->queue;
1321 	struct bio_list bio_list_on_stack;
1322 	struct bio *bio;
1323 	struct blk_plug plug;
1324 	int rw;
1325 
1326 	bio_list_init(&bio_list_on_stack);
1327 
1328 	spin_lock_irq(q->queue_lock);
1329 	for (rw = READ; rw <= WRITE; rw++)
1330 		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1331 			bio_list_add(&bio_list_on_stack, bio);
1332 	spin_unlock_irq(q->queue_lock);
1333 
1334 	if (!bio_list_empty(&bio_list_on_stack)) {
1335 		blk_start_plug(&plug);
1336 		while((bio = bio_list_pop(&bio_list_on_stack)))
1337 			generic_make_request(bio);
1338 		blk_finish_plug(&plug);
1339 	}
1340 }
1341 
tg_prfill_conf_u64(struct seq_file * sf,struct blkg_policy_data * pd,int off)1342 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1343 			      int off)
1344 {
1345 	struct throtl_grp *tg = pd_to_tg(pd);
1346 	u64 v = *(u64 *)((void *)tg + off);
1347 
1348 	if (v == U64_MAX)
1349 		return 0;
1350 	return __blkg_prfill_u64(sf, pd, v);
1351 }
1352 
tg_prfill_conf_uint(struct seq_file * sf,struct blkg_policy_data * pd,int off)1353 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1354 			       int off)
1355 {
1356 	struct throtl_grp *tg = pd_to_tg(pd);
1357 	unsigned int v = *(unsigned int *)((void *)tg + off);
1358 
1359 	if (v == UINT_MAX)
1360 		return 0;
1361 	return __blkg_prfill_u64(sf, pd, v);
1362 }
1363 
tg_print_conf_u64(struct seq_file * sf,void * v)1364 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1365 {
1366 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1367 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1368 	return 0;
1369 }
1370 
tg_print_conf_uint(struct seq_file * sf,void * v)1371 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1372 {
1373 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1374 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1375 	return 0;
1376 }
1377 
tg_conf_updated(struct throtl_grp * tg,bool global)1378 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1379 {
1380 	struct throtl_service_queue *sq = &tg->service_queue;
1381 	struct cgroup_subsys_state *pos_css;
1382 	struct blkcg_gq *blkg;
1383 
1384 	throtl_log(&tg->service_queue,
1385 		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1386 		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1387 		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1388 
1389 	/*
1390 	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
1391 	 * considered to have rules if either the tg itself or any of its
1392 	 * ancestors has rules.  This identifies groups without any
1393 	 * restrictions in the whole hierarchy and allows them to bypass
1394 	 * blk-throttle.
1395 	 */
1396 	blkg_for_each_descendant_pre(blkg, pos_css,
1397 			global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1398 		struct throtl_grp *this_tg = blkg_to_tg(blkg);
1399 		struct throtl_grp *parent_tg;
1400 
1401 		tg_update_has_rules(this_tg);
1402 		/* ignore root/second level */
1403 		if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1404 		    !blkg->parent->parent)
1405 			continue;
1406 		parent_tg = blkg_to_tg(blkg->parent);
1407 		/*
1408 		 * make sure all children has lower idle time threshold and
1409 		 * higher latency target
1410 		 */
1411 		this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1412 				parent_tg->idletime_threshold);
1413 		this_tg->latency_target = max(this_tg->latency_target,
1414 				parent_tg->latency_target);
1415 	}
1416 
1417 	/*
1418 	 * We're already holding queue_lock and know @tg is valid.  Let's
1419 	 * apply the new config directly.
1420 	 *
1421 	 * Restart the slices for both READ and WRITES. It might happen
1422 	 * that a group's limit are dropped suddenly and we don't want to
1423 	 * account recently dispatched IO with new low rate.
1424 	 */
1425 	throtl_start_new_slice(tg, 0);
1426 	throtl_start_new_slice(tg, 1);
1427 
1428 	if (tg->flags & THROTL_TG_PENDING) {
1429 		tg_update_disptime(tg);
1430 		throtl_schedule_next_dispatch(sq->parent_sq, true);
1431 	}
1432 }
1433 
tg_set_conf(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool is_u64)1434 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1435 			   char *buf, size_t nbytes, loff_t off, bool is_u64)
1436 {
1437 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1438 	struct blkg_conf_ctx ctx;
1439 	struct throtl_grp *tg;
1440 	int ret;
1441 	u64 v;
1442 
1443 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1444 	if (ret)
1445 		return ret;
1446 
1447 	ret = -EINVAL;
1448 	if (sscanf(ctx.body, "%llu", &v) != 1)
1449 		goto out_finish;
1450 	if (!v)
1451 		v = U64_MAX;
1452 
1453 	tg = blkg_to_tg(ctx.blkg);
1454 
1455 	if (is_u64)
1456 		*(u64 *)((void *)tg + of_cft(of)->private) = v;
1457 	else
1458 		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1459 
1460 	tg_conf_updated(tg, false);
1461 	ret = 0;
1462 out_finish:
1463 	blkg_conf_finish(&ctx);
1464 	return ret ?: nbytes;
1465 }
1466 
