1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 #include <linux/bpf.h>
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/block.h>
41
42 #include "blk.h"
43 #include "blk-mq.h"
44 #include "blk-mq-sched.h"
45 #include "blk-rq-qos.h"
46
47 #ifdef CONFIG_DEBUG_FS
48 struct dentry *blk_debugfs_root;
49 #endif
50
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
56
57 DEFINE_IDA(blk_queue_ida);
58
59 /*
60 * For the allocated request tables
61 */
62 struct kmem_cache *request_cachep;
63
64 /*
65 * For queue allocation
66 */
67 struct kmem_cache *blk_requestq_cachep;
68
69 /*
70 * Controlling structure to kblockd
71 */
72 static struct workqueue_struct *kblockd_workqueue;
73
74 /**
75 * blk_queue_flag_set - atomically set a queue flag
76 * @flag: flag to be set
77 * @q: request queue
78 */
blk_queue_flag_set(unsigned int flag,struct request_queue * q)79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
80 {
81 unsigned long flags;
82
83 spin_lock_irqsave(q->queue_lock, flags);
84 queue_flag_set(flag, q);
85 spin_unlock_irqrestore(q->queue_lock, flags);
86 }
87 EXPORT_SYMBOL(blk_queue_flag_set);
88
89 /**
90 * blk_queue_flag_clear - atomically clear a queue flag
91 * @flag: flag to be cleared
92 * @q: request queue
93 */
blk_queue_flag_clear(unsigned int flag,struct request_queue * q)94 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
95 {
96 unsigned long flags;
97
98 spin_lock_irqsave(q->queue_lock, flags);
99 queue_flag_clear(flag, q);
100 spin_unlock_irqrestore(q->queue_lock, flags);
101 }
102 EXPORT_SYMBOL(blk_queue_flag_clear);
103
104 /**
105 * blk_queue_flag_test_and_set - atomically test and set a queue flag
106 * @flag: flag to be set
107 * @q: request queue
108 *
109 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
110 * the flag was already set.
111 */
blk_queue_flag_test_and_set(unsigned int flag,struct request_queue * q)112 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
113 {
114 unsigned long flags;
115 bool res;
116
117 spin_lock_irqsave(q->queue_lock, flags);
118 res = queue_flag_test_and_set(flag, q);
119 spin_unlock_irqrestore(q->queue_lock, flags);
120
121 return res;
122 }
123 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
124
125 /**
126 * blk_queue_flag_test_and_clear - atomically test and clear a queue flag
127 * @flag: flag to be cleared
128 * @q: request queue
129 *
130 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
131 * the flag was set.
132 */
blk_queue_flag_test_and_clear(unsigned int flag,struct request_queue * q)133 bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q)
134 {
135 unsigned long flags;
136 bool res;
137
138 spin_lock_irqsave(q->queue_lock, flags);
139 res = queue_flag_test_and_clear(flag, q);
140 spin_unlock_irqrestore(q->queue_lock, flags);
141
142 return res;
143 }
144 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear);
145
blk_clear_congested(struct request_list * rl,int sync)146 static void blk_clear_congested(struct request_list *rl, int sync)
147 {
148 #ifdef CONFIG_CGROUP_WRITEBACK
149 clear_wb_congested(rl->blkg->wb_congested, sync);
150 #else
151 /*
152 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
153 * flip its congestion state for events on other blkcgs.
154 */
155 if (rl == &rl->q->root_rl)
156 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
157 #endif
158 }
159
blk_set_congested(struct request_list * rl,int sync)160 static void blk_set_congested(struct request_list *rl, int sync)
161 {
162 #ifdef CONFIG_CGROUP_WRITEBACK
163 set_wb_congested(rl->blkg->wb_congested, sync);
164 #else
165 /* see blk_clear_congested() */
166 if (rl == &rl->q->root_rl)
167 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
168 #endif
169 }
170
blk_queue_congestion_threshold(struct request_queue * q)171 void blk_queue_congestion_threshold(struct request_queue *q)
172 {
173 int nr;
174
175 nr = q->nr_requests - (q->nr_requests / 8) + 1;
176 if (nr > q->nr_requests)
177 nr = q->nr_requests;
178 q->nr_congestion_on = nr;
179
180 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
181 if (nr < 1)
182 nr = 1;
183 q->nr_congestion_off = nr;
184 }
185
blk_rq_init(struct request_queue * q,struct request * rq)186 void blk_rq_init(struct request_queue *q, struct request *rq)
187 {
188 memset(rq, 0, sizeof(*rq));
189
190 INIT_LIST_HEAD(&rq->queuelist);
191 INIT_LIST_HEAD(&rq->timeout_list);
192 rq->cpu = -1;
193 rq->q = q;
194 rq->__sector = (sector_t) -1;
195 INIT_HLIST_NODE(&rq->hash);
196 RB_CLEAR_NODE(&rq->rb_node);
197 rq->tag = -1;
198 rq->internal_tag = -1;
199 rq->start_time_ns = ktime_get_ns();
200 rq->part = NULL;
201 }
202 EXPORT_SYMBOL(blk_rq_init);
203
204 static const struct {
205 int errno;
206 const char *name;
207 } blk_errors[] = {
208 [BLK_STS_OK] = { 0, "" },
209 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
210 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
211 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
212 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
213 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
214 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
215 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
216 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
217 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
218 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
219 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
220
221 /* device mapper special case, should not leak out: */
222 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
223
224 /* everything else not covered above: */
225 [BLK_STS_IOERR] = { -EIO, "I/O" },
226 };
227
errno_to_blk_status(int errno)228 blk_status_t errno_to_blk_status(int errno)
229 {
230 int i;
231
232 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
233 if (blk_errors[i].errno == errno)
234 return (__force blk_status_t)i;
235 }
236
237 return BLK_STS_IOERR;
238 }
239 EXPORT_SYMBOL_GPL(errno_to_blk_status);
240
blk_status_to_errno(blk_status_t status)241 int blk_status_to_errno(blk_status_t status)
242 {
243 int idx = (__force int)status;
244
245 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
246 return -EIO;
247 return blk_errors[idx].errno;
248 }
249 EXPORT_SYMBOL_GPL(blk_status_to_errno);
250
print_req_error(struct request * req,blk_status_t status)251 static void print_req_error(struct request *req, blk_status_t status)
252 {
253 int idx = (__force int)status;
254
255 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
256 return;
257
258 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
259 __func__, blk_errors[idx].name, req->rq_disk ?
260 req->rq_disk->disk_name : "?",
261 (unsigned long long)blk_rq_pos(req));
262 }
263
req_bio_endio(struct request * rq,struct bio * bio,unsigned int nbytes,blk_status_t error)264 static void req_bio_endio(struct request *rq, struct bio *bio,
265 unsigned int nbytes, blk_status_t error)
266 {
267 if (error)
268 bio->bi_status = error;
269
270 if (unlikely(rq->rq_flags & RQF_QUIET))
271 bio_set_flag(bio, BIO_QUIET);
272
273 bio_advance(bio, nbytes);
274
275 /* don't actually finish bio if it's part of flush sequence */
276 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
277 bio_endio(bio);
278 }
279
blk_dump_rq_flags(struct request * rq,char * msg)280 void blk_dump_rq_flags(struct request *rq, char *msg)
281 {
282 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
283 rq->rq_disk ? rq->rq_disk->disk_name : "?",
284 (unsigned long long) rq->cmd_flags);
285
286 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
287 (unsigned long long)blk_rq_pos(rq),
288 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
289 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
290 rq->bio, rq->biotail, blk_rq_bytes(rq));
291 }
292 EXPORT_SYMBOL(blk_dump_rq_flags);
293
blk_delay_work(struct work_struct * work)294 static void blk_delay_work(struct work_struct *work)
295 {
296 struct request_queue *q;
297
298 q = container_of(work, struct request_queue, delay_work.work);
299 spin_lock_irq(q->queue_lock);
300 __blk_run_queue(q);
301 spin_unlock_irq(q->queue_lock);
302 }
303
304 /**
305 * blk_delay_queue - restart queueing after defined interval
306 * @q: The &struct request_queue in question
307 * @msecs: Delay in msecs
308 *
309 * Description:
310 * Sometimes queueing needs to be postponed for a little while, to allow
311 * resources to come back. This function will make sure that queueing is
312 * restarted around the specified time.
313 */
blk_delay_queue(struct request_queue * q,unsigned long msecs)314 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
315 {
316 lockdep_assert_held(q->queue_lock);
317 WARN_ON_ONCE(q->mq_ops);
318
319 if (likely(!blk_queue_dead(q)))
320 queue_delayed_work(kblockd_workqueue, &q->delay_work,
321 msecs_to_jiffies(msecs));
322 }
323 EXPORT_SYMBOL(blk_delay_queue);
324
325 /**
326 * blk_start_queue_async - asynchronously restart a previously stopped queue
327 * @q: The &struct request_queue in question
328 *
329 * Description:
330 * blk_start_queue_async() will clear the stop flag on the queue, and
331 * ensure that the request_fn for the queue is run from an async
332 * context.
333 **/
blk_start_queue_async(struct request_queue * q)334 void blk_start_queue_async(struct request_queue *q)
335 {
336 lockdep_assert_held(q->queue_lock);
337 WARN_ON_ONCE(q->mq_ops);
338
339 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
340 blk_run_queue_async(q);
341 }
342 EXPORT_SYMBOL(blk_start_queue_async);
343
344 /**
345 * blk_start_queue - restart a previously stopped queue
346 * @q: The &struct request_queue in question
347 *
348 * Description:
349 * blk_start_queue() will clear the stop flag on the queue, and call
350 * the request_fn for the queue if it was in a stopped state when
351 * entered. Also see blk_stop_queue().
352 **/
blk_start_queue(struct request_queue * q)353 void blk_start_queue(struct request_queue *q)
354 {
355 lockdep_assert_held(q->queue_lock);
356 WARN_ON_ONCE(q->mq_ops);
357
358 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
359 __blk_run_queue(q);
360 }
361 EXPORT_SYMBOL(blk_start_queue);
362
363 /**
364 * blk_stop_queue - stop a queue
365 * @q: The &struct request_queue in question
366 *
367 * Description:
368 * The Linux block layer assumes that a block driver will consume all
369 * entries on the request queue when the request_fn strategy is called.
370 * Often this will not happen, because of hardware limitations (queue
371 * depth settings). If a device driver gets a 'queue full' response,
372 * or if it simply chooses not to queue more I/O at one point, it can
373 * call this function to prevent the request_fn from being called until
374 * the driver has signalled it's ready to go again. This happens by calling
375 * blk_start_queue() to restart queue operations.
376 **/
blk_stop_queue(struct request_queue * q)377 void blk_stop_queue(struct request_queue *q)
378 {
379 lockdep_assert_held(q->queue_lock);
380 WARN_ON_ONCE(q->mq_ops);
381
382 cancel_delayed_work(&q->delay_work);
383 queue_flag_set(QUEUE_FLAG_STOPPED, q);
384 }
385 EXPORT_SYMBOL(blk_stop_queue);
386
387 /**
388 * blk_sync_queue - cancel any pending callbacks on a queue
389 * @q: the queue
390 *
391 * Description:
392 * The block layer may perform asynchronous callback activity
393 * on a queue, such as calling the unplug function after a timeout.
394 * A block device may call blk_sync_queue to ensure that any
395 * such activity is cancelled, thus allowing it to release resources
396 * that the callbacks might use. The caller must already have made sure
397 * that its ->make_request_fn will not re-add plugging prior to calling
398 * this function.
399 *
400 * This function does not cancel any asynchronous activity arising
401 * out of elevator or throttling code. That would require elevator_exit()
402 * and blkcg_exit_queue() to be called with queue lock initialized.
403 *
404 */
blk_sync_queue(struct request_queue * q)405 void blk_sync_queue(struct request_queue *q)
406 {
407 del_timer_sync(&q->timeout);
408 cancel_work_sync(&q->timeout_work);
409
410 if (q->mq_ops) {
411 struct blk_mq_hw_ctx *hctx;
412 int i;
413
414 cancel_delayed_work_sync(&q->requeue_work);
415 queue_for_each_hw_ctx(q, hctx, i)
416 cancel_delayed_work_sync(&hctx->run_work);
417 } else {
418 cancel_delayed_work_sync(&q->delay_work);
419 }
420 }
421 EXPORT_SYMBOL(blk_sync_queue);
422
423 /**
424 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
425 * @q: request queue pointer
426 *
427 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
428 * set and 1 if the flag was already set.
429 */
blk_set_preempt_only(struct request_queue * q)430 int blk_set_preempt_only(struct request_queue *q)
431 {
432 return blk_queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
433 }
434 EXPORT_SYMBOL_GPL(blk_set_preempt_only);
435
blk_clear_preempt_only(struct request_queue * q)436 void blk_clear_preempt_only(struct request_queue *q)
437 {
438 blk_queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
439 wake_up_all(&q->mq_freeze_wq);
440 }
441 EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
442
443 /**
444 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
445 * @q: The queue to run
446 *
447 * Description:
448 * Invoke request handling on a queue if there are any pending requests.
449 * May be used to restart request handling after a request has completed.
450 * This variant runs the queue whether or not the queue has been
451 * stopped. Must be called with the queue lock held and interrupts
452 * disabled. See also @blk_run_queue.
453 */
__blk_run_queue_uncond(struct request_queue * q)454 inline void __blk_run_queue_uncond(struct request_queue *q)
455 {
456 lockdep_assert_held(q->queue_lock);
457 WARN_ON_ONCE(q->mq_ops);
458
459 if (unlikely(blk_queue_dead(q)))
460 return;
461
462 /*
463 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
464 * the queue lock internally. As a result multiple threads may be
465 * running such a request function concurrently. Keep track of the
466 * number of active request_fn invocations such that blk_drain_queue()
467 * can wait until all these request_fn calls have finished.
468 */
469 q->request_fn_active++;
470 q->request_fn(q);
471 q->request_fn_active--;
472 }
473 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
474
475 /**
476 * __blk_run_queue - run a single device queue
477 * @q: The queue to run
478 *
479 * Description:
480 * See @blk_run_queue.
481 */
__blk_run_queue(struct request_queue * q)482 void __blk_run_queue(struct request_queue *q)
483 {
484 lockdep_assert_held(q->queue_lock);
485 WARN_ON_ONCE(q->mq_ops);
486
487 if (unlikely(blk_queue_stopped(q)))
488 return;
489
490 __blk_run_queue_uncond(q);
491 }
492 EXPORT_SYMBOL(__blk_run_queue);
493
494 /**
495 * blk_run_queue_async - run a single device queue in workqueue context
496 * @q: The queue to run
497 *
498 * Description:
499 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
500 * of us.
501 *
502 * Note:
503 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
504 * has canceled q->delay_work, callers must hold the queue lock to avoid
505 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
506 */
blk_run_queue_async(struct request_queue * q)507 void blk_run_queue_async(struct request_queue *q)
508 {
509 lockdep_assert_held(q->queue_lock);
510 WARN_ON_ONCE(q->mq_ops);
511
512 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
513 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
514 }
515 EXPORT_SYMBOL(blk_run_queue_async);
516
517 /**
518 * blk_run_queue - run a single device queue
519 * @q: The queue to run
520 *
521 * Description:
522 * Invoke request handling on this queue, if it has pending work to do.
523 * May be used to restart queueing when a request has completed.
524 */
blk_run_queue(struct request_queue * q)525 void blk_run_queue(struct request_queue *q)
526 {
527 unsigned long flags;
528
529 WARN_ON_ONCE(q->mq_ops);
530
531 spin_lock_irqsave(q->queue_lock, flags);
532 __blk_run_queue(q);
533 spin_unlock_irqrestore(q->queue_lock, flags);
534 }
535 EXPORT_SYMBOL(blk_run_queue);
536
blk_put_queue(struct request_queue * q)537 void blk_put_queue(struct request_queue *q)
538 {
539 kobject_put(&q->kobj);
540 }
541 EXPORT_SYMBOL(blk_put_queue);
542
543 /**
544 * __blk_drain_queue - drain requests from request_queue
545 * @q: queue to drain
546 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
547 *
548 * Drain requests from @q. If @drain_all is set, all requests are drained.
549 * If not, only ELVPRIV requests are drained. The caller is responsible
550 * for ensuring that no new requests which need to be drained are queued.
