1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_INTEL_RDT_H
3 #define _ASM_X86_INTEL_RDT_H
4 
5 #include <linux/sched.h>
6 #include <linux/kernfs.h>
7 #include <linux/jump_label.h>
8 
9 #define IA32_L3_QOS_CFG		0xc81
10 #define IA32_L2_QOS_CFG		0xc82
11 #define IA32_L3_CBM_BASE	0xc90
12 #define IA32_L2_CBM_BASE	0xd10
13 #define IA32_MBA_THRTL_BASE	0xd50
14 
15 #define L3_QOS_CDP_ENABLE	0x01ULL
16 
17 #define L2_QOS_CDP_ENABLE	0x01ULL
18 
19 /*
20  * Event IDs are used to program IA32_QM_EVTSEL before reading event
21  * counter from IA32_QM_CTR
22  */
23 #define QOS_L3_OCCUP_EVENT_ID		0x01
24 #define QOS_L3_MBM_TOTAL_EVENT_ID	0x02
25 #define QOS_L3_MBM_LOCAL_EVENT_ID	0x03
26 
27 #define CQM_LIMBOCHECK_INTERVAL	1000
28 
29 #define MBM_CNTR_WIDTH			24
30 #define MBM_OVERFLOW_INTERVAL		1000
31 #define MAX_MBA_BW			100u
32 
33 #define RMID_VAL_ERROR			BIT_ULL(63)
34 #define RMID_VAL_UNAVAIL		BIT_ULL(62)
35 
36 DECLARE_STATIC_KEY_FALSE(rdt_enable_key);
37 
38 /**
39  * struct mon_evt - Entry in the event list of a resource
40  * @evtid:		event id
41  * @name:		name of the event
42  */
43 struct mon_evt {
44 	u32			evtid;
45 	char			*name;
46 	struct list_head	list;
47 };
48 
49 /**
50  * struct mon_data_bits - Monitoring details for each event file
51  * @rid:               Resource id associated with the event file.
52  * @evtid:             Event id associated with the event file
53  * @domid:             The domain to which the event file belongs
54  */
55 union mon_data_bits {
56 	void *priv;
57 	struct {
58 		unsigned int rid	: 10;
59 		unsigned int evtid	: 8;
60 		unsigned int domid	: 14;
61 	} u;
62 };
63 
64 struct rmid_read {
65 	struct rdtgroup		*rgrp;
66 	struct rdt_domain	*d;
67 	int			evtid;
68 	bool			first;
69 	u64			val;
70 };
71 
72 extern unsigned int intel_cqm_threshold;
73 extern bool rdt_alloc_capable;
74 extern bool rdt_mon_capable;
75 extern unsigned int rdt_mon_features;
76 
77 enum rdt_group_type {
78 	RDTCTRL_GROUP = 0,
79 	RDTMON_GROUP,
80 	RDT_NUM_GROUP,
81 };
82 
83 /**
84  * enum rdtgrp_mode - Mode of a RDT resource group
85  * @RDT_MODE_SHAREABLE: This resource group allows sharing of its allocations
86  * @RDT_MODE_EXCLUSIVE: No sharing of this resource group's allocations allowed
87  * @RDT_MODE_PSEUDO_LOCKSETUP: Resource group will be used for Pseudo-Locking
88  * @RDT_MODE_PSEUDO_LOCKED: No sharing of this resource group's allocations
89  *                          allowed AND the allocations are Cache Pseudo-Locked
90  *
91  * The mode of a resource group enables control over the allowed overlap
92  * between allocations associated with different resource groups (classes
93  * of service). User is able to modify the mode of a resource group by
94  * writing to the "mode" resctrl file associated with the resource group.
95  *
96  * The "shareable", "exclusive", and "pseudo-locksetup" modes are set by
97  * writing the appropriate text to the "mode" file. A resource group enters
98  * "pseudo-locked" mode after the schemata is written while the resource
99  * group is in "pseudo-locksetup" mode.
