1 /*
2 * linux/arch/x86_64/mm/init.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7 */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/memory.h>
31 #include <linux/memory_hotplug.h>
32 #include <linux/memremap.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
36
37 #include <asm/processor.h>
38 #include <asm/bios_ebda.h>
39 #include <linux/uaccess.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/dma.h>
43 #include <asm/fixmap.h>
44 #include <asm/e820/api.h>
45 #include <asm/apic.h>
46 #include <asm/tlb.h>
47 #include <asm/mmu_context.h>
48 #include <asm/proto.h>
49 #include <asm/smp.h>
50 #include <asm/sections.h>
51 #include <asm/kdebug.h>
52 #include <asm/numa.h>
53 #include <asm/set_memory.h>
54 #include <asm/init.h>
55 #include <asm/uv/uv.h>
56 #include <asm/setup.h>
57
58 #include "mm_internal.h"
59
60 #include "ident_map.c"
61
62 /*
63 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
64 * physical space so we can cache the place of the first one and move
65 * around without checking the pgd every time.
66 */
67
68 /* Bits supported by the hardware: */
69 pteval_t __supported_pte_mask __read_mostly = ~0;
70 /* Bits allowed in normal kernel mappings: */
71 pteval_t __default_kernel_pte_mask __read_mostly = ~0;
72 EXPORT_SYMBOL_GPL(__supported_pte_mask);
73 /* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */
74 EXPORT_SYMBOL(__default_kernel_pte_mask);
75
76 int force_personality32;
77
78 /*
79 * noexec32=on|off
80 * Control non executable heap for 32bit processes.
81 * To control the stack too use noexec=off
82 *
83 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
84 * off PROT_READ implies PROT_EXEC
85 */
nonx32_setup(char * str)86 static int __init nonx32_setup(char *str)
87 {
88 if (!strcmp(str, "on"))
89 force_personality32 &= ~READ_IMPLIES_EXEC;
90 else if (!strcmp(str, "off"))
91 force_personality32 |= READ_IMPLIES_EXEC;
92 return 1;
93 }
94 __setup("noexec32=", nonx32_setup);
95
sync_global_pgds_l5(unsigned long start,unsigned long end)96 static void sync_global_pgds_l5(unsigned long start, unsigned long end)
97 {
98 unsigned long addr;
99
100 for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
101 const pgd_t *pgd_ref = pgd_offset_k(addr);
102 struct page *page;
103
104 /* Check for overflow */
105 if (addr < start)
106 break;
107
108 if (pgd_none(*pgd_ref))
109 continue;
110
111 spin_lock(&pgd_lock);
112 list_for_each_entry(page, &pgd_list, lru) {
113 pgd_t *pgd;
114 spinlock_t *pgt_lock;
115
116 pgd = (pgd_t *)page_address(page) + pgd_index(addr);
117 /* the pgt_lock only for Xen */
118 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
119 spin_lock(pgt_lock);
120
121 if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
122 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
123
124 if (pgd_none(*pgd))
125 set_pgd(pgd, *pgd_ref);
126
127 spin_unlock(pgt_lock);
128 }
129 spin_unlock(&pgd_lock);
130 }
131 }
132
sync_global_pgds_l4(unsigned long start,unsigned long end)133 static void sync_global_pgds_l4(unsigned long start, unsigned long end)
134 {
135 unsigned long addr;
136
137 for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
138 pgd_t *pgd_ref = pgd_offset_k(addr);
139 const p4d_t *p4d_ref;
140 struct page *page;
141
142 /*
143 * With folded p4d, pgd_none() is always false, we need to
144 * handle synchonization on p4d level.
145 */
146 MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref));
147 p4d_ref = p4d_offset(pgd_ref, addr);
148
149 if (p4d_none(*p4d_ref))
150 continue;
151
152 spin_lock(&pgd_lock);
153 list_for_each_entry(page, &pgd_list, lru) {
154 pgd_t *pgd;
155 p4d_t *p4d;
156 spinlock_t *pgt_lock;
157
158 pgd = (pgd_t *)page_address(page) + pgd_index(addr);
159 p4d = p4d_offset(pgd, addr);
160 /* the pgt_lock only for Xen */
161 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
162 spin_lock(pgt_lock);
163
164 if (!p4d_none(*p4d_ref) && !p4d_none(*p4d))
165 BUG_ON(p4d_page_vaddr(*p4d)
166 != p4d_page_vaddr(*p4d_ref));
167
168 if (p4d_none(*p4d))
169 set_p4d(p4d, *p4d_ref);
170
171 spin_unlock(pgt_lock);
172 }
173 spin_unlock(&pgd_lock);
174 }
175 }
176
177 /*
178 * When memory was added make sure all the processes MM have
179 * suitable PGD entries in the local PGD level page.
180 */
sync_global_pgds(unsigned long start,unsigned long end)181 void sync_global_pgds(unsigned long start, unsigned long end)
182 {
183 if (pgtable_l5_enabled())
184 sync_global_pgds_l5(start, end);
185 else
186 sync_global_pgds_l4(start, end);
187 }
188
189 /*
190 * NOTE: This function is marked __ref because it calls __init function
191 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
192 */
spp_getpage(void)193 static __ref void *spp_getpage(void)
194 {
195 void *ptr;
196
197 if (after_bootmem)
198 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
199 else
200 ptr = alloc_bootmem_pages(PAGE_SIZE);
201
202 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
203 panic("set_pte_phys: cannot allocate page data %s\n",
204 after_bootmem ? "after bootmem" : "");
205 }
206
207 pr_debug("spp_getpage %p\n", ptr);
208
209 return ptr;
210 }
211
fill_p4d(pgd_t * pgd,unsigned long vaddr)212 static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr)
213 {
214 if (pgd_none(*pgd)) {
215 p4d_t *p4d = (p4d_t *)spp_getpage();
216 pgd_populate(&init_mm, pgd, p4d);
217 if (p4d != p4d_offset(pgd, 0))
218 printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
219 p4d, p4d_offset(pgd, 0));
220 }
221 return p4d_offset(pgd, vaddr);
222 }
223
fill_pud(p4d_t * p4d,unsigned long vaddr)224 static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr)
225 {
226 if (p4d_none(*p4d)) {
227 pud_t *pud = (pud_t *)spp_getpage();
228 p4d_populate(&init_mm, p4d, pud);
229 if (pud != pud_offset(p4d, 0))
230 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
231 pud, pud_offset(p4d, 0));
232 }
233 return pud_offset(p4d, vaddr);
234 }
235
fill_pmd(pud_t * pud,unsigned long vaddr)236 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
237 {
238 if (pud_none(*pud)) {
239 pmd_t *pmd = (pmd_t *) spp_getpage();
240 pud_populate(&init_mm, pud, pmd);
241 if (pmd != pmd_offset(pud, 0))
242 printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n",
243 pmd, pmd_offset(pud, 0));
244 }
245 return pmd_offset(pud, vaddr);
246 }
247
fill_pte(pmd_t * pmd,unsigned long vaddr)248 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
249 {
250 if (pmd_none(*pmd)) {
251 pte_t *pte = (pte_t *) spp_getpage();
252 pmd_populate_kernel(&init_mm, pmd, pte);
253 if (pte != pte_offset_kernel(pmd, 0))
254 printk(KERN_ERR "PAGETABLE BUG #03!\n");
255 }
256 return pte_offset_kernel(pmd, vaddr);
257 }
258
__set_pte_vaddr(pud_t * pud,unsigned long vaddr,pte_t new_pte)259 static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte)
260 {
261 pmd_t *pmd = fill_pmd(pud, vaddr);
262 pte_t *pte = fill_pte(pmd, vaddr);
263
264 set_pte(pte, new_pte);
265
266 /*
267 * It's enough to flush this one mapping.