tg_set_conf_u64(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1467 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1468 			       char *buf, size_t nbytes, loff_t off)
1469 {
1470 	return tg_set_conf(of, buf, nbytes, off, true);
1471 }
1472 
tg_set_conf_uint(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1473 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1474 				char *buf, size_t nbytes, loff_t off)
1475 {
1476 	return tg_set_conf(of, buf, nbytes, off, false);
1477 }
1478 
1479 static struct cftype throtl_legacy_files[] = {
1480 	{
1481 		.name = "throttle.read_bps_device",
1482 		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1483 		.seq_show = tg_print_conf_u64,
1484 		.write = tg_set_conf_u64,
1485 	},
1486 	{
1487 		.name = "throttle.write_bps_device",
1488 		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1489 		.seq_show = tg_print_conf_u64,
1490 		.write = tg_set_conf_u64,
1491 	},
1492 	{
1493 		.name = "throttle.read_iops_device",
1494 		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1495 		.seq_show = tg_print_conf_uint,
1496 		.write = tg_set_conf_uint,
1497 	},
1498 	{
1499 		.name = "throttle.write_iops_device",
1500 		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1501 		.seq_show = tg_print_conf_uint,
1502 		.write = tg_set_conf_uint,
1503 	},
1504 	{
1505 		.name = "throttle.io_service_bytes",
1506 		.private = (unsigned long)&blkcg_policy_throtl,
1507 		.seq_show = blkg_print_stat_bytes,
1508 	},
1509 	{
1510 		.name = "throttle.io_service_bytes_recursive",
1511 		.private = (unsigned long)&blkcg_policy_throtl,
1512 		.seq_show = blkg_print_stat_bytes_recursive,
1513 	},
1514 	{
1515 		.name = "throttle.io_serviced",
1516 		.private = (unsigned long)&blkcg_policy_throtl,
1517 		.seq_show = blkg_print_stat_ios,
1518 	},
1519 	{
1520 		.name = "throttle.io_serviced_recursive",
1521 		.private = (unsigned long)&blkcg_policy_throtl,
1522 		.seq_show = blkg_print_stat_ios_recursive,
1523 	},
1524 	{ }	/* terminate */
1525 };
1526 
tg_prfill_limit(struct seq_file * sf,struct blkg_policy_data * pd,int off)1527 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1528 			 int off)
1529 {
1530 	struct throtl_grp *tg = pd_to_tg(pd);
1531 	const char *dname = blkg_dev_name(pd->blkg);
1532 	char bufs[4][21] = { "max", "max", "max", "max" };
1533 	u64 bps_dft;
1534 	unsigned int iops_dft;
1535 	char idle_time[26] = "";
1536 	char latency_time[26] = "";
1537 
1538 	if (!dname)
1539 		return 0;
1540 
1541 	if (off == LIMIT_LOW) {
1542 		bps_dft = 0;
1543 		iops_dft = 0;
1544 	} else {
1545 		bps_dft = U64_MAX;
1546 		iops_dft = UINT_MAX;
1547 	}
1548 
1549 	if (tg->bps_conf[READ][off] == bps_dft &&
1550 	    tg->bps_conf[WRITE][off] == bps_dft &&
1551 	    tg->iops_conf[READ][off] == iops_dft &&
1552 	    tg->iops_conf[WRITE][off] == iops_dft &&
1553 	    (off != LIMIT_LOW ||
1554 	     (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1555 	      tg->latency_target_conf == DFL_LATENCY_TARGET)))
1556 		return 0;
1557 
1558 	if (tg->bps_conf[READ][off] != U64_MAX)
1559 		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1560 			tg->bps_conf[READ][off]);
1561 	if (tg->bps_conf[WRITE][off] != U64_MAX)
1562 		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1563 			tg->bps_conf[WRITE][off]);
1564 	if (tg->iops_conf[READ][off] != UINT_MAX)
1565 		snprintf(bufs[2], sizeof(bufs[2]), "%u",
1566 			tg->iops_conf[READ][off]);
1567 	if (tg->iops_conf[WRITE][off] != UINT_MAX)
1568 		snprintf(bufs[3], sizeof(bufs[3]), "%u",
1569 			tg->iops_conf[WRITE][off]);
1570 	if (off == LIMIT_LOW) {
1571 		if (tg->idletime_threshold_conf == ULONG_MAX)
1572 			strcpy(idle_time, " idle=max");
1573 		else
1574 			snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1575 				tg->idletime_threshold_conf);
1576 
1577 		if (tg->latency_target_conf == ULONG_MAX)
1578 			strcpy(latency_time, " latency=max");
1579 		else
1580 			snprintf(latency_time, sizeof(latency_time),
1581 				" latency=%lu", tg->latency_target_conf);
1582 	}
1583 
1584 	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1585 		   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1586 		   latency_time);
1587 	return 0;
1588 }
1589 
tg_print_limit(struct seq_file * sf,void * v)1590 static int tg_print_limit(struct seq_file *sf, void *v)
1591 {
1592 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1593 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1594 	return 0;
1595 }
1596 
tg_set_limit(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1597 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1598 			  char *buf, size_t nbytes, loff_t off)
1599 {
1600 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1601 	struct blkg_conf_ctx ctx;
1602 	struct throtl_grp *tg;
1603 	u64 v[4];
1604 	unsigned long idle_time;
1605 	unsigned long latency_time;
1606 	int ret;
1607 	int index = of_cft(of)->private;
1608 
1609 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1610 	if (ret)
