1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20 
21 /*
22  * We need the mmu code to access both 32-bit and 64-bit guest ptes,
23  * so the code in this file is compiled twice, once per pte size.
24  */
25 
26 #if PTTYPE == 64
27 	#define pt_element_t u64
28 	#define guest_walker guest_walker64
29 	#define FNAME(name) paging##64_##name
30 	#define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
31 	#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
32 	#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
33 	#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
34 	#define PT_LEVEL_BITS PT64_LEVEL_BITS
35 	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
36 	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
37 	#define PT_HAVE_ACCESSED_DIRTY(mmu) true
38 	#ifdef CONFIG_X86_64
39 	#define PT_MAX_FULL_LEVELS 4
40 	#define CMPXCHG cmpxchg
41 	#else
42 	#define CMPXCHG cmpxchg64
43 	#define PT_MAX_FULL_LEVELS 2
44 	#endif
45 #elif PTTYPE == 32
46 	#define pt_element_t u32
47 	#define guest_walker guest_walker32
48 	#define FNAME(name) paging##32_##name
49 	#define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
50 	#define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
51 	#define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
52 	#define PT_INDEX(addr, level) PT32_INDEX(addr, level)
53 	#define PT_LEVEL_BITS PT32_LEVEL_BITS
54 	#define PT_MAX_FULL_LEVELS 2
55 	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
56 	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
57 	#define PT_HAVE_ACCESSED_DIRTY(mmu) true
58 	#define CMPXCHG cmpxchg
59 #elif PTTYPE == PTTYPE_EPT
60 	#define pt_element_t u64
61 	#define guest_walker guest_walkerEPT
62 	#define FNAME(name) ept_##name
63 	#define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
64 	#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
65 	#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
66 	#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
67 	#define PT_LEVEL_BITS PT64_LEVEL_BITS
68 	#define PT_GUEST_DIRTY_SHIFT 9
69 	#define PT_GUEST_ACCESSED_SHIFT 8
70 	#define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad)
71 	#define CMPXCHG cmpxchg64
72 	#define PT_MAX_FULL_LEVELS 4
73 #else
74 	#error Invalid PTTYPE value
75 #endif
76 
77 #define PT_GUEST_DIRTY_MASK    (1 << PT_GUEST_DIRTY_SHIFT)
78 #define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)
79 
80 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
81 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
82 
83 /*
84  * The guest_walker structure emulates the behavior of the hardware page
85  * table walker.
86  */
87 struct guest_walker {
88 	int level;
89 	unsigned max_level;
90 	gfn_t table_gfn[PT_MAX_FULL_LEVELS];
91 	pt_element_t ptes[PT_MAX_FULL_LEVELS];
92 	pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
93 	gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
94 	pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
95 	bool pte_writable[PT_MAX_FULL_LEVELS];
96 	unsigned pt_access;
97 	unsigned pte_access;
98 	gfn_t gfn;
99 	struct x86_exception fault;
100 };
101 
gpte_to_gfn_lvl(pt_element_t gpte,int lvl)102 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
103 {
104 	return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
105 }
106 
FNAME(protect_clean_gpte)107 static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
108 					     unsigned gpte)
109 {
110 	unsigned mask;
111 
112 	/* dirty bit is not supported, so no need to track it */
113 	if (!PT_HAVE_ACCESSED_DIRTY(mmu))
114 		return;
115 
116 	BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
117 
118 	mask = (unsigned)~ACC_WRITE_MASK;
119 	/* Allow write access to dirty gptes */
120 	mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
121 		PT_WRITABLE_MASK;
122 	*access &= mask;
123 }
124 
FNAME(is_present_gpte)125 static inline int FNAME(is_present_gpte)(unsigned long pte)
126 {
127 #if PTTYPE != PTTYPE_EPT
128 	return pte & PT_PRESENT_MASK;
129 #else
130 	return pte & 7;
131 #endif
132 }
133 
FNAME(cmpxchg_gpte)134 static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
