1 /*
2 * blk-mq scheduling framework
3 *
4 * Copyright (C) 2016 Jens Axboe
5 */
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/blk-mq.h>
9
10 #include <trace/events/block.h>
11
12 #include "blk.h"
13 #include "blk-mq.h"
14 #include "blk-mq-debugfs.h"
15 #include "blk-mq-sched.h"
16 #include "blk-mq-tag.h"
17 #include "blk-wbt.h"
18
blk_mq_sched_free_hctx_data(struct request_queue * q,void (* exit)(struct blk_mq_hw_ctx *))19 void blk_mq_sched_free_hctx_data(struct request_queue *q,
20 void (*exit)(struct blk_mq_hw_ctx *))
21 {
22 struct blk_mq_hw_ctx *hctx;
23 int i;
24
25 queue_for_each_hw_ctx(q, hctx, i) {
26 if (exit && hctx->sched_data)
27 exit(hctx);
28 kfree(hctx->sched_data);
29 hctx->sched_data = NULL;
30 }
31 }
32 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
33
blk_mq_sched_assign_ioc(struct request * rq,struct bio * bio)34 void blk_mq_sched_assign_ioc(struct request *rq, struct bio *bio)
35 {
36 struct request_queue *q = rq->q;
37 struct io_context *ioc = rq_ioc(bio);
38 struct io_cq *icq;
39
40 spin_lock_irq(q->queue_lock);
41 icq = ioc_lookup_icq(ioc, q);
42 spin_unlock_irq(q->queue_lock);
43
44 if (!icq) {
45 icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
46 if (!icq)
47 return;
48 }
49 get_io_context(icq->ioc);
50 rq->elv.icq = icq;
51 }
52
53 /*
54 * Mark a hardware queue as needing a restart. For shared queues, maintain
55 * a count of how many hardware queues are marked for restart.
56 */
blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx * hctx)57 static void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
58 {
59 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
60 return;
61
62 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
63 }
64
blk_mq_sched_restart(struct blk_mq_hw_ctx * hctx)65 void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
66 {
67 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
68 return;
69 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
70
71 blk_mq_run_hw_queue(hctx, true);
72 }
73
74 /*
75 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
76 * its queue by itself in its completion handler, so we don't need to
77 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
78 */
blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx * hctx)79 static void blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
80 {
81 struct request_queue *q = hctx->queue;
82 struct elevator_queue *e = q->elevator;
83 LIST_HEAD(rq_list);
84
85 do {
86 struct request *rq;
87
88 if (e->type->ops.mq.has_work &&
89 !e->type->ops.mq.has_work(hctx))
90 break;
91
92 if (!blk_mq_get_dispatch_budget(hctx))
93 break;
94
95 rq = e->type->ops.mq.dispatch_request(hctx);
96 if (!rq) {
97 blk_mq_put_dispatch_budget(hctx);
98 break;
99 }
100
101 /*
102 * Now this rq owns the budget which has to be released
103 * if this rq won't be queued to driver via .queue_rq()
104 * in blk_mq_dispatch_rq_list().
105 */
106 list_add(&rq->queuelist, &rq_list);
107 } while (blk_mq_dispatch_rq_list(q, &rq_list, true));
108 }
109
blk_mq_next_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)110 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
111 struct blk_mq_ctx *ctx)
112 {
113 unsigned idx = ctx->index_hw;
114
115 if (++idx == hctx->nr_ctx)
116 idx = 0;
117
118 return hctx->ctxs[idx];
119 }
120
121 /*
122 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
123 * its queue by itself in its completion handler, so we don't need to
124 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
125 */
blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx * hctx)126 static void blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
127 {
128 struct request_queue *q = hctx->queue;
129 LIST_HEAD(rq_list);
130 struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
131
132 do {
133 struct request *rq;
134
135 if (!sbitmap_any_bit_set(&hctx->ctx_map))
136 break;
137
138 if (!blk_mq_get_dispatch_budget(hctx))
139 break;
140
141 rq = blk_mq_dequeue_from_ctx(hctx, ctx);
142 if (!rq) {
143 blk_mq_put_dispatch_budget(hctx);
144 break;
145 }
146
147 /*
148 * Now this rq owns the budget which has to be released
149 * if this rq won't be queued to driver via .queue_rq()
150 * in blk_mq_dispatch_rq_list().