1611 		return ret;
1612 
1613 	tg = blkg_to_tg(ctx.blkg);
1614 
1615 	v[0] = tg->bps_conf[READ][index];
1616 	v[1] = tg->bps_conf[WRITE][index];
1617 	v[2] = tg->iops_conf[READ][index];
1618 	v[3] = tg->iops_conf[WRITE][index];
1619 
1620 	idle_time = tg->idletime_threshold_conf;
1621 	latency_time = tg->latency_target_conf;
1622 	while (true) {
1623 		char tok[27];	/* wiops=18446744073709551616 */
1624 		char *p;
1625 		u64 val = U64_MAX;
1626 		int len;
1627 
1628 		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1629 			break;
1630 		if (tok[0] == '\0')
1631 			break;
1632 		ctx.body += len;
1633 
1634 		ret = -EINVAL;
1635 		p = tok;
1636 		strsep(&p, "=");
1637 		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1638 			goto out_finish;
1639 
1640 		ret = -ERANGE;
1641 		if (!val)
1642 			goto out_finish;
1643 
1644 		ret = -EINVAL;
1645 		if (!strcmp(tok, "rbps"))
1646 			v[0] = val;
1647 		else if (!strcmp(tok, "wbps"))
1648 			v[1] = val;
1649 		else if (!strcmp(tok, "riops"))
1650 			v[2] = min_t(u64, val, UINT_MAX);
1651 		else if (!strcmp(tok, "wiops"))
1652 			v[3] = min_t(u64, val, UINT_MAX);
1653 		else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1654 			idle_time = val;
1655 		else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1656 			latency_time = val;
1657 		else
1658 			goto out_finish;
1659 	}
1660 
1661 	tg->bps_conf[READ][index] = v[0];
1662 	tg->bps_conf[WRITE][index] = v[1];
1663 	tg->iops_conf[READ][index] = v[2];
1664 	tg->iops_conf[WRITE][index] = v[3];
1665 
1666 	if (index == LIMIT_MAX) {
1667 		tg->bps[READ][index] = v[0];
1668 		tg->bps[WRITE][index] = v[1];
1669 		tg->iops[READ][index] = v[2];
1670 		tg->iops[WRITE][index] = v[3];
1671 	}
1672 	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1673 		tg->bps_conf[READ][LIMIT_MAX]);
1674 	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1675 		tg->bps_conf[WRITE][LIMIT_MAX]);
1676 	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1677 		tg->iops_conf[READ][LIMIT_MAX]);
1678 	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1679 		tg->iops_conf[WRITE][LIMIT_MAX]);
1680 	tg->idletime_threshold_conf = idle_time;
1681 	tg->latency_target_conf = latency_time;
1682 
1683 	/* force user to configure all settings for low limit  */
1684 	if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1685 	      tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1686 	    tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1687 	    tg->latency_target_conf == DFL_LATENCY_TARGET) {
1688 		tg->bps[READ][LIMIT_LOW] = 0;
1689 		tg->bps[WRITE][LIMIT_LOW] = 0;
1690 		tg->iops[READ][LIMIT_LOW] = 0;
1691 		tg->iops[WRITE][LIMIT_LOW] = 0;
1692 		tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1693 		tg->latency_target = DFL_LATENCY_TARGET;
1694 	} else if (index == LIMIT_LOW) {
1695 		tg->idletime_threshold = tg->idletime_threshold_conf;
1696 		tg->latency_target = tg->latency_target_conf;
1697 	}
1698 
1699 	blk_throtl_update_limit_valid(tg->td);
1700 	if (tg->td->limit_valid[LIMIT_LOW]) {
1701 		if (index == LIMIT_LOW)
1702 			tg->td->limit_index = LIMIT_LOW;
1703 	} else
1704 		tg->td->limit_index = LIMIT_MAX;
1705 	tg_conf_updated(tg, index == LIMIT_LOW &&
1706 		tg->td->limit_valid[LIMIT_LOW]);
1707 	ret = 0;
1708 out_finish:
1709 	blkg_conf_finish(&ctx);
1710 	return ret ?: nbytes;
1711 }
1712 
1713 static struct cftype throtl_files[] = {
1714 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1715 	{
1716 		.name = "low",
1717 		.flags = CFTYPE_NOT_ON_ROOT,
1718 		.seq_show = tg_print_limit,
1719 		.write = tg_set_limit,
1720 		.private = LIMIT_LOW,
1721 	},
1722 #endif
1723 	{
1724 		.name = "max",
1725 		.flags = CFTYPE_NOT_ON_ROOT,
1726 		.seq_show = tg_print_limit,
1727 		.write = tg_set_limit,
1728 		.private = LIMIT_MAX,
1729 	},
1730 	{ }	/* terminate */
1731 };
1732 
throtl_shutdown_wq(struct request_queue * q)1733 static void throtl_shutdown_wq(struct request_queue *q)
1734 {
1735 	struct throtl_data *td = q->td;
1736 
1737 	cancel_work_sync(&td->dispatch_work);
1738 }
1739 
1740 static struct blkcg_policy blkcg_policy_throtl = {
1741 	.dfl_cftypes		= throtl_files,
1742 	.legacy_cftypes		= throtl_legacy_files,
1743 
1744 	.pd_alloc_fn		= throtl_pd_alloc,
1745 	.pd_init_fn		= throtl_pd_init,
1746 	.pd_online_fn		= throtl_pd_online,
1747 	.pd_offline_fn		= throtl_pd_offline,
1748 	.pd_free_fn		= throtl_pd_free,
1749 };
1750 
__tg_last_low_overflow_time(struct throtl_grp * tg)1751 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1752 {
1753 	unsigned long rtime = jiffies, wtime = jiffies;
1754 
1755 	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1756 		rtime = tg->last_low_overflow_time[READ];
1757 	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1758 		wtime = tg->last_low_overflow_time[WRITE];
1759 	return min(rtime, wtime);
1760 }
1761 
1762 /* tg should not be an intermediate node */
