1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NUMA support for s390
4  *
5  * NUMA emulation (aka fake NUMA) distributes the available memory to nodes
6  * without using real topology information about the physical memory of the
7  * machine.
8  *
9  * It distributes the available CPUs to nodes while respecting the original
10  * machine topology information. This is done by trying to avoid to separate
11  * CPUs which reside on the same book or even on the same MC.
12  *
13  * Because the current Linux scheduler code requires a stable cpu to node
14  * mapping, cores are pinned to nodes when the first CPU thread is set online.
15  *
16  * Copyright IBM Corp. 2015
17  */
18 
19 #define KMSG_COMPONENT "numa_emu"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/cpumask.h>
24 #include <linux/memblock.h>
25 #include <linux/bootmem.h>
26 #include <linux/node.h>
27 #include <linux/memory.h>
28 #include <linux/slab.h>
29 #include <asm/smp.h>
30 #include <asm/topology.h>
31 #include "numa_mode.h"
32 #include "toptree.h"
33 
34 /* Distances between the different system components */
35 #define DIST_EMPTY	0
36 #define DIST_CORE	1
37 #define DIST_MC		2
38 #define DIST_BOOK	3
39 #define DIST_DRAWER	4
40 #define DIST_MAX	5
41 
42 /* Node distance reported to common code */
43 #define EMU_NODE_DIST	10
44 
45 /* Node ID for free (not yet pinned) cores */
46 #define NODE_ID_FREE	-1
47 
48 /* Different levels of toptree */
49 enum toptree_level {CORE, MC, BOOK, DRAWER, NODE, TOPOLOGY};
50 
51 /* The two toptree IDs */
52 enum {TOPTREE_ID_PHYS, TOPTREE_ID_NUMA};
53 
54 /* Number of NUMA nodes */
55 static int emu_nodes = 1;
56 /* NUMA stripe size */
57 static unsigned long emu_size;
58 
59 /*
60  * Node to core pinning information updates are protected by
61  * "sched_domains_mutex".
62  */
63 static struct {
64 	s32 to_node_id[CONFIG_NR_CPUS];	/* Pinned core to node mapping */
65 	int total;			/* Total number of pinned cores */
66 	int per_node_target;		/* Cores per node without extra cores */
67 	int per_node[MAX_NUMNODES];	/* Number of cores pinned to node */
68 } *emu_cores;
69 
70 /*
71  * Pin a core to a node
72  */
pin_core_to_node(int core_id,int node_id)73 static void pin_core_to_node(int core_id, int node_id)
74 {
75 	if (emu_cores->to_node_id[core_id] == NODE_ID_FREE) {
76 		emu_cores->per_node[node_id]++;
77 		emu_cores->to_node_id[core_id] = node_id;
78 		emu_cores->total++;
79 	} else {
80 		WARN_ON(emu_cores->to_node_id[core_id] != node_id);
81 	}
82 }
83 
84 /*
85  * Number of pinned cores of a node
86  */
cores_pinned(struct toptree * node)87 static int cores_pinned(struct toptree *node)
88 {
89 	return emu_cores->per_node[node->id];
90 }
91 
92 /*
93  * ID of the node where the core is pinned (or NODE_ID_FREE)
94  */
core_pinned_to_node_id(struct toptree * core)95 static int core_pinned_to_node_id(struct toptree *core)
96 {
97 	return emu_cores->to_node_id[core->id];
98 }
99 
100 /*
101  * Number of cores in the tree that are not yet pinned
102  */
cores_free(struct toptree * tree)103 static int cores_free(struct toptree *tree)
104 {
105 	struct toptree *core;
106 	int count = 0;
107 
108 	toptree_for_each(core, tree, CORE) {
109 		if (core_pinned_to_node_id(core) == NODE_ID_FREE)
110 			count++;
111 	}
112 	return count;
113 }
114 
115 /*
116  * Return node of core
117  */
core_node(struct toptree * core)118 static struct toptree *core_node(struct toptree *core)
119 {
120 	return core->parent->parent->parent->parent;
121 }
122 
123 /*
124  * Return drawer of core
125  */
core_drawer(struct toptree * core)126 static struct toptree *core_drawer(struct toptree *core)
127 {
128 	return core->parent->parent->parent;
129 }
130 
131 /*
132  * Return book of core
133  */
core_book(struct toptree * core)134 static struct toptree *core_book(struct toptree *core)
135 {
136 	return core->parent->parent;
137 }
138 
139 /*
140  * Return mc of core
141  */