268 * (PGE mappings get flushed as well)
269 */
270 __flush_tlb_one_kernel(vaddr);
271 }
272
set_pte_vaddr_p4d(p4d_t * p4d_page,unsigned long vaddr,pte_t new_pte)273 void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte)
274 {
275 p4d_t *p4d = p4d_page + p4d_index(vaddr);
276 pud_t *pud = fill_pud(p4d, vaddr);
277
278 __set_pte_vaddr(pud, vaddr, new_pte);
279 }
280
set_pte_vaddr_pud(pud_t * pud_page,unsigned long vaddr,pte_t new_pte)281 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
282 {
283 pud_t *pud = pud_page + pud_index(vaddr);
284
285 __set_pte_vaddr(pud, vaddr, new_pte);
286 }
287
set_pte_vaddr(unsigned long vaddr,pte_t pteval)288 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
289 {
290 pgd_t *pgd;
291 p4d_t *p4d_page;
292
293 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
294
295 pgd = pgd_offset_k(vaddr);
296 if (pgd_none(*pgd)) {
297 printk(KERN_ERR
298 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
299 return;
300 }
301
302 p4d_page = p4d_offset(pgd, 0);
303 set_pte_vaddr_p4d(p4d_page, vaddr, pteval);
304 }
305
populate_extra_pmd(unsigned long vaddr)306 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
307 {
308 pgd_t *pgd;
309 p4d_t *p4d;
310 pud_t *pud;
311
312 pgd = pgd_offset_k(vaddr);
313 p4d = fill_p4d(pgd, vaddr);
314 pud = fill_pud(p4d, vaddr);
315 return fill_pmd(pud, vaddr);
316 }
317
populate_extra_pte(unsigned long vaddr)318 pte_t * __init populate_extra_pte(unsigned long vaddr)
319 {
320 pmd_t *pmd;
321
322 pmd = populate_extra_pmd(vaddr);
323 return fill_pte(pmd, vaddr);
324 }
325
326 /*
327 * Create large page table mappings for a range of physical addresses.
328 */
__init_extra_mapping(unsigned long phys,unsigned long size,enum page_cache_mode cache)329 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
330 enum page_cache_mode cache)
331 {
332 pgd_t *pgd;
333 p4d_t *p4d;
334 pud_t *pud;
335 pmd_t *pmd;
336 pgprot_t prot;
337
338 pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
339 pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache)));
340 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
341 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
342 pgd = pgd_offset_k((unsigned long)__va(phys));
343 if (pgd_none(*pgd)) {
344 p4d = (p4d_t *) spp_getpage();
345 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE |
346 _PAGE_USER));
347 }
348 p4d = p4d_offset(pgd, (unsigned long)__va(phys));
349 if (p4d_none(*p4d)) {
350 pud = (pud_t *) spp_getpage();
351 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE |
352 _PAGE_USER));
353 }
354 pud = pud_offset(p4d, (unsigned long)__va(phys));
355 if (pud_none(*pud)) {
356 pmd = (pmd_t *) spp_getpage();
357 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
358 _PAGE_USER));
359 }
360 pmd = pmd_offset(pud, phys);
361 BUG_ON(!pmd_none(*pmd));
362 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
363 }
364 }
365
init_extra_mapping_wb(unsigned long phys,unsigned long size)366 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
367 {
368 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
369 }
370
init_extra_mapping_uc(unsigned long phys,unsigned long size)371 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
372 {
373 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
374 }
375
376 /*
377 * The head.S code sets up the kernel high mapping:
378 *
379 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
380 *
381 * phys_base holds the negative offset to the kernel, which is added
382 * to the compile time generated pmds. This results in invalid pmds up
383 * to the point where we hit the physaddr 0 mapping.
384 *
385 * We limit the mappings to the region from _text to _brk_end. _brk_end
386 * is rounded up to the 2MB boundary. This catches the invalid pmds as
387 * well, as they are located before _text:
388 */
cleanup_highmap(void)389 void __init cleanup_highmap(void)
390 {
391 unsigned long vaddr = __START_KERNEL_map;
392 unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
393 unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
394 pmd_t *pmd = level2_kernel_pgt;
395
396 /*
397 * Native path, max_pfn_mapped is not set yet.
398 * Xen has valid max_pfn_mapped set in
399 * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
400 */
401 if (max_pfn_mapped)
402 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
403
404 for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
405 if (pmd_none(*pmd))
406 continue;
407 if (vaddr < (unsigned long) _text || vaddr > end)
408 set_pmd(pmd, __pmd(0));
409 }
410 }
411
412 /*
413 * Create PTE level page table mapping for physical addresses.
414 * It returns the last physical address mapped.
415 */
416 static unsigned long __meminit
phys_pte_init(pte_t * pte_page,unsigned long paddr,unsigned long paddr_end,pgprot_t prot)417 phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
418 pgprot_t prot)
419 {
420 unsigned long pages = 0, paddr_next;
421 unsigned long paddr_last = paddr_end;
422 pte_t *pte;
423 int i;
424
425 pte = pte_page + pte_index(paddr);
426 i = pte_index(paddr);
427
428 for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
429 paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
430 if (paddr >= paddr_end) {
431 if (!after_bootmem &&
432 !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
433 E820_TYPE_RAM) &&
434 !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
435 E820_TYPE_RESERVED_KERN))
436 set_pte(pte, __pte(0));
437 continue;
438 }
439
440 /*
441 * We will re-use the existing mapping.