551 */
__blk_drain_queue(struct request_queue * q,bool drain_all)552 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
553 __releases(q->queue_lock)
554 __acquires(q->queue_lock)
555 {
556 int i;
557
558 lockdep_assert_held(q->queue_lock);
559 WARN_ON_ONCE(q->mq_ops);
560
561 while (true) {
562 bool drain = false;
563
564 /*
565 * The caller might be trying to drain @q before its
566 * elevator is initialized.
567 */
568 if (q->elevator)
569 elv_drain_elevator(q);
570
571 blkcg_drain_queue(q);
572
573 /*
574 * This function might be called on a queue which failed
575 * driver init after queue creation or is not yet fully
576 * active yet. Some drivers (e.g. fd and loop) get unhappy
577 * in such cases. Kick queue iff dispatch queue has
578 * something on it and @q has request_fn set.
579 */
580 if (!list_empty(&q->queue_head) && q->request_fn)
581 __blk_run_queue(q);
582
583 drain |= q->nr_rqs_elvpriv;
584 drain |= q->request_fn_active;
585
586 /*
587 * Unfortunately, requests are queued at and tracked from
588 * multiple places and there's no single counter which can
589 * be drained. Check all the queues and counters.
590 */
591 if (drain_all) {
592 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
593 drain |= !list_empty(&q->queue_head);
594 for (i = 0; i < 2; i++) {
595 drain |= q->nr_rqs[i];
596 drain |= q->in_flight[i];
597 if (fq)
598 drain |= !list_empty(&fq->flush_queue[i]);
599 }
600 }
601
602 if (!drain)
603 break;
604
605 spin_unlock_irq(q->queue_lock);
606
607 msleep(10);
608
609 spin_lock_irq(q->queue_lock);
610 }
611
612 /*
613 * With queue marked dead, any woken up waiter will fail the
614 * allocation path, so the wakeup chaining is lost and we're
615 * left with hung waiters. We need to wake up those waiters.
616 */
617 if (q->request_fn) {
618 struct request_list *rl;
619
620 blk_queue_for_each_rl(rl, q)
621 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
622 wake_up_all(&rl->wait[i]);
623 }
624 }
625
blk_drain_queue(struct request_queue * q)626 void blk_drain_queue(struct request_queue *q)
627 {
628 spin_lock_irq(q->queue_lock);
629 __blk_drain_queue(q, true);
630 spin_unlock_irq(q->queue_lock);
631 }
632
633 /**
634 * blk_queue_bypass_start - enter queue bypass mode
635 * @q: queue of interest
636 *
637 * In bypass mode, only the dispatch FIFO queue of @q is used. This
638 * function makes @q enter bypass mode and drains all requests which were
639 * throttled or issued before. On return, it's guaranteed that no request
640 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
641 * inside queue or RCU read lock.
642 */
blk_queue_bypass_start(struct request_queue * q)643 void blk_queue_bypass_start(struct request_queue *q)
644 {
645 WARN_ON_ONCE(q->mq_ops);
646
647 spin_lock_irq(q->queue_lock);
648 q->bypass_depth++;
649 queue_flag_set(QUEUE_FLAG_BYPASS, q);
650 spin_unlock_irq(q->queue_lock);
651
652 /*
653 * Queues start drained. Skip actual draining till init is
654 * complete. This avoids lenghty delays during queue init which
655 * can happen many times during boot.
656 */
657 if (blk_queue_init_done(q)) {
658 spin_lock_irq(q->queue_lock);
659 __blk_drain_queue(q, false);
660 spin_unlock_irq(q->queue_lock);
661
662 /* ensure blk_queue_bypass() is %true inside RCU read lock */
663 synchronize_rcu();
664 }
665 }
666 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
667
668 /**
669 * blk_queue_bypass_end - leave queue bypass mode
670 * @q: queue of interest
671 *
672 * Leave bypass mode and restore the normal queueing behavior.
673 *
674 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
675 * this function is called for both blk-sq and blk-mq queues.
676 */
blk_queue_bypass_end(struct request_queue * q)677 void blk_queue_bypass_end(struct request_queue *q)
678 {
679 spin_lock_irq(q->queue_lock);
680 if (!--q->bypass_depth)
681 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
682 WARN_ON_ONCE(q->bypass_depth < 0);
683 spin_unlock_irq(q->queue_lock);
684 }
685 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
686
blk_set_queue_dying(struct request_queue * q)687 void blk_set_queue_dying(struct request_queue *q)
688 {
689 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
690
691 /*
692 * When queue DYING flag is set, we need to block new req
693 * entering queue, so we call blk_freeze_queue_start() to
694 * prevent I/O from crossing blk_queue_enter().
695 */
696 blk_freeze_queue_start(q);
697
698 if (q->mq_ops)
699 blk_mq_wake_waiters(q);
700 else {
701 struct request_list *rl;
702
703 spin_lock_irq(q->queue_lock);
704 blk_queue_for_each_rl(rl, q) {
705 if (rl->rq_pool) {
706 wake_up_all(&rl->wait[BLK_RW_SYNC]);
707 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
708 }
709 }
710 spin_unlock_irq(q->queue_lock);
711 }
712
713 /* Make blk_queue_enter() reexamine the DYING flag. */
714 wake_up_all(&q->mq_freeze_wq);
715 }
716 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
717
718 /* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */
blk_exit_queue(struct request_queue * q)719 void blk_exit_queue(struct request_queue *q)
720 {
721 /*
722 * Since the I/O scheduler exit code may access cgroup information,
723 * perform I/O scheduler exit before disassociating from the block
724 * cgroup controller.
725 */
726 if (q->elevator) {
727 ioc_clear_queue(q);
728 elevator_exit(q, q->elevator);
729 q->elevator = NULL;
730 }
731
732 /*
733 * Remove all references to @q from the block cgroup controller before
734 * restoring @q->queue_lock to avoid that restoring this pointer causes
735 * e.g. blkcg_print_blkgs() to crash.
736 */
737 blkcg_exit_queue(q);
738
739 /*
740 * Since the cgroup code may dereference the @q->backing_dev_info
741 * pointer, only decrease its reference count after having removed the
742 * association with the block cgroup controller.
743 */
744 bdi_put(q->backing_dev_info);
745 }
746
747 /**
748 * blk_cleanup_queue - shutdown a request queue
749 * @q: request queue to shutdown
750 *
751 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
752 * put it. All future requests will be failed immediately with -ENODEV.
753 */
blk_cleanup_queue(struct request_queue * q)754 void blk_cleanup_queue(struct request_queue *q)
755 {
756 spinlock_t *lock = q->queue_lock;
757
758 /* mark @q DYING, no new request or merges will be allowed afterwards */
759 mutex_lock(&q->sysfs_lock);
760 blk_set_queue_dying(q);
761 spin_lock_irq(lock);
762
763 /*
764 * A dying queue is permanently in bypass mode till released. Note
765 * that, unlike blk_queue_bypass_start(), we aren't performing
766 * synchronize_rcu() after entering bypass mode to avoid the delay
767 * as some drivers create and destroy a lot of queues while
768 * probing. This is still safe because blk_release_queue() will be
769 * called only after the queue refcnt drops to zero and nothing,
770 * RCU or not, would be traversing the queue by then.
771 */
772 q->bypass_depth++;
773 queue_flag_set(QUEUE_FLAG_BYPASS, q);
774
775 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
776 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
777 queue_flag_set(QUEUE_FLAG_DYING, q);
778 spin_unlock_irq(lock);
779 mutex_unlock(&q->sysfs_lock);
780
781 /*
782 * Drain all requests queued before DYING marking. Set DEAD flag to
783 * prevent that q->request_fn() gets invoked after draining finished.
784 */
785 blk_freeze_queue(q);
786 spin_lock_irq(lock);
787 queue_flag_set(QUEUE_FLAG_DEAD, q);
788 spin_unlock_irq(lock);
789
790 /*
791 * make sure all in-progress dispatch are completed because
792 * blk_freeze_queue() can only complete all requests, and
793 * dispatch may still be in-progress since we dispatch requests
794 * from more than one contexts.
795 *
796 * No need to quiesce queue if it isn't initialized yet since
797 * blk_freeze_queue() should be enough for cases of passthrough
798 * request.
799 */
800 if (q->mq_ops && blk_queue_init_done(q))
801 blk_mq_quiesce_queue(q);
802
803 /* for synchronous bio-based driver finish in-flight integrity i/o */
804 blk_flush_integrity();
805
806 /* @q won't process any more request, flush async actions */
807 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
808 blk_sync_queue(q);
809
810 /*
811 * I/O scheduler exit is only safe after the sysfs scheduler attribute
812 * has been removed.
813 */
814 WARN_ON_ONCE(q->kobj.state_in_sysfs);
815
816 blk_exit_queue(q);
817
818 if (q->mq_ops)
819 blk_mq_free_queue(q);
820 percpu_ref_exit(&q->q_usage_counter);
821
822 spin_lock_irq(lock);
823 if (q->queue_lock != &q->__queue_lock)
824 q->queue_lock = &q->__queue_lock;
825 spin_unlock_irq(lock);
826
827 /* @q is and will stay empty, shutdown and put */
828 blk_put_queue(q);
829 }
830 EXPORT_SYMBOL(blk_cleanup_queue);
831
832 /* Allocate memory local to the request queue */
alloc_request_simple(gfp_t gfp_mask,void * data)833 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
834 {
835 struct request_queue *q = data;
836
837 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
838 }
839
free_request_simple(void * element,void * data)840 static void free_request_simple(void *element, void *data)
841 {
842 kmem_cache_free(request_cachep, element);
843 }
844
alloc_request_size(gfp_t gfp_mask,void * data)845 static void *alloc_request_size(gfp_t gfp_mask, void *data)
846 {
847 struct request_queue *q = data;
848 struct request *rq;
849
850 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
851 q->node);
852 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
853 kfree(rq);
854 rq = NULL;
855 }
856 return rq;
857 }
858
free_request_size(void * element,void * data)859 static void free_request_size(void *element, void *data)
860 {
861 struct request_queue *q = data;
862
863 if (q->exit_rq_fn)
864 q->exit_rq_fn(q, element);
865 kfree(element);
866 }
867
blk_init_rl(struct request_list * rl,struct request_queue * q,gfp_t gfp_mask)868 int blk_init_rl(struct request_list *rl, struct request_queue *q,
869 gfp_t gfp_mask)
870 {
871 if (unlikely(rl->rq_pool) || q->mq_ops)
872 return 0;
873
874 rl->q = q;
875 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
876 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
877 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
878 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
879
880 if (q->cmd_size) {
881 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
882 alloc_request_size, free_request_size,
883 q, gfp_mask, q->node);
884 } else {
885 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
886 alloc_request_simple, free_request_simple,
887 q, gfp_mask, q->node);
888 }
889 if (!rl->rq_pool)
890 return -ENOMEM;
891
892 if (rl != &q->root_rl)
893 WARN_ON_ONCE(!blk_get_queue(q));
894
895 return 0;
896 }
897
blk_exit_rl(struct request_queue * q,struct request_list * rl)898 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
899 {
900 if (rl->rq_pool) {
901 mempool_destroy(rl->rq_pool);
902 if (rl != &q->root_rl)
903 blk_put_queue(q);
904 }
905 }
906
blk_alloc_queue(gfp_t gfp_mask)907 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
908 {
909 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE, NULL);
910 }
911 EXPORT_SYMBOL(blk_alloc_queue);
912
913 /**
914 * blk_queue_enter() - try to increase q->q_usage_counter
915 * @q: request queue pointer
916 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
917 */
blk_queue_enter(struct request_queue * q,blk_mq_req_flags_t flags)918 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
919 {
920 const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
921
922 while (true) {
923 bool success = false;
924
925 rcu_read_lock();
926 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
927 /*
928 * The code that sets the PREEMPT_ONLY flag is
929 * responsible for ensuring that that flag is globally
930 * visible before the queue is unfrozen.
931 */
932 if (preempt || !blk_queue_preempt_only(q)) {
933 success = true;
934 } else {
935 percpu_ref_put(&q->q_usage_counter);
936 }
937 }
938 rcu_read_unlock();
939
940 if (success)
941 return 0;
942
943 if (flags & BLK_MQ_REQ_NOWAIT)
944 return -EBUSY;
945
946 /*
947 * read pair of barrier in blk_freeze_queue_start(),
948 * we need to order reading __PERCPU_REF_DEAD flag of
949 * .q_usage_counter and reading .mq_freeze_depth or
950 * queue dying flag, otherwise the following wait may
951 * never return if the two reads are reordered.
952 */
953 smp_rmb();
954
955 wait_event(q->mq_freeze_wq,
956 (atomic_read(&q->mq_freeze_depth) == 0 &&
957 (preempt || !blk_queue_preempt_only(q))) ||
958 blk_queue_dying(q));
959 if (blk_queue_dying(q))
960 return -ENODEV;
961 }
962 }
963
blk_queue_exit(struct request_queue * q)964 void blk_queue_exit(struct request_queue *q)
965 {
966 percpu_ref_put(&q->q_usage_counter);
967 }
968
blk_queue_usage_counter_release(struct percpu_ref * ref)969 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
970 {
971 struct request_queue *q =
972 container_of(ref, struct request_queue, q_usage_counter);
973
974 wake_up_all(&q->mq_freeze_wq);
975 }
976
blk_rq_timed_out_timer(struct timer_list * t)977 static void blk_rq_timed_out_timer(struct timer_list *t)
978 {
979 struct request_queue *q = from_timer(q, t, timeout);
980
981 kblockd_schedule_work(&q->timeout_work);
982 }
983
984 /**
985 * blk_alloc_queue_node - allocate a request queue
986 * @gfp_mask: memory allocation flags
987 * @node_id: NUMA node to allocate memory from
988 * @lock: For legacy queues, pointer to a spinlock that will be used to e.g.
989 * serialize calls to the legacy .request_fn() callback. Ignored for
990 * blk-mq request queues.
991 *
992 * Note: pass the queue lock as the third argument to this function instead of
993 * setting the queue lock pointer explicitly to avoid triggering a sporadic
994 * crash in the blkcg code. This function namely calls blkcg_init_queue() and
995 * the queue lock pointer must be set before blkcg_init_queue() is called.
996 */
blk_alloc_queue_node(gfp_t gfp_mask,int node_id,spinlock_t * lock)997 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id,
998 spinlock_t *lock)
999 {
1000 struct request_queue *q;
1001 int ret;
1002
1003 q = kmem_cache_alloc_node(blk_requestq_cachep,
1004 gfp_mask | __GFP_ZERO, node_id);
1005 if (!q)
1006 return NULL;
1007
1008 INIT_LIST_HEAD(&q->queue_head);
1009 q->last_merge = NULL;
1010 q->end_sector = 0;
1011 q->boundary_rq = NULL;
1012
1013 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
1014 if (q->id < 0)
1015 goto fail_q;
1016
1017 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
1018 if (ret)
1019 goto fail_id;
1020
1021 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
1022 if (!q->backing_dev_info)
1023 goto fail_split;
1024
1025 q->stats = blk_alloc_queue_stats();
1026 if (!q->stats)
1027 goto fail_stats;
1028
1029 q->backing_dev_info->ra_pages =
1030 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
1031 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
1032 q->backing_dev_info->name = "block";
1033 q->node = node_id;
1034
1035 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
1036 laptop_mode_timer_fn, 0);
1037 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
1038 INIT_WORK(&q->timeout_work, NULL);
1039 INIT_LIST_HEAD(&q->timeout_list);
1040 INIT_LIST_HEAD(&q->icq_list);
1041 #ifdef CONFIG_BLK_CGROUP
1042 INIT_LIST_HEAD(&q->blkg_list);
1043 #endif
1044 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
1045
1046 kobject_init(&q->kobj, &blk_queue_ktype);
1047
1048 #ifdef CONFIG_BLK_DEV_IO_TRACE
1049 mutex_init(&q->blk_trace_mutex);
1050 #endif
1051 mutex_init(&q->sysfs_lock);
1052 spin_lock_init(&q->__queue_lock);
1053
1054 if (!q->mq_ops)
1055 q->queue_lock = lock ? : &q->__queue_lock;
1056
1057 /*
1058 * A queue starts its life with bypass turned on to avoid
1059 * unnecessary bypass on/off overhead and nasty surprises during
1060 * init. The initial bypass will be finished when the queue is
1061 * registered by blk_register_queue().