core_mc(struct toptree * core)142 static struct toptree *core_mc(struct toptree *core)
143 {
144 	return core->parent;
145 }
146 
147 /*
148  * Distance between two cores
149  */
dist_core_to_core(struct toptree * core1,struct toptree * core2)150 static int dist_core_to_core(struct toptree *core1, struct toptree *core2)
151 {
152 	if (core_drawer(core1)->id != core_drawer(core2)->id)
153 		return DIST_DRAWER;
154 	if (core_book(core1)->id != core_book(core2)->id)
155 		return DIST_BOOK;
156 	if (core_mc(core1)->id != core_mc(core2)->id)
157 		return DIST_MC;
158 	/* Same core or sibling on same MC */
159 	return DIST_CORE;
160 }
161 
162 /*
163  * Distance of a node to a core
164  */
dist_node_to_core(struct toptree * node,struct toptree * core)165 static int dist_node_to_core(struct toptree *node, struct toptree *core)
166 {
167 	struct toptree *core_node;
168 	int dist_min = DIST_MAX;
169 
170 	toptree_for_each(core_node, node, CORE)
171 		dist_min = min(dist_min, dist_core_to_core(core_node, core));
172 	return dist_min == DIST_MAX ? DIST_EMPTY : dist_min;
173 }
174 
175 /*
176  * Unify will delete empty nodes, therefore recreate nodes.
177  */
toptree_unify_tree(struct toptree * tree)178 static void toptree_unify_tree(struct toptree *tree)
179 {
180 	int nid;
181 
182 	toptree_unify(tree);
183 	for (nid = 0; nid < emu_nodes; nid++)
184 		toptree_get_child(tree, nid);
185 }
186 
187 /*
188  * Find the best/nearest node for a given core and ensure that no node
189  * gets more than "emu_cores->per_node_target + extra" cores.
190  */
node_for_core(struct toptree * numa,struct toptree * core,int extra)191 static struct toptree *node_for_core(struct toptree *numa, struct toptree *core,
192 				     int extra)
193 {
194 	struct toptree *node, *node_best = NULL;
195 	int dist_cur, dist_best, cores_target;
196 
197 	cores_target = emu_cores->per_node_target + extra;
198 	dist_best = DIST_MAX;
199 	node_best = NULL;
200 	toptree_for_each(node, numa, NODE) {
201 		/* Already pinned cores must use their nodes */
202 		if (core_pinned_to_node_id(core) == node->id) {
203 			node_best = node;
204 			break;
205 		}
206 		/* Skip nodes that already have enough cores */
207 		if (cores_pinned(node) >= cores_target)
208 			continue;
209 		dist_cur = dist_node_to_core(node, core);
210 		if (dist_cur < dist_best) {
211 			dist_best = dist_cur;
212 			node_best = node;
213 		}
214 	}
215 	return node_best;
216 }
217 
218 /*
219  * Find the best node for each core with respect to "extra" core count
220  */
toptree_to_numa_single(struct toptree * numa,struct toptree * phys,int extra)221 static void toptree_to_numa_single(struct toptree *numa, struct toptree *phys,
222 				   int extra)
223 {
224 	struct toptree *node, *core, *tmp;
225 
226 	toptree_for_each_safe(core, tmp, phys, CORE) {
227 		node = node_for_core(numa, core, extra);
228 		if (!node)
229 			return;
230 		toptree_move(core, node);
231 		pin_core_to_node(core->id, node->id);
232 	}
233 }
234 
235 /*
236  * Move structures of given level to specified NUMA node
237  */
move_level_to_numa_node(struct toptree * node,struct toptree * phys,enum toptree_level level,bool perfect)238 static void move_level_to_numa_node(struct toptree *node, struct toptree *phys,
239 				    enum toptree_level level, bool perfect)
240 {
241 	int cores_free, cores_target = emu_cores->per_node_target;
242 	struct toptree *cur, *tmp;
243 
244 	toptree_for_each_safe(cur, tmp, phys, level) {
245 		cores_free = cores_target - toptree_count(node, CORE);
246 		if (perfect) {
247 			if (cores_free == toptree_count(cur, CORE))
248 				toptree_move(cur, node);
249 		} else {
250 			if (cores_free >= toptree_count(cur, CORE))
251 				toptree_move(cur, node);
252 		}
253 	}
254 }
255 
256 /*
257  * Move structures of a given level to NUMA nodes. If "perfect" is specified
258  * move only perfectly fitting structures. Otherwise move also smaller
259  * than needed structures.