442 * Xen for example has some special requirements, like mapping
443 * pagetable pages as RO. So assume someone who pre-setup
444 * these mappings are more intelligent.
445 */
446 if (!pte_none(*pte)) {
447 if (!after_bootmem)
448 pages++;
449 continue;
450 }
451
452 if (0)
453 pr_info(" pte=%p addr=%lx pte=%016lx\n", pte, paddr,
454 pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
455 pages++;
456 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
457 paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
458 }
459
460 update_page_count(PG_LEVEL_4K, pages);
461
462 return paddr_last;
463 }
464
465 /*
466 * Create PMD level page table mapping for physical addresses. The virtual
467 * and physical address have to be aligned at this level.
468 * It returns the last physical address mapped.
469 */
470 static unsigned long __meminit
phys_pmd_init(pmd_t * pmd_page,unsigned long paddr,unsigned long paddr_end,unsigned long page_size_mask,pgprot_t prot)471 phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
472 unsigned long page_size_mask, pgprot_t prot)
473 {
474 unsigned long pages = 0, paddr_next;
475 unsigned long paddr_last = paddr_end;
476
477 int i = pmd_index(paddr);
478
479 for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
480 pmd_t *pmd = pmd_page + pmd_index(paddr);
481 pte_t *pte;
482 pgprot_t new_prot = prot;
483
484 paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
485 if (paddr >= paddr_end) {
486 if (!after_bootmem &&
487 !e820__mapped_any(paddr & PMD_MASK, paddr_next,
488 E820_TYPE_RAM) &&
489 !e820__mapped_any(paddr & PMD_MASK, paddr_next,
490 E820_TYPE_RESERVED_KERN))
491 set_pmd(pmd, __pmd(0));
492 continue;
493 }
494
495 if (!pmd_none(*pmd)) {
496 if (!pmd_large(*pmd)) {
497 spin_lock(&init_mm.page_table_lock);
498 pte = (pte_t *)pmd_page_vaddr(*pmd);
499 paddr_last = phys_pte_init(pte, paddr,
500 paddr_end, prot);
501 spin_unlock(&init_mm.page_table_lock);
502 continue;
503 }
504 /*
505 * If we are ok with PG_LEVEL_2M mapping, then we will
506 * use the existing mapping,
507 *
508 * Otherwise, we will split the large page mapping but
509 * use the same existing protection bits except for
510 * large page, so that we don't violate Intel's TLB
511 * Application note (317080) which says, while changing
512 * the page sizes, new and old translations should
513 * not differ with respect to page frame and
514 * attributes.
515 */
516 if (page_size_mask & (1 << PG_LEVEL_2M)) {
517 if (!after_bootmem)
518 pages++;
519 paddr_last = paddr_next;
520 continue;
521 }
522 new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
523 }
524
525 if (page_size_mask & (1<<PG_LEVEL_2M)) {
526 pages++;
527 spin_lock(&init_mm.page_table_lock);
528 set_pte((pte_t *)pmd,
529 pfn_pte((paddr & PMD_MASK) >> PAGE_SHIFT,
530 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
531 spin_unlock(&init_mm.page_table_lock);
532 paddr_last = paddr_next;
533 continue;
534 }
535
536 pte = alloc_low_page();
537 paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot);
538
539 spin_lock(&init_mm.page_table_lock);
540 pmd_populate_kernel(&init_mm, pmd, pte);
541 spin_unlock(&init_mm.page_table_lock);
542 }
543 update_page_count(PG_LEVEL_2M, pages);
544 return paddr_last;
545 }
546
547 /*
548 * Create PUD level page table mapping for physical addresses. The virtual
549 * and physical address do not have to be aligned at this level. KASLR can
550 * randomize virtual addresses up to this level.
551 * It returns the last physical address mapped.
552 */
553 static unsigned long __meminit
phys_pud_init(pud_t * pud_page,unsigned long paddr,unsigned long paddr_end,unsigned long page_size_mask)554 phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
555 unsigned long page_size_mask)
556 {
557 unsigned long pages = 0, paddr_next;
558 unsigned long paddr_last = paddr_end;
559 unsigned long vaddr = (unsigned long)__va(paddr);
560 int i = pud_index(vaddr);
561
562 for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
563 pud_t *pud;
564 pmd_t *pmd;
565 pgprot_t prot = PAGE_KERNEL;
566
567 vaddr = (unsigned long)__va(paddr);
568 pud = pud_page + pud_index(vaddr);
569 paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
570
571 if (paddr >= paddr_end) {
572 if (!after_bootmem &&
573 !e820__mapped_any(paddr & PUD_MASK, paddr_next,
574 E820_TYPE_RAM) &&
575 !e820__mapped_any(paddr & PUD_MASK, paddr_next,
576 E820_TYPE_RESERVED_KERN))
577 set_pud(pud, __pud(0));
578 continue;
579 }
580
581 if (!pud_none(*pud)) {
582 if (!pud_large(*pud)) {
583 pmd = pmd_offset(pud, 0);
584 paddr_last = phys_pmd_init(pmd, paddr,
585 paddr_end,
586 page_size_mask,
587 prot);
588 __flush_tlb_all();
589 continue;
590 }
591 /*
592 * If we are ok with PG_LEVEL_1G mapping, then we will
593 * use the existing mapping.
594 *
595 * Otherwise, we will split the gbpage mapping but use
596 * the same existing protection bits except for large
597 * page, so that we don't violate Intel's TLB
598 * Application note (317080) which says, while changing
599 * the page sizes, new and old translations should
600 * not differ with respect to page frame and
601 * attributes.