tg_last_low_overflow_time(struct throtl_grp * tg)1763 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1764 {
1765 	struct throtl_service_queue *parent_sq;
1766 	struct throtl_grp *parent = tg;
1767 	unsigned long ret = __tg_last_low_overflow_time(tg);
1768 
1769 	while (true) {
1770 		parent_sq = parent->service_queue.parent_sq;
1771 		parent = sq_to_tg(parent_sq);
1772 		if (!parent)
1773 			break;
1774 
1775 		/*
1776 		 * The parent doesn't have low limit, it always reaches low
1777 		 * limit. Its overflow time is useless for children
1778 		 */
1779 		if (!parent->bps[READ][LIMIT_LOW] &&
1780 		    !parent->iops[READ][LIMIT_LOW] &&
1781 		    !parent->bps[WRITE][LIMIT_LOW] &&
1782 		    !parent->iops[WRITE][LIMIT_LOW])
1783 			continue;
1784 		if (time_after(__tg_last_low_overflow_time(parent), ret))
1785 			ret = __tg_last_low_overflow_time(parent);
1786 	}
1787 	return ret;
1788 }
1789 
throtl_tg_is_idle(struct throtl_grp * tg)1790 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1791 {
1792 	/*
1793 	 * cgroup is idle if:
1794 	 * - single idle is too long, longer than a fixed value (in case user
1795 	 *   configure a too big threshold) or 4 times of idletime threshold
1796 	 * - average think time is more than threshold
1797 	 * - IO latency is largely below threshold
1798 	 */
1799 	unsigned long time;
1800 	bool ret;
1801 
1802 	time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1803 	ret = tg->latency_target == DFL_LATENCY_TARGET ||
1804 	      tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1805 	      (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1806 	      tg->avg_idletime > tg->idletime_threshold ||
1807 	      (tg->latency_target && tg->bio_cnt &&
1808 		tg->bad_bio_cnt * 5 < tg->bio_cnt);
1809 	throtl_log(&tg->service_queue,
1810 		"avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1811 		tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1812 		tg->bio_cnt, ret, tg->td->scale);
1813 	return ret;
1814 }
1815 
throtl_tg_can_upgrade(struct throtl_grp * tg)1816 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1817 {
1818 	struct throtl_service_queue *sq = &tg->service_queue;
1819 	bool read_limit, write_limit;
1820 
1821 	/*
1822 	 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1823 	 * reaches), it's ok to upgrade to next limit
1824 	 */
1825 	read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1826 	write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1827 	if (!read_limit && !write_limit)
1828 		return true;
1829 	if (read_limit && sq->nr_queued[READ] &&
1830 	    (!write_limit || sq->nr_queued[WRITE]))
1831 		return true;
1832 	if (write_limit && sq->nr_queued[WRITE] &&
1833 	    (!read_limit || sq->nr_queued[READ]))
1834 		return true;
1835 
1836 	if (time_after_eq(jiffies,
1837 		tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1838 	    throtl_tg_is_idle(tg))
1839 		return true;
1840 	return false;
1841 }
1842 
throtl_hierarchy_can_upgrade(struct throtl_grp * tg)1843 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1844 {
1845 	while (true) {
1846 		if (throtl_tg_can_upgrade(tg))
1847 			return true;
1848 		tg = sq_to_tg(tg->service_queue.parent_sq);
1849 		if (!tg || !tg_to_blkg(tg)->parent)
1850 			return false;
1851 	}
1852 	return false;
1853 }
1854 
throtl_can_upgrade(struct throtl_data * td,struct throtl_grp * this_tg)1855 static bool throtl_can_upgrade(struct throtl_data *td,
1856 	struct throtl_grp *this_tg)
1857 {
1858 	struct cgroup_subsys_state *pos_css;
1859 	struct blkcg_gq *blkg;
1860 
1861 	if (td->limit_index != LIMIT_LOW)
1862 		return false;
1863 
1864 	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1865 		return false;
1866 
1867 	rcu_read_lock();
1868 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1869 		struct throtl_grp *tg = blkg_to_tg(blkg);
1870 
1871 		if (tg == this_tg)
1872 			continue;
1873 		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1874 			continue;
1875 		if (!throtl_hierarchy_can_upgrade(tg)) {
1876 			rcu_read_unlock();
1877 			return false;
1878 		}
1879 	}
1880 	rcu_read_unlock();
1881 	return true;
1882 }
1883 
throtl_upgrade_check(struct throtl_grp * tg)1884 static void throtl_upgrade_check(struct throtl_grp *tg)
1885 {
1886 	unsigned long now = jiffies;
1887 
1888 	if (tg->td->limit_index != LIMIT_LOW)
1889 		return;
1890 
1891 	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1892 		return;
1893 
1894 	tg->last_check_time = now;
1895 
1896 	if (!time_after_eq(now,
1897 	     __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1898 		return;
1899 
1900 	if (throtl_can_upgrade(tg->td, NULL))
1901 		throtl_upgrade_state(tg->td);
1902 }
1903 
throtl_upgrade_state(struct throtl_data * td)1904 static void throtl_upgrade_state(struct throtl_data *td)
1905 {
1906 	struct cgroup_subsys_state *pos_css;
1907 	struct blkcg_gq *blkg;
1908 
1909 	throtl_log(&td->service_queue, "upgrade to max");
1910 	td->limit_index = LIMIT_MAX;
