1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * check TSC synchronization.
4  *
5  * Copyright (C) 2006, Red Hat, Inc., Ingo Molnar
6  *
7  * We check whether all boot CPUs have their TSC's synchronized,
8  * print a warning if not and turn off the TSC clock-source.
9  *
10  * The warp-check is point-to-point between two CPUs, the CPU
11  * initiating the bootup is the 'source CPU', the freshly booting
12  * CPU is the 'target CPU'.
13  *
14  * Only two CPUs may participate - they can enter in any order.
15  * ( The serial nature of the boot logic and the CPU hotplug lock
16  *   protects against more than 2 CPUs entering this code. )
17  */
18 #include <linux/topology.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/smp.h>
22 #include <linux/nmi.h>
23 #include <asm/tsc.h>
24 
25 struct tsc_adjust {
26 	s64		bootval;
27 	s64		adjusted;
28 	unsigned long	nextcheck;
29 	bool		warned;
30 };
31 
32 static DEFINE_PER_CPU(struct tsc_adjust, tsc_adjust);
33 
34 /*
35  * TSC's on different sockets may be reset asynchronously.
36  * This may cause the TSC ADJUST value on socket 0 to be NOT 0.
37  */
38 bool __read_mostly tsc_async_resets;
39 
mark_tsc_async_resets(char * reason)40 void mark_tsc_async_resets(char *reason)
41 {
42 	if (tsc_async_resets)
43 		return;
44 	tsc_async_resets = true;
45 	pr_info("tsc: Marking TSC async resets true due to %s\n", reason);
46 }
47 
tsc_verify_tsc_adjust(bool resume)48 void tsc_verify_tsc_adjust(bool resume)
49 {
50 	struct tsc_adjust *adj = this_cpu_ptr(&tsc_adjust);
51 	s64 curval;
52 
53 	if (!boot_cpu_has(X86_FEATURE_TSC_ADJUST))
54 		return;
55 
56 	/* Skip unnecessary error messages if TSC already unstable */
57 	if (check_tsc_unstable())
58 		return;
59 
60 	/* Rate limit the MSR check */
61 	if (!resume && time_before(jiffies, adj->nextcheck))
62 		return;
63 
64 	adj->nextcheck = jiffies + HZ;
65 
66 	rdmsrl(MSR_IA32_TSC_ADJUST, curval);
67 	if (adj->adjusted == curval)
68 		return;
69 
70 	/* Restore the original value */
71 	wrmsrl(MSR_IA32_TSC_ADJUST, adj->adjusted);
72 
73 	if (!adj->warned || resume) {
74 		pr_warn(FW_BUG "TSC ADJUST differs: CPU%u %lld --> %lld. Restoring\n",
75 			smp_processor_id(), adj->adjusted, curval);
76 		adj->warned = true;
77 	}
78 }
79 
tsc_sanitize_first_cpu(struct tsc_adjust * cur,s64 bootval,unsigned int cpu,bool bootcpu)80 static void tsc_sanitize_first_cpu(struct tsc_adjust *cur, s64 bootval,
81 				   unsigned int cpu, bool bootcpu)
82 {
83 	/*
84 	 * First online CPU in a package stores the boot value in the
85 	 * adjustment value. This value might change later via the sync
86 	 * mechanism. If that fails we still can yell about boot values not
87 	 * being consistent.
88 	 *
89 	 * On the boot cpu we just force set the ADJUST value to 0 if it's
90 	 * non zero. We don't do that on non boot cpus because physical
91 	 * hotplug should have set the ADJUST register to a value > 0 so
92 	 * the TSC is in sync with the already running cpus.
93 	 *
94 	 * Also don't force the ADJUST value to zero if that is a valid value
95 	 * for socket 0 as determined by the system arch.  This is required
96 	 * when multiple sockets are reset asynchronously with each other
97 	 * and socket 0 may not have an TSC ADJUST value of 0.