260  */
move_level_to_numa(struct toptree * numa,struct toptree * phys,enum toptree_level level,bool perfect)261 static void move_level_to_numa(struct toptree *numa, struct toptree *phys,
262 			       enum toptree_level level, bool perfect)
263 {
264 	struct toptree *node;
265 
266 	toptree_for_each(node, numa, NODE)
267 		move_level_to_numa_node(node, phys, level, perfect);
268 }
269 
270 /*
271  * For the first run try to move the big structures
272  */
toptree_to_numa_first(struct toptree * numa,struct toptree * phys)273 static void toptree_to_numa_first(struct toptree *numa, struct toptree *phys)
274 {
275 	struct toptree *core;
276 
277 	/* Always try to move perfectly fitting structures first */
278 	move_level_to_numa(numa, phys, DRAWER, true);
279 	move_level_to_numa(numa, phys, DRAWER, false);
280 	move_level_to_numa(numa, phys, BOOK, true);
281 	move_level_to_numa(numa, phys, BOOK, false);
282 	move_level_to_numa(numa, phys, MC, true);
283 	move_level_to_numa(numa, phys, MC, false);
284 	/* Now pin all the moved cores */
285 	toptree_for_each(core, numa, CORE)
286 		pin_core_to_node(core->id, core_node(core)->id);
287 }
288 
289 /*
290  * Allocate new topology and create required nodes
291  */
toptree_new(int id,int nodes)292 static struct toptree *toptree_new(int id, int nodes)
293 {
294 	struct toptree *tree;
295 	int nid;
296 
297 	tree = toptree_alloc(TOPOLOGY, id);
298 	if (!tree)
299 		goto fail;
300 	for (nid = 0; nid < nodes; nid++) {
301 		if (!toptree_get_child(tree, nid))
302 			goto fail;
303 	}
304 	return tree;
305 fail:
306 	panic("NUMA emulation could not allocate topology");
307 }
308 
309 /*
310  * Allocate and initialize core to node mapping
311  */
create_core_to_node_map(void)312 static void __ref create_core_to_node_map(void)
313 {
314 	int i;
315 
316 	emu_cores = memblock_virt_alloc(sizeof(*emu_cores), 8);
317 	for (i = 0; i < ARRAY_SIZE(emu_cores->to_node_id); i++)
318 		emu_cores->to_node_id[i] = NODE_ID_FREE;
319 }
320 
321 /*
322  * Move cores from physical topology into NUMA target topology
323  * and try to keep as much of the physical topology as possible.