1062 */
1063 q->bypass_depth = 1;
1064 queue_flag_set_unlocked(QUEUE_FLAG_BYPASS, q);
1065
1066 init_waitqueue_head(&q->mq_freeze_wq);
1067
1068 /*
1069 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1070 * See blk_register_queue() for details.
1071 */
1072 if (percpu_ref_init(&q->q_usage_counter,
1073 blk_queue_usage_counter_release,
1074 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1075 goto fail_bdi;
1076
1077 if (blkcg_init_queue(q))
1078 goto fail_ref;
1079
1080 return q;
1081
1082 fail_ref:
1083 percpu_ref_exit(&q->q_usage_counter);
1084 fail_bdi:
1085 blk_free_queue_stats(q->stats);
1086 fail_stats:
1087 bdi_put(q->backing_dev_info);
1088 fail_split:
1089 bioset_exit(&q->bio_split);
1090 fail_id:
1091 ida_simple_remove(&blk_queue_ida, q->id);
1092 fail_q:
1093 kmem_cache_free(blk_requestq_cachep, q);
1094 return NULL;
1095 }
1096 EXPORT_SYMBOL(blk_alloc_queue_node);
1097
1098 /**
1099 * blk_init_queue - prepare a request queue for use with a block device
1100 * @rfn: The function to be called to process requests that have been
1101 * placed on the queue.
1102 * @lock: Request queue spin lock
1103 *
1104 * Description:
1105 * If a block device wishes to use the standard request handling procedures,
1106 * which sorts requests and coalesces adjacent requests, then it must
1107 * call blk_init_queue(). The function @rfn will be called when there
1108 * are requests on the queue that need to be processed. If the device
1109 * supports plugging, then @rfn may not be called immediately when requests
1110 * are available on the queue, but may be called at some time later instead.
1111 * Plugged queues are generally unplugged when a buffer belonging to one
1112 * of the requests on the queue is needed, or due to memory pressure.
1113 *
1114 * @rfn is not required, or even expected, to remove all requests off the
1115 * queue, but only as many as it can handle at a time. If it does leave
1116 * requests on the queue, it is responsible for arranging that the requests
1117 * get dealt with eventually.
1118 *
1119 * The queue spin lock must be held while manipulating the requests on the
1120 * request queue; this lock will be taken also from interrupt context, so irq
1121 * disabling is needed for it.
1122 *
1123 * Function returns a pointer to the initialized request queue, or %NULL if
1124 * it didn't succeed.
1125 *
1126 * Note:
1127 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1128 * when the block device is deactivated (such as at module unload).
1129 **/
1130
blk_init_queue(request_fn_proc * rfn,spinlock_t * lock)1131 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1132 {
1133 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1134 }
1135 EXPORT_SYMBOL(blk_init_queue);
1136
1137 struct request_queue *
blk_init_queue_node(request_fn_proc * rfn,spinlock_t * lock,int node_id)1138 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1139 {
1140 struct request_queue *q;
1141
1142 q = blk_alloc_queue_node(GFP_KERNEL, node_id, lock);
1143 if (!q)
1144 return NULL;
1145
1146 q->request_fn = rfn;
1147 if (blk_init_allocated_queue(q) < 0) {
1148 blk_cleanup_queue(q);
1149 return NULL;
1150 }
1151
1152 return q;
1153 }
1154 EXPORT_SYMBOL(blk_init_queue_node);
1155
1156 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
1157
1158
blk_init_allocated_queue(struct request_queue * q)1159 int blk_init_allocated_queue(struct request_queue *q)
1160 {
1161 WARN_ON_ONCE(q->mq_ops);
1162
1163 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
1164 if (!q->fq)
1165 return -ENOMEM;
1166
1167 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1168 goto out_free_flush_queue;
1169
1170 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1171 goto out_exit_flush_rq;
1172
1173 INIT_WORK(&q->timeout_work, blk_timeout_work);
1174 q->queue_flags |= QUEUE_FLAG_DEFAULT;
1175
1176 /*
1177 * This also sets hw/phys segments, boundary and size
1178 */
1179 blk_queue_make_request(q, blk_queue_bio);
1180
1181 q->sg_reserved_size = INT_MAX;
1182
1183 if (elevator_init(q))
1184 goto out_exit_flush_rq;
1185 return 0;
1186
1187 out_exit_flush_rq:
1188 if (q->exit_rq_fn)
1189 q->exit_rq_fn(q, q->fq->flush_rq);
1190 out_free_flush_queue:
1191 blk_free_flush_queue(q->fq);
1192 q->fq = NULL;
1193 return -ENOMEM;
1194 }
1195 EXPORT_SYMBOL(blk_init_allocated_queue);
1196
blk_get_queue(struct request_queue * q)1197 bool blk_get_queue(struct request_queue *q)
1198 {
1199 if (likely(!blk_queue_dying(q))) {
1200 __blk_get_queue(q);
1201 return true;
1202 }
1203
1204 return false;
1205 }
1206 EXPORT_SYMBOL(blk_get_queue);
1207
blk_free_request(struct request_list * rl,struct request * rq)1208 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1209 {
1210 if (rq->rq_flags & RQF_ELVPRIV) {
1211 elv_put_request(rl->q, rq);
1212 if (rq->elv.icq)
1213 put_io_context(rq->elv.icq->ioc);
1214 }
1215
1216 mempool_free(rq, rl->rq_pool);
1217 }
1218
1219 /*
1220 * ioc_batching returns true if the ioc is a valid batching request and
1221 * should be given priority access to a request.
1222 */
ioc_batching(struct request_queue * q,struct io_context * ioc)1223 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1224 {
1225 if (!ioc)
1226 return 0;
1227
1228 /*
1229 * Make sure the process is able to allocate at least 1 request
1230 * even if the batch times out, otherwise we could theoretically
1231 * lose wakeups.
1232 */
1233 return ioc->nr_batch_requests == q->nr_batching ||
1234 (ioc->nr_batch_requests > 0
1235 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1236 }
1237
1238 /*
1239 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1240 * will cause the process to be a "batcher" on all queues in the system. This
1241 * is the behaviour we want though - once it gets a wakeup it should be given
1242 * a nice run.
1243 */
ioc_set_batching(struct request_queue * q,struct io_context * ioc)1244 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1245 {
1246 if (!ioc || ioc_batching(q, ioc))
1247 return;
1248
1249 ioc->nr_batch_requests = q->nr_batching;
1250 ioc->last_waited = jiffies;
1251 }
1252
__freed_request(struct request_list * rl,int sync)1253 static void __freed_request(struct request_list *rl, int sync)
1254 {
1255 struct request_queue *q = rl->q;
1256
1257 if (rl->count[sync] < queue_congestion_off_threshold(q))
1258 blk_clear_congested(rl, sync);
1259
1260 if (rl->count[sync] + 1 <= q->nr_requests) {
1261 if (waitqueue_active(&rl->wait[sync]))
1262 wake_up(&rl->wait[sync]);
1263
1264 blk_clear_rl_full(rl, sync);
1265 }
1266 }
1267
1268 /*
1269 * A request has just been released. Account for it, update the full and
1270 * congestion status, wake up any waiters. Called under q->queue_lock.
1271 */
freed_request(struct request_list * rl,bool sync,req_flags_t rq_flags)1272 static void freed_request(struct request_list *rl, bool sync,
1273 req_flags_t rq_flags)
1274 {
1275 struct request_queue *q = rl->q;
1276
1277 q->nr_rqs[sync]--;
1278 rl->count[sync]--;
1279 if (rq_flags & RQF_ELVPRIV)
1280 q->nr_rqs_elvpriv--;
1281
1282 __freed_request(rl, sync);
1283
1284 if (unlikely(rl->starved[sync ^ 1]))
1285 __freed_request(rl, sync ^ 1);
1286 }
1287
blk_update_nr_requests(struct request_queue * q,unsigned int nr)1288 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1289 {
1290 struct request_list *rl;
1291 int on_thresh, off_thresh;
1292
1293 WARN_ON_ONCE(q->mq_ops);
1294
1295 spin_lock_irq(q->queue_lock);
1296 q->nr_requests = nr;
1297 blk_queue_congestion_threshold(q);
1298 on_thresh = queue_congestion_on_threshold(q);
1299 off_thresh = queue_congestion_off_threshold(q);
1300
1301 blk_queue_for_each_rl(rl, q) {
1302 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1303 blk_set_congested(rl, BLK_RW_SYNC);
1304 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1305 blk_clear_congested(rl, BLK_RW_SYNC);
1306
1307 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1308 blk_set_congested(rl, BLK_RW_ASYNC);
1309 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1310 blk_clear_congested(rl, BLK_RW_ASYNC);
1311
1312 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1313 blk_set_rl_full(rl, BLK_RW_SYNC);
1314 } else {
1315 blk_clear_rl_full(rl, BLK_RW_SYNC);
1316 wake_up(&rl->wait[BLK_RW_SYNC]);
1317 }
1318
1319 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1320 blk_set_rl_full(rl, BLK_RW_ASYNC);
1321 } else {
1322 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1323 wake_up(&rl->wait[BLK_RW_ASYNC]);
1324 }
1325 }
1326
1327 spin_unlock_irq(q->queue_lock);
1328 return 0;
1329 }
1330
1331 /**
1332 * __get_request - get a free request
1333 * @rl: request list to allocate from
1334 * @op: operation and flags
1335 * @bio: bio to allocate request for (can be %NULL)
1336 * @flags: BLQ_MQ_REQ_* flags
1337 * @gfp_mask: allocator flags
1338 *
1339 * Get a free request from @q. This function may fail under memory
1340 * pressure or if @q is dead.
1341 *
1342 * Must be called with @q->queue_lock held and,
1343 * Returns ERR_PTR on failure, with @q->queue_lock held.
1344 * Returns request pointer on success, with @q->queue_lock *not held*.
1345 */
__get_request(struct request_list * rl,unsigned int op,struct bio * bio,blk_mq_req_flags_t flags,gfp_t gfp_mask)1346 static struct request *__get_request(struct request_list *rl, unsigned int op,
1347 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp_mask)
1348 {
1349 struct request_queue *q = rl->q;
1350 struct request *rq;
1351 struct elevator_type *et = q->elevator->type;
1352 struct io_context *ioc = rq_ioc(bio);
1353 struct io_cq *icq = NULL;
1354 const bool is_sync = op_is_sync(op);
1355 int may_queue;
1356 req_flags_t rq_flags = RQF_ALLOCED;
1357
1358 lockdep_assert_held(q->queue_lock);
1359
1360 if (unlikely(blk_queue_dying(q)))
1361 return ERR_PTR(-ENODEV);
1362
1363 may_queue = elv_may_queue(q, op);
1364 if (may_queue == ELV_MQUEUE_NO)
1365 goto rq_starved;
1366
1367 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1368 if (rl->count[is_sync]+1 >= q->nr_requests) {
1369 /*
1370 * The queue will fill after this allocation, so set
1371 * it as full, and mark this process as "batching".
1372 * This process will be allowed to complete a batch of
1373 * requests, others will be blocked.
1374 */
1375 if (!blk_rl_full(rl, is_sync)) {
1376 ioc_set_batching(q, ioc);
1377 blk_set_rl_full(rl, is_sync);
1378 } else {
1379 if (may_queue != ELV_MQUEUE_MUST
1380 && !ioc_batching(q, ioc)) {
1381 /*
1382 * The queue is full and the allocating
1383 * process is not a "batcher", and not
1384 * exempted by the IO scheduler
1385 */
1386 return ERR_PTR(-ENOMEM);
1387 }
1388 }
1389 }
1390 blk_set_congested(rl, is_sync);
1391 }
1392
1393 /*
1394 * Only allow batching queuers to allocate up to 50% over the defined
1395 * limit of requests, otherwise we could have thousands of requests
1396 * allocated with any setting of ->nr_requests
1397 */
1398 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1399 return ERR_PTR(-ENOMEM);
1400
1401 q->nr_rqs[is_sync]++;
1402 rl->count[is_sync]++;
1403 rl->starved[is_sync] = 0;
1404
1405 /*
1406 * Decide whether the new request will be managed by elevator. If
1407 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1408 * prevent the current elevator from being destroyed until the new
1409 * request is freed. This guarantees icq's won't be destroyed and
1410 * makes creating new ones safe.
1411 *
1412 * Flush requests do not use the elevator so skip initialization.
1413 * This allows a request to share the flush and elevator data.
1414 *
1415 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1416 * it will be created after releasing queue_lock.
1417 */
1418 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1419 rq_flags |= RQF_ELVPRIV;
1420 q->nr_rqs_elvpriv++;
1421 if (et->icq_cache && ioc)
1422 icq = ioc_lookup_icq(ioc, q);
1423 }
1424
1425 if (blk_queue_io_stat(q))
1426 rq_flags |= RQF_IO_STAT;
1427 spin_unlock_irq(q->queue_lock);
1428
1429 /* allocate and init request */
1430 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1431 if (!rq)
1432 goto fail_alloc;
1433
1434 blk_rq_init(q, rq);
1435 blk_rq_set_rl(rq, rl);
1436 rq->cmd_flags = op;
1437 rq->rq_flags = rq_flags;
1438 if (flags & BLK_MQ_REQ_PREEMPT)
1439 rq->rq_flags |= RQF_PREEMPT;
1440
1441 /* init elvpriv */
1442 if (rq_flags & RQF_ELVPRIV) {
1443 if (unlikely(et->icq_cache && !icq)) {
1444 if (ioc)
1445 icq = ioc_create_icq(ioc, q, gfp_mask);
1446 if (!icq)
1447 goto fail_elvpriv;
1448 }
1449
1450 rq->elv.icq = icq;
1451 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1452 goto fail_elvpriv;
1453
1454 /* @rq->elv.icq holds io_context until @rq is freed */
1455 if (icq)
1456 get_io_context(icq->ioc);
1457 }
1458 out:
1459 /*
1460 * ioc may be NULL here, and ioc_batching will be false. That's
1461 * OK, if the queue is under the request limit then requests need
1462 * not count toward the nr_batch_requests limit. There will always
1463 * be some limit enforced by BLK_BATCH_TIME.
1464 */
1465 if (ioc_batching(q, ioc))
1466 ioc->nr_batch_requests--;
1467
1468 trace_block_getrq(q, bio, op);
1469 return rq;
1470
1471 fail_elvpriv:
1472 /*
1473 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1474 * and may fail indefinitely under memory pressure and thus
1475 * shouldn't stall IO. Treat this request as !elvpriv. This will
1476 * disturb iosched and blkcg but weird is bettern than dead.
1477 */
1478 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1479 __func__, dev_name(q->backing_dev_info->dev));
1480
1481 rq->rq_flags &= ~RQF_ELVPRIV;
1482 rq->elv.icq = NULL;
1483
1484 spin_lock_irq(q->queue_lock);
1485 q->nr_rqs_elvpriv--;
1486 spin_unlock_irq(q->queue_lock);
1487 goto out;
1488
1489 fail_alloc:
1490 /*
1491 * Allocation failed presumably due to memory. Undo anything we
1492 * might have messed up.
1493 *
1494 * Allocating task should really be put onto the front of the wait
1495 * queue, but this is pretty rare.
1496 */
1497 spin_lock_irq(q->queue_lock);
1498 freed_request(rl, is_sync, rq_flags);
1499
1500 /*
1501 * in the very unlikely event that allocation failed and no
1502 * requests for this direction was pending, mark us starved so that
1503 * freeing of a request in the other direction will notice
1504 * us. another possible fix would be to split the rq mempool into
1505 * READ and WRITE
1506 */
1507 rq_starved:
1508 if (unlikely(rl->count[is_sync] == 0))
1509 rl->starved[is_sync] = 1;
1510 return ERR_PTR(-ENOMEM);
1511 }
1512
1513 /**
1514 * get_request - get a free request
1515 * @q: request_queue to allocate request from
1516 * @op: operation and flags
1517 * @bio: bio to allocate request for (can be %NULL)
1518 * @flags: BLK_MQ_REQ_* flags.
1519 * @gfp: allocator flags
1520 *
1521 * Get a free request from @q. If %BLK_MQ_REQ_NOWAIT is set in @flags,
1522 * this function keeps retrying under memory pressure and fails iff @q is dead.
1523 *
1524 * Must be called with @q->queue_lock held and,
1525 * Returns ERR_PTR on failure, with @q->queue_lock held.
1526 * Returns request pointer on success, with @q->queue_lock *not held*.