135 			       pt_element_t __user *ptep_user, unsigned index,
136 			       pt_element_t orig_pte, pt_element_t new_pte)
137 {
138 	int npages;
139 	pt_element_t ret;
140 	pt_element_t *table;
141 	struct page *page;
142 
143 	npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page);
144 	/* Check if the user is doing something meaningless. */
145 	if (unlikely(npages != 1))
146 		return -EFAULT;
147 
148 	table = kmap_atomic(page);
149 	ret = CMPXCHG(&table[index], orig_pte, new_pte);
150 	kunmap_atomic(table);
151 
152 	kvm_release_page_dirty(page);
153 
154 	return (ret != orig_pte);
155 }
156 
FNAME(prefetch_invalid_gpte)157 static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
158 				  struct kvm_mmu_page *sp, u64 *spte,
159 				  u64 gpte)
160 {
161 	if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
162 		goto no_present;
163 
164 	if (!FNAME(is_present_gpte)(gpte))
165 		goto no_present;
166 
167 	/* if accessed bit is not supported prefetch non accessed gpte */
168 	if (PT_HAVE_ACCESSED_DIRTY(&vcpu->arch.mmu) && !(gpte & PT_GUEST_ACCESSED_MASK))
169 		goto no_present;
170 
171 	return false;
172 
173 no_present:
174 	drop_spte(vcpu->kvm, spte);
175 	return true;
176 }
177 
178 /*
179  * For PTTYPE_EPT, a page table can be executable but not readable
180  * on supported processors. Therefore, set_spte does not automatically
181  * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
182  * to signify readability since it isn't used in the EPT case
183  */
FNAME(gpte_access)184 static inline unsigned FNAME(gpte_access)(u64 gpte)
185 {
186 	unsigned access;
187 #if PTTYPE == PTTYPE_EPT
188 	access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
189 		((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
190 		((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
191 #else
192 	BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
193 	BUILD_BUG_ON(ACC_EXEC_MASK != 1);
194 	access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
195 	/* Combine NX with P (which is set here) to get ACC_EXEC_MASK.  */
196 	access ^= (gpte >> PT64_NX_SHIFT);
197 #endif
198 
199 	return access;
200 }
201 
FNAME(update_accessed_dirty_bits)202 static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
203 					     struct kvm_mmu *mmu,
204 					     struct guest_walker *walker,
205 					     int write_fault)
206 {
207 	unsigned level, index;
208 	pt_element_t pte, orig_pte;
209 	pt_element_t __user *ptep_user;
210 	gfn_t table_gfn;
211 	int ret;
212 
213 	/* dirty/accessed bits are not supported, so no need to update them */
214 	if (!PT_HAVE_ACCESSED_DIRTY(mmu))
215 		return 0;
216 
217 	for (level = walker->max_level; level >= walker->level; --level) {
218 		pte = orig_pte = walker->ptes[level - 1];
219 		table_gfn = walker->table_gfn[level - 1];
220 		ptep_user = walker->ptep_user[level - 1];
221 		index = offset_in_page(ptep_user) / sizeof(pt_element_t);
222 		if (!(pte & PT_GUEST_ACCESSED_MASK)) {
223 			trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
224 			pte |= PT_GUEST_ACCESSED_MASK;
225 		}
226 		if (level == walker->level && write_fault &&
227 				!(pte & PT_GUEST_DIRTY_MASK)) {
228 			trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
229 #if PTTYPE == PTTYPE_EPT
230 			if (kvm_arch_write_log_dirty(vcpu))
231 				return -EINVAL;
232 #endif
233 			pte |= PT_GUEST_DIRTY_MASK;
234 		}
235 		if (pte == orig_pte)
236 			continue;
237 
238 		/*
239 		 * If the slot is read-only, simply do not process the accessed
240 		 * and dirty bits.  This is the correct thing to do if the slot
241 		 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
242 		 * are only supported if the accessed and dirty bits are already
243 		 * set in the ROM (so that MMIO writes are never needed).
244 		 *
245 		 * Note that NPT does not allow this at all and faults, since
246 		 * it always wants nested page table entries for the guest
247 		 * page tables to be writable.  And EPT works but will simply
248 		 * overwrite the read-only memory to set the accessed and dirty
249 		 * bits.