1911 	td->low_upgrade_time = jiffies;
1912 	td->scale = 0;
1913 	rcu_read_lock();
1914 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1915 		struct throtl_grp *tg = blkg_to_tg(blkg);
1916 		struct throtl_service_queue *sq = &tg->service_queue;
1917 
1918 		tg->disptime = jiffies - 1;
1919 		throtl_select_dispatch(sq);
1920 		throtl_schedule_next_dispatch(sq, true);
1921 	}
1922 	rcu_read_unlock();
1923 	throtl_select_dispatch(&td->service_queue);
1924 	throtl_schedule_next_dispatch(&td->service_queue, true);
1925 	queue_work(kthrotld_workqueue, &td->dispatch_work);
1926 }
1927 
throtl_downgrade_state(struct throtl_data * td,int new)1928 static void throtl_downgrade_state(struct throtl_data *td, int new)
1929 {
1930 	td->scale /= 2;
1931 
1932 	throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1933 	if (td->scale) {
1934 		td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1935 		return;
1936 	}
1937 
1938 	td->limit_index = new;
1939 	td->low_downgrade_time = jiffies;
1940 }
1941 
throtl_tg_can_downgrade(struct throtl_grp * tg)1942 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1943 {
1944 	struct throtl_data *td = tg->td;
1945 	unsigned long now = jiffies;
1946 
1947 	/*
1948 	 * If cgroup is below low limit, consider downgrade and throttle other
1949 	 * cgroups
1950 	 */
1951 	if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1952 	    time_after_eq(now, tg_last_low_overflow_time(tg) +
1953 					td->throtl_slice) &&
1954 	    (!throtl_tg_is_idle(tg) ||
1955 	     !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1956 		return true;
1957 	return false;
1958 }
1959 
throtl_hierarchy_can_downgrade(struct throtl_grp * tg)1960 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1961 {
1962 	while (true) {
1963 		if (!throtl_tg_can_downgrade(tg))
1964 			return false;
1965 		tg = sq_to_tg(tg->service_queue.parent_sq);
1966 		if (!tg || !tg_to_blkg(tg)->parent)
1967 			break;
1968 	}
1969 	return true;
1970 }
1971 
throtl_downgrade_check(struct throtl_grp * tg)1972 static void throtl_downgrade_check(struct throtl_grp *tg)
1973 {
1974 	uint64_t bps;
1975 	unsigned int iops;
1976 	unsigned long elapsed_time;
1977 	unsigned long now = jiffies;
1978 
1979 	if (tg->td->limit_index != LIMIT_MAX ||
1980 	    !tg->td->limit_valid[LIMIT_LOW])
1981 		return;
1982 	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1983 		return;
1984 	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1985 		return;
1986 
1987 	elapsed_time = now - tg->last_check_time;
1988 	tg->last_check_time = now;
1989 
1990 	if (time_before(now, tg_last_low_overflow_time(tg) +
1991 			tg->td->throtl_slice))
1992 		return;
1993 
1994 	if (tg->bps[READ][LIMIT_LOW]) {
1995 		bps = tg->last_bytes_disp[READ] * HZ;
1996 		do_div(bps, elapsed_time);
1997 		if (bps >= tg->bps[READ][LIMIT_LOW])
1998 			tg->last_low_overflow_time[READ] = now;
1999 	}
2000 
2001 	if (tg->bps[WRITE][LIMIT_LOW]) {
2002 		bps = tg->last_bytes_disp[WRITE] * HZ;
2003 		do_div(bps, elapsed_time);
2004 		if (bps >= tg->bps[WRITE][LIMIT_LOW])
2005 			tg->last_low_overflow_time[WRITE] = now;
2006 	}
2007 
2008 	if (tg->iops[READ][LIMIT_LOW]) {
2009 		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2010 		if (iops >= tg->iops[READ][LIMIT_LOW])
2011 			tg->last_low_overflow_time[READ] = now;
2012 	}
2013 
2014 	if (tg->iops[WRITE][LIMIT_LOW]) {
2015 		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2016 		if (iops >= tg->iops[WRITE][LIMIT_LOW])
2017 			tg->last_low_overflow_time[WRITE] = now;
2018 	}
2019 
2020 	/*
2021 	 * If cgroup is below low limit, consider downgrade and throttle other
2022 	 * cgroups
2023 	 */
2024 	if (throtl_hierarchy_can_downgrade(tg))
2025 		throtl_downgrade_state(tg->td, LIMIT_LOW);
2026 
2027 	tg->last_bytes_disp[READ] = 0;
2028 	tg->last_bytes_disp[WRITE] = 0;
2029 	tg->last_io_disp[READ] = 0;
2030 	tg->last_io_disp[WRITE] = 0;
2031 }
2032 
blk_throtl_update_idletime(struct throtl_grp * tg)2033 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2034 {
2035 	unsigned long now = ktime_get_ns() >> 10;
2036 	unsigned long last_finish_time = tg->last_finish_time;
2037 
2038 	if (now <= last_finish_time || last_finish_time == 0 ||
2039 	    last_finish_time == tg->checked_last_finish_time)
2040 		return;
2041 
2042 	tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2043 	tg->checked_last_finish_time = last_finish_time;
2044 }
2045 
2046 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
throtl_update_latency_buckets(struct throtl_data * td)2047 static void throtl_update_latency_buckets(struct throtl_data *td)
2048 {
2049 	struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2050 	int i, cpu, rw;
2051 	unsigned long last_latency[2] = { 0 };
2052 	unsigned long latency[2];
2053 
2054 	if (!blk_queue_nonrot(td->queue))
2055 		return;
2056 	if (time_before(jiffies, td->last_calculate_time + HZ))
2057 		return;
2058 	td->last_calculate_time = jiffies;
2059 