602 */
603 if (page_size_mask & (1 << PG_LEVEL_1G)) {
604 if (!after_bootmem)
605 pages++;
606 paddr_last = paddr_next;
607 continue;
608 }
609 prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
610 }
611
612 if (page_size_mask & (1<<PG_LEVEL_1G)) {
613 pages++;
614 spin_lock(&init_mm.page_table_lock);
615 set_pte((pte_t *)pud,
616 pfn_pte((paddr & PUD_MASK) >> PAGE_SHIFT,
617 PAGE_KERNEL_LARGE));
618 spin_unlock(&init_mm.page_table_lock);
619 paddr_last = paddr_next;
620 continue;
621 }
622
623 pmd = alloc_low_page();
624 paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
625 page_size_mask, prot);
626
627 spin_lock(&init_mm.page_table_lock);
628 pud_populate(&init_mm, pud, pmd);
629 spin_unlock(&init_mm.page_table_lock);
630 }
631 __flush_tlb_all();
632
633 update_page_count(PG_LEVEL_1G, pages);
634
635 return paddr_last;
636 }
637
638 static unsigned long __meminit
phys_p4d_init(p4d_t * p4d_page,unsigned long paddr,unsigned long paddr_end,unsigned long page_size_mask)639 phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
640 unsigned long page_size_mask)
641 {
642 unsigned long paddr_next, paddr_last = paddr_end;
643 unsigned long vaddr = (unsigned long)__va(paddr);
644 int i = p4d_index(vaddr);
645
646 if (!pgtable_l5_enabled())
647 return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end, page_size_mask);
648
649 for (; i < PTRS_PER_P4D; i++, paddr = paddr_next) {
650 p4d_t *p4d;
651 pud_t *pud;
652
653 vaddr = (unsigned long)__va(paddr);
654 p4d = p4d_page + p4d_index(vaddr);
655 paddr_next = (paddr & P4D_MASK) + P4D_SIZE;
656
657 if (paddr >= paddr_end) {
658 if (!after_bootmem &&
659 !e820__mapped_any(paddr & P4D_MASK, paddr_next,
660 E820_TYPE_RAM) &&
661 !e820__mapped_any(paddr & P4D_MASK, paddr_next,
662 E820_TYPE_RESERVED_KERN))
663 set_p4d(p4d, __p4d(0));
664 continue;
665 }
666
667 if (!p4d_none(*p4d)) {
668 pud = pud_offset(p4d, 0);
669 paddr_last = phys_pud_init(pud, paddr,
670 paddr_end,
671 page_size_mask);
672 __flush_tlb_all();
673 continue;
674 }
675
676 pud = alloc_low_page();
677 paddr_last = phys_pud_init(pud, paddr, paddr_end,
678 page_size_mask);
679
680 spin_lock(&init_mm.page_table_lock);
681 p4d_populate(&init_mm, p4d, pud);
682 spin_unlock(&init_mm.page_table_lock);
683 }
684 __flush_tlb_all();
685
686 return paddr_last;
687 }
688
689 /*
690 * Create page table mapping for the physical memory for specific physical
691 * addresses. The virtual and physical addresses have to be aligned on PMD level
692 * down. It returns the last physical address mapped.
693 */
694 unsigned long __meminit
kernel_physical_mapping_init(unsigned long paddr_start,unsigned long paddr_end,unsigned long page_size_mask)695 kernel_physical_mapping_init(unsigned long paddr_start,
696 unsigned long paddr_end,
697 unsigned long page_size_mask)
698 {
699 bool pgd_changed = false;
700 unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
701
702 paddr_last = paddr_end;
703 vaddr = (unsigned long)__va(paddr_start);
704 vaddr_end = (unsigned long)__va(paddr_end);
705 vaddr_start = vaddr;
706
707 for (; vaddr < vaddr_end; vaddr = vaddr_next) {
708 pgd_t *pgd = pgd_offset_k(vaddr);
709 p4d_t *p4d;
710
711 vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
712
713 if (pgd_val(*pgd)) {
714 p4d = (p4d_t *)pgd_page_vaddr(*pgd);
715 paddr_last = phys_p4d_init(p4d, __pa(vaddr),
716 __pa(vaddr_end),
717 page_size_mask);
718 continue;
719 }
720
721 p4d = alloc_low_page();
722 paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end),
723 page_size_mask);
724
725 spin_lock(&init_mm.page_table_lock);
726 if (pgtable_l5_enabled())
727 pgd_populate(&init_mm, pgd, p4d);
728 else
729 p4d_populate(&init_mm, p4d_offset(pgd, vaddr), (pud_t *) p4d);
730 spin_unlock(&init_mm.page_table_lock);
731 pgd_changed = true;
732 }
733
734 if (pgd_changed)
735 sync_global_pgds(vaddr_start, vaddr_end - 1);
736
737 __flush_tlb_all();
738
739 return paddr_last;
740 }
741
742 #ifndef CONFIG_NUMA
initmem_init(void)743 void __init initmem_init(void)
744 {
745 memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
746 }
747 #endif
748
paging_init(void)749 void __init paging_init(void)
750 {
751 sparse_memory_present_with_active_regions(MAX_NUMNODES);
752 sparse_init();
753
754 /*
755 * clear the default setting with node 0
756 * note: don't use nodes_clear here, that is really clearing when
757 * numa support is not compiled in, and later node_set_state
758 * will not set it back.
759 */
760 node_clear_state(0, N_MEMORY);
761 if (N_MEMORY != N_NORMAL_MEMORY)
762 node_clear_state(0, N_NORMAL_MEMORY);
763
764 zone_sizes_init();
765 }
766
767 /*
768 * Memory hotplug specific functions
769 */
770 #ifdef CONFIG_MEMORY_HOTPLUG
771 /*
772 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
773 * updating.