250 		 */
251 		if (unlikely(!walker->pte_writable[level - 1]))
252 			continue;
253 
254 		ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
255 		if (ret)
256 			return ret;
257 
258 		kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
259 		walker->ptes[level - 1] = pte;
260 	}
261 	return 0;
262 }
263 
FNAME(gpte_pkeys)264 static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
265 {
266 	unsigned pkeys = 0;
267 #if PTTYPE == 64
268 	pte_t pte = {.pte = gpte};
269 
270 	pkeys = pte_flags_pkey(pte_flags(pte));
271 #endif
272 	return pkeys;
273 }
274 
275 /*
276  * Fetch a guest pte for a guest virtual address
277  */
FNAME(walk_addr_generic)278 static int FNAME(walk_addr_generic)(struct guest_walker *walker,
279 				    struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
280 				    gva_t addr, u32 access)
281 {
282 	int ret;
283 	pt_element_t pte;
284 	pt_element_t __user *uninitialized_var(ptep_user);
285 	gfn_t table_gfn;
286 	u64 pt_access, pte_access;
287 	unsigned index, accessed_dirty, pte_pkey;
288 	unsigned nested_access;
289 	gpa_t pte_gpa;
290 	bool have_ad;
291 	int offset;
292 	u64 walk_nx_mask = 0;
293 	const int write_fault = access & PFERR_WRITE_MASK;
294 	const int user_fault  = access & PFERR_USER_MASK;
295 	const int fetch_fault = access & PFERR_FETCH_MASK;
296 	u16 errcode = 0;
297 	gpa_t real_gpa;
298 	gfn_t gfn;
299 
300 	trace_kvm_mmu_pagetable_walk(addr, access);
301 retry_walk:
302 	walker->level = mmu->root_level;
303 	pte           = mmu->get_cr3(vcpu);
304 	have_ad       = PT_HAVE_ACCESSED_DIRTY(mmu);
305 
306 #if PTTYPE == 64
307 	walk_nx_mask = 1ULL << PT64_NX_SHIFT;
308 	if (walker->level == PT32E_ROOT_LEVEL) {
309 		pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
310 		trace_kvm_mmu_paging_element(pte, walker->level);
311 		if (!FNAME(is_present_gpte)(pte))
312 			goto error;
313 		--walker->level;
314 	}
315 #endif
316 	walker->max_level = walker->level;
317 	ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
318 
319 	/*
320 	 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
321 	 * by the MOV to CR instruction are treated as reads and do not cause the
322 	 * processor to set the dirty flag in any EPT paging-structure entry.
323 	 */
324 	nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;
325 
326 	pte_access = ~0;
327 	++walker->level;
328 
329 	do {
330 		gfn_t real_gfn;
331 		unsigned long host_addr;
332 
333 		pt_access = pte_access;
334 		--walker->level;
335 
336 		index = PT_INDEX(addr, walker->level);
337 		table_gfn = gpte_to_gfn(pte);
338 		offset    = index * sizeof(pt_element_t);
339 		pte_gpa   = gfn_to_gpa(table_gfn) + offset;
340 
341 		BUG_ON(walker->level < 1);
342 		walker->table_gfn[walker->level - 1] = table_gfn;
343 		walker->pte_gpa[walker->level - 1] = pte_gpa;
344 
345 		real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
346 					      nested_access,
347 					      &walker->fault);
348 
349 		/*
350 		 * FIXME: This can happen if emulation (for of an INS/OUTS
351 		 * instruction) triggers a nested page fault.  The exit
352 		 * qualification / exit info field will incorrectly have
353 		 * "guest page access" as the nested page fault's cause,
354 		 * instead of "guest page structure access".  To fix this,
355 		 * the x86_exception struct should be augmented with enough
356 		 * information to fix the exit_qualification or exit_info_1
357 		 * fields.
358 		 */
359 		if (unlikely(real_gfn == UNMAPPED_GVA))
360 			return 0;
361 
362 		real_gfn = gpa_to_gfn(real_gfn);
363 
364 		host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, real_gfn,
365 					    &walker->pte_writable[walker->level - 1]);
366 		if (unlikely(kvm_is_error_hva(host_addr)))
367 			goto error;
368 
369 		ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
370 		if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
371 			goto error;
372 		walker->ptep_user[walker->level - 1] = ptep_user;
373 
374 		trace_kvm_mmu_paging_element(pte, walker->level);
375 
376 		/*
377 		 * Inverting the NX it lets us AND it like other
378 		 * permission bits.