1527 */
get_request(struct request_queue * q,unsigned int op,struct bio * bio,blk_mq_req_flags_t flags,gfp_t gfp)1528 static struct request *get_request(struct request_queue *q, unsigned int op,
1529 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp)
1530 {
1531 const bool is_sync = op_is_sync(op);
1532 DEFINE_WAIT(wait);
1533 struct request_list *rl;
1534 struct request *rq;
1535
1536 lockdep_assert_held(q->queue_lock);
1537 WARN_ON_ONCE(q->mq_ops);
1538
1539 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1540 retry:
1541 rq = __get_request(rl, op, bio, flags, gfp);
1542 if (!IS_ERR(rq))
1543 return rq;
1544
1545 if (op & REQ_NOWAIT) {
1546 blk_put_rl(rl);
1547 return ERR_PTR(-EAGAIN);
1548 }
1549
1550 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1551 blk_put_rl(rl);
1552 return rq;
1553 }
1554
1555 /* wait on @rl and retry */
1556 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1557 TASK_UNINTERRUPTIBLE);
1558
1559 trace_block_sleeprq(q, bio, op);
1560
1561 spin_unlock_irq(q->queue_lock);
1562 io_schedule();
1563
1564 /*
1565 * After sleeping, we become a "batching" process and will be able
1566 * to allocate at least one request, and up to a big batch of them
1567 * for a small period time. See ioc_batching, ioc_set_batching
1568 */
1569 ioc_set_batching(q, current->io_context);
1570
1571 spin_lock_irq(q->queue_lock);
1572 finish_wait(&rl->wait[is_sync], &wait);
1573
1574 goto retry;
1575 }
1576
1577 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
blk_old_get_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)1578 static struct request *blk_old_get_request(struct request_queue *q,
1579 unsigned int op, blk_mq_req_flags_t flags)
1580 {
1581 struct request *rq;
1582 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC : GFP_NOIO;
1583 int ret = 0;
1584
1585 WARN_ON_ONCE(q->mq_ops);
1586
1587 /* create ioc upfront */
1588 create_io_context(gfp_mask, q->node);
1589
1590 ret = blk_queue_enter(q, flags);
1591 if (ret)
1592 return ERR_PTR(ret);
1593 spin_lock_irq(q->queue_lock);
1594 rq = get_request(q, op, NULL, flags, gfp_mask);
1595 if (IS_ERR(rq)) {
1596 spin_unlock_irq(q->queue_lock);
1597 blk_queue_exit(q);
1598 return rq;
1599 }
1600
1601 /* q->queue_lock is unlocked at this point */
1602 rq->__data_len = 0;
1603 rq->__sector = (sector_t) -1;
1604 rq->bio = rq->biotail = NULL;
1605 return rq;
1606 }
1607
1608 /**
1609 * blk_get_request - allocate a request
1610 * @q: request queue to allocate a request for
1611 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1612 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1613 */
blk_get_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)1614 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1615 blk_mq_req_flags_t flags)
1616 {
1617 struct request *req;
1618
1619 WARN_ON_ONCE(op & REQ_NOWAIT);
1620 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1621
1622 if (q->mq_ops) {
1623 req = blk_mq_alloc_request(q, op, flags);
1624 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1625 q->mq_ops->initialize_rq_fn(req);
1626 } else {
1627 req = blk_old_get_request(q, op, flags);
1628 if (!IS_ERR(req) && q->initialize_rq_fn)
1629 q->initialize_rq_fn(req);
1630 }
1631
1632 return req;
1633 }
1634 EXPORT_SYMBOL(blk_get_request);
1635
1636 /**
1637 * blk_requeue_request - put a request back on queue
1638 * @q: request queue where request should be inserted
1639 * @rq: request to be inserted
1640 *
1641 * Description:
1642 * Drivers often keep queueing requests until the hardware cannot accept
1643 * more, when that condition happens we need to put the request back
1644 * on the queue. Must be called with queue lock held.
1645 */
blk_requeue_request(struct request_queue * q,struct request * rq)1646 void blk_requeue_request(struct request_queue *q, struct request *rq)
1647 {
1648 lockdep_assert_held(q->queue_lock);
1649 WARN_ON_ONCE(q->mq_ops);
1650
1651 blk_delete_timer(rq);
1652 blk_clear_rq_complete(rq);
1653 trace_block_rq_requeue(q, rq);
1654 rq_qos_requeue(q, rq);
1655
1656 if (rq->rq_flags & RQF_QUEUED)
1657 blk_queue_end_tag(q, rq);
1658
1659 BUG_ON(blk_queued_rq(rq));
1660
1661 elv_requeue_request(q, rq);
1662 }
1663 EXPORT_SYMBOL(blk_requeue_request);
1664
add_acct_request(struct request_queue * q,struct request * rq,int where)1665 static void add_acct_request(struct request_queue *q, struct request *rq,
1666 int where)
1667 {
1668 blk_account_io_start(rq, true);
1669 __elv_add_request(q, rq, where);
1670 }
1671
part_round_stats_single(struct request_queue * q,int cpu,struct hd_struct * part,unsigned long now,unsigned int inflight)1672 static void part_round_stats_single(struct request_queue *q, int cpu,
1673 struct hd_struct *part, unsigned long now,
1674 unsigned int inflight)
1675 {
1676 if (inflight) {
1677 __part_stat_add(cpu, part, time_in_queue,
1678 inflight * (now - part->stamp));
1679 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1680 }
1681 part->stamp = now;
1682 }
1683
1684 /**
1685 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1686 * @q: target block queue
1687 * @cpu: cpu number for stats access
1688 * @part: target partition
1689 *
1690 * The average IO queue length and utilisation statistics are maintained
1691 * by observing the current state of the queue length and the amount of
1692 * time it has been in this state for.
1693 *
1694 * Normally, that accounting is done on IO completion, but that can result
1695 * in more than a second's worth of IO being accounted for within any one
1696 * second, leading to >100% utilisation. To deal with that, we call this
1697 * function to do a round-off before returning the results when reading
1698 * /proc/diskstats. This accounts immediately for all queue usage up to
1699 * the current jiffies and restarts the counters again.
1700 */
part_round_stats(struct request_queue * q,int cpu,struct hd_struct * part)1701 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1702 {
1703 struct hd_struct *part2 = NULL;
1704 unsigned long now = jiffies;
1705 unsigned int inflight[2];
1706 int stats = 0;
1707
1708 if (part->stamp != now)
1709 stats |= 1;
1710
1711 if (part->partno) {
1712 part2 = &part_to_disk(part)->part0;
1713 if (part2->stamp != now)
1714 stats |= 2;
1715 }
1716
1717 if (!stats)
1718 return;
1719
1720 part_in_flight(q, part, inflight);
1721
1722 if (stats & 2)
1723 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1724 if (stats & 1)
1725 part_round_stats_single(q, cpu, part, now, inflight[0]);
1726 }
1727 EXPORT_SYMBOL_GPL(part_round_stats);
1728
1729 #ifdef CONFIG_PM
blk_pm_put_request(struct request * rq)1730 static void blk_pm_put_request(struct request *rq)
1731 {
1732 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1733 pm_runtime_mark_last_busy(rq->q->dev);
1734 }
1735 #else
blk_pm_put_request(struct request * rq)1736 static inline void blk_pm_put_request(struct request *rq) {}
1737 #endif
1738
__blk_put_request(struct request_queue * q,struct request * req)1739 void __blk_put_request(struct request_queue *q, struct request *req)
1740 {
1741 req_flags_t rq_flags = req->rq_flags;
1742
1743 if (unlikely(!q))
1744 return;
1745
1746 if (q->mq_ops) {
1747 blk_mq_free_request(req);
1748 return;
1749 }
1750
1751 lockdep_assert_held(q->queue_lock);
1752
1753 blk_req_zone_write_unlock(req);
1754 blk_pm_put_request(req);
1755
1756 elv_completed_request(q, req);
1757
1758 /* this is a bio leak */
1759 WARN_ON(req->bio != NULL);
1760
1761 rq_qos_done(q, req);
1762
1763 /*
1764 * Request may not have originated from ll_rw_blk. if not,
1765 * it didn't come out of our reserved rq pools
1766 */
1767 if (rq_flags & RQF_ALLOCED) {
1768 struct request_list *rl = blk_rq_rl(req);
1769 bool sync = op_is_sync(req->cmd_flags);
1770
1771 BUG_ON(!list_empty(&req->queuelist));
1772 BUG_ON(ELV_ON_HASH(req));
1773
1774 blk_free_request(rl, req);
1775 freed_request(rl, sync, rq_flags);
1776 blk_put_rl(rl);
1777 blk_queue_exit(q);
1778 }
1779 }
1780 EXPORT_SYMBOL_GPL(__blk_put_request);
1781
blk_put_request(struct request * req)1782 void blk_put_request(struct request *req)
1783 {
1784 struct request_queue *q = req->q;
1785
1786 if (q->mq_ops)
1787 blk_mq_free_request(req);
1788 else {
1789 unsigned long flags;
1790
1791 spin_lock_irqsave(q->queue_lock, flags);
1792 __blk_put_request(q, req);
1793 spin_unlock_irqrestore(q->queue_lock, flags);
1794 }
1795 }
1796 EXPORT_SYMBOL(blk_put_request);
1797
bio_attempt_back_merge(struct request_queue * q,struct request * req,struct bio * bio)1798 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1799 struct bio *bio)
1800 {
1801 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1802
1803 if (!ll_back_merge_fn(q, req, bio))
1804 return false;
1805
1806 trace_block_bio_backmerge(q, req, bio);
1807
1808 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1809 blk_rq_set_mixed_merge(req);
1810
1811 req->biotail->bi_next = bio;
1812 req->biotail = bio;
1813 req->__data_len += bio->bi_iter.bi_size;
1814 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1815
1816 blk_account_io_start(req, false);
1817 return true;
1818 }
1819
bio_attempt_front_merge(struct request_queue * q,struct request * req,struct bio * bio)1820 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1821 struct bio *bio)
1822 {
1823 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1824
1825 if (!ll_front_merge_fn(q, req, bio))
1826 return false;
1827
1828 trace_block_bio_frontmerge(q, req, bio);
1829
1830 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1831 blk_rq_set_mixed_merge(req);
1832
1833 bio->bi_next = req->bio;
1834 req->bio = bio;
1835
1836 req->__sector = bio->bi_iter.bi_sector;
1837 req->__data_len += bio->bi_iter.bi_size;
1838 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1839
1840 blk_account_io_start(req, false);
1841 return true;
1842 }
1843
bio_attempt_discard_merge(struct request_queue * q,struct request * req,struct bio * bio)1844 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1845 struct bio *bio)
1846 {
1847 unsigned short segments = blk_rq_nr_discard_segments(req);
1848
1849 if (segments >= queue_max_discard_segments(q))
1850 goto no_merge;
1851 if (blk_rq_sectors(req) + bio_sectors(bio) >
1852 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1853 goto no_merge;
1854
1855 req->biotail->bi_next = bio;
1856 req->biotail = bio;
1857 req->__data_len += bio->bi_iter.bi_size;
1858 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1859 req->nr_phys_segments = segments + 1;
1860
1861 blk_account_io_start(req, false);
1862 return true;
1863 no_merge:
1864 req_set_nomerge(q, req);
1865 return false;
1866 }
1867
1868 /**
1869 * blk_attempt_plug_merge - try to merge with %current's plugged list
1870 * @q: request_queue new bio is being queued at
1871 * @bio: new bio being queued
1872 * @request_count: out parameter for number of traversed plugged requests
1873 * @same_queue_rq: pointer to &struct request that gets filled in when
1874 * another request associated with @q is found on the plug list
1875 * (optional, may be %NULL)
1876 *
1877 * Determine whether @bio being queued on @q can be merged with a request
1878 * on %current's plugged list. Returns %true if merge was successful,
1879 * otherwise %false.
1880 *
1881 * Plugging coalesces IOs from the same issuer for the same purpose without
1882 * going through @q->queue_lock. As such it's more of an issuing mechanism
1883 * than scheduling, and the request, while may have elvpriv data, is not
1884 * added on the elevator at this point. In addition, we don't have
1885 * reliable access to the elevator outside queue lock. Only check basic
1886 * merging parameters without querying the elevator.
1887 *
1888 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1889 */
blk_attempt_plug_merge(struct request_queue * q,struct bio * bio,unsigned int * request_count,struct request ** same_queue_rq)1890 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1891 unsigned int *request_count,
1892 struct request **same_queue_rq)
1893 {
1894 struct blk_plug *plug;
1895 struct request *rq;
1896 struct list_head *plug_list;
1897
1898 plug = current->plug;
1899 if (!plug)
1900 return false;
1901 *request_count = 0;
1902
1903 if (q->mq_ops)
1904 plug_list = &plug->mq_list;
1905 else
1906 plug_list = &plug->list;
1907
1908 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1909 bool merged = false;
1910
1911 if (rq->q == q) {
1912 (*request_count)++;
1913 /*
1914 * Only blk-mq multiple hardware queues case checks the
1915 * rq in the same queue, there should be only one such
1916 * rq in a queue
1917 **/
1918 if (same_queue_rq)
1919 *same_queue_rq = rq;
1920 }
1921
1922 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1923 continue;
1924
1925 switch (blk_try_merge(rq, bio)) {
1926 case ELEVATOR_BACK_MERGE:
1927 merged = bio_attempt_back_merge(q, rq, bio);
1928 break;
1929 case ELEVATOR_FRONT_MERGE:
1930 merged = bio_attempt_front_merge(q, rq, bio);
1931 break;
1932 case ELEVATOR_DISCARD_MERGE:
1933 merged = bio_attempt_discard_merge(q, rq, bio);
1934 break;
1935 default:
1936 break;
1937 }
1938
1939 if (merged)
1940 return true;
1941 }
1942
1943 return false;
1944 }
1945
blk_plug_queued_count(struct request_queue * q)1946 unsigned int blk_plug_queued_count(struct request_queue *q)
1947 {
1948 struct blk_plug *plug;
1949 struct request *rq;
1950 struct list_head *plug_list;
1951 unsigned int ret = 0;
1952
1953 plug = current->plug;
1954 if (!plug)
1955 goto out;
1956
1957 if (q->mq_ops)
1958 plug_list = &plug->mq_list;
1959 else
1960 plug_list = &plug->list;
1961
1962 list_for_each_entry(rq, plug_list, queuelist) {
1963 if (rq->q == q)
1964 ret++;
1965 }
1966 out:
1967 return ret;
1968 }
1969
blk_init_request_from_bio(struct request * req,struct bio * bio)1970 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1971 {
1972 struct io_context *ioc = rq_ioc(bio);
1973
1974 if (bio->bi_opf & REQ_RAHEAD)
1975 req->cmd_flags |= REQ_FAILFAST_MASK;
1976
1977 req->__sector = bio->bi_iter.bi_sector;
1978 if (ioprio_valid(bio_prio(bio)))
1979 req->ioprio = bio_prio(bio);
1980 else if (ioc)
1981 req->ioprio = ioc->ioprio;
1982 else
1983 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1984 req->write_hint = bio->bi_write_hint;
1985 blk_rq_bio_prep(req->q, req, bio);
1986 }
1987 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1988
blk_queue_bio(struct request_queue * q,struct bio * bio)1989 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1990 {
1991 struct blk_plug *plug;
1992 int where = ELEVATOR_INSERT_SORT;
1993 struct request *req, *free;
1994 unsigned int request_count = 0;
1995
1996 /*
1997 * low level driver can indicate that it wants pages above a
1998 * certain limit bounced to low memory (ie for highmem, or even
1999 * ISA dma in theory)
2000 */
2001 blk_queue_bounce(q, &bio);
2002
2003 blk_queue_split(q, &bio);
2004
2005 if (!bio_integrity_prep(bio))
2006 return BLK_QC_T_NONE;
2007
2008 if (op_is_flush(bio->bi_opf)) {
2009 spin_lock_irq(q->queue_lock);
2010 where = ELEVATOR_INSERT_FLUSH;
2011 goto get_rq;
2012 }
2013
2014 /*
2015 * Check if we can merge with the plugged list before grabbing
2016 * any locks.