774 */
update_end_of_memory_vars(u64 start,u64 size)775 static void update_end_of_memory_vars(u64 start, u64 size)
776 {
777 unsigned long end_pfn = PFN_UP(start + size);
778
779 if (end_pfn > max_pfn) {
780 max_pfn = end_pfn;
781 max_low_pfn = end_pfn;
782 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
783 }
784 }
785
add_pages(int nid,unsigned long start_pfn,unsigned long nr_pages,struct vmem_altmap * altmap,bool want_memblock)786 int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages,
787 struct vmem_altmap *altmap, bool want_memblock)
788 {
789 int ret;
790
791 ret = __add_pages(nid, start_pfn, nr_pages, altmap, want_memblock);
792 WARN_ON_ONCE(ret);
793
794 /* update max_pfn, max_low_pfn and high_memory */
795 update_end_of_memory_vars(start_pfn << PAGE_SHIFT,
796 nr_pages << PAGE_SHIFT);
797
798 return ret;
799 }
800
arch_add_memory(int nid,u64 start,u64 size,struct vmem_altmap * altmap,bool want_memblock)801 int arch_add_memory(int nid, u64 start, u64 size, struct vmem_altmap *altmap,
802 bool want_memblock)
803 {
804 unsigned long start_pfn = start >> PAGE_SHIFT;
805 unsigned long nr_pages = size >> PAGE_SHIFT;
806
807 init_memory_mapping(start, start + size);
808
809 return add_pages(nid, start_pfn, nr_pages, altmap, want_memblock);
810 }
811
812 #define PAGE_INUSE 0xFD
813
free_pagetable(struct page * page,int order)814 static void __meminit free_pagetable(struct page *page, int order)
815 {
816 unsigned long magic;
817 unsigned int nr_pages = 1 << order;
818
819 /* bootmem page has reserved flag */
820 if (PageReserved(page)) {
821 __ClearPageReserved(page);
822
823 magic = (unsigned long)page->freelist;
824 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
825 while (nr_pages--)
826 put_page_bootmem(page++);
827 } else
828 while (nr_pages--)
829 free_reserved_page(page++);
830 } else
831 free_pages((unsigned long)page_address(page), order);
832 }
833
free_hugepage_table(struct page * page,struct vmem_altmap * altmap)834 static void __meminit free_hugepage_table(struct page *page,
835 struct vmem_altmap *altmap)
836 {
837 if (altmap)
838 vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE);
839 else
840 free_pagetable(page, get_order(PMD_SIZE));
841 }
842
free_pte_table(pte_t * pte_start,pmd_t * pmd)843 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
844 {
845 pte_t *pte;
846 int i;
847
848 for (i = 0; i < PTRS_PER_PTE; i++) {
849 pte = pte_start + i;
850 if (!pte_none(*pte))
851 return;
852 }
853
854 /* free a pte talbe */
855 free_pagetable(pmd_page(*pmd), 0);
856 spin_lock(&init_mm.page_table_lock);
857 pmd_clear(pmd);
858 spin_unlock(&init_mm.page_table_lock);
859 }
860
free_pmd_table(pmd_t * pmd_start,pud_t * pud)861 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
862 {
863 pmd_t *pmd;
864 int i;
865
866 for (i = 0; i < PTRS_PER_PMD; i++) {
867 pmd = pmd_start + i;
868 if (!pmd_none(*pmd))
869 return;
870 }
871
872 /* free a pmd talbe */
873 free_pagetable(pud_page(*pud), 0);
874 spin_lock(&init_mm.page_table_lock);
875 pud_clear(pud);
876 spin_unlock(&init_mm.page_table_lock);
877 }
878
free_pud_table(pud_t * pud_start,p4d_t * p4d)879 static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
880 {
881 pud_t *pud;
882 int i;
883
884 for (i = 0; i < PTRS_PER_PUD; i++) {
885 pud = pud_start + i;
886 if (!pud_none(*pud))
887 return;
888 }
889
890 /* free a pud talbe */
891 free_pagetable(p4d_page(*p4d), 0);
892 spin_lock(&init_mm.page_table_lock);
893 p4d_clear(p4d);
894 spin_unlock(&init_mm.page_table_lock);
895 }
896
897 static void __meminit
remove_pte_table(pte_t * pte_start,unsigned long addr,unsigned long end,bool direct)898 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
899 bool direct)
900 {
901 unsigned long next, pages = 0;
902 pte_t *pte;
903 void *page_addr;
904 phys_addr_t phys_addr;
905
906 pte = pte_start + pte_index(addr);
907 for (; addr < end; addr = next, pte++) {
908 next = (addr + PAGE_SIZE) & PAGE_MASK;
909 if (next > end)
910 next = end;
911
912 if (!pte_present(*pte))
913 continue;
914
915 /*
916 * We mapped [0,1G) memory as identity mapping when
917 * initializing, in arch/x86/kernel/head_64.S. These
918 * pagetables cannot be removed.
919 */
920 phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
921 if (phys_addr < (phys_addr_t)0x40000000)
922 return;
923
924 if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
925 /*
926 * Do not free direct mapping pages since they were
927 * freed when offlining, or simplely not in use.
928 */
929 if (!direct)
930 free_pagetable(pte_page(*pte), 0);
931
932 spin_lock(&init_mm.page_table_lock);
933 pte_clear(&init_mm, addr, pte);
934 spin_unlock(&init_mm.page_table_lock);
935
936 /* For non-direct mapping, pages means nothing. */
937 pages++;
938 } else {
939 /*
940 * If we are here, we are freeing vmemmap pages since
941 * direct mapped memory ranges to be freed are aligned.
942 *
943 * If we are not removing the whole page, it means
944 * other page structs in this page are being used and
945 * we canot remove them. So fill the unused page_structs
946 * with 0xFD, and remove the page when it is wholly
947 * filled with 0xFD.