379 		 */
380 		pte_access = pt_access & (pte ^ walk_nx_mask);
381 
382 		if (unlikely(!FNAME(is_present_gpte)(pte)))
383 			goto error;
384 
385 		if (unlikely(is_rsvd_bits_set(mmu, pte, walker->level))) {
386 			errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
387 			goto error;
388 		}
389 
390 		walker->ptes[walker->level - 1] = pte;
391 	} while (!is_last_gpte(mmu, walker->level, pte));
392 
393 	pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
394 	accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;
395 
396 	/* Convert to ACC_*_MASK flags for struct guest_walker.  */
397 	walker->pt_access = FNAME(gpte_access)(pt_access ^ walk_nx_mask);
398 	walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask);
399 	errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
400 	if (unlikely(errcode))
401 		goto error;
402 
403 	gfn = gpte_to_gfn_lvl(pte, walker->level);
404 	gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
405 
406 	if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
407 		gfn += pse36_gfn_delta(pte);
408 
409 	real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault);
410 	if (real_gpa == UNMAPPED_GVA)
411 		return 0;
412 
413 	walker->gfn = real_gpa >> PAGE_SHIFT;
414 
415 	if (!write_fault)
416 		FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
417 	else
418 		/*
419 		 * On a write fault, fold the dirty bit into accessed_dirty.
420 		 * For modes without A/D bits support accessed_dirty will be
421 		 * always clear.
422 		 */
423 		accessed_dirty &= pte >>
424 			(PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
425 
426 	if (unlikely(!accessed_dirty)) {
427 		ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
428 		if (unlikely(ret < 0))
429 			goto error;
430 		else if (ret)
431 			goto retry_walk;
432 	}
433 
434 	pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
435 		 __func__, (u64)pte, walker->pte_access, walker->pt_access);
436 	return 1;
437 
438 error:
439 	errcode |= write_fault | user_fault;
440 	if (fetch_fault && (mmu->nx ||
441 			    kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
442 		errcode |= PFERR_FETCH_MASK;
443 
444 	walker->fault.vector = PF_VECTOR;
445 	walker->fault.error_code_valid = true;
446 	walker->fault.error_code = errcode;
447 
448 #if PTTYPE == PTTYPE_EPT
449 	/*
450 	 * Use PFERR_RSVD_MASK in error_code to to tell if EPT
451 	 * misconfiguration requires to be injected. The detection is
452 	 * done by is_rsvd_bits_set() above.
453 	 *
454 	 * We set up the value of exit_qualification to inject:
455 	 * [2:0] - Derive from the access bits. The exit_qualification might be
456 	 *         out of date if it is serving an EPT misconfiguration.
457 	 * [5:3] - Calculated by the page walk of the guest EPT page tables
458 	 * [7:8] - Derived from [7:8] of real exit_qualification
459 	 *
460 	 * The other bits are set to 0.
461 	 */
462 	if (!(errcode & PFERR_RSVD_MASK)) {
463 		vcpu->arch.exit_qualification &= 0x180;
464 		if (write_fault)
465 			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
466 		if (user_fault)
467 			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ;
468 		if (fetch_fault)
469 			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
470 		vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3;
471 	}
472 #endif
473 	walker->fault.address = addr;
474 	walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
475 
476 	trace_kvm_mmu_walker_error(walker->fault.error_code);
477 	return 0;
478 }
479 
FNAME(walk_addr)480 static int FNAME(walk_addr)(struct guest_walker *walker,
481 			    struct kvm_vcpu *vcpu, gva_t addr, u32 access)
482 {
483 	return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
484 					access);
485 }
486 
487 #if PTTYPE != PTTYPE_EPT
FNAME(walk_addr_nested)488 static int FNAME(walk_addr_nested)(struct guest_walker *walker,
489 				   struct kvm_vcpu *vcpu, gva_t addr,
490 				   u32 access)
491 {
492 	return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
493 					addr, access);
494 }
495 #endif
496 
497 static bool
FNAME(prefetch_gpte)498 FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
499 		     u64 *spte, pt_element_t gpte, bool no_dirty_log)
500 {
501 	unsigned pte_access;
502 	gfn_t gfn;
503 	kvm_pfn_t pfn;
504 
505 	if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
506 		return false;
507 
508 	pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
509 
510 	gfn = gpte_to_gfn(gpte);
511 	pte_access = sp->role.access & FNAME(gpte_access)(gpte);
512 	FNAME(protect_clean_gpte)(&vcpu->arch.mmu, &pte_access, gpte);
513 	pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
514 			no_dirty_log && (pte_access & ACC_WRITE_MASK));
515 	if (is_error_pfn(pfn))
516 		return false;
517 
518 	/*
519 	 * we call mmu_set_spte() with host_writable = true because
520 	 * pte_prefetch_gfn_to_pfn always gets a writable pfn.