2017 */
2018 if (!blk_queue_nomerges(q)) {
2019 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
2020 return BLK_QC_T_NONE;
2021 } else
2022 request_count = blk_plug_queued_count(q);
2023
2024 spin_lock_irq(q->queue_lock);
2025
2026 switch (elv_merge(q, &req, bio)) {
2027 case ELEVATOR_BACK_MERGE:
2028 if (!bio_attempt_back_merge(q, req, bio))
2029 break;
2030 elv_bio_merged(q, req, bio);
2031 free = attempt_back_merge(q, req);
2032 if (free)
2033 __blk_put_request(q, free);
2034 else
2035 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
2036 goto out_unlock;
2037 case ELEVATOR_FRONT_MERGE:
2038 if (!bio_attempt_front_merge(q, req, bio))
2039 break;
2040 elv_bio_merged(q, req, bio);
2041 free = attempt_front_merge(q, req);
2042 if (free)
2043 __blk_put_request(q, free);
2044 else
2045 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
2046 goto out_unlock;
2047 default:
2048 break;
2049 }
2050
2051 get_rq:
2052 rq_qos_throttle(q, bio, q->queue_lock);
2053
2054 /*
2055 * Grab a free request. This is might sleep but can not fail.
2056 * Returns with the queue unlocked.
2057 */
2058 blk_queue_enter_live(q);
2059 req = get_request(q, bio->bi_opf, bio, 0, GFP_NOIO);
2060 if (IS_ERR(req)) {
2061 blk_queue_exit(q);
2062 rq_qos_cleanup(q, bio);
2063 if (PTR_ERR(req) == -ENOMEM)
2064 bio->bi_status = BLK_STS_RESOURCE;
2065 else
2066 bio->bi_status = BLK_STS_IOERR;
2067 bio_endio(bio);
2068 goto out_unlock;
2069 }
2070
2071 rq_qos_track(q, req, bio);
2072
2073 /*
2074 * After dropping the lock and possibly sleeping here, our request
2075 * may now be mergeable after it had proven unmergeable (above).
2076 * We don't worry about that case for efficiency. It won't happen
2077 * often, and the elevators are able to handle it.
2078 */
2079 blk_init_request_from_bio(req, bio);
2080
2081 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
2082 req->cpu = raw_smp_processor_id();
2083
2084 plug = current->plug;
2085 if (plug) {
2086 /*
2087 * If this is the first request added after a plug, fire
2088 * of a plug trace.
2089 *
2090 * @request_count may become stale because of schedule
2091 * out, so check plug list again.
2092 */
2093 if (!request_count || list_empty(&plug->list))
2094 trace_block_plug(q);
2095 else {
2096 struct request *last = list_entry_rq(plug->list.prev);
2097 if (request_count >= BLK_MAX_REQUEST_COUNT ||
2098 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
2099 blk_flush_plug_list(plug, false);
2100 trace_block_plug(q);
2101 }
2102 }
2103 list_add_tail(&req->queuelist, &plug->list);
2104 blk_account_io_start(req, true);
2105 } else {
2106 spin_lock_irq(q->queue_lock);
2107 add_acct_request(q, req, where);
2108 __blk_run_queue(q);
2109 out_unlock:
2110 spin_unlock_irq(q->queue_lock);
2111 }
2112
2113 return BLK_QC_T_NONE;
2114 }
2115
handle_bad_sector(struct bio * bio,sector_t maxsector)2116 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
2117 {
2118 char b[BDEVNAME_SIZE];
2119
2120 printk(KERN_INFO "attempt to access beyond end of device\n");
2121 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
2122 bio_devname(bio, b), bio->bi_opf,
2123 (unsigned long long)bio_end_sector(bio),
2124 (long long)maxsector);
2125 }
2126
2127 #ifdef CONFIG_FAIL_MAKE_REQUEST
2128
2129 static DECLARE_FAULT_ATTR(fail_make_request);
2130
setup_fail_make_request(char * str)2131 static int __init setup_fail_make_request(char *str)
2132 {
2133 return setup_fault_attr(&fail_make_request, str);
2134 }
2135 __setup("fail_make_request=", setup_fail_make_request);
2136
should_fail_request(struct hd_struct * part,unsigned int bytes)2137 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
2138 {
2139 return part->make_it_fail && should_fail(&fail_make_request, bytes);
2140 }
2141
fail_make_request_debugfs(void)2142 static int __init fail_make_request_debugfs(void)
2143 {
2144 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2145 NULL, &fail_make_request);
2146
2147 return PTR_ERR_OR_ZERO(dir);
2148 }
2149
2150 late_initcall(fail_make_request_debugfs);
2151
2152 #else /* CONFIG_FAIL_MAKE_REQUEST */
2153
should_fail_request(struct hd_struct * part,unsigned int bytes)2154 static inline bool should_fail_request(struct hd_struct *part,
2155 unsigned int bytes)
2156 {
2157 return false;
2158 }
2159
2160 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2161
bio_check_ro(struct bio * bio,struct hd_struct * part)2162 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
2163 {
2164 const int op = bio_op(bio);
2165
2166 if (part->policy && op_is_write(op)) {
2167 char b[BDEVNAME_SIZE];
2168
2169 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
2170 return false;
2171
2172 WARN_ONCE(1,
2173 "generic_make_request: Trying to write "
2174 "to read-only block-device %s (partno %d)\n",
2175 bio_devname(bio, b), part->partno);
2176 /* Older lvm-tools actually trigger this */
2177 return false;
2178 }
2179
2180 return false;
2181 }
2182
should_fail_bio(struct bio * bio)2183 static noinline int should_fail_bio(struct bio *bio)
2184 {
2185 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2186 return -EIO;
2187 return 0;
2188 }
2189 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
2190
2191 /*
2192 * Check whether this bio extends beyond the end of the device or partition.
2193 * This may well happen - the kernel calls bread() without checking the size of
2194 * the device, e.g., when mounting a file system.
2195 */
bio_check_eod(struct bio * bio,sector_t maxsector)2196 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
2197 {
2198 unsigned int nr_sectors = bio_sectors(bio);
2199
2200 if (nr_sectors && maxsector &&
2201 (nr_sectors > maxsector ||
2202 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
2203 handle_bad_sector(bio, maxsector);
2204 return -EIO;
2205 }
2206 return 0;
2207 }
2208
2209 /*
2210 * Remap block n of partition p to block n+start(p) of the disk.
2211 */
blk_partition_remap(struct bio * bio)2212 static inline int blk_partition_remap(struct bio *bio)
2213 {
2214 struct hd_struct *p;
2215 int ret = -EIO;
2216
2217 rcu_read_lock();
2218 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2219 if (unlikely(!p))
2220 goto out;
2221 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2222 goto out;
2223 if (unlikely(bio_check_ro(bio, p)))
2224 goto out;
2225
2226 /*
2227 * Zone reset does not include bi_size so bio_sectors() is always 0.
2228 * Include a test for the reset op code and perform the remap if needed.
2229 */
2230 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
2231 if (bio_check_eod(bio, part_nr_sects_read(p)))
2232 goto out;
2233 bio->bi_iter.bi_sector += p->start_sect;
2234 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2235 bio->bi_iter.bi_sector - p->start_sect);
2236 }
2237 bio->bi_partno = 0;
2238 ret = 0;
2239 out:
2240 rcu_read_unlock();
2241 return ret;
2242 }
2243
2244 static noinline_for_stack bool
generic_make_request_checks(struct bio * bio)2245 generic_make_request_checks(struct bio *bio)
2246 {
2247 struct request_queue *q;
2248 int nr_sectors = bio_sectors(bio);
2249 blk_status_t status = BLK_STS_IOERR;
2250 char b[BDEVNAME_SIZE];
2251
2252 might_sleep();
2253
2254 q = bio->bi_disk->queue;
2255 if (unlikely(!q)) {
2256 printk(KERN_ERR
2257 "generic_make_request: Trying to access "
2258 "nonexistent block-device %s (%Lu)\n",
2259 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2260 goto end_io;
2261 }
2262
2263 /*
2264 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2265 * if queue is not a request based queue.
2266 */
2267 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2268 goto not_supported;
2269
2270 if (should_fail_bio(bio))
2271 goto end_io;
2272
2273 if (bio->bi_partno) {
2274 if (unlikely(blk_partition_remap(bio)))
2275 goto end_io;
2276 } else {
2277 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
2278 goto end_io;
2279 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
2280 goto end_io;
2281 }
2282
2283 /*
2284 * Filter flush bio's early so that make_request based
2285 * drivers without flush support don't have to worry
2286 * about them.
2287 */
2288 if (op_is_flush(bio->bi_opf) &&
2289 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2290 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2291 if (!nr_sectors) {
2292 status = BLK_STS_OK;
2293 goto end_io;
2294 }
2295 }
2296
2297 switch (bio_op(bio)) {
2298 case REQ_OP_DISCARD:
2299 if (!blk_queue_discard(q))
2300 goto not_supported;
2301 break;
2302 case REQ_OP_SECURE_ERASE:
2303 if (!blk_queue_secure_erase(q))
2304 goto not_supported;
2305 break;
2306 case REQ_OP_WRITE_SAME:
2307 if (!q->limits.max_write_same_sectors)
2308 goto not_supported;
2309 break;
2310 case REQ_OP_ZONE_REPORT:
2311 case REQ_OP_ZONE_RESET:
2312 if (!blk_queue_is_zoned(q))
2313 goto not_supported;
2314 break;
2315 case REQ_OP_WRITE_ZEROES:
2316 if (!q->limits.max_write_zeroes_sectors)
2317 goto not_supported;
2318 break;
2319 default:
2320 break;
2321 }
2322
2323 /*
2324 * Various block parts want %current->io_context and lazy ioc
2325 * allocation ends up trading a lot of pain for a small amount of
2326 * memory. Just allocate it upfront. This may fail and block
2327 * layer knows how to live with it.
2328 */
2329 create_io_context(GFP_ATOMIC, q->node);
2330
2331 if (!blkcg_bio_issue_check(q, bio))
2332 return false;
2333
2334 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2335 trace_block_bio_queue(q, bio);
2336 /* Now that enqueuing has been traced, we need to trace
2337 * completion as well.
2338 */
2339 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2340 }
2341 return true;
2342
2343 not_supported:
2344 status = BLK_STS_NOTSUPP;
2345 end_io:
2346 bio->bi_status = status;
2347 bio_endio(bio);
2348 return false;
2349 }
2350
2351 /**
2352 * generic_make_request - hand a buffer to its device driver for I/O
2353 * @bio: The bio describing the location in memory and on the device.
2354 *
2355 * generic_make_request() is used to make I/O requests of block
2356 * devices. It is passed a &struct bio, which describes the I/O that needs
2357 * to be done.
2358 *
2359 * generic_make_request() does not return any status. The
2360 * success/failure status of the request, along with notification of
2361 * completion, is delivered asynchronously through the bio->bi_end_io
2362 * function described (one day) else where.
2363 *
2364 * The caller of generic_make_request must make sure that bi_io_vec
2365 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2366 * set to describe the device address, and the
2367 * bi_end_io and optionally bi_private are set to describe how
2368 * completion notification should be signaled.
2369 *
2370 * generic_make_request and the drivers it calls may use bi_next if this
2371 * bio happens to be merged with someone else, and may resubmit the bio to
2372 * a lower device by calling into generic_make_request recursively, which
2373 * means the bio should NOT be touched after the call to ->make_request_fn.
2374 */
generic_make_request(struct bio * bio)2375 blk_qc_t generic_make_request(struct bio *bio)
2376 {
2377 /*
2378 * bio_list_on_stack[0] contains bios submitted by the current
2379 * make_request_fn.
2380 * bio_list_on_stack[1] contains bios that were submitted before
2381 * the current make_request_fn, but that haven't been processed
2382 * yet.
2383 */
2384 struct bio_list bio_list_on_stack[2];
2385 blk_mq_req_flags_t flags = 0;
2386 struct request_queue *q = bio->bi_disk->queue;
2387 blk_qc_t ret = BLK_QC_T_NONE;
2388
2389 if (bio->bi_opf & REQ_NOWAIT)
2390 flags = BLK_MQ_REQ_NOWAIT;
2391 if (bio_flagged(bio, BIO_QUEUE_ENTERED))
2392 blk_queue_enter_live(q);
2393 else if (blk_queue_enter(q, flags) < 0) {
2394 if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
2395 bio_wouldblock_error(bio);
2396 else
2397 bio_io_error(bio);
2398 return ret;
2399 }
2400
2401 if (!generic_make_request_checks(bio))
2402 goto out;
2403
2404 /*
2405 * We only want one ->make_request_fn to be active at a time, else
2406 * stack usage with stacked devices could be a problem. So use
2407 * current->bio_list to keep a list of requests submited by a
2408 * make_request_fn function. current->bio_list is also used as a
2409 * flag to say if generic_make_request is currently active in this
2410 * task or not. If it is NULL, then no make_request is active. If
2411 * it is non-NULL, then a make_request is active, and new requests
2412 * should be added at the tail
2413 */
2414 if (current->bio_list) {
2415 bio_list_add(¤t->bio_list[0], bio);
2416 goto out;
2417 }
2418
2419 /* following loop may be a bit non-obvious, and so deserves some
2420 * explanation.
2421 * Before entering the loop, bio->bi_next is NULL (as all callers
2422 * ensure that) so we have a list with a single bio.
2423 * We pretend that we have just taken it off a longer list, so
2424 * we assign bio_list to a pointer to the bio_list_on_stack,
2425 * thus initialising the bio_list of new bios to be
2426 * added. ->make_request() may indeed add some more bios
2427 * through a recursive call to generic_make_request. If it
2428 * did, we find a non-NULL value in bio_list and re-enter the loop
2429 * from the top. In this case we really did just take the bio
2430 * of the top of the list (no pretending) and so remove it from
2431 * bio_list, and call into ->make_request() again.
2432 */
2433 BUG_ON(bio->bi_next);
2434 bio_list_init(&bio_list_on_stack[0]);
2435 current->bio_list = bio_list_on_stack;
2436 do {
2437 bool enter_succeeded = true;
2438
2439 if (unlikely(q != bio->bi_disk->queue)) {
2440 if (q)
2441 blk_queue_exit(q);
2442 q = bio->bi_disk->queue;
2443 flags = 0;
2444 if (bio->bi_opf & REQ_NOWAIT)
2445 flags = BLK_MQ_REQ_NOWAIT;
2446 if (blk_queue_enter(q, flags) < 0) {
2447 enter_succeeded = false;
2448 q = NULL;
2449 }
2450 }
2451
2452 if (enter_succeeded) {
2453 struct bio_list lower, same;
2454
2455 /* Create a fresh bio_list for all subordinate requests */
2456 bio_list_on_stack[1] = bio_list_on_stack[0];
2457 bio_list_init(&bio_list_on_stack[0]);
2458 ret = q->make_request_fn(q, bio);
2459
2460 /* sort new bios into those for a lower level
2461 * and those for the same level
2462 */
2463 bio_list_init(&lower);
2464 bio_list_init(&same);
2465 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2466 if (q == bio->bi_disk->queue)
2467 bio_list_add(&same, bio);
2468 else
2469 bio_list_add(&lower, bio);
2470 /* now assemble so we handle the lowest level first */
2471 bio_list_merge(&bio_list_on_stack[0], &lower);
2472 bio_list_merge(&bio_list_on_stack[0], &same);
2473 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2474 } else {
2475 if (unlikely(!blk_queue_dying(q) &&
2476 (bio->bi_opf & REQ_NOWAIT)))
2477 bio_wouldblock_error(bio);
2478 else
2479 bio_io_error(bio);
2480 }
2481 bio = bio_list_pop(&bio_list_on_stack[0]);
2482 } while (bio);
2483 current->bio_list = NULL; /* deactivate */
2484
2485 out:
2486 if (q)
2487 blk_queue_exit(q);
2488 return ret;
2489 }
2490 EXPORT_SYMBOL(generic_make_request);
2491
2492 /**
2493 * direct_make_request - hand a buffer directly to its device driver for I/O
2494 * @bio: The bio describing the location in memory and on the device.
2495 *
2496 * This function behaves like generic_make_request(), but does not protect
2497 * against recursion. Must only be used if the called driver is known
2498 * to not call generic_make_request (or direct_make_request) again from
2499 * its make_request function. (Calling direct_make_request again from
2500 * a workqueue is perfectly fine as that doesn't recurse).