98 	 */
99 	if (bootcpu && bootval != 0) {
100 		if (likely(!tsc_async_resets)) {
101 			pr_warn(FW_BUG "TSC ADJUST: CPU%u: %lld force to 0\n",
102 				cpu, bootval);
103 			wrmsrl(MSR_IA32_TSC_ADJUST, 0);
104 			bootval = 0;
105 		} else {
106 			pr_info("TSC ADJUST: CPU%u: %lld NOT forced to 0\n",
107 				cpu, bootval);
108 		}
109 	}
110 	cur->adjusted = bootval;
111 }
112 
113 #ifndef CONFIG_SMP
tsc_store_and_check_tsc_adjust(bool bootcpu)114 bool __init tsc_store_and_check_tsc_adjust(bool bootcpu)
115 {
116 	struct tsc_adjust *cur = this_cpu_ptr(&tsc_adjust);
117 	s64 bootval;
118 
119 	if (!boot_cpu_has(X86_FEATURE_TSC_ADJUST))
120 		return false;
121 
122 	/* Skip unnecessary error messages if TSC already unstable */
123 	if (check_tsc_unstable())
124 		return false;
125 
126 	rdmsrl(MSR_IA32_TSC_ADJUST, bootval);
127 	cur->bootval = bootval;
128 	cur->nextcheck = jiffies + HZ;
129 	tsc_sanitize_first_cpu(cur, bootval, smp_processor_id(), bootcpu);
130 	return false;
131 }
132 
133 #else /* !CONFIG_SMP */
134 
135 /*
136  * Store and check the TSC ADJUST MSR if available
137  */
tsc_store_and_check_tsc_adjust(bool bootcpu)138 bool tsc_store_and_check_tsc_adjust(bool bootcpu)
139 {
140 	struct tsc_adjust *ref, *cur = this_cpu_ptr(&tsc_adjust);
141 	unsigned int refcpu, cpu = smp_processor_id();
142 	struct cpumask *mask;
143 	s64 bootval;
144 
145 	if (!boot_cpu_has(X86_FEATURE_TSC_ADJUST))
146 		return false;
147 
148 	rdmsrl(MSR_IA32_TSC_ADJUST, bootval);
149 	cur->bootval = bootval;
150 	cur->nextcheck = jiffies + HZ;
151 	cur->warned = false;
152 
153 	/*
154 	 * If a non-zero TSC value for socket 0 may be valid then the default
155 	 * adjusted value cannot assumed to be zero either.
156 	 */
157 	if (tsc_async_resets)
158 		cur->adjusted = bootval;
159 
160 	/*
161 	 * Check whether this CPU is the first in a package to come up. In
162 	 * this case do not check the boot value against another package
163 	 * because the new package might have been physically hotplugged,
164 	 * where TSC_ADJUST is expected to be different. When called on the
165 	 * boot CPU topology_core_cpumask() might not be available yet.
166 	 */
167 	mask = topology_core_cpumask(cpu);
168 	refcpu = mask ? cpumask_any_but(mask, cpu) : nr_cpu_ids;
169 
170 	if (refcpu >= nr_cpu_ids) {
171 		tsc_sanitize_first_cpu(cur, bootval, smp_processor_id(),
172 				       bootcpu);
173 		return false;
174 	}
175 
176 	ref = per_cpu_ptr(&tsc_adjust, refcpu);
177 	/*
178 	 * Compare the boot value and complain if it differs in the
179 	 * package.
180 	 */
181 	if (bootval != ref->bootval)
182 		printk_once(FW_BUG "TSC ADJUST differs within socket(s), fixing all errors\n");
183 
184 	/*
185 	 * The TSC_ADJUST values in a package must be the same. If the boot
186 	 * value on this newly upcoming CPU differs from the adjustment
187 	 * value of the already online CPU in this package, set it to that
188 	 * adjusted value.
189 	 */
190 	if (bootval != ref->adjusted) {
191 		cur->adjusted = ref->adjusted;
192 		wrmsrl(MSR_IA32_TSC_ADJUST, ref->adjusted);
193 	}
194 	/*
195 	 * We have the TSCs forced to be in sync on this package. Skip sync
196 	 * test:
197 	 */
198 	return true;
199 }
200 
201 /*
202  * Entry/exit counters that make sure that both CPUs
203  * run the measurement code at once:
204  */
205 static atomic_t start_count;
206 static atomic_t stop_count;
207 static atomic_t skip_test;
208 static atomic_t test_runs;
209 
210 /*
211  * We use a raw spinlock in this exceptional case, because
212  * we want to have the fastest, inlined, non-debug version
213  * of a critical section, to be able to prove TSC time-warps:
214  */
215 static arch_spinlock_t sync_lock = __ARCH_SPIN_LOCK_UNLOCKED;
216 
217 static cycles_t last_tsc;
218 static cycles_t max_warp;
219 static int nr_warps;
220 static int random_warps;
221 
222 /*
223  * TSC-warp measurement loop running on both CPUs.  This is not called
224  * if there is no TSC.
225  */
check_tsc_warp(unsigned int timeout)226 static cycles_t check_tsc_warp(unsigned int timeout)
227 {
228 	cycles_t start, now, prev, end, cur_max_warp = 0;
229 	int i, cur_warps = 0;
230 
231 	start = rdtsc_ordered();
232 	/*
233 	 * The measurement runs for 'timeout' msecs:
234 	 */
235 	end = start + (cycles_t) tsc_khz * timeout;
236 	now = start;
237 
238 	for (i = 0; ; i++) {
239 		/*
240 		 * We take the global lock, measure TSC, save the
241 		 * previous TSC that was measured (possibly on
242 		 * another CPU) and update the previous TSC timestamp.