521 	 */
522 	mmu_set_spte(vcpu, spte, pte_access, 0, PT_PAGE_TABLE_LEVEL, gfn, pfn,
523 		     true, true);
524 
525 	return true;
526 }
527 
FNAME(update_pte)528 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
529 			      u64 *spte, const void *pte)
530 {
531 	pt_element_t gpte = *(const pt_element_t *)pte;
532 
533 	FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
534 }
535 
FNAME(gpte_changed)536 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
537 				struct guest_walker *gw, int level)
538 {
539 	pt_element_t curr_pte;
540 	gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
541 	u64 mask;
542 	int r, index;
543 
544 	if (level == PT_PAGE_TABLE_LEVEL) {
545 		mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
546 		base_gpa = pte_gpa & ~mask;
547 		index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
548 
549 		r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
550 				gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
551 		curr_pte = gw->prefetch_ptes[index];
552 	} else
553 		r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
554 				  &curr_pte, sizeof(curr_pte));
555 
556 	return r || curr_pte != gw->ptes[level - 1];
557 }
558 
FNAME(pte_prefetch)559 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
560 				u64 *sptep)
561 {
562 	struct kvm_mmu_page *sp;
563 	pt_element_t *gptep = gw->prefetch_ptes;
564 	u64 *spte;
565 	int i;
566 
567 	sp = page_header(__pa(sptep));
568 
569 	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
570 		return;
571 
572 	if (sp->role.direct)
573 		return __direct_pte_prefetch(vcpu, sp, sptep);
574 
575 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
576 	spte = sp->spt + i;
577 
578 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
579 		if (spte == sptep)
580 			continue;
581 
582 		if (is_shadow_present_pte(*spte))
583 			continue;
584 
585 		if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
586 			break;
587 	}
588 }
589 
590 /*
591  * Fetch a shadow pte for a specific level in the paging hierarchy.
592  * If the guest tries to write a write-protected page, we need to
593  * emulate this operation, return 1 to indicate this case.
594  */
FNAME(fetch)595 static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
596 			 struct guest_walker *gw,
597 			 int write_fault, int hlevel,
598 			 kvm_pfn_t pfn, bool map_writable, bool prefault)
599 {
600 	struct kvm_mmu_page *sp = NULL;
601 	struct kvm_shadow_walk_iterator it;
602 	unsigned direct_access, access = gw->pt_access;
603 	int top_level, ret;
604 
605 	direct_access = gw->pte_access;
606 
607 	top_level = vcpu->arch.mmu.root_level;
608 	if (top_level == PT32E_ROOT_LEVEL)
609 		top_level = PT32_ROOT_LEVEL;
610 	/*
611 	 * Verify that the top-level gpte is still there.  Since the page
612 	 * is a root page, it is either write protected (and cannot be
613 	 * changed from now on) or it is invalid (in which case, we don't
614 	 * really care if it changes underneath us after this point).
615 	 */
616 	if (FNAME(gpte_changed)(vcpu, gw, top_level))
617 		goto out_gpte_changed;
618 
619 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
620 		goto out_gpte_changed;
621 
622 	for (shadow_walk_init(&it, vcpu, addr);
623 	     shadow_walk_okay(&it) && it.level > gw->level;
624 	     shadow_walk_next(&it)) {
625 		gfn_t table_gfn;
626 
627 		clear_sp_write_flooding_count(it.sptep);
628 		drop_large_spte(vcpu, it.sptep);
629 
630 		sp = NULL;
631 		if (!is_shadow_present_pte(*it.sptep)) {
632 			table_gfn = gw->table_gfn[it.level - 2];
633 			sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
634 					      false, access);
635 		}
636 
637 		/*
638 		 * Verify that the gpte in the page we've just write
639 		 * protected is still there.