151 */
152 list_add(&rq->queuelist, &rq_list);
153
154 /* round robin for fair dispatch */
155 ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
156
157 } while (blk_mq_dispatch_rq_list(q, &rq_list, true));
158
159 WRITE_ONCE(hctx->dispatch_from, ctx);
160 }
161
blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx * hctx)162 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
163 {
164 struct request_queue *q = hctx->queue;
165 struct elevator_queue *e = q->elevator;
166 const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
167 LIST_HEAD(rq_list);
168
169 /* RCU or SRCU read lock is needed before checking quiesced flag */
170 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
171 return;
172
173 hctx->run++;
174
175 /*
176 * If we have previous entries on our dispatch list, grab them first for
177 * more fair dispatch.
178 */
179 if (!list_empty_careful(&hctx->dispatch)) {
180 spin_lock(&hctx->lock);
181 if (!list_empty(&hctx->dispatch))
182 list_splice_init(&hctx->dispatch, &rq_list);
183 spin_unlock(&hctx->lock);
184 }
185
186 /*
187 * Only ask the scheduler for requests, if we didn't have residual
188 * requests from the dispatch list. This is to avoid the case where
189 * we only ever dispatch a fraction of the requests available because
190 * of low device queue depth. Once we pull requests out of the IO
191 * scheduler, we can no longer merge or sort them. So it's best to
192 * leave them there for as long as we can. Mark the hw queue as
193 * needing a restart in that case.
194 *
195 * We want to dispatch from the scheduler if there was nothing
196 * on the dispatch list or we were able to dispatch from the
197 * dispatch list.
198 */
199 if (!list_empty(&rq_list)) {
200 blk_mq_sched_mark_restart_hctx(hctx);
201 if (blk_mq_dispatch_rq_list(q, &rq_list, false)) {
202 if (has_sched_dispatch)
203 blk_mq_do_dispatch_sched(hctx);
204 else
205 blk_mq_do_dispatch_ctx(hctx);
206 }
207 } else if (has_sched_dispatch) {
208 blk_mq_do_dispatch_sched(hctx);
209 } else if (hctx->dispatch_busy) {
210 /* dequeue request one by one from sw queue if queue is busy */
211 blk_mq_do_dispatch_ctx(hctx);
212 } else {
213 blk_mq_flush_busy_ctxs(hctx, &rq_list);
214 blk_mq_dispatch_rq_list(q, &rq_list, false);
215 }
216 }
217
blk_mq_sched_try_merge(struct request_queue * q,struct bio * bio,struct request ** merged_request)218 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
219 struct request **merged_request)
220 {
221 struct request *rq;
222
223 switch (elv_merge(q, &rq, bio)) {
224 case ELEVATOR_BACK_MERGE:
225 if (!blk_mq_sched_allow_merge(q, rq, bio))
226 return false;
227 if (!bio_attempt_back_merge(q, rq, bio))
228 return false;
229 *merged_request = attempt_back_merge(q, rq);
230 if (!*merged_request)
231 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
232 return true;
233 case ELEVATOR_FRONT_MERGE:
234 if (!blk_mq_sched_allow_merge(q, rq, bio))
235 return false;
236 if (!bio_attempt_front_merge(q, rq, bio))
237 return false;
238 *merged_request = attempt_front_merge(q, rq);
239 if (!*merged_request)
240 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
241 return true;
242 case ELEVATOR_DISCARD_MERGE:
243 return bio_attempt_discard_merge(q, rq, bio);
244 default:
245 return false;
246 }
247 }
248 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
249
250 /*
251 * Iterate list of requests and see if we can merge this bio with any
252 * of them.
253 */
blk_mq_bio_list_merge(struct request_queue * q,struct list_head * list,struct bio * bio)254 bool blk_mq_bio_list_merge(struct request_queue *q, struct list_head *list,
255 struct bio *bio)
256 {
257 struct request *rq;
258 int checked = 8;
259
260 list_for_each_entry_reverse(rq, list, queuelist) {
261 bool merged = false;
262
263 if (!checked--)
264 break;
265
266 if (!blk_rq_merge_ok(rq, bio))
267 continue;
268
269 switch (blk_try_merge(rq, bio)) {
270 case ELEVATOR_BACK_MERGE:
271 if (blk_mq_sched_allow_merge(q, rq, bio))
272 merged = bio_attempt_back_merge(q, rq, bio);
273 break;
274 case ELEVATOR_FRONT_MERGE:
275 if (blk_mq_sched_allow_merge(q, rq, bio))
276 merged = bio_attempt_front_merge(q, rq, bio);
277 break;
278 case ELEVATOR_DISCARD_MERGE:
279 merged = bio_attempt_discard_merge(q, rq, bio);
280 break;
281 default:
282 continue;
283 }
284
285 return merged;
286 }
287
288 return false;
289 }
290 EXPORT_SYMBOL_GPL(blk_mq_bio_list_merge);
291
292 /*
293 * Reverse check our software queue for entries that we could potentially
294 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
295 * too much time checking for merges.