243 		 */
244 		arch_spin_lock(&sync_lock);
245 		prev = last_tsc;
246 		now = rdtsc_ordered();
247 		last_tsc = now;
248 		arch_spin_unlock(&sync_lock);
249 
250 		/*
251 		 * Be nice every now and then (and also check whether
252 		 * measurement is done [we also insert a 10 million
253 		 * loops safety exit, so we dont lock up in case the
254 		 * TSC readout is totally broken]):
255 		 */
256 		if (unlikely(!(i & 7))) {
257 			if (now > end || i > 10000000)
258 				break;
259 			cpu_relax();
260 			touch_nmi_watchdog();
261 		}
262 		/*
263 		 * Outside the critical section we can now see whether
264 		 * we saw a time-warp of the TSC going backwards:
265 		 */
266 		if (unlikely(prev > now)) {
267 			arch_spin_lock(&sync_lock);
268 			max_warp = max(max_warp, prev - now);
269 			cur_max_warp = max_warp;
270 			/*
271 			 * Check whether this bounces back and forth. Only
272 			 * one CPU should observe time going backwards.
273 			 */
274 			if (cur_warps != nr_warps)
275 				random_warps++;
276 			nr_warps++;
277 			cur_warps = nr_warps;
278 			arch_spin_unlock(&sync_lock);
279 		}
280 	}
281 	WARN(!(now-start),
282 		"Warning: zero tsc calibration delta: %Ld [max: %Ld]\n",
283 			now-start, end-start);
284 	return cur_max_warp;
285 }
286 
287 /*
288  * If the target CPU coming online doesn't have any of its core-siblings
289  * online, a timeout of 20msec will be used for the TSC-warp measurement
290  * loop. Otherwise a smaller timeout of 2msec will be used, as we have some
291  * information about this socket already (and this information grows as we
292  * have more and more logical-siblings in that socket).
293  *
294  * Ideally we should be able to skip the TSC sync check on the other
295  * core-siblings, if the first logical CPU in a socket passed the sync test.
296  * But as the TSC is per-logical CPU and can potentially be modified wrongly
297  * by the bios, TSC sync test for smaller duration should be able
298  * to catch such errors. Also this will catch the condition where all the
299  * cores in the socket doesn't get reset at the same time.
300  */
loop_timeout(int cpu)301 static inline unsigned int loop_timeout(int cpu)
302 {
303 	return (cpumask_weight(topology_core_cpumask(cpu)) > 1) ? 2 : 20;
304 }
305 
306 /*
307  * Source CPU calls into this - it waits for the freshly booted
308  * target CPU to arrive and then starts the measurement:
309  */
check_tsc_sync_source(int cpu)310 void check_tsc_sync_source(int cpu)
311 {
312 	int cpus = 2;
313 
314 	/*
315 	 * No need to check if we already know that the TSC is not
316 	 * synchronized or if we have no TSC.
317 	 */
318 	if (unsynchronized_tsc())
319 		return;
320 
321 	/*
322 	 * Set the maximum number of test runs to
323 	 *  1 if the CPU does not provide the TSC_ADJUST MSR
324 	 *  3 if the MSR is available, so the target can try to adjust
325 	 */
326 	if (!boot_cpu_has(X86_FEATURE_TSC_ADJUST))
327 		atomic_set(&test_runs, 1);
328 	else
329 		atomic_set(&test_runs, 3);
330 retry:
331 	/*
332 	 * Wait for the target to start or to skip the test:
333 	 */
334 	while (atomic_read(&start_count) != cpus - 1) {
335 		if (atomic_read(&skip_test) > 0) {
336 			atomic_set(&skip_test, 0);
337 			return;
338 		}
339 		cpu_relax();
340 	}
341 
342 	/*
343 	 * Trigger the target to continue into the measurement too:
344 	 */
345 	atomic_inc(&start_count);
346 
347 	check_tsc_warp(loop_timeout(cpu));
348 
349 	while (atomic_read(&stop_count) != cpus-1)
350 		cpu_relax();
351 
352 	/*
353 	 * If the test was successful set the number of runs to zero and
354 	 * stop. If not, decrement the number of runs an check if we can
355 	 * retry. In case of random warps no retry is attempted.