948 */
949 memset((void *)addr, PAGE_INUSE, next - addr);
950
951 page_addr = page_address(pte_page(*pte));
952 if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
953 free_pagetable(pte_page(*pte), 0);
954
955 spin_lock(&init_mm.page_table_lock);
956 pte_clear(&init_mm, addr, pte);
957 spin_unlock(&init_mm.page_table_lock);
958 }
959 }
960 }
961
962 /* Call free_pte_table() in remove_pmd_table(). */
963 flush_tlb_all();
964 if (direct)
965 update_page_count(PG_LEVEL_4K, -pages);
966 }
967
968 static void __meminit
remove_pmd_table(pmd_t * pmd_start,unsigned long addr,unsigned long end,bool direct,struct vmem_altmap * altmap)969 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
970 bool direct, struct vmem_altmap *altmap)
971 {
972 unsigned long next, pages = 0;
973 pte_t *pte_base;
974 pmd_t *pmd;
975 void *page_addr;
976
977 pmd = pmd_start + pmd_index(addr);
978 for (; addr < end; addr = next, pmd++) {
979 next = pmd_addr_end(addr, end);
980
981 if (!pmd_present(*pmd))
982 continue;
983
984 if (pmd_large(*pmd)) {
985 if (IS_ALIGNED(addr, PMD_SIZE) &&
986 IS_ALIGNED(next, PMD_SIZE)) {
987 if (!direct)
988 free_hugepage_table(pmd_page(*pmd),
989 altmap);
990
991 spin_lock(&init_mm.page_table_lock);
992 pmd_clear(pmd);
993 spin_unlock(&init_mm.page_table_lock);
994 pages++;
995 } else {
996 /* If here, we are freeing vmemmap pages. */
997 memset((void *)addr, PAGE_INUSE, next - addr);
998
999 page_addr = page_address(pmd_page(*pmd));
1000 if (!memchr_inv(page_addr, PAGE_INUSE,
1001 PMD_SIZE)) {
1002 free_hugepage_table(pmd_page(*pmd),
1003 altmap);
1004
1005 spin_lock(&init_mm.page_table_lock);
1006 pmd_clear(pmd);
1007 spin_unlock(&init_mm.page_table_lock);
1008 }
1009 }
1010
1011 continue;
1012 }
1013
1014 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
1015 remove_pte_table(pte_base, addr, next, direct);
1016 free_pte_table(pte_base, pmd);
1017 }
1018
1019 /* Call free_pmd_table() in remove_pud_table(). */
1020 if (direct)
1021 update_page_count(PG_LEVEL_2M, -pages);
1022 }
1023
1024 static void __meminit
remove_pud_table(pud_t * pud_start,unsigned long addr,unsigned long end,struct vmem_altmap * altmap,bool direct)1025 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
1026 struct vmem_altmap *altmap, bool direct)
1027 {
1028 unsigned long next, pages = 0;
1029 pmd_t *pmd_base;
1030 pud_t *pud;
1031 void *page_addr;
1032
1033 pud = pud_start + pud_index(addr);
1034 for (; addr < end; addr = next, pud++) {
1035 next = pud_addr_end(addr, end);
1036
1037 if (!pud_present(*pud))
1038 continue;
1039
1040 if (pud_large(*pud)) {
1041 if (IS_ALIGNED(addr, PUD_SIZE) &&
1042 IS_ALIGNED(next, PUD_SIZE)) {
1043 if (!direct)
1044 free_pagetable(pud_page(*pud),
1045 get_order(PUD_SIZE));
1046
1047 spin_lock(&init_mm.page_table_lock);
1048 pud_clear(pud);
1049 spin_unlock(&init_mm.page_table_lock);
1050 pages++;
1051 } else {
1052 /* If here, we are freeing vmemmap pages. */
1053 memset((void *)addr, PAGE_INUSE, next - addr);
1054
1055 page_addr = page_address(pud_page(*pud));
1056 if (!memchr_inv(page_addr, PAGE_INUSE,
1057 PUD_SIZE)) {
1058 free_pagetable(pud_page(*pud),
1059 get_order(PUD_SIZE));
1060
1061 spin_lock(&init_mm.page_table_lock);
1062 pud_clear(pud);
1063 spin_unlock(&init_mm.page_table_lock);
1064 }
1065 }
1066
1067 continue;
1068 }
1069
1070 pmd_base = pmd_offset(pud, 0);
1071 remove_pmd_table(pmd_base, addr, next, direct, altmap);
1072 free_pmd_table(pmd_base, pud);
1073 }
1074
1075 if (direct)
1076 update_page_count(PG_LEVEL_1G, -pages);
1077 }
1078
1079 static void __meminit
remove_p4d_table(p4d_t * p4d_start,unsigned long addr,unsigned long end,struct vmem_altmap * altmap,bool direct)1080 remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end,
1081 struct vmem_altmap *altmap, bool direct)
1082 {
1083 unsigned long next, pages = 0;
1084 pud_t *pud_base;
1085 p4d_t *p4d;
1086
1087 p4d = p4d_start + p4d_index(addr);
1088 for (; addr < end; addr = next, p4d++) {
1089 next = p4d_addr_end(addr, end);
1090
1091 if (!p4d_present(*p4d))
1092 continue;
1093
1094 BUILD_BUG_ON(p4d_large(*p4d));
1095
1096 pud_base = pud_offset(p4d, 0);
1097 remove_pud_table(pud_base, addr, next, altmap, direct);
1098 /*
1099 * For 4-level page tables we do not want to free PUDs, but in the
1100 * 5-level case we should free them. This code will have to change
1101 * to adapt for boot-time switching between 4 and 5 level page tables.
1102 */
1103 if (pgtable_l5_enabled())
1104 free_pud_table(pud_base, p4d);
1105 }
1106
1107 if (direct)
1108 update_page_count(PG_LEVEL_512G, -pages);
1109 }
1110
1111 /* start and end are both virtual address. */
1112 static void __meminit
remove_pagetable(unsigned long start,unsigned long end,bool direct,struct vmem_altmap * altmap)1113 remove_pagetable(unsigned long start, unsigned long end, bool direct,
1114 struct vmem_altmap *altmap)
1115 {
1116 unsigned long next;
1117 unsigned long addr;
1118 pgd_t *pgd;
1119 p4d_t *p4d;
1120
1121 for (addr = start; addr < end; addr = next) {
1122 next = pgd_addr_end(addr, end);
1123
1124 pgd = pgd_offset_k(addr);
1125 if (!pgd_present(*pgd))
1126 continue;
1127
1128 p4d = p4d_offset(pgd, 0);
1129 remove_p4d_table(p4d, addr, next, altmap, direct);
1130 }
1131
1132 flush_tlb_all();
1133 }
1134
vmemmap_free(unsigned long start,unsigned long end,struct vmem_altmap * altmap)1135 void __ref vmemmap_free(unsigned long start, unsigned long end,
1136 struct vmem_altmap *altmap)
1137 {
1138 remove_pagetable(start, end, false, altmap);
1139 }
1140
1141 #ifdef CONFIG_MEMORY_HOTREMOVE
1142 static void __meminit
kernel_physical_mapping_remove(unsigned long start,unsigned long end)1143 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1144 {
1145 start = (unsigned long)__va(start);
1146 end = (unsigned long)__va(end);
1147
1148 remove_pagetable(start, end, true, NULL);
1149 }
1150
arch_remove_memory(u64 start,u64 size,struct vmem_altmap * altmap)1151 int __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
1152 {
1153 unsigned long start_pfn = start >> PAGE_SHIFT;
1154 unsigned long nr_pages = size >> PAGE_SHIFT;
1155 struct page *page = pfn_to_page(start_pfn);
1156 struct zone *zone;
1157 int ret;
1158
1159 /* With altmap the first mapped page is offset from @start */
1160 if (altmap)
1161 page += vmem_altmap_offset(altmap);
1162 zone = page_zone(page);
1163 ret = __remove_pages(zone, start_pfn, nr_pages, altmap);
1164 WARN_ON_ONCE(ret);
1165 kernel_physical_mapping_remove(start, start + size);
1166
1167 return ret;
1168 }
1169 #endif
1170 #endif /* CONFIG_MEMORY_HOTPLUG */
1171
1172 static struct kcore_list kcore_vsyscall;
1173
register_page_bootmem_info(void)1174 static void __init register_page_bootmem_info(void)
1175 {
1176 #ifdef CONFIG_NUMA
1177 int i;
1178
1179 for_each_online_node(i)
1180 register_page_bootmem_info_node(NODE_DATA(i));
1181 #endif
1182 }
1183
mem_init(void)1184 void __init mem_init(void)
1185 {
1186 pci_iommu_alloc();
1187
1188 /* clear_bss() already clear the empty_zero_page */
1189
1190 /* this will put all memory onto the freelists */
1191 free_all_bootmem();
1192 after_bootmem = 1;
1193 x86_init.hyper.init_after_bootmem();
1194
1195 /*
1196 * Must be done after boot memory is put on freelist, because here we
1197 * might set fields in deferred struct pages that have not yet been
1198 * initialized, and free_all_bootmem() initializes all the reserved
1199 * deferred pages for us.