296 */
blk_mq_attempt_merge(struct request_queue * q,struct blk_mq_ctx * ctx,struct bio * bio)297 static bool blk_mq_attempt_merge(struct request_queue *q,
298 struct blk_mq_ctx *ctx, struct bio *bio)
299 {
300 lockdep_assert_held(&ctx->lock);
301
302 if (blk_mq_bio_list_merge(q, &ctx->rq_list, bio)) {
303 ctx->rq_merged++;
304 return true;
305 }
306
307 return false;
308 }
309
__blk_mq_sched_bio_merge(struct request_queue * q,struct bio * bio)310 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
311 {
312 struct elevator_queue *e = q->elevator;
313 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
314 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
315 bool ret = false;
316
317 if (e && e->type->ops.mq.bio_merge) {
318 blk_mq_put_ctx(ctx);
319 return e->type->ops.mq.bio_merge(hctx, bio);
320 }
321
322 if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
323 !list_empty_careful(&ctx->rq_list)) {
324 /* default per sw-queue merge */
325 spin_lock(&ctx->lock);
326 ret = blk_mq_attempt_merge(q, ctx, bio);
327 spin_unlock(&ctx->lock);
328 }
329
330 blk_mq_put_ctx(ctx);
331 return ret;
332 }
333
blk_mq_sched_try_insert_merge(struct request_queue * q,struct request * rq)334 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
335 {
336 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
337 }
338 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
339
blk_mq_sched_request_inserted(struct request * rq)340 void blk_mq_sched_request_inserted(struct request *rq)
341 {
342 trace_block_rq_insert(rq->q, rq);
343 }
344 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
345
blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx * hctx,bool has_sched,struct request * rq)346 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
347 bool has_sched,
348 struct request *rq)
349 {
350 /* dispatch flush rq directly */
351 if (rq->rq_flags & RQF_FLUSH_SEQ) {
352 spin_lock(&hctx->lock);
353 list_add(&rq->queuelist, &hctx->dispatch);
354 spin_unlock(&hctx->lock);
355 return true;
356 }
357
358 if (has_sched)
359 rq->rq_flags |= RQF_SORTED;
360
361 return false;
362 }
363
blk_mq_sched_insert_request(struct request * rq,bool at_head,bool run_queue,bool async)364 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
365 bool run_queue, bool async)
366 {
367 struct request_queue *q = rq->q;
368 struct elevator_queue *e = q->elevator;
369 struct blk_mq_ctx *ctx = rq->mq_ctx;
370 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
371
372 /* flush rq in flush machinery need to be dispatched directly */
373 if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) {
374 blk_insert_flush(rq);
375 goto run;
376 }
377
378 WARN_ON(e && (rq->tag != -1));
379
380 if (blk_mq_sched_bypass_insert(hctx, !!e, rq))
381 goto run;
382
383 if (e && e->type->ops.mq.insert_requests) {
384 LIST_HEAD(list);
385
386 list_add(&rq->queuelist, &list);
387 e->type->ops.mq.insert_requests(hctx, &list, at_head);
388 } else {
389 spin_lock(&ctx->lock);
390 __blk_mq_insert_request(hctx, rq, at_head);
391 spin_unlock(&ctx->lock);
392 }
393
394 run:
395 if (run_queue)
396 blk_mq_run_hw_queue(hctx, async);
397 }
398
blk_mq_sched_insert_requests(struct request_queue * q,struct blk_mq_ctx * ctx,struct list_head * list,bool run_queue_async)399 void blk_mq_sched_insert_requests(struct request_queue *q,
400 struct blk_mq_ctx *ctx,
401 struct list_head *list, bool run_queue_async)
402 {
403 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
404 struct elevator_queue *e = hctx->queue->elevator;
405
406 if (e && e->type->ops.mq.insert_requests)
407 e->type->ops.mq.insert_requests(hctx, list, false);
408 else {
409 /*
410 * try to issue requests directly if the hw queue isn't
411 * busy in case of 'none' scheduler, and this way may save
412 * us one extra enqueue & dequeue to sw queue.