640 		 */
641 		if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
642 			goto out_gpte_changed;
643 
644 		if (sp)
645 			link_shadow_page(vcpu, it.sptep, sp);
646 	}
647 
648 	for (;
649 	     shadow_walk_okay(&it) && it.level > hlevel;
650 	     shadow_walk_next(&it)) {
651 		gfn_t direct_gfn;
652 
653 		clear_sp_write_flooding_count(it.sptep);
654 		validate_direct_spte(vcpu, it.sptep, direct_access);
655 
656 		drop_large_spte(vcpu, it.sptep);
657 
658 		if (is_shadow_present_pte(*it.sptep))
659 			continue;
660 
661 		direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
662 
663 		sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
664 				      true, direct_access);
665 		link_shadow_page(vcpu, it.sptep, sp);
666 	}
667 
668 	clear_sp_write_flooding_count(it.sptep);
669 	ret = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault,
670 			   it.level, gw->gfn, pfn, prefault, map_writable);
671 	FNAME(pte_prefetch)(vcpu, gw, it.sptep);
672 
673 	return ret;
674 
675 out_gpte_changed:
676 	kvm_release_pfn_clean(pfn);
677 	return RET_PF_RETRY;
678 }
679 
680  /*
681  * To see whether the mapped gfn can write its page table in the current
682  * mapping.
683  *
684  * It is the helper function of FNAME(page_fault). When guest uses large page
685  * size to map the writable gfn which is used as current page table, we should
686  * force kvm to use small page size to map it because new shadow page will be
687  * created when kvm establishes shadow page table that stop kvm using large
688  * page size. Do it early can avoid unnecessary #PF and emulation.
689  *
690  * @write_fault_to_shadow_pgtable will return true if the fault gfn is
691  * currently used as its page table.
692  *
693  * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
694  * since the PDPT is always shadowed, that means, we can not use large page
695  * size to map the gfn which is used as PDPT.
696  */
697 static bool
FNAME(is_self_change_mapping)698 FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
699 			      struct guest_walker *walker, int user_fault,
700 			      bool *write_fault_to_shadow_pgtable)
701 {
702 	int level;
703 	gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
704 	bool self_changed = false;
705 
706 	if (!(walker->pte_access & ACC_WRITE_MASK ||
707 	      (!is_write_protection(vcpu) && !user_fault)))
708 		return false;
709 
710 	for (level = walker->level; level <= walker->max_level; level++) {
711 		gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
712 
713 		self_changed |= !(gfn & mask);
714 		*write_fault_to_shadow_pgtable |= !gfn;
715 	}
716 
717 	return self_changed;
718 }
719 
720 /*
721  * Page fault handler.  There are several causes for a page fault:
722  *   - there is no shadow pte for the guest pte
723  *   - write access through a shadow pte marked read only so that we can set
724  *     the dirty bit
725  *   - write access to a shadow pte marked read only so we can update the page
726  *     dirty bitmap, when userspace requests it
727  *   - mmio access; in this case we will never install a present shadow pte
728  *   - normal guest page fault due to the guest pte marked not present, not
729  *     writable, or not executable
730  *
731  *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or
732  *           a negative value on error.
733  */
FNAME(page_fault)734 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
735 			     bool prefault)
736 {
737 	int write_fault = error_code & PFERR_WRITE_MASK;
738 	int user_fault = error_code & PFERR_USER_MASK;
739 	struct guest_walker walker;
740 	int r;
741 	kvm_pfn_t pfn;
742 	int level = PT_PAGE_TABLE_LEVEL;
743 	bool force_pt_level = false;
744 	unsigned long mmu_seq;
745 	bool map_writable, is_self_change_mapping;
746 
747 	pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
748 
749 	r = mmu_topup_memory_caches(vcpu);
750 	if (r)
751 		return r;
752 
753 	/*
754 	 * If PFEC.RSVD is set, this is a shadow page fault.
755 	 * The bit needs to be cleared before walking guest page tables.
756 	 */
757 	error_code &= ~PFERR_RSVD_MASK;
758 
759 	/*
760 	 * Look up the guest pte for the faulting address.
761 	 */
762 	r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
763 
764 	/*
765 	 * The page is not mapped by the guest.  Let the guest handle it.