324  */
toptree_to_numa(struct toptree * phys)325 static struct toptree *toptree_to_numa(struct toptree *phys)
326 {
327 	static int first = 1;
328 	struct toptree *numa;
329 	int cores_total;
330 
331 	cores_total = emu_cores->total + cores_free(phys);
332 	emu_cores->per_node_target = cores_total / emu_nodes;
333 	numa = toptree_new(TOPTREE_ID_NUMA, emu_nodes);
334 	if (first) {
335 		toptree_to_numa_first(numa, phys);
336 		first = 0;
337 	}
338 	toptree_to_numa_single(numa, phys, 0);
339 	toptree_to_numa_single(numa, phys, 1);
340 	toptree_unify_tree(numa);
341 
342 	WARN_ON(cpumask_weight(&phys->mask));
343 	return numa;
344 }
345 
346 /*
347  * Create a toptree out of the physical topology that we got from the hypervisor
348  */
toptree_from_topology(void)349 static struct toptree *toptree_from_topology(void)
350 {
351 	struct toptree *phys, *node, *drawer, *book, *mc, *core;
352 	struct cpu_topology_s390 *top;
353 	int cpu;
354 
355 	phys = toptree_new(TOPTREE_ID_PHYS, 1);
356 
357 	for_each_cpu(cpu, &cpus_with_topology) {
358 		top = &cpu_topology[cpu];
359 		node = toptree_get_child(phys, 0);
360 		drawer = toptree_get_child(node, top->drawer_id);
361 		book = toptree_get_child(drawer, top->book_id);
362 		mc = toptree_get_child(book, top->socket_id);
363 		core = toptree_get_child(mc, smp_get_base_cpu(cpu));
364 		if (!drawer || !book || !mc || !core)
365 			panic("NUMA emulation could not allocate memory");
366 		cpumask_set_cpu(cpu, &core->mask);
367 		toptree_update_mask(mc);
368 	}
369 	return phys;
370 }
371 
372 /*
373  * Add toptree core to topology and create correct CPU masks
374  */
topology_add_core(struct toptree * core)375 static void topology_add_core(struct toptree *core)
376 {
377 	struct cpu_topology_s390 *top;
378 	int cpu;
379 
380 	for_each_cpu(cpu, &core->mask) {
381 		top = &cpu_topology[cpu];
382 		cpumask_copy(&top->thread_mask, &core->mask);
383 		cpumask_copy(&top->core_mask, &core_mc(core)->mask);
384 		cpumask_copy(&top->book_mask, &core_book(core)->mask);
385 		cpumask_copy(&top->drawer_mask, &core_drawer(core)->mask);
386 		cpumask_set_cpu(cpu, &node_to_cpumask_map[core_node(core)->id]);
387 		top->node_id = core_node(core)->id;
388 	}
389 }
390 
391 /*
392  * Apply toptree to topology and create CPU masks
393  */
toptree_to_topology(struct toptree * numa)394 static void toptree_to_topology(struct toptree *numa)
395 {
396 	struct toptree *core;
397 	int i;
398 
399 	/* Clear all node masks */
400 	for (i = 0; i < MAX_NUMNODES; i++)
401 		cpumask_clear(&node_to_cpumask_map[i]);
402 
403 	/* Rebuild all masks */
404 	toptree_for_each(core, numa, CORE)
405 		topology_add_core(core);
406 }
407 
408 /*
409  * Show the node to core mapping
410  */
print_node_to_core_map(void)411 static void print_node_to_core_map(void)
412 {
413 	int nid, cid;
414 
415 	if (!numa_debug_enabled)
416 		return;
417 	printk(KERN_DEBUG "NUMA node to core mapping\n");
418 	for (nid = 0; nid < emu_nodes; nid++) {
419 		printk(KERN_DEBUG "  node %3d: ", nid);
420 		for (cid = 0; cid < ARRAY_SIZE(emu_cores->to_node_id); cid++) {
421 			if (emu_cores->to_node_id[cid] == nid)
422 				printk(KERN_CONT "%d ", cid);
423 		}
424 		printk(KERN_CONT "\n");
425 	}
426 }
427 
pin_all_possible_cpus(void)428 static void pin_all_possible_cpus(void)
429 {
430 	int core_id, node_id, cpu;
431 	static int initialized;
432 
433 	if (initialized)
434 		return;
435 	print_node_to_core_map();
436 	node_id = 0;
437 	for_each_possible_cpu(cpu) {
438 		core_id = smp_get_base_cpu(cpu);
439 		if (emu_cores->to_node_id[core_id] != NODE_ID_FREE)
440 			continue;
441 		pin_core_to_node(core_id, node_id);
442 		cpu_topology[cpu].node_id = node_id;
443 		node_id = (node_id + 1) % emu_nodes;
444 	}
445 	print_node_to_core_map();
446 	initialized = 1;
447 }
448 
449 /*
450  * Transfer physical topology into a NUMA topology and modify CPU masks
451  * according to the NUMA topology.
452  *
453  * Must be called with "sched_domains_mutex" lock held.