356 	 */
357 	if (!nr_warps) {
358 		atomic_set(&test_runs, 0);
359 
360 		pr_debug("TSC synchronization [CPU#%d -> CPU#%d]: passed\n",
361 			smp_processor_id(), cpu);
362 
363 	} else if (atomic_dec_and_test(&test_runs) || random_warps) {
364 		/* Force it to 0 if random warps brought us here */
365 		atomic_set(&test_runs, 0);
366 
367 		pr_warning("TSC synchronization [CPU#%d -> CPU#%d]:\n",
368 			smp_processor_id(), cpu);
369 		pr_warning("Measured %Ld cycles TSC warp between CPUs, "
370 			   "turning off TSC clock.\n", max_warp);
371 		if (random_warps)
372 			pr_warning("TSC warped randomly between CPUs\n");
373 		mark_tsc_unstable("check_tsc_sync_source failed");
374 	}
375 
376 	/*
377 	 * Reset it - just in case we boot another CPU later:
378 	 */
379 	atomic_set(&start_count, 0);
380 	random_warps = 0;
381 	nr_warps = 0;
382 	max_warp = 0;
383 	last_tsc = 0;
384 
385 	/*
386 	 * Let the target continue with the bootup:
387 	 */
388 	atomic_inc(&stop_count);
389 
390 	/*
391 	 * Retry, if there is a chance to do so.
392 	 */
393 	if (atomic_read(&test_runs) > 0)
394 		goto retry;
395 }
396 
397 /*
398  * Freshly booted CPUs call into this:
399  */
check_tsc_sync_target(void)400 void check_tsc_sync_target(void)
401 {
402 	struct tsc_adjust *cur = this_cpu_ptr(&tsc_adjust);
403 	unsigned int cpu = smp_processor_id();
404 	cycles_t cur_max_warp, gbl_max_warp;
405 	int cpus = 2;
406 
407 	/* Also aborts if there is no TSC. */
408 	if (unsynchronized_tsc())
409 		return;
410 
411 	/*
412 	 * Store, verify and sanitize the TSC adjust register. If
413 	 * successful skip the test.
414 	 *
415 	 * The test is also skipped when the TSC is marked reliable. This
416 	 * is true for SoCs which have no fallback clocksource. On these
417 	 * SoCs the TSC is frequency synchronized, but still the TSC ADJUST
418 	 * register might have been wreckaged by the BIOS..
419 	 */
420 	if (tsc_store_and_check_tsc_adjust(false) || tsc_clocksource_reliable) {
421 		atomic_inc(&skip_test);
422 		return;
423 	}
424 
425 retry:
426 	/*
427 	 * Register this CPU's participation and wait for the
428 	 * source CPU to start the measurement:
429 	 */
430 	atomic_inc(&start_count);
431 	while (atomic_read(&start_count) != cpus)
432 		cpu_relax();
433 
434 	cur_max_warp = check_tsc_warp(loop_timeout(cpu));
435 
436 	/*
437 	 * Store the maximum observed warp value for a potential retry:
438 	 */
439 	gbl_max_warp = max_warp;
440 
441 	/*
442 	 * Ok, we are done:
443 	 */
444 	atomic_inc(&stop_count);
445 
446 	/*
447 	 * Wait for the source CPU to print stuff:
448 	 */
449 	while (atomic_read(&stop_count) != cpus)
450 		cpu_relax();
451 
452 	/*
453 	 * Reset it for the next sync test:
454 	 */
455 	atomic_set(&stop_count, 0);
456 
457 	/*
458 	 * Check the number of remaining test runs. If not zero, the test
459 	 * failed and a retry with adjusted TSC is possible. If zero the
460 	 * test was either successful or failed terminally.
461 	 */
462 	if (!atomic_read(&test_runs))
463 		return;
464 
465 	/*
466 	 * If the warp value of this CPU is 0, then the other CPU
467 	 * observed time going backwards so this TSC was ahead and
468 	 * needs to move backwards.
469 	 */
470 	if (!cur_max_warp)
471 		cur_max_warp = -gbl_max_warp;
472 
473 	/*
474 	 * Add the result to the previous adjustment value.
475 	 *
476 	 * The adjustement value is slightly off by the overhead of the
477 	 * sync mechanism (observed values are ~200 TSC cycles), but this
478 	 * really depends on CPU, node distance and frequency. So
479 	 * compensating for this is hard to get right. Experiments show
480 	 * that the warp is not longer detectable when the observed warp
481 	 * value is used. In the worst case the adjustment needs to go
482 	 * through a 3rd run for fine tuning.
483 	 */
484 	cur->adjusted += cur_max_warp;
485 
486 	pr_warn("TSC ADJUST compensate: CPU%u observed %lld warp. Adjust: %lld\n",
487 		cpu, cur_max_warp, cur->adjusted);
488 
489 	wrmsrl(MSR_IA32_TSC_ADJUST, cur->adjusted);
490 	goto retry;
491 
492 }
493 
494 #endif /* CONFIG_SMP */
495