766 	 */
767 	if (!r) {
768 		pgprintk("%s: guest page fault\n", __func__);
769 		if (!prefault)
770 			inject_page_fault(vcpu, &walker.fault);
771 
772 		return RET_PF_RETRY;
773 	}
774 
775 	if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) {
776 		shadow_page_table_clear_flood(vcpu, addr);
777 		return RET_PF_EMULATE;
778 	}
779 
780 	vcpu->arch.write_fault_to_shadow_pgtable = false;
781 
782 	is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
783 	      &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
784 
785 	if (walker.level >= PT_DIRECTORY_LEVEL && !is_self_change_mapping) {
786 		level = mapping_level(vcpu, walker.gfn, &force_pt_level);
787 		if (likely(!force_pt_level)) {
788 			level = min(walker.level, level);
789 			walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
790 		}
791 	} else
792 		force_pt_level = true;
793 
794 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
795 	smp_rmb();
796 
797 	if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
798 			 &map_writable))
799 		return RET_PF_RETRY;
800 
801 	if (handle_abnormal_pfn(vcpu, addr, walker.gfn, pfn, walker.pte_access, &r))
802 		return r;
803 
804 	/*
805 	 * Do not change pte_access if the pfn is a mmio page, otherwise
806 	 * we will cache the incorrect access into mmio spte.
807 	 */
808 	if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
809 	     !is_write_protection(vcpu) && !user_fault &&
810 	      !is_noslot_pfn(pfn)) {
811 		walker.pte_access |= ACC_WRITE_MASK;
812 		walker.pte_access &= ~ACC_USER_MASK;
813 
814 		/*
815 		 * If we converted a user page to a kernel page,
816 		 * so that the kernel can write to it when cr0.wp=0,
817 		 * then we should prevent the kernel from executing it
818 		 * if SMEP is enabled.
819 		 */
820 		if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
821 			walker.pte_access &= ~ACC_EXEC_MASK;
822 	}
823 
824 	spin_lock(&vcpu->kvm->mmu_lock);
825 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
826 		goto out_unlock;
827 
828 	kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
829 	if (make_mmu_pages_available(vcpu) < 0)
830 		goto out_unlock;
831 	if (!force_pt_level)
832 		transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
833 	r = FNAME(fetch)(vcpu, addr, &walker, write_fault,
834 			 level, pfn, map_writable, prefault);
835 	++vcpu->stat.pf_fixed;
836 	kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
837 	spin_unlock(&vcpu->kvm->mmu_lock);
838 
839 	return r;
840 
841 out_unlock:
842 	spin_unlock(&vcpu->kvm->mmu_lock);
843 	kvm_release_pfn_clean(pfn);
844 	return RET_PF_RETRY;
845 }
846 
FNAME(get_level1_sp_gpa)847 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
848 {
849 	int offset = 0;
850 
851 	WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
852 
853 	if (PTTYPE == 32)
854 		offset = sp->role.quadrant << PT64_LEVEL_BITS;
855 
856 	return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
857 }
858 
FNAME(invlpg)859 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa)
860 {
861 	struct kvm_shadow_walk_iterator iterator;
862 	struct kvm_mmu_page *sp;
863 	int level;
864 	u64 *sptep;
865 
866 	vcpu_clear_mmio_info(vcpu, gva);
867 
868 	/*
869 	 * No need to check return value here, rmap_can_add() can
870 	 * help us to skip pte prefetch later.
871 	 */
872 	mmu_topup_memory_caches(vcpu);
873 
874 	if (!VALID_PAGE(root_hpa)) {
875 		WARN_ON(1);
876 		return;
877 	}
878 
879 	spin_lock(&vcpu->kvm->mmu_lock);
880 	for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) {
881 		level = iterator.level;
882 		sptep = iterator.sptep;
883 
884 		sp = page_header(__pa(sptep));
885 		if (is_last_spte(*sptep, level)) {
886 			pt_element_t gpte;
887 			gpa_t pte_gpa;
888 
889 			if (!sp->unsync)
890 				break;
891 
892 			pte_gpa = FNAME(get_level1_sp_gpa)(sp);
893 			pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
894 
895 			if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
896 				kvm_flush_remote_tlbs(vcpu->kvm);
897 
898 			if (!rmap_can_add(vcpu))
899 				break;
900 
901 			if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
902 						       sizeof(pt_element_t)))
903 				break;
904 
905 			FNAME(update_pte)(vcpu, sp, sptep, &gpte);
906 		}
907 
908 		if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
909 			break;
910 	}
911 	spin_unlock(&vcpu->kvm->mmu_lock);
912 }
913 
FNAME(gva_to_gpa)914 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
915 			       struct x86_exception *exception)
916 {
917 	struct guest_walker walker;
918 	gpa_t gpa = UNMAPPED_GVA;
919 	int r;
920 
921 	r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
922 
923 	if (r) {
924 		gpa = gfn_to_gpa(walker.gfn);
925 		gpa |= vaddr & ~PAGE_MASK;
926 	} else if (exception)
927 		*exception = walker.fault;
928 
929 	return gpa;
930 }
931 
932 #if PTTYPE != PTTYPE_EPT
FNAME(gva_to_gpa_nested)933 static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
934 				      u32 access,
935 				      struct x86_exception *exception)
936 {
937 	struct guest_walker walker;
938 	gpa_t gpa = UNMAPPED_GVA;
939 	int r;
940 
941 	r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
942 
943 	if (r) {
944 		gpa = gfn_to_gpa(walker.gfn);
945 		gpa |= vaddr & ~PAGE_MASK;
946 	} else if (exception)
947 		*exception = walker.fault;
948 
949 	return gpa;
950 }
951 #endif
952 
953 /*
954  * Using the cached information from sp->gfns is safe because:
955  * - The spte has a reference to the struct page, so the pfn for a given gfn
956  *   can't change unless all sptes pointing to it are nuked first.