454  */
emu_update_cpu_topology(void)455 static void emu_update_cpu_topology(void)
456 {
457 	struct toptree *phys, *numa;
458 
459 	if (emu_cores == NULL)
460 		create_core_to_node_map();
461 	phys = toptree_from_topology();
462 	numa = toptree_to_numa(phys);
463 	toptree_free(phys);
464 	toptree_to_topology(numa);
465 	toptree_free(numa);
466 	pin_all_possible_cpus();
467 }
468 
469 /*
470  * If emu_size is not set, use CONFIG_EMU_SIZE. Then round to minimum
471  * alignment (needed for memory hotplug).
472  */
emu_setup_size_adjust(unsigned long size)473 static unsigned long emu_setup_size_adjust(unsigned long size)
474 {
475 	unsigned long size_new;
476 
477 	size = size ? : CONFIG_EMU_SIZE;
478 	size_new = roundup(size, memory_block_size_bytes());
479 	if (size_new == size)
480 		return size;
481 	pr_warn("Increasing memory stripe size from %ld MB to %ld MB\n",
482 		size >> 20, size_new >> 20);
483 	return size_new;
484 }
485 
486 /*
487  * If we have not enough memory for the specified nodes, reduce the node count.
488  */
emu_setup_nodes_adjust(int nodes)489 static int emu_setup_nodes_adjust(int nodes)
490 {
491 	int nodes_max;
492 
493 	nodes_max = memblock.memory.total_size / emu_size;
494 	nodes_max = max(nodes_max, 1);
495 	if (nodes_max >= nodes)
496 		return nodes;
497 	pr_warn("Not enough memory for %d nodes, reducing node count\n", nodes);
498 	return nodes_max;
499 }
500 
501 /*
502  * Early emu setup
503  */
emu_setup(void)504 static void emu_setup(void)
505 {
506 	int nid;
507 
508 	emu_size = emu_setup_size_adjust(emu_size);
509 	emu_nodes = emu_setup_nodes_adjust(emu_nodes);
510 	for (nid = 0; nid < emu_nodes; nid++)
511 		node_set(nid, node_possible_map);
512 	pr_info("Creating %d nodes with memory stripe size %ld MB\n",
513 		emu_nodes, emu_size >> 20);
514 }
515 
516 /*
517  * Return node id for given page number
518  */
emu_pfn_to_nid(unsigned long pfn)519 static int emu_pfn_to_nid(unsigned long pfn)
520 {
521 	return (pfn / (emu_size >> PAGE_SHIFT)) % emu_nodes;
522 }
523 
524 /*
525  * Return stripe size
526  */
emu_align(void)527 static unsigned long emu_align(void)
528 {
529 	return emu_size;
530 }
531 
532 /*
533  * Return distance between two nodes
534  */
emu_distance(int node1,int node2)535 static int emu_distance(int node1, int node2)
536 {
537 	return (node1 != node2) * EMU_NODE_DIST;
538 }
539 
540 /*
541  * Define callbacks for generic s390 NUMA infrastructure
542  */
543 const struct numa_mode numa_mode_emu = {
544 	.name = "emu",
545 	.setup = emu_setup,
546 	.update_cpu_topology = emu_update_cpu_topology,
547 	.__pfn_to_nid = emu_pfn_to_nid,
548 	.align = emu_align,
549 	.distance = emu_distance,
550 };
551 
552 /*
553  * Kernel parameter: emu_nodes=<n>
554  */
early_parse_emu_nodes(char * p)555 static int __init early_parse_emu_nodes(char *p)
556 {
557 	int count;
558 
559 	if (kstrtoint(p, 0, &count) != 0 || count <= 0)
560 		return 0;
561 	if (count <= 0)
562 		return 0;
563 	emu_nodes = min(count, MAX_NUMNODES);
564 	return 0;
565 }
566 early_param("emu_nodes", early_parse_emu_nodes);
567 
568 /*
569  * Kernel parameter: emu_size=[<n>[k|M|G|T]]
570  */
early_parse_emu_size(char * p)571 static int __init early_parse_emu_size(char *p)
572 {
573 	emu_size = memparse(p, NULL);
574 	return 0;
575 }
576 early_param("emu_size", early_parse_emu_size);
577