1 // SPDX-License-Identifier: GPL-2.0
2 /* smp.c: Sparc SMP support.
3  *
4  * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
5  * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
7  */
8 
9 #include <asm/head.h>
10 
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/threads.h>
14 #include <linux/smp.h>
15 #include <linux/interrupt.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/cache.h>
23 #include <linux/delay.h>
24 #include <linux/profile.h>
25 #include <linux/cpu.h>
26 
27 #include <asm/ptrace.h>
28 #include <linux/atomic.h>
29 
30 #include <asm/irq.h>
31 #include <asm/page.h>
32 #include <asm/pgalloc.h>
33 #include <asm/pgtable.h>
34 #include <asm/oplib.h>
35 #include <asm/cacheflush.h>
36 #include <asm/tlbflush.h>
37 #include <asm/cpudata.h>
38 #include <asm/timer.h>
39 #include <asm/leon.h>
40 
41 #include "kernel.h"
42 #include "irq.h"
43 
44 volatile unsigned long cpu_callin_map[NR_CPUS] = {0,};
45 
46 cpumask_t smp_commenced_mask = CPU_MASK_NONE;
47 
48 const struct sparc32_ipi_ops *sparc32_ipi_ops;
49 
50 /* The only guaranteed locking primitive available on all Sparc
51  * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
52  * places the current byte at the effective address into dest_reg and
53  * places 0xff there afterwards.  Pretty lame locking primitive
54  * compared to the Alpha and the Intel no?  Most Sparcs have 'swap'
55  * instruction which is much better...
56  */
57 
smp_store_cpu_info(int id)58 void smp_store_cpu_info(int id)
59 {
60 	int cpu_node;
61 	int mid;
62 
63 	cpu_data(id).udelay_val = loops_per_jiffy;
64 
65 	cpu_find_by_mid(id, &cpu_node);
66 	cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
67 						     "clock-frequency", 0);
68 	cpu_data(id).prom_node = cpu_node;
69 	mid = cpu_get_hwmid(cpu_node);
70 
71 	if (mid < 0) {
72 		printk(KERN_NOTICE "No MID found for CPU%d at node 0x%08x", id, cpu_node);
73 		mid = 0;
74 	}
75 	cpu_data(id).mid = mid;
76 }
77 
smp_cpus_done(unsigned int max_cpus)78 void __init smp_cpus_done(unsigned int max_cpus)
79 {
80 	unsigned long bogosum = 0;
81 	int cpu, num = 0;
82 
83 	for_each_online_cpu(cpu) {
84 		num++;
85 		bogosum += cpu_data(cpu).udelay_val;
86 	}
87 
88 	printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
89 		num, bogosum/(500000/HZ),
90 		(bogosum/(5000/HZ))%100);
91 
92 	switch(sparc_cpu_model) {
93 	case sun4m:
94 		smp4m_smp_done();
95 		break;
96 	case sun4d:
97 		smp4d_smp_done();
98 		break;
99 	case sparc_leon:
100 		leon_smp_done();
101 		break;
102 	case sun4e:
103 		printk("SUN4E\n");
104 		BUG();
105 		break;
106 	case sun4u:
107 		printk("SUN4U\n");
108 		BUG();
109 		break;
110 	default:
111 		printk("UNKNOWN!\n");
112 		BUG();
113 		break;
114 	}
115 }
116 
cpu_panic(void)117 void cpu_panic(void)
118 {
119 	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
120 	panic("SMP bolixed\n");
121 }
122 
123 struct linux_prom_registers smp_penguin_ctable = { 0 };
124 
smp_send_reschedule(int cpu)125 void smp_send_reschedule(int cpu)
126 {
127 	/*
128 	 * CPU model dependent way of implementing IPI generation targeting
129 	 * a single CPU. The trap handler needs only to do trap entry/return
130 	 * to call schedule.