413 */
414 if (!hctx->dispatch_busy && !e && !run_queue_async) {
415 blk_mq_try_issue_list_directly(hctx, list);
416 if (list_empty(list))
417 return;
418 }
419 blk_mq_insert_requests(hctx, ctx, list);
420 }
421
422 blk_mq_run_hw_queue(hctx, run_queue_async);
423 }
424
blk_mq_sched_free_tags(struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)425 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
426 struct blk_mq_hw_ctx *hctx,
427 unsigned int hctx_idx)
428 {
429 if (hctx->sched_tags) {
430 blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
431 blk_mq_free_rq_map(hctx->sched_tags);
432 hctx->sched_tags = NULL;
433 }
434 }
435
blk_mq_sched_alloc_tags(struct request_queue * q,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)436 static int blk_mq_sched_alloc_tags(struct request_queue *q,
437 struct blk_mq_hw_ctx *hctx,
438 unsigned int hctx_idx)
439 {
440 struct blk_mq_tag_set *set = q->tag_set;
441 int ret;
442
443 hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
444 set->reserved_tags);
445 if (!hctx->sched_tags)
446 return -ENOMEM;
447
448 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
449 if (ret)
450 blk_mq_sched_free_tags(set, hctx, hctx_idx);
451
452 return ret;
453 }
454
blk_mq_sched_tags_teardown(struct request_queue * q)455 static void blk_mq_sched_tags_teardown(struct request_queue *q)
456 {
457 struct blk_mq_tag_set *set = q->tag_set;
458 struct blk_mq_hw_ctx *hctx;
459 int i;
460
461 queue_for_each_hw_ctx(q, hctx, i)
462 blk_mq_sched_free_tags(set, hctx, i);
463 }
464
blk_mq_init_sched(struct request_queue * q,struct elevator_type * e)465 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
466 {
467 struct blk_mq_hw_ctx *hctx;
468 struct elevator_queue *eq;
469 unsigned int i;
470 int ret;
471
472 if (!e) {
473 q->elevator = NULL;
474 q->nr_requests = q->tag_set->queue_depth;
475 return 0;
476 }
477
478 /*
479 * Default to double of smaller one between hw queue_depth and 128,
480 * since we don't split into sync/async like the old code did.
481 * Additionally, this is a per-hw queue depth.
482 */
483 q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
484 BLKDEV_MAX_RQ);
485
486 queue_for_each_hw_ctx(q, hctx, i) {
487 ret = blk_mq_sched_alloc_tags(q, hctx, i);
488 if (ret)
489 goto err;
490 }
491
492 ret = e->ops.mq.init_sched(q, e);
493 if (ret)
494 goto err;
495
496 blk_mq_debugfs_register_sched(q);
497
498 queue_for_each_hw_ctx(q, hctx, i) {
499 if (e->ops.mq.init_hctx) {
500 ret = e->ops.mq.init_hctx(hctx, i);
501 if (ret) {
502 eq = q->elevator;
503 blk_mq_exit_sched(q, eq);
504 kobject_put(&eq->kobj);
505 return ret;
506 }
507 }
508 blk_mq_debugfs_register_sched_hctx(q, hctx);
509 }
510
511 return 0;
512
513 err:
514 blk_mq_sched_tags_teardown(q);
515 q->elevator = NULL;
516 return ret;
517 }
518
blk_mq_exit_sched(struct request_queue * q,struct elevator_queue * e)519 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
520 {
521 struct blk_mq_hw_ctx *hctx;
522 unsigned int i;
523
524 queue_for_each_hw_ctx(q, hctx, i) {
525 blk_mq_debugfs_unregister_sched_hctx(hctx);
526 if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
527 e->type->ops.mq.exit_hctx(hctx, i);
528 hctx->sched_data = NULL;
529 }
530 }
531 blk_mq_debugfs_unregister_sched(q);
532 if (e->type->ops.mq.exit_sched)
533 e->type->ops.mq.exit_sched(e);
534 blk_mq_sched_tags_teardown(q);
535 q->elevator = NULL;
536 }
537