2501 */
direct_make_request(struct bio * bio)2502 blk_qc_t direct_make_request(struct bio *bio)
2503 {
2504 struct request_queue *q = bio->bi_disk->queue;
2505 bool nowait = bio->bi_opf & REQ_NOWAIT;
2506 blk_qc_t ret;
2507
2508 if (!generic_make_request_checks(bio))
2509 return BLK_QC_T_NONE;
2510
2511 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
2512 if (nowait && !blk_queue_dying(q))
2513 bio->bi_status = BLK_STS_AGAIN;
2514 else
2515 bio->bi_status = BLK_STS_IOERR;
2516 bio_endio(bio);
2517 return BLK_QC_T_NONE;
2518 }
2519
2520 ret = q->make_request_fn(q, bio);
2521 blk_queue_exit(q);
2522 return ret;
2523 }
2524 EXPORT_SYMBOL_GPL(direct_make_request);
2525
2526 /**
2527 * submit_bio - submit a bio to the block device layer for I/O
2528 * @bio: The &struct bio which describes the I/O
2529 *
2530 * submit_bio() is very similar in purpose to generic_make_request(), and
2531 * uses that function to do most of the work. Both are fairly rough
2532 * interfaces; @bio must be presetup and ready for I/O.
2533 *
2534 */
submit_bio(struct bio * bio)2535 blk_qc_t submit_bio(struct bio *bio)
2536 {
2537 /*
2538 * If it's a regular read/write or a barrier with data attached,
2539 * go through the normal accounting stuff before submission.
2540 */
2541 if (bio_has_data(bio)) {
2542 unsigned int count;
2543
2544 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2545 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
2546 else
2547 count = bio_sectors(bio);
2548
2549 if (op_is_write(bio_op(bio))) {
2550 count_vm_events(PGPGOUT, count);
2551 } else {
2552 task_io_account_read(bio->bi_iter.bi_size);
2553 count_vm_events(PGPGIN, count);
2554 }
2555
2556 if (unlikely(block_dump)) {
2557 char b[BDEVNAME_SIZE];
2558 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2559 current->comm, task_pid_nr(current),
2560 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2561 (unsigned long long)bio->bi_iter.bi_sector,
2562 bio_devname(bio, b), count);
2563 }
2564 }
2565
2566 return generic_make_request(bio);
2567 }
2568 EXPORT_SYMBOL(submit_bio);
2569
blk_poll(struct request_queue * q,blk_qc_t cookie)2570 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2571 {
2572 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2573 return false;
2574
2575 if (current->plug)
2576 blk_flush_plug_list(current->plug, false);
2577 return q->poll_fn(q, cookie);
2578 }
2579 EXPORT_SYMBOL_GPL(blk_poll);
2580
2581 /**
2582 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2583 * for new the queue limits
2584 * @q: the queue
2585 * @rq: the request being checked
2586 *
2587 * Description:
2588 * @rq may have been made based on weaker limitations of upper-level queues
2589 * in request stacking drivers, and it may violate the limitation of @q.
2590 * Since the block layer and the underlying device driver trust @rq
2591 * after it is inserted to @q, it should be checked against @q before
2592 * the insertion using this generic function.
2593 *
2594 * Request stacking drivers like request-based dm may change the queue
2595 * limits when retrying requests on other queues. Those requests need
2596 * to be checked against the new queue limits again during dispatch.
2597 */
blk_cloned_rq_check_limits(struct request_queue * q,struct request * rq)2598 static int blk_cloned_rq_check_limits(struct request_queue *q,
2599 struct request *rq)
2600 {
2601 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2602 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2603 return -EIO;
2604 }
2605
2606 /*
2607 * queue's settings related to segment counting like q->bounce_pfn
2608 * may differ from that of other stacking queues.
2609 * Recalculate it to check the request correctly on this queue's
2610 * limitation.
2611 */
2612 blk_recalc_rq_segments(rq);
2613 if (rq->nr_phys_segments > queue_max_segments(q)) {
2614 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2615 return -EIO;
2616 }
2617
2618 return 0;
2619 }
2620
2621 /**
2622 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2623 * @q: the queue to submit the request
2624 * @rq: the request being queued
2625 */
blk_insert_cloned_request(struct request_queue * q,struct request * rq)2626 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2627 {
2628 unsigned long flags;
2629 int where = ELEVATOR_INSERT_BACK;
2630
2631 if (blk_cloned_rq_check_limits(q, rq))
2632 return BLK_STS_IOERR;
2633
2634 if (rq->rq_disk &&
2635 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2636 return BLK_STS_IOERR;
2637
2638 if (q->mq_ops) {
2639 if (blk_queue_io_stat(q))
2640 blk_account_io_start(rq, true);
2641 /*
2642 * Since we have a scheduler attached on the top device,
2643 * bypass a potential scheduler on the bottom device for
2644 * insert.
2645 */
2646 return blk_mq_request_issue_directly(rq);
2647 }
2648
2649 spin_lock_irqsave(q->queue_lock, flags);
2650 if (unlikely(blk_queue_dying(q))) {
2651 spin_unlock_irqrestore(q->queue_lock, flags);
2652 return BLK_STS_IOERR;
2653 }
2654
2655 /*
2656 * Submitting request must be dequeued before calling this function
2657 * because it will be linked to another request_queue
2658 */
2659 BUG_ON(blk_queued_rq(rq));
2660
2661 if (op_is_flush(rq->cmd_flags))
2662 where = ELEVATOR_INSERT_FLUSH;
2663
2664 add_acct_request(q, rq, where);
2665 if (where == ELEVATOR_INSERT_FLUSH)
2666 __blk_run_queue(q);
2667 spin_unlock_irqrestore(q->queue_lock, flags);
2668
2669 return BLK_STS_OK;
2670 }
2671 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2672
2673 /**
2674 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2675 * @rq: request to examine
2676 *
2677 * Description:
2678 * A request could be merge of IOs which require different failure
2679 * handling. This function determines the number of bytes which
2680 * can be failed from the beginning of the request without
2681 * crossing into area which need to be retried further.
2682 *
2683 * Return:
2684 * The number of bytes to fail.
2685 */
blk_rq_err_bytes(const struct request * rq)2686 unsigned int blk_rq_err_bytes(const struct request *rq)
2687 {
2688 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2689 unsigned int bytes = 0;
2690 struct bio *bio;
2691
2692 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2693 return blk_rq_bytes(rq);
2694
2695 /*
2696 * Currently the only 'mixing' which can happen is between
2697 * different fastfail types. We can safely fail portions
2698 * which have all the failfast bits that the first one has -
2699 * the ones which are at least as eager to fail as the first
2700 * one.
2701 */
2702 for (bio = rq->bio; bio; bio = bio->bi_next) {
2703 if ((bio->bi_opf & ff) != ff)
2704 break;
2705 bytes += bio->bi_iter.bi_size;
2706 }
2707
2708 /* this could lead to infinite loop */
2709 BUG_ON(blk_rq_bytes(rq) && !bytes);
2710 return bytes;
2711 }
2712 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2713
blk_account_io_completion(struct request * req,unsigned int bytes)2714 void blk_account_io_completion(struct request *req, unsigned int bytes)
2715 {
2716 if (blk_do_io_stat(req)) {
2717 const int sgrp = op_stat_group(req_op(req));
2718 struct hd_struct *part;
2719 int cpu;
2720
2721 cpu = part_stat_lock();
2722 part = req->part;
2723 part_stat_add(cpu, part, sectors[sgrp], bytes >> 9);
2724 part_stat_unlock();
2725 }
2726 }
2727
blk_account_io_done(struct request * req,u64 now)2728 void blk_account_io_done(struct request *req, u64 now)
2729 {
2730 /*
2731 * Account IO completion. flush_rq isn't accounted as a
2732 * normal IO on queueing nor completion. Accounting the
2733 * containing request is enough.
2734 */
2735 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2736 const int sgrp = op_stat_group(req_op(req));
2737 struct hd_struct *part;
2738 int cpu;
2739
2740 cpu = part_stat_lock();
2741 part = req->part;
2742
2743 part_stat_inc(cpu, part, ios[sgrp]);
2744 part_stat_add(cpu, part, nsecs[sgrp], now - req->start_time_ns);
2745 part_round_stats(req->q, cpu, part);
2746 part_dec_in_flight(req->q, part, rq_data_dir(req));
2747
2748 hd_struct_put(part);
2749 part_stat_unlock();
2750 }
2751 }
2752
2753 #ifdef CONFIG_PM
2754 /*
2755 * Don't process normal requests when queue is suspended
2756 * or in the process of suspending/resuming
2757 */
blk_pm_allow_request(struct request * rq)2758 static bool blk_pm_allow_request(struct request *rq)
2759 {
2760 switch (rq->q->rpm_status) {
2761 case RPM_RESUMING:
2762 case RPM_SUSPENDING:
2763 return rq->rq_flags & RQF_PM;
2764 case RPM_SUSPENDED:
2765 return false;
2766 default:
2767 return true;
2768 }
2769 }
2770 #else
blk_pm_allow_request(struct request * rq)2771 static bool blk_pm_allow_request(struct request *rq)
2772 {
2773 return true;
2774 }
2775 #endif
2776
blk_account_io_start(struct request * rq,bool new_io)2777 void blk_account_io_start(struct request *rq, bool new_io)
2778 {
2779 struct hd_struct *part;
2780 int rw = rq_data_dir(rq);
2781 int cpu;
2782
2783 if (!blk_do_io_stat(rq))
2784 return;
2785
2786 cpu = part_stat_lock();
2787
2788 if (!new_io) {
2789 part = rq->part;
2790 part_stat_inc(cpu, part, merges[rw]);
2791 } else {
2792 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2793 if (!hd_struct_try_get(part)) {
2794 /*
2795 * The partition is already being removed,
2796 * the request will be accounted on the disk only
2797 *
2798 * We take a reference on disk->part0 although that
2799 * partition will never be deleted, so we can treat
2800 * it as any other partition.
2801 */
2802 part = &rq->rq_disk->part0;
2803 hd_struct_get(part);
2804 }
2805 part_round_stats(rq->q, cpu, part);
2806 part_inc_in_flight(rq->q, part, rw);
2807 rq->part = part;
2808 }
2809
2810 part_stat_unlock();
2811 }
2812
elv_next_request(struct request_queue * q)2813 static struct request *elv_next_request(struct request_queue *q)
2814 {
2815 struct request *rq;
2816 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2817
2818 WARN_ON_ONCE(q->mq_ops);
2819
2820 while (1) {
2821 list_for_each_entry(rq, &q->queue_head, queuelist) {
2822 if (blk_pm_allow_request(rq))
2823 return rq;
2824
2825 if (rq->rq_flags & RQF_SOFTBARRIER)
2826 break;
2827 }
2828
2829 /*
2830 * Flush request is running and flush request isn't queueable
2831 * in the drive, we can hold the queue till flush request is
2832 * finished. Even we don't do this, driver can't dispatch next
2833 * requests and will requeue them. And this can improve
2834 * throughput too. For example, we have request flush1, write1,
2835 * flush 2. flush1 is dispatched, then queue is hold, write1
2836 * isn't inserted to queue. After flush1 is finished, flush2
2837 * will be dispatched. Since disk cache is already clean,
2838 * flush2 will be finished very soon, so looks like flush2 is
2839 * folded to flush1.
2840 * Since the queue is hold, a flag is set to indicate the queue
2841 * should be restarted later. Please see flush_end_io() for
2842 * details.
2843 */
2844 if (fq->flush_pending_idx != fq->flush_running_idx &&
2845 !queue_flush_queueable(q)) {
2846 fq->flush_queue_delayed = 1;
2847 return NULL;
2848 }
2849 if (unlikely(blk_queue_bypass(q)) ||
2850 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2851 return NULL;
2852 }
2853 }
2854
2855 /**
2856 * blk_peek_request - peek at the top of a request queue
2857 * @q: request queue to peek at
2858 *
2859 * Description:
2860 * Return the request at the top of @q. The returned request
2861 * should be started using blk_start_request() before LLD starts
2862 * processing it.
2863 *
2864 * Return:
2865 * Pointer to the request at the top of @q if available. Null
2866 * otherwise.
2867 */
blk_peek_request(struct request_queue * q)2868 struct request *blk_peek_request(struct request_queue *q)
2869 {
2870 struct request *rq;
2871 int ret;
2872
2873 lockdep_assert_held(q->queue_lock);
2874 WARN_ON_ONCE(q->mq_ops);
2875
2876 while ((rq = elv_next_request(q)) != NULL) {
2877 if (!(rq->rq_flags & RQF_STARTED)) {
2878 /*
2879 * This is the first time the device driver
2880 * sees this request (possibly after
2881 * requeueing). Notify IO scheduler.
2882 */
2883 if (rq->rq_flags & RQF_SORTED)
2884 elv_activate_rq(q, rq);
2885
2886 /*
2887 * just mark as started even if we don't start
2888 * it, a request that has been delayed should
2889 * not be passed by new incoming requests
2890 */
2891 rq->rq_flags |= RQF_STARTED;
2892 trace_block_rq_issue(q, rq);
2893 }
2894
2895 if (!q->boundary_rq || q->boundary_rq == rq) {
2896 q->end_sector = rq_end_sector(rq);
2897 q->boundary_rq = NULL;
2898 }
2899
2900 if (rq->rq_flags & RQF_DONTPREP)
2901 break;
2902
2903 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2904 /*
2905 * make sure space for the drain appears we
2906 * know we can do this because max_hw_segments
2907 * has been adjusted to be one fewer than the
2908 * device can handle
2909 */
2910 rq->nr_phys_segments++;
2911 }
2912
2913 if (!q->prep_rq_fn)
2914 break;
2915
2916 ret = q->prep_rq_fn(q, rq);
2917 if (ret == BLKPREP_OK) {
2918 break;
2919 } else if (ret == BLKPREP_DEFER) {
2920 /*
2921 * the request may have been (partially) prepped.
2922 * we need to keep this request in the front to
2923 * avoid resource deadlock. RQF_STARTED will
2924 * prevent other fs requests from passing this one.
2925 */
2926 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2927 !(rq->rq_flags & RQF_DONTPREP)) {
2928 /*
2929 * remove the space for the drain we added
2930 * so that we don't add it again
2931 */
2932 --rq->nr_phys_segments;
2933 }
2934
2935 rq = NULL;
2936 break;
2937 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2938 rq->rq_flags |= RQF_QUIET;
2939 /*
2940 * Mark this request as started so we don't trigger
2941 * any debug logic in the end I/O path.
2942 */
2943 blk_start_request(rq);
2944 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2945 BLK_STS_TARGET : BLK_STS_IOERR);
2946 } else {
2947 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2948 break;
2949 }
2950 }
2951
2952 return rq;
2953 }
2954 EXPORT_SYMBOL(blk_peek_request);
2955
blk_dequeue_request(struct request * rq)2956 static void blk_dequeue_request(struct request *rq)
2957 {
2958 struct request_queue *q = rq->q;
2959
2960 BUG_ON(list_empty(&rq->queuelist));
2961 BUG_ON(ELV_ON_HASH(rq));
2962
2963 list_del_init(&rq->queuelist);
2964
2965 /*
2966 * the time frame between a request being removed from the lists
2967 * and to it is freed is accounted as io that is in progress at
2968 * the driver side.
2969 */
2970 if (blk_account_rq(rq))
2971 q->in_flight[rq_is_sync(rq)]++;
2972 }
2973
2974 /**
2975 * blk_start_request - start request processing on the driver
2976 * @req: request to dequeue
2977 *
2978 * Description:
2979 * Dequeue @req and start timeout timer on it. This hands off the
2980 * request to the driver.
2981 */
blk_start_request(struct request * req)2982 void blk_start_request(struct request *req)
2983 {
2984 lockdep_assert_held(req->q->queue_lock);
2985 WARN_ON_ONCE(req->q->mq_ops);
2986
2987 blk_dequeue_request(req);
2988
2989 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2990 req->io_start_time_ns = ktime_get_ns();
2991 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2992 req->throtl_size = blk_rq_sectors(req);
2993 #endif
2994 req->rq_flags |= RQF_STATS;
2995 rq_qos_issue(req->q, req);
2996 }
2997
2998 BUG_ON(blk_rq_is_complete(req));
2999 blk_add_timer(req);
3000 }
3001 EXPORT_SYMBOL(blk_start_request);
3002
3003 /**
3004 * blk_fetch_request - fetch a request from a request queue
3005 * @q: request queue to fetch a request from
3006 *
3007 * Description:
3008 * Return the request at the top of @q. The request is started on
3009 * return and LLD can start processing it immediately.
3010 *
3011 * Return:
3012 * Pointer to the request at the top of @q if available. Null
3013 * otherwise.