131 	 */
132 	sparc32_ipi_ops->resched(cpu);
133 }
134 
smp_send_stop(void)135 void smp_send_stop(void)
136 {
137 }
138 
arch_send_call_function_single_ipi(int cpu)139 void arch_send_call_function_single_ipi(int cpu)
140 {
141 	/* trigger one IPI single call on one CPU */
142 	sparc32_ipi_ops->single(cpu);
143 }
144 
arch_send_call_function_ipi_mask(const struct cpumask * mask)145 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
146 {
147 	int cpu;
148 
149 	/* trigger IPI mask call on each CPU */
150 	for_each_cpu(cpu, mask)
151 		sparc32_ipi_ops->mask_one(cpu);
152 }
153 
smp_resched_interrupt(void)154 void smp_resched_interrupt(void)
155 {
156 	irq_enter();
157 	scheduler_ipi();
158 	local_cpu_data().irq_resched_count++;
159 	irq_exit();
160 	/* re-schedule routine called by interrupt return code. */
161 }
162 
smp_call_function_single_interrupt(void)163 void smp_call_function_single_interrupt(void)
164 {
165 	irq_enter();
166 	generic_smp_call_function_single_interrupt();
167 	local_cpu_data().irq_call_count++;
168 	irq_exit();
169 }
170 
smp_call_function_interrupt(void)171 void smp_call_function_interrupt(void)
172 {
173 	irq_enter();
174 	generic_smp_call_function_interrupt();
175 	local_cpu_data().irq_call_count++;
176 	irq_exit();
177 }
178 
setup_profiling_timer(unsigned int multiplier)179 int setup_profiling_timer(unsigned int multiplier)
180 {
181 	return -EINVAL;
182 }
183 
smp_prepare_cpus(unsigned int max_cpus)184 void __init smp_prepare_cpus(unsigned int max_cpus)
185 {
186 	int i, cpuid, extra;
187 
188 	printk("Entering SMP Mode...\n");
189 
190 	extra = 0;
191 	for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) {
192 		if (cpuid >= NR_CPUS)
193 			extra++;
194 	}
195 	/* i = number of cpus */
196 	if (extra && max_cpus > i - extra)
197 		printk("Warning: NR_CPUS is too low to start all cpus\n");
198 
199 	smp_store_cpu_info(boot_cpu_id);
200 
201 	switch(sparc_cpu_model) {
202 	case sun4m:
203 		smp4m_boot_cpus();
204 		break;
205 	case sun4d:
206 		smp4d_boot_cpus();
207 		break;
208 	case sparc_leon:
209 		leon_boot_cpus();
210 		break;
211 	case sun4e:
212 		printk("SUN4E\n");
213 		BUG();
214 		break;
215 	case sun4u:
216 		printk("SUN4U\n");
217 		BUG();
218 		break;
219 	default:
220 		printk("UNKNOWN!\n");
221 		BUG();
222 		break;
223 	}
224 }
225 
226 /* Set this up early so that things like the scheduler can init
227  * properly.  We use the same cpu mask for both the present and
228  * possible cpu map.