2060 	memset(avg_latency, 0, sizeof(avg_latency));
2061 	for (rw = READ; rw <= WRITE; rw++) {
2062 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2063 			struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2064 
2065 			for_each_possible_cpu(cpu) {
2066 				struct latency_bucket *bucket;
2067 
2068 				/* this isn't race free, but ok in practice */
2069 				bucket = per_cpu_ptr(td->latency_buckets[rw],
2070 					cpu);
2071 				tmp->total_latency += bucket[i].total_latency;
2072 				tmp->samples += bucket[i].samples;
2073 				bucket[i].total_latency = 0;
2074 				bucket[i].samples = 0;
2075 			}
2076 
2077 			if (tmp->samples >= 32) {
2078 				int samples = tmp->samples;
2079 
2080 				latency[rw] = tmp->total_latency;
2081 
2082 				tmp->total_latency = 0;
2083 				tmp->samples = 0;
2084 				latency[rw] /= samples;
2085 				if (latency[rw] == 0)
2086 					continue;
2087 				avg_latency[rw][i].latency = latency[rw];
2088 			}
2089 		}
2090 	}
2091 
2092 	for (rw = READ; rw <= WRITE; rw++) {
2093 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2094 			if (!avg_latency[rw][i].latency) {
2095 				if (td->avg_buckets[rw][i].latency < last_latency[rw])
2096 					td->avg_buckets[rw][i].latency =
2097 						last_latency[rw];
2098 				continue;
2099 			}
2100 
2101 			if (!td->avg_buckets[rw][i].valid)
2102 				latency[rw] = avg_latency[rw][i].latency;
2103 			else
2104 				latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2105 					avg_latency[rw][i].latency) >> 3;
2106 
2107 			td->avg_buckets[rw][i].latency = max(latency[rw],
2108 				last_latency[rw]);
2109 			td->avg_buckets[rw][i].valid = true;
2110 			last_latency[rw] = td->avg_buckets[rw][i].latency;
2111 		}
2112 	}
2113 
2114 	for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2115 		throtl_log(&td->service_queue,
2116 			"Latency bucket %d: read latency=%ld, read valid=%d, "
2117 			"write latency=%ld, write valid=%d", i,
2118 			td->avg_buckets[READ][i].latency,
2119 			td->avg_buckets[READ][i].valid,
2120 			td->avg_buckets[WRITE][i].latency,
2121 			td->avg_buckets[WRITE][i].valid);
2122 }
2123 #else
throtl_update_latency_buckets(struct throtl_data * td)2124 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2125 {
2126 }
2127 #endif
2128 
blk_throtl_assoc_bio(struct throtl_grp * tg,struct bio * bio)2129 static void blk_throtl_assoc_bio(struct throtl_grp *tg, struct bio *bio)
2130 {
2131 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2132 	/* fallback to root_blkg if we fail to get a blkg ref */
2133 	if (bio->bi_css && (bio_associate_blkg(bio, tg_to_blkg(tg)) == -ENODEV))
2134 		bio_associate_blkg(bio, bio->bi_disk->queue->root_blkg);
2135 	bio_issue_init(&bio->bi_issue, bio_sectors(bio));
2136 #endif
2137 }
2138 
blk_throtl_bio(struct request_queue * q,struct blkcg_gq * blkg,struct bio * bio)2139 bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
2140 		    struct bio *bio)
2141 {
2142 	struct throtl_qnode *qn = NULL;
2143 	struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
2144 	struct throtl_service_queue *sq;
2145 	bool rw = bio_data_dir(bio);
2146 	bool throttled = false;
2147 	struct throtl_data *td = tg->td;
2148 
2149 	WARN_ON_ONCE(!rcu_read_lock_held());
2150 
2151 	/* see throtl_charge_bio() */
2152 	if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
2153 		goto out;
2154 
2155 	spin_lock_irq(q->queue_lock);
2156 
2157 	throtl_update_latency_buckets(td);
2158 
2159 	if (unlikely(blk_queue_bypass(q)))
2160 		goto out_unlock;
2161 
2162 	blk_throtl_assoc_bio(tg, bio);
2163 	blk_throtl_update_idletime(tg);
2164 
2165 	sq = &tg->service_queue;
2166 
2167 again:
2168 	while (true) {
2169 		if (tg->last_low_overflow_time[rw] == 0)
2170 			tg->last_low_overflow_time[rw] = jiffies;
2171 		throtl_downgrade_check(tg);
2172 		throtl_upgrade_check(tg);
2173 		/* throtl is FIFO - if bios are already queued, should queue */
2174 		if (sq->nr_queued[rw])
2175 			break;
2176 
2177 		/* if above limits, break to queue */
2178 		if (!tg_may_dispatch(tg, bio, NULL)) {
2179 			tg->last_low_overflow_time[rw] = jiffies;
2180 			if (throtl_can_upgrade(td, tg)) {
2181 				throtl_upgrade_state(td);
2182 				goto again;
2183 			}
2184 			break;
2185 		}
2186 
2187 		/* within limits, let's charge and dispatch directly */
2188 		throtl_charge_bio(tg, bio);
2189 
2190 		/*
2191 		 * We need to trim slice even when bios are not being queued
2192 		 * otherwise it might happen that a bio is not queued for
2193 		 * a long time and slice keeps on extending and trim is not
2194 		 * called for a long time. Now if limits are reduced suddenly
2195 		 * we take into account all the IO dispatched so far at new
2196 		 * low rate and * newly queued IO gets a really long dispatch
2197 		 * time.
2198 		 *
2199 		 * So keep on trimming slice even if bio is not queued.
2200 		 */
2201 		throtl_trim_slice(tg, rw);
2202 
2203 		/*
2204 		 * @bio passed through this layer without being throttled.