957  *
958  * Note:
959  *   We should flush all tlbs if spte is dropped even though guest is
960  *   responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
961  *   and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
962  *   used by guest then tlbs are not flushed, so guest is allowed to access the
963  *   freed pages.
964  *   And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
965  */
FNAME(sync_page)966 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
967 {
968 	int i, nr_present = 0;
969 	bool host_writable;
970 	gpa_t first_pte_gpa;
971 	int set_spte_ret = 0;
972 
973 	/* direct kvm_mmu_page can not be unsync. */
974 	BUG_ON(sp->role.direct);
975 
976 	first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
977 
978 	for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
979 		unsigned pte_access;
980 		pt_element_t gpte;
981 		gpa_t pte_gpa;
982 		gfn_t gfn;
983 
984 		if (!sp->spt[i])
985 			continue;
986 
987 		pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
988 
989 		if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
990 					       sizeof(pt_element_t)))
991 			return 0;
992 
993 		if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
994 			/*
995 			 * Update spte before increasing tlbs_dirty to make
996 			 * sure no tlb flush is lost after spte is zapped; see
997 			 * the comments in kvm_flush_remote_tlbs().
998 			 */
999 			smp_wmb();
1000 			vcpu->kvm->tlbs_dirty++;
1001 			continue;
1002 		}
1003 
1004 		gfn = gpte_to_gfn(gpte);
1005 		pte_access = sp->role.access;
1006 		pte_access &= FNAME(gpte_access)(gpte);
1007 		FNAME(protect_clean_gpte)(&vcpu->arch.mmu, &pte_access, gpte);
1008 
1009 		if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access,
1010 		      &nr_present))
1011 			continue;
1012 
1013 		if (gfn != sp->gfns[i]) {
1014 			drop_spte(vcpu->kvm, &sp->spt[i]);
1015 			/*
1016 			 * The same as above where we are doing
1017 			 * prefetch_invalid_gpte().
1018 			 */
1019 			smp_wmb();
1020 			vcpu->kvm->tlbs_dirty++;
1021 			continue;
1022 		}
1023 
1024 		nr_present++;
1025 
1026 		host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
1027 
1028 		set_spte_ret |= set_spte(vcpu, &sp->spt[i],
1029 					 pte_access, PT_PAGE_TABLE_LEVEL,
1030 					 gfn, spte_to_pfn(sp->spt[i]),
1031 					 true, false, host_writable);
1032 	}
1033 
1034 	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH)
1035 		kvm_flush_remote_tlbs(vcpu->kvm);
1036 
1037 	return nr_present;
1038 }
1039 
1040 #undef pt_element_t
1041 #undef guest_walker
1042 #undef FNAME
1043 #undef PT_BASE_ADDR_MASK
1044 #undef PT_INDEX
1045 #undef PT_LVL_ADDR_MASK
1046 #undef PT_LVL_OFFSET_MASK
1047 #undef PT_LEVEL_BITS
1048 #undef PT_MAX_FULL_LEVELS
1049 #undef gpte_to_gfn
1050 #undef gpte_to_gfn_lvl
1051 #undef CMPXCHG
1052 #undef PT_GUEST_ACCESSED_MASK
1053 #undef PT_GUEST_DIRTY_MASK
1054 #undef PT_GUEST_DIRTY_SHIFT
1055 #undef PT_GUEST_ACCESSED_SHIFT
1056 #undef PT_HAVE_ACCESSED_DIRTY
1057