229  */
smp_setup_cpu_possible_map(void)230 void __init smp_setup_cpu_possible_map(void)
231 {
232 	int instance, mid;
233 
234 	instance = 0;
235 	while (!cpu_find_by_instance(instance, NULL, &mid)) {
236 		if (mid < NR_CPUS) {
237 			set_cpu_possible(mid, true);
238 			set_cpu_present(mid, true);
239 		}
240 		instance++;
241 	}
242 }
243 
smp_prepare_boot_cpu(void)244 void __init smp_prepare_boot_cpu(void)
245 {
246 	int cpuid = hard_smp_processor_id();
247 
248 	if (cpuid >= NR_CPUS) {
249 		prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
250 		prom_halt();
251 	}
252 	if (cpuid != 0)
253 		printk("boot cpu id != 0, this could work but is untested\n");
254 
255 	current_thread_info()->cpu = cpuid;
256 	set_cpu_online(cpuid, true);
257 	set_cpu_possible(cpuid, true);
258 }
259 
__cpu_up(unsigned int cpu,struct task_struct * tidle)260 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
261 {
262 	int ret=0;
263 
264 	switch(sparc_cpu_model) {
265 	case sun4m:
266 		ret = smp4m_boot_one_cpu(cpu, tidle);
267 		break;
268 	case sun4d:
269 		ret = smp4d_boot_one_cpu(cpu, tidle);
270 		break;
271 	case sparc_leon:
272 		ret = leon_boot_one_cpu(cpu, tidle);
273 		break;
274 	case sun4e:
275 		printk("SUN4E\n");
276 		BUG();
277 		break;
278 	case sun4u:
279 		printk("SUN4U\n");
280 		BUG();
281 		break;
282 	default:
283 		printk("UNKNOWN!\n");
284 		BUG();
285 		break;
286 	}
287 
288 	if (!ret) {
289 		cpumask_set_cpu(cpu, &smp_commenced_mask);
290 		while (!cpu_online(cpu))
291 			mb();
292 	}
293 	return ret;
294 }
295 
arch_cpu_pre_starting(void * arg)296 static void arch_cpu_pre_starting(void *arg)
297 {
298 	local_ops->cache_all();
299 	local_ops->tlb_all();
300 
301 	switch(sparc_cpu_model) {
302 	case sun4m:
303 		sun4m_cpu_pre_starting(arg);
304 		break;
305 	case sun4d:
306 		sun4d_cpu_pre_starting(arg);
307 		break;
308 	case sparc_leon:
309 		leon_cpu_pre_starting(arg);
310 		break;
311 	default:
312 		BUG();
313 	}
314 }
315 
arch_cpu_pre_online(void * arg)316 static void arch_cpu_pre_online(void *arg)
317 {
318 	unsigned int cpuid = hard_smp_processor_id();
319 
320 	register_percpu_ce(cpuid);
321 
322 	calibrate_delay();
323 	smp_store_cpu_info(cpuid);
324 
325 	local_ops->cache_all();
326 	local_ops->tlb_all();
327 
328 	switch(sparc_cpu_model) {
329 	case sun4m:
330 		sun4m_cpu_pre_online(arg);
331 		break;
332 	case sun4d:
333 		sun4d_cpu_pre_online(arg);
334 		break;
335 	case sparc_leon:
336 		leon_cpu_pre_online(arg);
337 		break;
338 	default:
339 		BUG();
340 	}
341 }
342 
sparc_start_secondary(void * arg)343 static void sparc_start_secondary(void *arg)
344 {
345 	unsigned int cpu;
346 
347 	/*
348 	 * SMP booting is extremely fragile in some architectures. So run
349 	 * the cpu initialization code first before anything else.
350 	 */
351 	arch_cpu_pre_starting(arg);
352 
353 	preempt_disable();
354 	cpu = smp_processor_id();
355 
356 	notify_cpu_starting(cpu);
357 	arch_cpu_pre_online(arg);
358 
359 	/* Set the CPU in the cpu_online_mask */
360 	set_cpu_online(cpu, true);
361 
362 	/* Enable local interrupts now */
363 	local_irq_enable();
364 
365 	wmb();
366 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
367 
368 	/* We should never reach here! */
369 	BUG();
370 }
371 
smp_callin(void)372 void smp_callin(void)
373 {
374 	sparc_start_secondary(NULL);
375 }
376 
smp_bogo(struct seq_file * m)377 void smp_bogo(struct seq_file *m)
378 {
379 	int i;
380 
381 	for_each_online_cpu(i) {
382 		seq_printf(m,
383 			   "Cpu%dBogo\t: %lu.%02lu\n",
384 			   i,
385 			   cpu_data(i).udelay_val/(500000/HZ),
386 			   (cpu_data(i).udelay_val/(5000/HZ))%100);
387 	}
388 }
389 
smp_info(struct seq_file * m)390 void smp_info(struct seq_file *m)
391 {
392 	int i;
393 
394 	seq_printf(m, "State:\n");
395 	for_each_online_cpu(i)
396 		seq_printf(m, "CPU%d\t\t: online\n", i);
397 }
398