3014 */
blk_fetch_request(struct request_queue * q)3015 struct request *blk_fetch_request(struct request_queue *q)
3016 {
3017 struct request *rq;
3018
3019 lockdep_assert_held(q->queue_lock);
3020 WARN_ON_ONCE(q->mq_ops);
3021
3022 rq = blk_peek_request(q);
3023 if (rq)
3024 blk_start_request(rq);
3025 return rq;
3026 }
3027 EXPORT_SYMBOL(blk_fetch_request);
3028
3029 /*
3030 * Steal bios from a request and add them to a bio list.
3031 * The request must not have been partially completed before.
3032 */
blk_steal_bios(struct bio_list * list,struct request * rq)3033 void blk_steal_bios(struct bio_list *list, struct request *rq)
3034 {
3035 if (rq->bio) {
3036 if (list->tail)
3037 list->tail->bi_next = rq->bio;
3038 else
3039 list->head = rq->bio;
3040 list->tail = rq->biotail;
3041
3042 rq->bio = NULL;
3043 rq->biotail = NULL;
3044 }
3045
3046 rq->__data_len = 0;
3047 }
3048 EXPORT_SYMBOL_GPL(blk_steal_bios);
3049
3050 /**
3051 * blk_update_request - Special helper function for request stacking drivers
3052 * @req: the request being processed
3053 * @error: block status code
3054 * @nr_bytes: number of bytes to complete @req
3055 *
3056 * Description:
3057 * Ends I/O on a number of bytes attached to @req, but doesn't complete
3058 * the request structure even if @req doesn't have leftover.
3059 * If @req has leftover, sets it up for the next range of segments.
3060 *
3061 * This special helper function is only for request stacking drivers
3062 * (e.g. request-based dm) so that they can handle partial completion.
3063 * Actual device drivers should use blk_end_request instead.
3064 *
3065 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
3066 * %false return from this function.
3067 *
3068 * Note:
3069 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
3070 * blk_rq_bytes() and in blk_update_request().
3071 *
3072 * Return:
3073 * %false - this request doesn't have any more data
3074 * %true - this request has more data
3075 **/
blk_update_request(struct request * req,blk_status_t error,unsigned int nr_bytes)3076 bool blk_update_request(struct request *req, blk_status_t error,
3077 unsigned int nr_bytes)
3078 {
3079 int total_bytes;
3080
3081 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
3082
3083 if (!req->bio)
3084 return false;
3085
3086 if (unlikely(error && !blk_rq_is_passthrough(req) &&
3087 !(req->rq_flags & RQF_QUIET)))
3088 print_req_error(req, error);
3089
3090 blk_account_io_completion(req, nr_bytes);
3091
3092 total_bytes = 0;
3093 while (req->bio) {
3094 struct bio *bio = req->bio;
3095 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
3096
3097 if (bio_bytes == bio->bi_iter.bi_size)
3098 req->bio = bio->bi_next;
3099
3100 /* Completion has already been traced */
3101 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
3102 req_bio_endio(req, bio, bio_bytes, error);
3103
3104 total_bytes += bio_bytes;
3105 nr_bytes -= bio_bytes;
3106
3107 if (!nr_bytes)
3108 break;
3109 }
3110
3111 /*
3112 * completely done
3113 */
3114 if (!req->bio) {
3115 /*
3116 * Reset counters so that the request stacking driver
3117 * can find how many bytes remain in the request
3118 * later.
3119 */
3120 req->__data_len = 0;
3121 return false;
3122 }
3123
3124 req->__data_len -= total_bytes;
3125
3126 /* update sector only for requests with clear definition of sector */
3127 if (!blk_rq_is_passthrough(req))
3128 req->__sector += total_bytes >> 9;
3129
3130 /* mixed attributes always follow the first bio */
3131 if (req->rq_flags & RQF_MIXED_MERGE) {
3132 req->cmd_flags &= ~REQ_FAILFAST_MASK;
3133 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
3134 }
3135
3136 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
3137 /*
3138 * If total number of sectors is less than the first segment
3139 * size, something has gone terribly wrong.
3140 */
3141 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
3142 blk_dump_rq_flags(req, "request botched");
3143 req->__data_len = blk_rq_cur_bytes(req);
3144 }
3145
3146 /* recalculate the number of segments */
3147 blk_recalc_rq_segments(req);
3148 }
3149
3150 return true;
3151 }
3152 EXPORT_SYMBOL_GPL(blk_update_request);
3153
blk_update_bidi_request(struct request * rq,blk_status_t error,unsigned int nr_bytes,unsigned int bidi_bytes)3154 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
3155 unsigned int nr_bytes,
3156 unsigned int bidi_bytes)
3157 {
3158 if (blk_update_request(rq, error, nr_bytes))
3159 return true;
3160
3161 /* Bidi request must be completed as a whole */
3162 if (unlikely(blk_bidi_rq(rq)) &&
3163 blk_update_request(rq->next_rq, error, bidi_bytes))
3164 return true;
3165
3166 if (blk_queue_add_random(rq->q))
3167 add_disk_randomness(rq->rq_disk);
3168
3169 return false;
3170 }
3171
3172 /**
3173 * blk_unprep_request - unprepare a request
3174 * @req: the request
3175 *
3176 * This function makes a request ready for complete resubmission (or
3177 * completion). It happens only after all error handling is complete,
3178 * so represents the appropriate moment to deallocate any resources
3179 * that were allocated to the request in the prep_rq_fn. The queue
3180 * lock is held when calling this.
3181 */
blk_unprep_request(struct request * req)3182 void blk_unprep_request(struct request *req)
3183 {
3184 struct request_queue *q = req->q;
3185
3186 req->rq_flags &= ~RQF_DONTPREP;
3187 if (q->unprep_rq_fn)
3188 q->unprep_rq_fn(q, req);
3189 }
3190 EXPORT_SYMBOL_GPL(blk_unprep_request);
3191
blk_finish_request(struct request * req,blk_status_t error)3192 void blk_finish_request(struct request *req, blk_status_t error)
3193 {
3194 struct request_queue *q = req->q;
3195 u64 now = ktime_get_ns();
3196
3197 lockdep_assert_held(req->q->queue_lock);
3198 WARN_ON_ONCE(q->mq_ops);
3199
3200 if (req->rq_flags & RQF_STATS)
3201 blk_stat_add(req, now);
3202
3203 if (req->rq_flags & RQF_QUEUED)
3204 blk_queue_end_tag(q, req);
3205
3206 BUG_ON(blk_queued_rq(req));
3207
3208 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
3209 laptop_io_completion(req->q->backing_dev_info);
3210
3211 blk_delete_timer(req);
3212
3213 if (req->rq_flags & RQF_DONTPREP)
3214 blk_unprep_request(req);
3215
3216 blk_account_io_done(req, now);
3217
3218 if (req->end_io) {
3219 rq_qos_done(q, req);
3220 req->end_io(req, error);
3221 } else {
3222 if (blk_bidi_rq(req))
3223 __blk_put_request(req->next_rq->q, req->next_rq);
3224
3225 __blk_put_request(q, req);
3226 }
3227 }
3228 EXPORT_SYMBOL(blk_finish_request);
3229
3230 /**
3231 * blk_end_bidi_request - Complete a bidi request
3232 * @rq: the request to complete
3233 * @error: block status code
3234 * @nr_bytes: number of bytes to complete @rq
3235 * @bidi_bytes: number of bytes to complete @rq->next_rq
3236 *
3237 * Description:
3238 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3239 * Drivers that supports bidi can safely call this member for any
3240 * type of request, bidi or uni. In the later case @bidi_bytes is
3241 * just ignored.
3242 *
3243 * Return:
3244 * %false - we are done with this request
3245 * %true - still buffers pending for this request
3246 **/
blk_end_bidi_request(struct request * rq,blk_status_t error,unsigned int nr_bytes,unsigned int bidi_bytes)3247 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3248 unsigned int nr_bytes, unsigned int bidi_bytes)
3249 {
3250 struct request_queue *q = rq->q;
3251 unsigned long flags;
3252
3253 WARN_ON_ONCE(q->mq_ops);
3254
3255 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3256 return true;
3257
3258 spin_lock_irqsave(q->queue_lock, flags);
3259 blk_finish_request(rq, error);
3260 spin_unlock_irqrestore(q->queue_lock, flags);
3261
3262 return false;
3263 }
3264
3265 /**
3266 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3267 * @rq: the request to complete
3268 * @error: block status code
3269 * @nr_bytes: number of bytes to complete @rq
3270 * @bidi_bytes: number of bytes to complete @rq->next_rq
3271 *
3272 * Description:
3273 * Identical to blk_end_bidi_request() except that queue lock is
3274 * assumed to be locked on entry and remains so on return.
3275 *
3276 * Return:
3277 * %false - we are done with this request
3278 * %true - still buffers pending for this request
3279 **/
__blk_end_bidi_request(struct request * rq,blk_status_t error,unsigned int nr_bytes,unsigned int bidi_bytes)3280 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3281 unsigned int nr_bytes, unsigned int bidi_bytes)
3282 {
3283 lockdep_assert_held(rq->q->queue_lock);
3284 WARN_ON_ONCE(rq->q->mq_ops);
3285
3286 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3287 return true;
3288
3289 blk_finish_request(rq, error);
3290
3291 return false;
3292 }
3293
3294 /**
3295 * blk_end_request - Helper function for drivers to complete the request.
3296 * @rq: the request being processed
3297 * @error: block status code
3298 * @nr_bytes: number of bytes to complete
3299 *
3300 * Description:
3301 * Ends I/O on a number of bytes attached to @rq.
3302 * If @rq has leftover, sets it up for the next range of segments.
3303 *
3304 * Return:
3305 * %false - we are done with this request
3306 * %true - still buffers pending for this request
3307 **/
blk_end_request(struct request * rq,blk_status_t error,unsigned int nr_bytes)3308 bool blk_end_request(struct request *rq, blk_status_t error,
3309 unsigned int nr_bytes)
3310 {
3311 WARN_ON_ONCE(rq->q->mq_ops);
3312 return blk_end_bidi_request(rq, error, nr_bytes, 0);
3313 }
3314 EXPORT_SYMBOL(blk_end_request);
3315
3316 /**
3317 * blk_end_request_all - Helper function for drives to finish the request.
3318 * @rq: the request to finish
3319 * @error: block status code
3320 *
3321 * Description:
3322 * Completely finish @rq.
3323 */
blk_end_request_all(struct request * rq,blk_status_t error)3324 void blk_end_request_all(struct request *rq, blk_status_t error)
3325 {
3326 bool pending;
3327 unsigned int bidi_bytes = 0;
3328
3329 if (unlikely(blk_bidi_rq(rq)))
3330 bidi_bytes = blk_rq_bytes(rq->next_rq);
3331
3332 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3333 BUG_ON(pending);
3334 }
3335 EXPORT_SYMBOL(blk_end_request_all);
3336
3337 /**
3338 * __blk_end_request - Helper function for drivers to complete the request.
3339 * @rq: the request being processed
3340 * @error: block status code
3341 * @nr_bytes: number of bytes to complete
3342 *
3343 * Description:
3344 * Must be called with queue lock held unlike blk_end_request().
3345 *
3346 * Return:
3347 * %false - we are done with this request
3348 * %true - still buffers pending for this request
3349 **/
__blk_end_request(struct request * rq,blk_status_t error,unsigned int nr_bytes)3350 bool __blk_end_request(struct request *rq, blk_status_t error,
3351 unsigned int nr_bytes)
3352 {
3353 lockdep_assert_held(rq->q->queue_lock);
3354 WARN_ON_ONCE(rq->q->mq_ops);
3355
3356 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3357 }
3358 EXPORT_SYMBOL(__blk_end_request);
3359
3360 /**
3361 * __blk_end_request_all - Helper function for drives to finish the request.
3362 * @rq: the request to finish
3363 * @error: block status code
3364 *
3365 * Description:
3366 * Completely finish @rq. Must be called with queue lock held.
3367 */
__blk_end_request_all(struct request * rq,blk_status_t error)3368 void __blk_end_request_all(struct request *rq, blk_status_t error)
3369 {
3370 bool pending;
3371 unsigned int bidi_bytes = 0;
3372
3373 lockdep_assert_held(rq->q->queue_lock);
3374 WARN_ON_ONCE(rq->q->mq_ops);
3375
3376 if (unlikely(blk_bidi_rq(rq)))
3377 bidi_bytes = blk_rq_bytes(rq->next_rq);
3378
3379 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3380 BUG_ON(pending);
3381 }
3382 EXPORT_SYMBOL(__blk_end_request_all);
3383
3384 /**
3385 * __blk_end_request_cur - Helper function to finish the current request chunk.
3386 * @rq: the request to finish the current chunk for
3387 * @error: block status code
3388 *
3389 * Description:
3390 * Complete the current consecutively mapped chunk from @rq. Must
3391 * be called with queue lock held.
3392 *
3393 * Return:
3394 * %false - we are done with this request
3395 * %true - still buffers pending for this request
3396 */
__blk_end_request_cur(struct request * rq,blk_status_t error)3397 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3398 {
3399 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3400 }
3401 EXPORT_SYMBOL(__blk_end_request_cur);
3402
blk_rq_bio_prep(struct request_queue * q,struct request * rq,struct bio * bio)3403 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3404 struct bio *bio)
3405 {
3406 if (bio_has_data(bio))
3407 rq->nr_phys_segments = bio_phys_segments(q, bio);
3408 else if (bio_op(bio) == REQ_OP_DISCARD)
3409 rq->nr_phys_segments = 1;
3410
3411 rq->__data_len = bio->bi_iter.bi_size;
3412 rq->bio = rq->biotail = bio;
3413
3414 if (bio->bi_disk)
3415 rq->rq_disk = bio->bi_disk;
3416 }
3417
3418 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3419 /**
3420 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3421 * @rq: the request to be flushed
3422 *
3423 * Description:
3424 * Flush all pages in @rq.
3425 */
rq_flush_dcache_pages(struct request * rq)3426 void rq_flush_dcache_pages(struct request *rq)
3427 {
3428 struct req_iterator iter;
3429 struct bio_vec bvec;
3430
3431 rq_for_each_segment(bvec, rq, iter)
3432 flush_dcache_page(bvec.bv_page);
3433 }
3434 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3435 #endif
3436
3437 /**
3438 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3439 * @q : the queue of the device being checked
3440 *
3441 * Description:
3442 * Check if underlying low-level drivers of a device are busy.
3443 * If the drivers want to export their busy state, they must set own
3444 * exporting function using blk_queue_lld_busy() first.
3445 *
3446 * Basically, this function is used only by request stacking drivers
3447 * to stop dispatching requests to underlying devices when underlying
3448 * devices are busy. This behavior helps more I/O merging on the queue
3449 * of the request stacking driver and prevents I/O throughput regression
3450 * on burst I/O load.
3451 *
3452 * Return:
3453 * 0 - Not busy (The request stacking driver should dispatch request)
3454 * 1 - Busy (The request stacking driver should stop dispatching request)
3455 */
blk_lld_busy(struct request_queue * q)3456 int blk_lld_busy(struct request_queue *q)
3457 {
3458 if (q->lld_busy_fn)
3459 return q->lld_busy_fn(q);
3460
3461 return 0;
3462 }
3463 EXPORT_SYMBOL_GPL(blk_lld_busy);
3464
3465 /**
3466 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3467 * @rq: the clone request to be cleaned up
3468 *
3469 * Description:
3470 * Free all bios in @rq for a cloned request.
3471 */
blk_rq_unprep_clone(struct request * rq)3472 void blk_rq_unprep_clone(struct request *rq)
3473 {
3474 struct bio *bio;
3475
3476 while ((bio = rq->bio) != NULL) {
3477 rq->bio = bio->bi_next;
3478
3479 bio_put(bio);
3480 }
3481 }
3482 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3483
3484 /*
3485 * Copy attributes of the original request to the clone request.
3486 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3487 */
__blk_rq_prep_clone(struct request * dst,struct request * src)3488 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3489 {
3490 dst->cpu = src->cpu;
3491 dst->__sector = blk_rq_pos(src);
3492 dst->__data_len = blk_rq_bytes(src);
3493 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3494 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
3495 dst->special_vec = src->special_vec;
3496 }
3497 dst->nr_phys_segments = src->nr_phys_segments;
3498 dst->ioprio = src->ioprio;
3499 dst->extra_len = src->extra_len;
3500 }
3501
3502 /**
3503 * blk_rq_prep_clone - Helper function to setup clone request
3504 * @rq: the request to be setup
3505 * @rq_src: original request to be cloned
3506 * @bs: bio_set that bios for clone are allocated from
3507 * @gfp_mask: memory allocation mask for bio
3508 * @bio_ctr: setup function to be called for each clone bio.