1200 */
1201 register_page_bootmem_info();
1202
1203 /* Register memory areas for /proc/kcore */
1204 if (get_gate_vma(&init_mm))
1205 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER);
1206
1207 mem_init_print_info(NULL);
1208 }
1209
1210 int kernel_set_to_readonly;
1211
set_kernel_text_rw(void)1212 void set_kernel_text_rw(void)
1213 {
1214 unsigned long start = PFN_ALIGN(_text);
1215 unsigned long end = PFN_ALIGN(__stop___ex_table);
1216
1217 if (!kernel_set_to_readonly)
1218 return;
1219
1220 pr_debug("Set kernel text: %lx - %lx for read write\n",
1221 start, end);
1222
1223 /*
1224 * Make the kernel identity mapping for text RW. Kernel text
1225 * mapping will always be RO. Refer to the comment in
1226 * static_protections() in pageattr.c
1227 */
1228 set_memory_rw(start, (end - start) >> PAGE_SHIFT);
1229 }
1230
set_kernel_text_ro(void)1231 void set_kernel_text_ro(void)
1232 {
1233 unsigned long start = PFN_ALIGN(_text);
1234 unsigned long end = PFN_ALIGN(__stop___ex_table);
1235
1236 if (!kernel_set_to_readonly)
1237 return;
1238
1239 pr_debug("Set kernel text: %lx - %lx for read only\n",
1240 start, end);
1241
1242 /*
1243 * Set the kernel identity mapping for text RO.
1244 */
1245 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1246 }
1247
mark_rodata_ro(void)1248 void mark_rodata_ro(void)
1249 {
1250 unsigned long start = PFN_ALIGN(_text);
1251 unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1252 unsigned long end = (unsigned long) &__end_rodata_hpage_align;
1253 unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
1254 unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
1255 unsigned long all_end;
1256
1257 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1258 (end - start) >> 10);
1259 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1260
1261 kernel_set_to_readonly = 1;
1262
1263 /*
1264 * The rodata/data/bss/brk section (but not the kernel text!)
1265 * should also be not-executable.
1266 *
1267 * We align all_end to PMD_SIZE because the existing mapping
1268 * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1269 * split the PMD and the reminder between _brk_end and the end
1270 * of the PMD will remain mapped executable.
1271 *
1272 * Any PMD which was setup after the one which covers _brk_end
1273 * has been zapped already via cleanup_highmem().
1274 */
1275 all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1276 set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1277
1278 #ifdef CONFIG_CPA_DEBUG
1279 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1280 set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1281
1282 printk(KERN_INFO "Testing CPA: again\n");
1283 set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1284 #endif
1285
1286 free_kernel_image_pages((void *)text_end, (void *)rodata_start);
1287 free_kernel_image_pages((void *)rodata_end, (void *)_sdata);
1288
1289 debug_checkwx();
1290 }
1291
kern_addr_valid(unsigned long addr)1292 int kern_addr_valid(unsigned long addr)
1293 {
1294 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1295 pgd_t *pgd;
1296 p4d_t *p4d;
1297 pud_t *pud;
1298 pmd_t *pmd;
1299 pte_t *pte;
1300
1301 if (above != 0 && above != -1UL)
1302 return 0;
1303
1304 pgd = pgd_offset_k(addr);
1305 if (pgd_none(*pgd))
1306 return 0;
1307
1308 p4d = p4d_offset(pgd, addr);
1309 if (p4d_none(*p4d))
1310 return 0;
1311
1312 pud = pud_offset(p4d, addr);
1313 if (pud_none(*pud))
1314 return 0;
1315
1316 if (pud_large(*pud))
1317 return pfn_valid(pud_pfn(*pud));
1318
1319 pmd = pmd_offset(pud, addr);
1320 if (pmd_none(*pmd))
1321 return 0;
1322
1323 if (pmd_large(*pmd))
1324 return pfn_valid(pmd_pfn(*pmd));
1325
1326 pte = pte_offset_kernel(pmd, addr);
1327 if (pte_none(*pte))
1328 return 0;
1329
1330 return pfn_valid(pte_pfn(*pte));
1331 }
1332
1333 /*
1334 * Block size is the minimum amount of memory which can be hotplugged or
1335 * hotremoved. It must be power of two and must be equal or larger than
1336 * MIN_MEMORY_BLOCK_SIZE.