2205 		 * Climb up the ladder.  If we''re already at the top, it
2206 		 * can be executed directly.
2207 		 */
2208 		qn = &tg->qnode_on_parent[rw];
2209 		sq = sq->parent_sq;
2210 		tg = sq_to_tg(sq);
2211 		if (!tg)
2212 			goto out_unlock;
2213 	}
2214 
2215 	/* out-of-limit, queue to @tg */
2216 	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2217 		   rw == READ ? 'R' : 'W',
2218 		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
2219 		   tg_bps_limit(tg, rw),
2220 		   tg->io_disp[rw], tg_iops_limit(tg, rw),
2221 		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
2222 
2223 	tg->last_low_overflow_time[rw] = jiffies;
2224 
2225 	td->nr_queued[rw]++;
2226 	throtl_add_bio_tg(bio, qn, tg);
2227 	throttled = true;
2228 
2229 	/*
2230 	 * Update @tg's dispatch time and force schedule dispatch if @tg
2231 	 * was empty before @bio.  The forced scheduling isn't likely to
2232 	 * cause undue delay as @bio is likely to be dispatched directly if
2233 	 * its @tg's disptime is not in the future.
2234 	 */
2235 	if (tg->flags & THROTL_TG_WAS_EMPTY) {
2236 		tg_update_disptime(tg);
2237 		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2238 	}
2239 
2240 out_unlock:
2241 	spin_unlock_irq(q->queue_lock);
2242 out:
2243 	bio_set_flag(bio, BIO_THROTTLED);
2244 
2245 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2246 	if (throttled || !td->track_bio_latency)
2247 		bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2248 #endif
2249 	return throttled;
2250 }
2251 
2252 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
throtl_track_latency(struct throtl_data * td,sector_t size,int op,unsigned long time)2253 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2254 	int op, unsigned long time)
2255 {
2256 	struct latency_bucket *latency;
2257 	int index;
2258 
2259 	if (!td || td->limit_index != LIMIT_LOW ||
2260 	    !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2261 	    !blk_queue_nonrot(td->queue))
2262 		return;
2263 
2264 	index = request_bucket_index(size);
2265 
2266 	latency = get_cpu_ptr(td->latency_buckets[op]);
2267 	latency[index].total_latency += time;
2268 	latency[index].samples++;
2269 	put_cpu_ptr(td->latency_buckets[op]);
2270 }
2271 
blk_throtl_stat_add(struct request * rq,u64 time_ns)2272 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2273 {
2274 	struct request_queue *q = rq->q;
2275 	struct throtl_data *td = q->td;
2276 
2277 	throtl_track_latency(td, rq->throtl_size, req_op(rq), time_ns >> 10);
2278 }
2279 
blk_throtl_bio_endio(struct bio * bio)2280 void blk_throtl_bio_endio(struct bio *bio)
2281 {
2282 	struct blkcg_gq *blkg;
2283 	struct throtl_grp *tg;
2284 	u64 finish_time_ns;
2285 	unsigned long finish_time;
2286 	unsigned long start_time;
2287 	unsigned long lat;
2288 	int rw = bio_data_dir(bio);
2289 
2290 	blkg = bio->bi_blkg;
2291 	if (!blkg)
2292 		return;
2293 	tg = blkg_to_tg(blkg);
2294 
2295 	finish_time_ns = ktime_get_ns();
2296 	tg->last_finish_time = finish_time_ns >> 10;
2297 
2298 	start_time = bio_issue_time(&bio->bi_issue) >> 10;
2299 	finish_time = __bio_issue_time(finish_time_ns) >> 10;
2300 	if (!start_time || finish_time <= start_time)
2301 		return;
2302 
2303 	lat = finish_time - start_time;
2304 	/* this is only for bio based driver */
2305 	if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2306 		throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2307 				     bio_op(bio), lat);
2308 
2309 	if (tg->latency_target && lat >= tg->td->filtered_latency) {
2310 		int bucket;
2311 		unsigned int threshold;
2312 
2313 		bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2314 		threshold = tg->td->avg_buckets[rw][bucket].latency +
2315 			tg->latency_target;
2316 		if (lat > threshold)
2317 			tg->bad_bio_cnt++;
2318 		/*
2319 		 * Not race free, could get wrong count, which means cgroups
2320 		 * will be throttled
2321 		 */
2322 		tg->bio_cnt++;
2323 	}
2324 
2325 	if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2326 		tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2327 		tg->bio_cnt /= 2;
2328 		tg->bad_bio_cnt /= 2;
2329 	}
2330 }
2331 #endif
2332 
2333 /*
2334  * Dispatch all bios from all children tg's queued on @parent_sq.  On
2335  * return, @parent_sq is guaranteed to not have any active children tg's
2336  * and all bios from previously active tg's are on @parent_sq->bio_lists[].
2337  */
tg_drain_bios(struct throtl_service_queue * parent_sq)2338 static void tg_drain_bios(struct throtl_service_queue *parent_sq)
2339 {
2340 	struct throtl_grp *tg;
2341 
2342 	while ((tg = throtl_rb_first(parent_sq))) {
2343 		struct throtl_service_queue *sq = &tg->service_queue;
2344 		struct bio *bio;
2345 
2346 		throtl_dequeue_tg(tg);
2347 
2348 		while ((bio = throtl_peek_queued(&sq->queued[READ])))
2349 			tg_dispatch_one_bio(tg, bio_data_dir(bio));
2350 		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2351 			tg_dispatch_one_bio(tg, bio_data_dir(bio));
2352 	}
2353 }
2354 
2355 /**
2356  * blk_throtl_drain - drain throttled bios
2357  * @q: request_queue to drain throttled bios for
2358  *
2359  * Dispatch all currently throttled bios on @q through ->make_request_fn().