100  */
101 enum rdtgrp_mode {
102 	RDT_MODE_SHAREABLE = 0,
103 	RDT_MODE_EXCLUSIVE,
104 	RDT_MODE_PSEUDO_LOCKSETUP,
105 	RDT_MODE_PSEUDO_LOCKED,
106 
107 	/* Must be last */
108 	RDT_NUM_MODES,
109 };
110 
111 /**
112  * struct mongroup - store mon group's data in resctrl fs.
113  * @mon_data_kn		kernlfs node for the mon_data directory
114  * @parent:			parent rdtgrp
115  * @crdtgrp_list:		child rdtgroup node list
116  * @rmid:			rmid for this rdtgroup
117  */
118 struct mongroup {
119 	struct kernfs_node	*mon_data_kn;
120 	struct rdtgroup		*parent;
121 	struct list_head	crdtgrp_list;
122 	u32			rmid;
123 };
124 
125 /**
126  * struct pseudo_lock_region - pseudo-lock region information
127  * @r:			RDT resource to which this pseudo-locked region
128  *			belongs
129  * @d:			RDT domain to which this pseudo-locked region
130  *			belongs
131  * @cbm:		bitmask of the pseudo-locked region
132  * @lock_thread_wq:	waitqueue used to wait on the pseudo-locking thread
133  *			completion
134  * @thread_done:	variable used by waitqueue to test if pseudo-locking
135  *			thread completed
136  * @cpu:		core associated with the cache on which the setup code
137  *			will be run
138  * @line_size:		size of the cache lines
139  * @size:		size of pseudo-locked region in bytes
140  * @kmem:		the kernel memory associated with pseudo-locked region
141  * @minor:		minor number of character device associated with this
142  *			region
143  * @debugfs_dir:	pointer to this region's directory in the debugfs
144  *			filesystem
145  * @pm_reqs:		Power management QoS requests related to this region
146  */
147 struct pseudo_lock_region {
148 	struct rdt_resource	*r;
149 	struct rdt_domain	*d;
150 	u32			cbm;
151 	wait_queue_head_t	lock_thread_wq;
152 	int			thread_done;
153 	int			cpu;
154 	unsigned int		line_size;
155 	unsigned int		size;
156 	void			*kmem;
157 	unsigned int		minor;
158 	struct dentry		*debugfs_dir;
159 	struct list_head	pm_reqs;
160 };
161 
162 /**
163  * struct rdtgroup - store rdtgroup's data in resctrl file system.
164  * @kn:				kernfs node
165  * @rdtgroup_list:		linked list for all rdtgroups
166  * @closid:			closid for this rdtgroup
167  * @cpu_mask:			CPUs assigned to this rdtgroup
168  * @flags:			status bits
169  * @waitcount:			how many cpus expect to find this
170  *				group when they acquire rdtgroup_mutex
171  * @type:			indicates type of this rdtgroup - either
172  *				monitor only or ctrl_mon group
173  * @mon:			mongroup related data
174  * @mode:			mode of resource group
175  * @plr:			pseudo-locked region
176  */
177 struct rdtgroup {
178 	struct kernfs_node		*kn;
179 	struct list_head		rdtgroup_list;
180 	u32				closid;
181 	struct cpumask			cpu_mask;
182 	int				flags;
183 	atomic_t			waitcount;
184 	enum rdt_group_type		type;
185 	struct mongroup			mon;
186 	enum rdtgrp_mode		mode;
187 	struct pseudo_lock_region	*plr;
188 };
189 
190 /* rdtgroup.flags */
191 #define	RDT_DELETED		1
192 
193 /* rftype.flags */
194 #define RFTYPE_FLAGS_CPUS_LIST	1
195 
196 /*
197  * Define the file type flags for base and info directories.