1337 */
1338 #define MAX_BLOCK_SIZE (2UL << 30)
1339
1340 /* Amount of ram needed to start using large blocks */
1341 #define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30)
1342
1343 /* Adjustable memory block size */
1344 static unsigned long set_memory_block_size;
set_memory_block_size_order(unsigned int order)1345 int __init set_memory_block_size_order(unsigned int order)
1346 {
1347 unsigned long size = 1UL << order;
1348
1349 if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE)
1350 return -EINVAL;
1351
1352 set_memory_block_size = size;
1353 return 0;
1354 }
1355
probe_memory_block_size(void)1356 static unsigned long probe_memory_block_size(void)
1357 {
1358 unsigned long boot_mem_end = max_pfn << PAGE_SHIFT;
1359 unsigned long bz;
1360
1361 /* If memory block size has been set, then use it */
1362 bz = set_memory_block_size;
1363 if (bz)
1364 goto done;
1365
1366 /* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */
1367 if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) {
1368 bz = MIN_MEMORY_BLOCK_SIZE;
1369 goto done;
1370 }
1371
1372 /* Find the largest allowed block size that aligns to memory end */
1373 for (bz = MAX_BLOCK_SIZE; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) {
1374 if (IS_ALIGNED(boot_mem_end, bz))
1375 break;
1376 }
1377 done:
1378 pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1379
1380 return bz;
1381 }
1382
1383 static unsigned long memory_block_size_probed;
memory_block_size_bytes(void)1384 unsigned long memory_block_size_bytes(void)
1385 {
1386 if (!memory_block_size_probed)
1387 memory_block_size_probed = probe_memory_block_size();
1388
1389 return memory_block_size_probed;
1390 }
1391
1392 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1393 /*
1394 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1395 */
1396 static long __meminitdata addr_start, addr_end;
1397 static void __meminitdata *p_start, *p_end;
1398 static int __meminitdata node_start;
1399
vmemmap_populate_hugepages(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap)1400 static int __meminit vmemmap_populate_hugepages(unsigned long start,
1401 unsigned long end, int node, struct vmem_altmap *altmap)
1402 {
1403 unsigned long addr;
1404 unsigned long next;
1405 pgd_t *pgd;
1406 p4d_t *p4d;
1407 pud_t *pud;
1408 pmd_t *pmd;
1409
1410 for (addr = start; addr < end; addr = next) {
1411 next = pmd_addr_end(addr, end);
1412
1413 pgd = vmemmap_pgd_populate(addr, node);
1414 if (!pgd)
1415 return -ENOMEM;
1416
1417 p4d = vmemmap_p4d_populate(pgd, addr, node);
1418 if (!p4d)
1419 return -ENOMEM;
1420
1421 pud = vmemmap_pud_populate(p4d, addr, node);
1422 if (!pud)
1423 return -ENOMEM;
1424
1425 pmd = pmd_offset(pud, addr);
1426 if (pmd_none(*pmd)) {
1427 void *p;
1428
1429 if (altmap)
1430 p = altmap_alloc_block_buf(PMD_SIZE, altmap);
1431 else
1432 p = vmemmap_alloc_block_buf(PMD_SIZE, node);
1433 if (p) {
1434 pte_t entry;
1435
1436 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1437 PAGE_KERNEL_LARGE);
1438 set_pmd(pmd, __pmd(pte_val(entry)));
1439
1440 /* check to see if we have contiguous blocks */
1441 if (p_end != p || node_start != node) {
1442 if (p_start)
1443 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1444 addr_start, addr_end-1, p_start, p_end-1, node_start);
1445 addr_start = addr;
1446 node_start = node;
1447 p_start = p;
1448 }
1449
1450 addr_end = addr + PMD_SIZE;
1451 p_end = p + PMD_SIZE;
1452 continue;
1453 } else if (altmap)
1454 return -ENOMEM; /* no fallback */
1455 } else if (pmd_large(*pmd)) {
1456 vmemmap_verify((pte_t *)pmd, node, addr, next);
1457 continue;
1458 }
1459 if (vmemmap_populate_basepages(addr, next, node))
1460 return -ENOMEM;
1461 }
1462 return 0;
1463 }
1464
vmemmap_populate(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap)1465 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1466 struct vmem_altmap *altmap)
1467 {
1468 int err;
1469
1470 if (boot_cpu_has(X86_FEATURE_PSE))
1471 err = vmemmap_populate_hugepages(start, end, node, altmap);
1472 else if (altmap) {
1473 pr_err_once("%s: no cpu support for altmap allocations\n",
1474 __func__);
1475 err = -ENOMEM;
1476 } else
1477 err = vmemmap_populate_basepages(start, end, node);
1478 if (!err)
1479 sync_global_pgds(start, end - 1);
1480 return err;
1481 }
1482
1483 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
register_page_bootmem_memmap(unsigned long section_nr,struct page * start_page,unsigned long nr_pages)1484 void register_page_bootmem_memmap(unsigned long section_nr,
1485 struct page *start_page, unsigned long nr_pages)
1486 {
1487 unsigned long addr = (unsigned long)start_page;
1488 unsigned long end = (unsigned long)(start_page + nr_pages);
1489 unsigned long next;
1490 pgd_t *pgd;
1491 p4d_t *p4d;
1492 pud_t *pud;
1493 pmd_t *pmd;
1494 unsigned int nr_pmd_pages;
1495 struct page *page;
1496
1497 for (; addr < end; addr = next) {
1498 pte_t *pte = NULL;
1499
1500 pgd = pgd_offset_k(addr);
1501 if (pgd_none(*pgd)) {
1502 next = (addr + PAGE_SIZE) & PAGE_MASK;
1503 continue;
1504 }
1505 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1506
1507 p4d = p4d_offset(pgd, addr);
1508 if (p4d_none(*p4d)) {
1509 next = (addr + PAGE_SIZE) & PAGE_MASK;
1510 continue;
1511 }
1512 get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO);
1513
1514 pud = pud_offset(p4d, addr);
1515 if (pud_none(*pud)) {
1516 next = (addr + PAGE_SIZE) & PAGE_MASK;
1517 continue;
1518 }
1519 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1520
1521 if (!boot_cpu_has(X86_FEATURE_PSE)) {
1522 next = (addr + PAGE_SIZE) & PAGE_MASK;
1523 pmd = pmd_offset(pud, addr);
1524 if (pmd_none(*pmd))
1525 continue;
1526 get_page_bootmem(section_nr, pmd_page(*pmd),
1527 MIX_SECTION_INFO);
1528
1529 pte = pte_offset_kernel(pmd, addr);
1530 if (pte_none(*pte))
1531 continue;
1532 get_page_bootmem(section_nr, pte_page(*pte),
1533 SECTION_INFO);
1534 } else {
1535 next = pmd_addr_end(addr, end);
1536
1537 pmd = pmd_offset(pud, addr);
1538 if (pmd_none(*pmd))
1539 continue;
1540
1541 nr_pmd_pages = 1 << get_order(PMD_SIZE);
1542 page = pmd_page(*pmd);
1543 while (nr_pmd_pages--)
1544 get_page_bootmem(section_nr, page++,
1545 SECTION_INFO);
1546 }
1547 }
1548 }
1549 #endif
1550
vmemmap_populate_print_last(void)1551 void __meminit vmemmap_populate_print_last(void)
1552 {
1553 if (p_start) {
1554 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1555 addr_start, addr_end-1, p_start, p_end-1, node_start);
1556 p_start = NULL;
1557 p_end = NULL;
1558 node_start = 0;
1559 }
1560 }
1561 #endif
1562