1 /*
2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3 * Copyright 2003 PathScale, Inc.
4 * Derived from include/asm-i386/pgtable.h
5 * Licensed under the GPL
6 */
7
8 #ifndef __UM_PGTABLE_H
9 #define __UM_PGTABLE_H
10
11 #include <asm/fixmap.h>
12
13 #define _PAGE_PRESENT 0x001
14 #define _PAGE_NEWPAGE 0x002
15 #define _PAGE_NEWPROT 0x004
16 #define _PAGE_RW 0x020
17 #define _PAGE_USER 0x040
18 #define _PAGE_ACCESSED 0x080
19 #define _PAGE_DIRTY 0x100
20 /* If _PAGE_PRESENT is clear, we use these: */
21 #define _PAGE_PROTNONE 0x010 /* if the user mapped it with PROT_NONE;
22 pte_present gives true */
23
24 #ifdef CONFIG_3_LEVEL_PGTABLES
25 #include <asm/pgtable-3level.h>
26 #else
27 #include <asm/pgtable-2level.h>
28 #endif
29
30 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
31
32 /* zero page used for uninitialized stuff */
33 extern unsigned long *empty_zero_page;
34
35 #define pgtable_cache_init() do ; while (0)
36
37 /* Just any arbitrary offset to the start of the vmalloc VM area: the
38 * current 8MB value just means that there will be a 8MB "hole" after the
39 * physical memory until the kernel virtual memory starts. That means that
40 * any out-of-bounds memory accesses will hopefully be caught.
41 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
42 * area for the same reason. ;)
43 */
44
45 extern unsigned long end_iomem;
46
47 #define VMALLOC_OFFSET (__va_space)
48 #define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
49 #define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK)
50 #define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
51 #define MODULES_VADDR VMALLOC_START
52 #define MODULES_END VMALLOC_END
53 #define MODULES_LEN (MODULES_VADDR - MODULES_END)
54
55 #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
56 #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
57 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
58 #define __PAGE_KERNEL_EXEC \
59 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
60 #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
61 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
62 #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
63 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
64 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
65 #define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC)
66
67 /*
68 * The i386 can't do page protection for execute, and considers that the same
69 * are read.
70 * Also, write permissions imply read permissions. This is the closest we can
71 * get..
72 */
73 #define __P000 PAGE_NONE
74 #define __P001 PAGE_READONLY
75 #define __P010 PAGE_COPY
76 #define __P011 PAGE_COPY
77 #define __P100 PAGE_READONLY
78 #define __P101 PAGE_READONLY
79 #define __P110 PAGE_COPY
80 #define __P111 PAGE_COPY
81
82 #define __S000 PAGE_NONE
83 #define __S001 PAGE_READONLY
84 #define __S010 PAGE_SHARED
85 #define __S011 PAGE_SHARED
86 #define __S100 PAGE_READONLY
87 #define __S101 PAGE_READONLY
88 #define __S110 PAGE_SHARED
89 #define __S111 PAGE_SHARED
90
91 /*
92 * ZERO_PAGE is a global shared page that is always zero: used
93 * for zero-mapped memory areas etc..
94 */
95 #define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
96
97 #define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE))
98
99 #define pmd_none(x) (!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE))
100 #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
101
102 #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
103 #define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0)
104
105 #define pmd_newpage(x) (pmd_val(x) & _PAGE_NEWPAGE)
106 #define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE)
107
108 #define pud_newpage(x) (pud_val(x) & _PAGE_NEWPAGE)
109 #define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE)
110
111 #define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
112
113 #define pte_page(x) pfn_to_page(pte_pfn(x))
114
115 #define pte_present(x) pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE))
116
117 /*
118 * =================================
119 * Flags checking section.
120 * =================================
121 */
122
pte_none(pte_t pte)123 static inline int pte_none(pte_t pte)
124 {
125 return pte_is_zero(pte);
126 }
127
128 /*
129 * The following only work if pte_present() is true.
130 * Undefined behaviour if not..
131 */
pte_read(pte_t pte)132 static inline int pte_read(pte_t pte)
133 {
134 return((pte_get_bits(pte, _PAGE_USER)) &&
135 !(pte_get_bits(pte, _PAGE_PROTNONE)));
136 }
137
pte_exec(pte_t pte)138 static inline int pte_exec(pte_t pte){
139 return((pte_get_bits(pte, _PAGE_USER)) &&
140 !(pte_get_bits(pte, _PAGE_PROTNONE)));
141 }
142
pte_write(pte_t pte)143 static inline int pte_write(pte_t pte)
144 {
145 return((pte_get_bits(pte, _PAGE_RW)) &&
146 !(pte_get_bits(pte, _PAGE_PROTNONE)));
147 }
148
pte_dirty(pte_t pte)149 static inline int pte_dirty(pte_t pte)
150 {
151 return pte_get_bits(pte, _PAGE_DIRTY);
152 }
153
pte_young(pte_t pte)154 static inline int pte_young(pte_t pte)
155 {
156 return pte_get_bits(pte, _PAGE_ACCESSED);
157 }
158
pte_newpage(pte_t pte)159 static inline int pte_newpage(pte_t pte)
160 {
161 return pte_get_bits(pte, _PAGE_NEWPAGE);
162 }
163
pte_newprot(pte_t pte)164 static inline int pte_newprot(pte_t pte)
165 {
166 return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT)));
167 }
168
pte_special(pte_t pte)169 static inline int pte_special(pte_t pte)
170 {
171 return 0;
172 }
173
174 /*
175 * =================================
176 * Flags setting section.