198  */
199 #define RFTYPE_INFO			BIT(0)
200 #define RFTYPE_BASE			BIT(1)
201 #define RF_CTRLSHIFT			4
202 #define RF_MONSHIFT			5
203 #define RF_TOPSHIFT			6
204 #define RFTYPE_CTRL			BIT(RF_CTRLSHIFT)
205 #define RFTYPE_MON			BIT(RF_MONSHIFT)
206 #define RFTYPE_TOP			BIT(RF_TOPSHIFT)
207 #define RFTYPE_RES_CACHE		BIT(8)
208 #define RFTYPE_RES_MB			BIT(9)
209 #define RF_CTRL_INFO			(RFTYPE_INFO | RFTYPE_CTRL)
210 #define RF_MON_INFO			(RFTYPE_INFO | RFTYPE_MON)
211 #define RF_TOP_INFO			(RFTYPE_INFO | RFTYPE_TOP)
212 #define RF_CTRL_BASE			(RFTYPE_BASE | RFTYPE_CTRL)
213 
214 /* List of all resource groups */
215 extern struct list_head rdt_all_groups;
216 
217 extern int max_name_width, max_data_width;
218 
219 int __init rdtgroup_init(void);
220 void __exit rdtgroup_exit(void);
221 
222 /**
223  * struct rftype - describe each file in the resctrl file system
224  * @name:	File name
225  * @mode:	Access mode
226  * @kf_ops:	File operations
227  * @flags:	File specific RFTYPE_FLAGS_* flags
228  * @fflags:	File specific RF_* or RFTYPE_* flags
229  * @seq_show:	Show content of the file
230  * @write:	Write to the file
231  */
232 struct rftype {
233 	char			*name;
234 	umode_t			mode;
235 	struct kernfs_ops	*kf_ops;
236 	unsigned long		flags;
237 	unsigned long		fflags;
238 
239 	int (*seq_show)(struct kernfs_open_file *of,
240 			struct seq_file *sf, void *v);
241 	/*
242 	 * write() is the generic write callback which maps directly to
243 	 * kernfs write operation and overrides all other operations.
244 	 * Maximum write size is determined by ->max_write_len.
245 	 */
246 	ssize_t (*write)(struct kernfs_open_file *of,
247 			 char *buf, size_t nbytes, loff_t off);
248 };
249 
250 /**
251  * struct mbm_state - status for each MBM counter in each domain
252  * @chunks:	Total data moved (multiply by rdt_group.mon_scale to get bytes)
253  * @prev_msr	Value of IA32_QM_CTR for this RMID last time we read it
254  * @chunks_bw	Total local data moved. Used for bandwidth calculation
255  * @prev_bw_msr:Value of previous IA32_QM_CTR for bandwidth counting
256  * @prev_bw	The most recent bandwidth in MBps
257  * @delta_bw	Difference between the current and previous bandwidth
258  * @delta_comp	Indicates whether to compute the delta_bw
259  */
260 struct mbm_state {
261 	u64	chunks;
262 	u64	prev_msr;
263 	u64	chunks_bw;
264 	u64	prev_bw_msr;
265 	u32	prev_bw;
266 	u32	delta_bw;
267 	bool	delta_comp;
268 };
269 
270 /**
271  * struct rdt_domain - group of cpus sharing an RDT resource
272  * @list:	all instances of this resource
273  * @id:		unique id for this instance
274  * @cpu_mask:	which cpus share this resource
275  * @rmid_busy_llc:
276  *		bitmap of which limbo RMIDs are above threshold
277  * @mbm_total:	saved state for MBM total bandwidth
278  * @mbm_local:	saved state for MBM local bandwidth
279  * @mbm_over:	worker to periodically read MBM h/w counters
280  * @cqm_limbo:	worker to periodically read CQM h/w counters
281  * @mbm_work_cpu:
282  *		worker cpu for MBM h/w counters
283  * @cqm_work_cpu:
284  *		worker cpu for CQM h/w counters
285  * @ctrl_val:	array of cache or mem ctrl values (indexed by CLOSID)
286  * @mbps_val:	When mba_sc is enabled, this holds the bandwidth in MBps
287  * @new_ctrl:	new ctrl value to be loaded
288  * @have_new_ctrl: did user provide new_ctrl for this domain
289  * @plr:	pseudo-locked region (if any) associated with domain
290  */
291 struct rdt_domain {
292 	struct list_head		list;
293 	int				id;
294 	struct cpumask			cpu_mask;