3509 * Returns %0 for success, non %0 for failure.
3510 * @data: private data to be passed to @bio_ctr
3511 *
3512 * Description:
3513 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3514 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3515 * are not copied, and copying such parts is the caller's responsibility.
3516 * Also, pages which the original bios are pointing to are not copied
3517 * and the cloned bios just point same pages.
3518 * So cloned bios must be completed before original bios, which means
3519 * the caller must complete @rq before @rq_src.
3520 */
blk_rq_prep_clone(struct request * rq,struct request * rq_src,struct bio_set * bs,gfp_t gfp_mask,int (* bio_ctr)(struct bio *,struct bio *,void *),void * data)3521 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3522 struct bio_set *bs, gfp_t gfp_mask,
3523 int (*bio_ctr)(struct bio *, struct bio *, void *),
3524 void *data)
3525 {
3526 struct bio *bio, *bio_src;
3527
3528 if (!bs)
3529 bs = &fs_bio_set;
3530
3531 __rq_for_each_bio(bio_src, rq_src) {
3532 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3533 if (!bio)
3534 goto free_and_out;
3535
3536 if (bio_ctr && bio_ctr(bio, bio_src, data))
3537 goto free_and_out;
3538
3539 if (rq->bio) {
3540 rq->biotail->bi_next = bio;
3541 rq->biotail = bio;
3542 } else
3543 rq->bio = rq->biotail = bio;
3544 }
3545
3546 __blk_rq_prep_clone(rq, rq_src);
3547
3548 return 0;
3549
3550 free_and_out:
3551 if (bio)
3552 bio_put(bio);
3553 blk_rq_unprep_clone(rq);
3554
3555 return -ENOMEM;
3556 }
3557 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3558
kblockd_schedule_work(struct work_struct * work)3559 int kblockd_schedule_work(struct work_struct *work)
3560 {
3561 return queue_work(kblockd_workqueue, work);
3562 }
3563 EXPORT_SYMBOL(kblockd_schedule_work);
3564
kblockd_schedule_work_on(int cpu,struct work_struct * work)3565 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3566 {
3567 return queue_work_on(cpu, kblockd_workqueue, work);
3568 }
3569 EXPORT_SYMBOL(kblockd_schedule_work_on);
3570
kblockd_mod_delayed_work_on(int cpu,struct delayed_work * dwork,unsigned long delay)3571 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3572 unsigned long delay)
3573 {
3574 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3575 }
3576 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3577
3578 /**
3579 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3580 * @plug: The &struct blk_plug that needs to be initialized
3581 *
3582 * Description:
3583 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3584 * pending I/O should the task end up blocking between blk_start_plug() and
3585 * blk_finish_plug(). This is important from a performance perspective, but
3586 * also ensures that we don't deadlock. For instance, if the task is blocking
3587 * for a memory allocation, memory reclaim could end up wanting to free a
3588 * page belonging to that request that is currently residing in our private
3589 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3590 * this kind of deadlock.
3591 */
blk_start_plug(struct blk_plug * plug)3592 void blk_start_plug(struct blk_plug *plug)
3593 {
3594 struct task_struct *tsk = current;
3595
3596 /*
3597 * If this is a nested plug, don't actually assign it.
3598 */
3599 if (tsk->plug)
3600 return;
3601
3602 INIT_LIST_HEAD(&plug->list);
3603 INIT_LIST_HEAD(&plug->mq_list);
3604 INIT_LIST_HEAD(&plug->cb_list);
3605 /*
3606 * Store ordering should not be needed here, since a potential
3607 * preempt will imply a full memory barrier
3608 */
3609 tsk->plug = plug;
3610 }
3611 EXPORT_SYMBOL(blk_start_plug);
3612
plug_rq_cmp(void * priv,struct list_head * a,struct list_head * b)3613 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3614 {
3615 struct request *rqa = container_of(a, struct request, queuelist);
3616 struct request *rqb = container_of(b, struct request, queuelist);
3617
3618 return !(rqa->q < rqb->q ||
3619 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3620 }
3621
3622 /*
3623 * If 'from_schedule' is true, then postpone the dispatch of requests
3624 * until a safe kblockd context. We due this to avoid accidental big
3625 * additional stack usage in driver dispatch, in places where the originally
3626 * plugger did not intend it.
3627 */
queue_unplugged(struct request_queue * q,unsigned int depth,bool from_schedule)3628 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3629 bool from_schedule)
3630 __releases(q->queue_lock)
3631 {
3632 lockdep_assert_held(q->queue_lock);
3633
3634 trace_block_unplug(q, depth, !from_schedule);
3635
3636 if (from_schedule)
3637 blk_run_queue_async(q);
3638 else
3639 __blk_run_queue(q);
3640 spin_unlock_irq(q->queue_lock);
3641 }
3642
flush_plug_callbacks(struct blk_plug * plug,bool from_schedule)3643 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3644 {
3645 LIST_HEAD(callbacks);
3646
3647 while (!list_empty(&plug->cb_list)) {
3648 list_splice_init(&plug->cb_list, &callbacks);
3649
3650 while (!list_empty(&callbacks)) {
3651 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3652 struct blk_plug_cb,
3653 list);
3654 list_del(&cb->list);
3655 cb->callback(cb, from_schedule);
3656 }
3657 }
3658 }
3659
blk_check_plugged(blk_plug_cb_fn unplug,void * data,int size)3660 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3661 int size)
3662 {
3663 struct blk_plug *plug = current->plug;
3664 struct blk_plug_cb *cb;
3665
3666 if (!plug)
3667 return NULL;
3668
3669 list_for_each_entry(cb, &plug->cb_list, list)
3670 if (cb->callback == unplug && cb->data == data)
3671 return cb;
3672
3673 /* Not currently on the callback list */
3674 BUG_ON(size < sizeof(*cb));
3675 cb = kzalloc(size, GFP_ATOMIC);
3676 if (cb) {
3677 cb->data = data;
3678 cb->callback = unplug;
3679 list_add(&cb->list, &plug->cb_list);
3680 }
3681 return cb;
3682 }
3683 EXPORT_SYMBOL(blk_check_plugged);
3684
blk_flush_plug_list(struct blk_plug * plug,bool from_schedule)3685 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3686 {
3687 struct request_queue *q;
3688 struct request *rq;
3689 LIST_HEAD(list);
3690 unsigned int depth;
3691
3692 flush_plug_callbacks(plug, from_schedule);
3693
3694 if (!list_empty(&plug->mq_list))
3695 blk_mq_flush_plug_list(plug, from_schedule);
3696
3697 if (list_empty(&plug->list))
3698 return;
3699
3700 list_splice_init(&plug->list, &list);
3701
3702 list_sort(NULL, &list, plug_rq_cmp);
3703
3704 q = NULL;
3705 depth = 0;
3706
3707 while (!list_empty(&list)) {
3708 rq = list_entry_rq(list.next);
3709 list_del_init(&rq->queuelist);
3710 BUG_ON(!rq->q);
3711 if (rq->q != q) {
3712 /*
3713 * This drops the queue lock
3714 */
3715 if (q)
3716 queue_unplugged(q, depth, from_schedule);
3717 q = rq->q;
3718 depth = 0;
3719 spin_lock_irq(q->queue_lock);
3720 }
3721
3722 /*
3723 * Short-circuit if @q is dead
3724 */
3725 if (unlikely(blk_queue_dying(q))) {
3726 __blk_end_request_all(rq, BLK_STS_IOERR);
3727 continue;
3728 }
3729
3730 /*
3731 * rq is already accounted, so use raw insert
3732 */
3733 if (op_is_flush(rq->cmd_flags))
3734 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3735 else
3736 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3737
3738 depth++;
3739 }
3740
3741 /*
3742 * This drops the queue lock
3743 */
3744 if (q)
3745 queue_unplugged(q, depth, from_schedule);
3746 }
3747
blk_finish_plug(struct blk_plug * plug)3748 void blk_finish_plug(struct blk_plug *plug)
3749 {
3750 if (plug != current->plug)
3751 return;
3752 blk_flush_plug_list(plug, false);
3753
3754 current->plug = NULL;
3755 }
3756 EXPORT_SYMBOL(blk_finish_plug);
3757
3758 #ifdef CONFIG_PM
3759 /**
3760 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3761 * @q: the queue of the device
3762 * @dev: the device the queue belongs to
3763 *
3764 * Description:
3765 * Initialize runtime-PM-related fields for @q and start auto suspend for
3766 * @dev. Drivers that want to take advantage of request-based runtime PM
3767 * should call this function after @dev has been initialized, and its
3768 * request queue @q has been allocated, and runtime PM for it can not happen
3769 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3770 * cases, driver should call this function before any I/O has taken place.
3771 *
3772 * This function takes care of setting up using auto suspend for the device,
3773 * the autosuspend delay is set to -1 to make runtime suspend impossible
3774 * until an updated value is either set by user or by driver. Drivers do
3775 * not need to touch other autosuspend settings.
3776 *
3777 * The block layer runtime PM is request based, so only works for drivers
3778 * that use request as their IO unit instead of those directly use bio's.
3779 */
blk_pm_runtime_init(struct request_queue * q,struct device * dev)3780 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3781 {
3782 /* Don't enable runtime PM for blk-mq until it is ready */
3783 if (q->mq_ops) {
3784 pm_runtime_disable(dev);
3785 return;
3786 }
3787
3788 q->dev = dev;
3789 q->rpm_status = RPM_ACTIVE;
3790 pm_runtime_set_autosuspend_delay(q->dev, -1);
3791 pm_runtime_use_autosuspend(q->dev);
3792 }
3793 EXPORT_SYMBOL(blk_pm_runtime_init);
3794
3795 /**
3796 * blk_pre_runtime_suspend - Pre runtime suspend check
3797 * @q: the queue of the device
3798 *
3799 * Description:
3800 * This function will check if runtime suspend is allowed for the device
3801 * by examining if there are any requests pending in the queue. If there
3802 * are requests pending, the device can not be runtime suspended; otherwise,
3803 * the queue's status will be updated to SUSPENDING and the driver can
3804 * proceed to suspend the device.
3805 *
3806 * For the not allowed case, we mark last busy for the device so that
3807 * runtime PM core will try to autosuspend it some time later.
3808 *
3809 * This function should be called near the start of the device's
3810 * runtime_suspend callback.
3811 *
3812 * Return:
3813 * 0 - OK to runtime suspend the device
3814 * -EBUSY - Device should not be runtime suspended
3815 */
blk_pre_runtime_suspend(struct request_queue * q)3816 int blk_pre_runtime_suspend(struct request_queue *q)
3817 {
3818 int ret = 0;
3819
3820 if (!q->dev)
3821 return ret;
3822
3823 spin_lock_irq(q->queue_lock);
3824 if (q->nr_pending) {
3825 ret = -EBUSY;
3826 pm_runtime_mark_last_busy(q->dev);
3827 } else {
3828 q->rpm_status = RPM_SUSPENDING;
3829 }
3830 spin_unlock_irq(q->queue_lock);
3831 return ret;
3832 }
3833 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3834
3835 /**
3836 * blk_post_runtime_suspend - Post runtime suspend processing
3837 * @q: the queue of the device
3838 * @err: return value of the device's runtime_suspend function
3839 *
3840 * Description:
3841 * Update the queue's runtime status according to the return value of the
3842 * device's runtime suspend function and mark last busy for the device so
3843 * that PM core will try to auto suspend the device at a later time.
3844 *
3845 * This function should be called near the end of the device's
3846 * runtime_suspend callback.
3847 */
blk_post_runtime_suspend(struct request_queue * q,int err)3848 void blk_post_runtime_suspend(struct request_queue *q, int err)
3849 {
3850 if (!q->dev)
3851 return;
3852
3853 spin_lock_irq(q->queue_lock);
3854 if (!err) {
3855 q->rpm_status = RPM_SUSPENDED;
3856 } else {
3857 q->rpm_status = RPM_ACTIVE;
3858 pm_runtime_mark_last_busy(q->dev);
3859 }
3860 spin_unlock_irq(q->queue_lock);
3861 }
3862 EXPORT_SYMBOL(blk_post_runtime_suspend);
3863
3864 /**
3865 * blk_pre_runtime_resume - Pre runtime resume processing
3866 * @q: the queue of the device
3867 *
3868 * Description:
3869 * Update the queue's runtime status to RESUMING in preparation for the
3870 * runtime resume of the device.
3871 *
3872 * This function should be called near the start of the device's
3873 * runtime_resume callback.
3874 */
blk_pre_runtime_resume(struct request_queue * q)3875 void blk_pre_runtime_resume(struct request_queue *q)
3876 {
3877 if (!q->dev)
3878 return;
3879
3880 spin_lock_irq(q->queue_lock);
3881 q->rpm_status = RPM_RESUMING;
3882 spin_unlock_irq(q->queue_lock);
3883 }
3884 EXPORT_SYMBOL(blk_pre_runtime_resume);
3885
3886 /**
3887 * blk_post_runtime_resume - Post runtime resume processing
3888 * @q: the queue of the device
3889 * @err: return value of the device's runtime_resume function
3890 *
3891 * Description:
3892 * Update the queue's runtime status according to the return value of the
3893 * device's runtime_resume function. If it is successfully resumed, process
3894 * the requests that are queued into the device's queue when it is resuming
3895 * and then mark last busy and initiate autosuspend for it.
3896 *
3897 * This function should be called near the end of the device's
3898 * runtime_resume callback.
3899 */
blk_post_runtime_resume(struct request_queue * q,int err)3900 void blk_post_runtime_resume(struct request_queue *q, int err)
3901 {
3902 if (!q->dev)
3903 return;
3904
3905 spin_lock_irq(q->queue_lock);
3906 if (!err) {
3907 q->rpm_status = RPM_ACTIVE;
3908 __blk_run_queue(q);
3909 pm_runtime_mark_last_busy(q->dev);
3910 pm_request_autosuspend(q->dev);
3911 } else {
3912 q->rpm_status = RPM_SUSPENDED;
3913 }
3914 spin_unlock_irq(q->queue_lock);
3915 }
3916 EXPORT_SYMBOL(blk_post_runtime_resume);
3917
3918 /**
3919 * blk_set_runtime_active - Force runtime status of the queue to be active
3920 * @q: the queue of the device
3921 *
3922 * If the device is left runtime suspended during system suspend the resume
3923 * hook typically resumes the device and corrects runtime status
3924 * accordingly. However, that does not affect the queue runtime PM status
3925 * which is still "suspended". This prevents processing requests from the
3926 * queue.
3927 *
3928 * This function can be used in driver's resume hook to correct queue
3929 * runtime PM status and re-enable peeking requests from the queue. It
3930 * should be called before first request is added to the queue.
3931 */
blk_set_runtime_active(struct request_queue * q)3932 void blk_set_runtime_active(struct request_queue *q)
3933 {
3934 spin_lock_irq(q->queue_lock);
3935 q->rpm_status = RPM_ACTIVE;
3936 pm_runtime_mark_last_busy(q->dev);
3937 pm_request_autosuspend(q->dev);
3938 spin_unlock_irq(q->queue_lock);
3939 }
3940 EXPORT_SYMBOL(blk_set_runtime_active);
3941 #endif
3942
blk_dev_init(void)3943 int __init blk_dev_init(void)
3944 {
3945 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3946 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3947 FIELD_SIZEOF(struct request, cmd_flags));
3948 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3949 FIELD_SIZEOF(struct bio, bi_opf));
3950
3951 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3952 kblockd_workqueue = alloc_workqueue("kblockd",
3953 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3954 if (!kblockd_workqueue)
3955 panic("Failed to create kblockd\n");
3956
3957 request_cachep = kmem_cache_create("blkdev_requests",
3958 sizeof(struct request), 0, SLAB_PANIC, NULL);
3959
3960 blk_requestq_cachep = kmem_cache_create("request_queue",
3961 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3962
3963 #ifdef CONFIG_DEBUG_FS
3964 blk_debugfs_root = debugfs_create_dir("block", NULL);
3965 #endif
3966
3967 return 0;
3968 }
3969