2360  */
blk_throtl_drain(struct request_queue * q)2361 void blk_throtl_drain(struct request_queue *q)
2362 	__releases(q->queue_lock) __acquires(q->queue_lock)
2363 {
2364 	struct throtl_data *td = q->td;
2365 	struct blkcg_gq *blkg;
2366 	struct cgroup_subsys_state *pos_css;
2367 	struct bio *bio;
2368 	int rw;
2369 
2370 	queue_lockdep_assert_held(q);
2371 	rcu_read_lock();
2372 
2373 	/*
2374 	 * Drain each tg while doing post-order walk on the blkg tree, so
2375 	 * that all bios are propagated to td->service_queue.  It'd be
2376 	 * better to walk service_queue tree directly but blkg walk is
2377 	 * easier.
2378 	 */
2379 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2380 		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
2381 
2382 	/* finally, transfer bios from top-level tg's into the td */
2383 	tg_drain_bios(&td->service_queue);
2384 
2385 	rcu_read_unlock();
2386 	spin_unlock_irq(q->queue_lock);
2387 
2388 	/* all bios now should be in td->service_queue, issue them */
2389 	for (rw = READ; rw <= WRITE; rw++)
2390 		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
2391 						NULL)))
2392 			generic_make_request(bio);
2393 
2394 	spin_lock_irq(q->queue_lock);
2395 }
2396 
blk_throtl_init(struct request_queue * q)2397 int blk_throtl_init(struct request_queue *q)
2398 {
2399 	struct throtl_data *td;
2400 	int ret;
2401 
2402 	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2403 	if (!td)
2404 		return -ENOMEM;
2405 	td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2406 		LATENCY_BUCKET_SIZE, __alignof__(u64));
2407 	if (!td->latency_buckets[READ]) {
2408 		kfree(td);
2409 		return -ENOMEM;
2410 	}
2411 	td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2412 		LATENCY_BUCKET_SIZE, __alignof__(u64));
2413 	if (!td->latency_buckets[WRITE]) {
2414 		free_percpu(td->latency_buckets[READ]);
2415 		kfree(td);
2416 		return -ENOMEM;
2417 	}
2418 
2419 	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2420 	throtl_service_queue_init(&td->service_queue);
2421 
2422 	q->td = td;
2423 	td->queue = q;
2424 
2425 	td->limit_valid[LIMIT_MAX] = true;
2426 	td->limit_index = LIMIT_MAX;
2427 	td->low_upgrade_time = jiffies;
2428 	td->low_downgrade_time = jiffies;
2429 
2430 	/* activate policy */
2431 	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2432 	if (ret) {
2433 		free_percpu(td->latency_buckets[READ]);
2434 		free_percpu(td->latency_buckets[WRITE]);
2435 		kfree(td);
2436 	}
2437 	return ret;
2438 }
2439 
blk_throtl_exit(struct request_queue * q)2440 void blk_throtl_exit(struct request_queue *q)
2441 {
2442 	BUG_ON(!q->td);
2443 	throtl_shutdown_wq(q);
2444 	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2445 	free_percpu(q->td->latency_buckets[READ]);
2446 	free_percpu(q->td->latency_buckets[WRITE]);
2447 	kfree(q->td);
2448 }
2449 
blk_throtl_register_queue(struct request_queue * q)2450 void blk_throtl_register_queue(struct request_queue *q)
2451 {
2452 	struct throtl_data *td;
2453 	int i;
2454 
2455 	td = q->td;
2456 	BUG_ON(!td);
2457 
2458 	if (blk_queue_nonrot(q)) {
2459 		td->throtl_slice = DFL_THROTL_SLICE_SSD;
2460 		td->filtered_latency = LATENCY_FILTERED_SSD;
2461 	} else {
2462 		td->throtl_slice = DFL_THROTL_SLICE_HD;
2463 		td->filtered_latency = LATENCY_FILTERED_HD;
2464 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2465 			td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2466 			td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2467 		}
2468 	}
2469 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2470 	/* if no low limit, use previous default */
2471 	td->throtl_slice = DFL_THROTL_SLICE_HD;
2472 #endif
2473 
2474 	td->track_bio_latency = !queue_is_rq_based(q);
2475 	if (!td->track_bio_latency)
2476 		blk_stat_enable_accounting(q);
2477 }
2478 
2479 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
blk_throtl_sample_time_show(struct request_queue * q,char * page)2480 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2481 {
2482 	if (!q->td)
2483 		return -EINVAL;
2484 	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2485 }
2486 
blk_throtl_sample_time_store(struct request_queue * q,const char * page,size_t count)2487 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2488 	const char *page, size_t count)
2489 {
2490 	unsigned long v;
2491 	unsigned long t;
2492 
2493 	if (!q->td)
2494 		return -EINVAL;
2495 	if (kstrtoul(page, 10, &v))
2496 		return -EINVAL;
2497 	t = msecs_to_jiffies(v);
2498 	if (t == 0 || t > MAX_THROTL_SLICE)
2499 		return -EINVAL;
2500 	q->td->throtl_slice = t;
2501 	return count;
2502 }
2503 #endif
2504 
throtl_init(void)2505 static int __init throtl_init(void)
2506 {
2507 	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2508 	if (!kthrotld_workqueue)
2509 		panic("Failed to create kthrotld\n");
2510 
2511 	return blkcg_policy_register(&blkcg_policy_throtl);
2512 }
2513 
2514 module_init(throtl_init);
2515