177 * =================================
178 */
179
pte_mknewprot(pte_t pte)180 static inline pte_t pte_mknewprot(pte_t pte)
181 {
182 pte_set_bits(pte, _PAGE_NEWPROT);
183 return(pte);
184 }
185
pte_mkclean(pte_t pte)186 static inline pte_t pte_mkclean(pte_t pte)
187 {
188 pte_clear_bits(pte, _PAGE_DIRTY);
189 return(pte);
190 }
191
pte_mkold(pte_t pte)192 static inline pte_t pte_mkold(pte_t pte)
193 {
194 pte_clear_bits(pte, _PAGE_ACCESSED);
195 return(pte);
196 }
197
pte_wrprotect(pte_t pte)198 static inline pte_t pte_wrprotect(pte_t pte)
199 {
200 pte_clear_bits(pte, _PAGE_RW);
201 return(pte_mknewprot(pte));
202 }
203
pte_mkread(pte_t pte)204 static inline pte_t pte_mkread(pte_t pte)
205 {
206 pte_set_bits(pte, _PAGE_USER);
207 return(pte_mknewprot(pte));
208 }
209
pte_mkdirty(pte_t pte)210 static inline pte_t pte_mkdirty(pte_t pte)
211 {
212 pte_set_bits(pte, _PAGE_DIRTY);
213 return(pte);
214 }
215
pte_mkyoung(pte_t pte)216 static inline pte_t pte_mkyoung(pte_t pte)
217 {
218 pte_set_bits(pte, _PAGE_ACCESSED);
219 return(pte);
220 }
221
pte_mkwrite(pte_t pte)222 static inline pte_t pte_mkwrite(pte_t pte)
223 {
224 pte_set_bits(pte, _PAGE_RW);
225 return(pte_mknewprot(pte));
226 }
227
pte_mkuptodate(pte_t pte)228 static inline pte_t pte_mkuptodate(pte_t pte)
229 {
230 pte_clear_bits(pte, _PAGE_NEWPAGE);
231 if(pte_present(pte))
232 pte_clear_bits(pte, _PAGE_NEWPROT);
233 return(pte);
234 }
235
pte_mknewpage(pte_t pte)236 static inline pte_t pte_mknewpage(pte_t pte)
237 {
238 pte_set_bits(pte, _PAGE_NEWPAGE);
239 return(pte);
240 }
241
pte_mkspecial(pte_t pte)242 static inline pte_t pte_mkspecial(pte_t pte)
243 {
244 return(pte);
245 }
246
set_pte(pte_t * pteptr,pte_t pteval)247 static inline void set_pte(pte_t *pteptr, pte_t pteval)
248 {
249 pte_copy(*pteptr, pteval);
250
251 /* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so
252 * fix_range knows to unmap it. _PAGE_NEWPROT is specific to
253 * mapped pages.
254 */
255
256 *pteptr = pte_mknewpage(*pteptr);
257 if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr);
258 }
259 #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
260
261 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)262 static inline int pte_same(pte_t pte_a, pte_t pte_b)
263 {
264 return !((pte_val(pte_a) ^ pte_val(pte_b)) & ~_PAGE_NEWPAGE);
265 }
266
267 /*
268 * Conversion functions: convert a page and protection to a page entry,
269 * and a page entry and page directory to the page they refer to.
270 */
271
272 #define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys))
273 #define __virt_to_page(virt) phys_to_page(__pa(virt))
274 #define page_to_phys(page) pfn_to_phys(page_to_pfn(page))
275 #define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
276
277 #define mk_pte(page, pgprot) \
278 ({ pte_t pte; \
279 \
280 pte_set_val(pte, page_to_phys(page), (pgprot)); \
281 if (pte_present(pte)) \
282 pte_mknewprot(pte_mknewpage(pte)); \
283 pte;})
284
pte_modify(pte_t pte,pgprot_t newprot)285 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
286 {
287 pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
288 return pte;
289 }
290
291 /*
292 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
293 *
294 * this macro returns the index of the entry in the pgd page which would
295 * control the given virtual address
296 */
297 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
298
299 /*
300 * pgd_offset() returns a (pgd_t *)
301 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
302 */
303 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
304
305 /*
306 * a shortcut which implies the use of the kernel's pgd, instead
307 * of a process's
308 */
309 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
310
311 /*
312 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
313 *
314 * this macro returns the index of the entry in the pmd page which would
315 * control the given virtual address
316 */
317 #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
318 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
319
320 #define pmd_page_vaddr(pmd) \
321 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
322
323 /*
324 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
325 *
326 * this macro returns the index of the entry in the pte page which would
327 * control the given virtual address
328 */
329 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
330 #define pte_offset_kernel(dir, address) \
331 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
332 #define pte_offset_map(dir, address) \
333 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
334 #define pte_unmap(pte) do { } while (0)
335
336 struct mm_struct;
337 extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
338
339 #define update_mmu_cache(vma,address,ptep) do ; while (0)
340
341 /* Encode and de-code a swap entry */
342 #define __swp_type(x) (((x).val >> 5) & 0x1f)
343 #define __swp_offset(x) ((x).val >> 11)
344
345 #define __swp_entry(type, offset) \
346 ((swp_entry_t) { ((type) << 5) | ((offset) << 11) })
347 #define __pte_to_swp_entry(pte) \
348 ((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
349 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
350
351 #define kern_addr_valid(addr) (1)
352
353 #include <asm-generic/pgtable.h>
354
355 /* Clear a kernel PTE and flush it from the TLB */
356 #define kpte_clear_flush(ptep, vaddr) \
357 do { \
358 pte_clear(&init_mm, (vaddr), (ptep)); \
359 __flush_tlb_one((vaddr)); \
360 } while (0)
361
362 #endif
363