295 	unsigned long			*rmid_busy_llc;
296 	struct mbm_state		*mbm_total;
297 	struct mbm_state		*mbm_local;
298 	struct delayed_work		mbm_over;
299 	struct delayed_work		cqm_limbo;
300 	int				mbm_work_cpu;
301 	int				cqm_work_cpu;
302 	u32				*ctrl_val;
303 	u32				*mbps_val;
304 	u32				new_ctrl;
305 	bool				have_new_ctrl;
306 	struct pseudo_lock_region	*plr;
307 };
308 
309 /**
310  * struct msr_param - set a range of MSRs from a domain
311  * @res:       The resource to use
312  * @low:       Beginning index from base MSR
313  * @high:      End index
314  */
315 struct msr_param {
316 	struct rdt_resource	*res;
317 	int			low;
318 	int			high;
319 };
320 
321 /**
322  * struct rdt_cache - Cache allocation related data
323  * @cbm_len:		Length of the cache bit mask
324  * @min_cbm_bits:	Minimum number of consecutive bits to be set
325  * @cbm_idx_mult:	Multiplier of CBM index
326  * @cbm_idx_offset:	Offset of CBM index. CBM index is computed by:
327  *			closid * cbm_idx_multi + cbm_idx_offset
328  *			in a cache bit mask
329  * @shareable_bits:	Bitmask of shareable resource with other
330  *			executing entities
331  */
332 struct rdt_cache {
333 	unsigned int	cbm_len;
334 	unsigned int	min_cbm_bits;
335 	unsigned int	cbm_idx_mult;
336 	unsigned int	cbm_idx_offset;
337 	unsigned int	shareable_bits;
338 };
339 
340 /**
341  * struct rdt_membw - Memory bandwidth allocation related data
342  * @max_delay:		Max throttle delay. Delay is the hardware
343  *			representation for memory bandwidth.
344  * @min_bw:		Minimum memory bandwidth percentage user can request
345  * @bw_gran:		Granularity at which the memory bandwidth is allocated
346  * @delay_linear:	True if memory B/W delay is in linear scale
347  * @mba_sc:		True if MBA software controller(mba_sc) is enabled
348  * @mb_map:		Mapping of memory B/W percentage to memory B/W delay
349  */
350 struct rdt_membw {
351 	u32		max_delay;
352 	u32		min_bw;
353 	u32		bw_gran;
354 	u32		delay_linear;
355 	bool		mba_sc;
356 	u32		*mb_map;
357 };
358 
is_llc_occupancy_enabled(void)359 static inline bool is_llc_occupancy_enabled(void)
360 {
361 	return (rdt_mon_features & (1 << QOS_L3_OCCUP_EVENT_ID));
362 }
363 
is_mbm_total_enabled(void)364 static inline bool is_mbm_total_enabled(void)
365 {
366 	return (rdt_mon_features & (1 << QOS_L3_MBM_TOTAL_EVENT_ID));
367 }
368 
is_mbm_local_enabled(void)369 static inline bool is_mbm_local_enabled(void)
370 {
371 	return (rdt_mon_features & (1 << QOS_L3_MBM_LOCAL_EVENT_ID));
372 }
373 
is_mbm_enabled(void)374 static inline bool is_mbm_enabled(void)
375 {
376 	return (is_mbm_total_enabled() || is_mbm_local_enabled());
377 }
378 
is_mbm_event(int e)379 static inline bool is_mbm_event(int e)
380 {
381 	return (e >= QOS_L3_MBM_TOTAL_EVENT_ID &&
382 		e <= QOS_L3_MBM_LOCAL_EVENT_ID);
383 }
384 
385 struct rdt_parse_data {
386 	struct rdtgroup		*rdtgrp;
387 	char			*buf;
388 };
389 
390 /**
391  * struct rdt_resource - attributes of an RDT resource
392  * @rid:		The index of the resource
393  * @alloc_enabled:	Is allocation enabled on this machine
394  * @mon_enabled:		Is monitoring enabled for this feature
395  * @alloc_capable:	Is allocation available on this machine
396  * @mon_capable:		Is monitor feature available on this machine
397  * @name:		Name to use in "schemata" file
398  * @num_closid:		Number of CLOSIDs available
399  * @cache_level:	Which cache level defines scope of this resource
400  * @default_ctrl:	Specifies default cache cbm or memory B/W percent.
401  * @msr_base:		Base MSR address for CBMs
402  * @msr_update:		Function pointer to update QOS MSRs
403  * @data_width:		Character width of data when displaying
404  * @domains:		All domains for this resource
405  * @cache:		Cache allocation related data
406  * @format_str:		Per resource format string to show domain value
407  * @parse_ctrlval:	Per resource function pointer to parse control values
408  * @evt_list:			List of monitoring events
409  * @num_rmid:			Number of RMIDs available
410  * @mon_scale:			cqm counter * mon_scale = occupancy in bytes
411  * @fflags:			flags to choose base and info files
412  */
413 struct rdt_resource {
414 	int			rid;
415 	bool			alloc_enabled;
416 	bool			mon_enabled;
417 	bool			alloc_capable;
418 	bool			mon_capable;
419 	char			*name;
420 	int			num_closid;
421 	int			cache_level;
422 	u32			default_ctrl;
423 	unsigned int		msr_base;
424 	void (*msr_update)	(struct rdt_domain *d, struct msr_param *m,
425 				 struct rdt_resource *r);
426 	int			data_width;
427 	struct list_head	domains;
428 	struct rdt_cache	cache;
429 	struct rdt_membw	membw;
430 	const char		*format_str;
431 	int (*parse_ctrlval)(struct rdt_parse_data *data,
432 			     struct rdt_resource *r,
433 			     struct rdt_domain *d);
434 	struct list_head	evt_list;
435 	int			num_rmid;
436 	unsigned int		mon_scale;
437 	unsigned long		fflags;
438 };
439 
440 int parse_cbm(struct rdt_parse_data *data, struct rdt_resource *r,
441 	      struct rdt_domain *d);
442 int parse_bw(struct rdt_parse_data *data, struct rdt_resource *r,
443 	     struct rdt_domain *d);
444 
445 extern struct mutex rdtgroup_mutex;
446 
447 extern struct rdt_resource rdt_resources_all[];
448 extern struct rdtgroup rdtgroup_default;
449 DECLARE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
450 
451 extern struct dentry *debugfs_resctrl;
452 
453 enum {
454 	RDT_RESOURCE_L3,
455 	RDT_RESOURCE_L3DATA,
456 	RDT_RESOURCE_L3CODE,
457 	RDT_RESOURCE_L2,
458 	RDT_RESOURCE_L2DATA,
459 	RDT_RESOURCE_L2CODE,
460 	RDT_RESOURCE_MBA,
461 
462 	/* Must be the last */
463 	RDT_NUM_RESOURCES,
464 };
465 
466 #define for_each_capable_rdt_resource(r)				      \
467 	for (r = rdt_resources_all; r < rdt_resources_all + RDT_NUM_RESOURCES;\
468 	     r++)							      \
469 		if (r->alloc_capable || r->mon_capable)
470 
471 #define for_each_alloc_capable_rdt_resource(r)				      \
472 	for (r = rdt_resources_all; r < rdt_resources_all + RDT_NUM_RESOURCES;\
473 	     r++)							      \
474 		if (r->alloc_capable)
475 
476 #define for_each_mon_capable_rdt_resource(r)				      \
477 	for (r = rdt_resources_all; r < rdt_resources_all + RDT_NUM_RESOURCES;\
478 	     r++)							      \
479 		if (r->mon_capable)
480 
481 #define for_each_alloc_enabled_rdt_resource(r)				      \
482 	for (r = rdt_resources_all; r < rdt_resources_all + RDT_NUM_RESOURCES;\
483 	     r++)							      \
484 		if (r->alloc_enabled)
485 
486 #define for_each_mon_enabled_rdt_resource(r)				      \
487 	for (r = rdt_resources_all; r < rdt_resources_all + RDT_NUM_RESOURCES;\
488 	     r++)							      \
489 		if (r->mon_enabled)
490 
491 /* CPUID.(EAX=10H, ECX=ResID=1).EAX */
492 union cpuid_0x10_1_eax {
493 	struct {
494 		unsigned int cbm_len:5;
495 	} split;
496 	unsigned int full;
497 };
498 
499 /* CPUID.(EAX=10H, ECX=ResID=3).EAX */
500 union cpuid_0x10_3_eax {
501 	struct {
502 		unsigned int max_delay:12;
503 	} split;
504 	unsigned int full;
505 };
506 
507 /* CPUID.(EAX=10H, ECX=ResID).EDX */
508 union cpuid_0x10_x_edx {
509 	struct {
510 		unsigned int cos_max:16;
511 	} split;
512 	unsigned int full;
513 };
514 
515 void rdt_last_cmd_clear(void);
516 void rdt_last_cmd_puts(const char *s);
517 void rdt_last_cmd_printf(const char *fmt, ...);
518 
519 void rdt_ctrl_update(void *arg);
520 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn);
521 void rdtgroup_kn_unlock(struct kernfs_node *kn);
522 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name);
523 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
524 			     umode_t mask);
525 struct rdt_domain *rdt_find_domain(struct rdt_resource *r, int id,
526 				   struct list_head **pos);
527 ssize_t rdtgroup_schemata_write(struct kernfs_open_file *of,
528 				char *buf, size_t nbytes, loff_t off);
529 int rdtgroup_schemata_show(struct kernfs_open_file *of,
530 			   struct seq_file *s, void *v);
531 bool rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
532 			   unsigned long cbm, int closid, bool exclusive);
533 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r, struct rdt_domain *d,
534 				  unsigned long cbm);
535 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid);
536 int rdtgroup_tasks_assigned(struct rdtgroup *r);
537 int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp);
538 int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp);
539 bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_domain *d, unsigned long cbm);
540 bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_domain *d);
541 int rdt_pseudo_lock_init(void);
542 void rdt_pseudo_lock_release(void);
543 int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp);
544 void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp);
545 struct rdt_domain *get_domain_from_cpu(int cpu, struct rdt_resource *r);
546 int update_domains(struct rdt_resource *r, int closid);
547 int closids_supported(void);
548 void closid_free(int closid);
549 int alloc_rmid(void);
550 void free_rmid(u32 rmid);
551 int rdt_get_mon_l3_config(struct rdt_resource *r);
552 void mon_event_count(void *info);
553 int rdtgroup_mondata_show(struct seq_file *m, void *arg);
554 void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
555 				    unsigned int dom_id);
556 void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
557 				    struct rdt_domain *d);
558 void mon_event_read(struct rmid_read *rr, struct rdt_domain *d,
559 		    struct rdtgroup *rdtgrp, int evtid, int first);
560 void mbm_setup_overflow_handler(struct rdt_domain *dom,
561 				unsigned long delay_ms);
562 void mbm_handle_overflow(struct work_struct *work);
563 bool is_mba_sc(struct rdt_resource *r);
564 void setup_default_ctrlval(struct rdt_resource *r, u32 *dc, u32 *dm);
565 u32 delay_bw_map(unsigned long bw, struct rdt_resource *r);
566 void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms);
567 void cqm_handle_limbo(struct work_struct *work);
568 bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d);
569 void __check_limbo(struct rdt_domain *d, bool force_free);
570 
571 #endif /* _ASM_X86_INTEL_RDT_H */
572