1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Time of day based timer functions.
4 *
5 * S390 version
6 * Copyright IBM Corp. 1999, 2008
7 * Author(s): Hartmut Penner (hp@de.ibm.com),
8 * Martin Schwidefsky (schwidefsky@de.ibm.com),
9 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10 *
11 * Derived from "arch/i386/kernel/time.c"
12 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
13 */
14
15 #define KMSG_COMPONENT "time"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/kernel_stat.h>
19 #include <linux/errno.h>
20 #include <linux/export.h>
21 #include <linux/sched.h>
22 #include <linux/sched/clock.h>
23 #include <linux/kernel.h>
24 #include <linux/param.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/interrupt.h>
28 #include <linux/cpu.h>
29 #include <linux/stop_machine.h>
30 #include <linux/time.h>
31 #include <linux/device.h>
32 #include <linux/delay.h>
33 #include <linux/init.h>
34 #include <linux/smp.h>
35 #include <linux/types.h>
36 #include <linux/profile.h>
37 #include <linux/timex.h>
38 #include <linux/notifier.h>
39 #include <linux/timekeeper_internal.h>
40 #include <linux/clockchips.h>
41 #include <linux/gfp.h>
42 #include <linux/kprobes.h>
43 #include <linux/uaccess.h>
44 #include <asm/facility.h>
45 #include <asm/delay.h>
46 #include <asm/div64.h>
47 #include <asm/vdso.h>
48 #include <asm/irq.h>
49 #include <asm/irq_regs.h>
50 #include <asm/vtimer.h>
51 #include <asm/stp.h>
52 #include <asm/cio.h>
53 #include "entry.h"
54
55 unsigned char tod_clock_base[16] __aligned(8) = {
56 /* Force to data section. */
57 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
58 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
59 };
60 EXPORT_SYMBOL_GPL(tod_clock_base);
61
62 u64 clock_comparator_max = -1ULL;
63 EXPORT_SYMBOL_GPL(clock_comparator_max);
64
65 static DEFINE_PER_CPU(struct clock_event_device, comparators);
66
67 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
68 EXPORT_SYMBOL(s390_epoch_delta_notifier);
69
70 unsigned char ptff_function_mask[16];
71
72 static unsigned long long lpar_offset;
73 static unsigned long long initial_leap_seconds;
74 static unsigned long long tod_steering_end;
75 static long long tod_steering_delta;
76
77 /*
78 * Get time offsets with PTFF
79 */
time_early_init(void)80 void __init time_early_init(void)
81 {
82 struct ptff_qto qto;
83 struct ptff_qui qui;
84
85 /* Initialize TOD steering parameters */
86 tod_steering_end = *(unsigned long long *) &tod_clock_base[1];
87 vdso_data->ts_end = tod_steering_end;
88
89 if (!test_facility(28))
90 return;
91
92 ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF);
93
94 /* get LPAR offset */
95 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
96 lpar_offset = qto.tod_epoch_difference;
97
98 /* get initial leap seconds */
99 if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0)
100 initial_leap_seconds = (unsigned long long)
101 ((long) qui.old_leap * 4096000000L);
102 }
103
104 /*
105 * Scheduler clock - returns current time in nanosec units.
106 */
sched_clock(void)107 unsigned long long notrace sched_clock(void)
108 {
109 return tod_to_ns(get_tod_clock_monotonic());
110 }
111 NOKPROBE_SYMBOL(sched_clock);
112
113 /*
114 * Monotonic_clock - returns # of nanoseconds passed since time_init()
115 */
monotonic_clock(void)116 unsigned long long monotonic_clock(void)
117 {
118 return sched_clock();
119 }
120 EXPORT_SYMBOL(monotonic_clock);
121
ext_to_timespec64(unsigned char * clk,struct timespec64 * xt)122 static void ext_to_timespec64(unsigned char *clk, struct timespec64 *xt)
123 {
124 unsigned long long high, low, rem, sec, nsec;
125
126 /* Split extendnd TOD clock to micro-seconds and sub-micro-seconds */
127 high = (*(unsigned long long *) clk) >> 4;
128 low = (*(unsigned long long *)&clk[7]) << 4;
129 /* Calculate seconds and nano-seconds */
130 sec = high;
131 rem = do_div(sec, 1000000);
132 nsec = (((low >> 32) + (rem << 32)) * 1000) >> 32;
133
134 xt->tv_sec = sec;
135 xt->tv_nsec = nsec;
136 }
137
clock_comparator_work(void)138 void clock_comparator_work(void)
139 {
140 struct clock_event_device *cd;
141
142 S390_lowcore.clock_comparator = clock_comparator_max;
143 cd = this_cpu_ptr(&comparators);
144 cd->event_handler(cd);
145 }
146
s390_next_event(unsigned long delta,struct clock_event_device * evt)147 static int s390_next_event(unsigned long delta,
148 struct clock_event_device *evt)
149 {
150 S390_lowcore.clock_comparator = get_tod_clock() + delta;
151 set_clock_comparator(S390_lowcore.clock_comparator);
152 return 0;
153 }
154
155 /*
156 * Set up lowcore and control register of the current cpu to
157 * enable TOD clock and clock comparator interrupts.
158 */
init_cpu_timer(void)159 void init_cpu_timer(void)
160 {
161 struct clock_event_device *cd;
162 int cpu;
163
164 S390_lowcore.clock_comparator = clock_comparator_max;
165 set_clock_comparator(S390_lowcore.clock_comparator);
166
167 cpu = smp_processor_id();
168 cd = &per_cpu(comparators, cpu);
169 cd->name = "comparator";
170 cd->features = CLOCK_EVT_FEAT_ONESHOT;
171 cd->mult = 16777;
172 cd->shift = 12;
173 cd->min_delta_ns = 1;
174 cd->min_delta_ticks = 1;
175 cd->max_delta_ns = LONG_MAX;
176 cd->max_delta_ticks = ULONG_MAX;
177 cd->rating = 400;
178 cd->cpumask = cpumask_of(cpu);
179 cd->set_next_event = s390_next_event;
180
181 clockevents_register_device(cd);
182
183 /* Enable clock comparator timer interrupt. */
184 __ctl_set_bit(0,11);
185
186 /* Always allow the timing alert external interrupt. */
187 __ctl_set_bit(0, 4);
188 }
189
clock_comparator_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)190 static void clock_comparator_interrupt(struct ext_code ext_code,
191 unsigned int param32,
192 unsigned long param64)
193 {
194 inc_irq_stat(IRQEXT_CLK);
195 if (S390_lowcore.clock_comparator == clock_comparator_max)
196 set_clock_comparator(S390_lowcore.clock_comparator);
197 }
198
199 static void stp_timing_alert(struct stp_irq_parm *);
200
timing_alert_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)201 static void timing_alert_interrupt(struct ext_code ext_code,
202 unsigned int param32, unsigned long param64)
203 {
204 inc_irq_stat(IRQEXT_TLA);
205 if (param32 & 0x00038000)
206 stp_timing_alert((struct stp_irq_parm *) ¶m32);
207 }
208
209 static void stp_reset(void);
210
read_persistent_clock64(struct timespec64 * ts)211 void read_persistent_clock64(struct timespec64 *ts)
212 {
213 unsigned char clk[STORE_CLOCK_EXT_SIZE];
214 __u64 delta;
215
216 delta = initial_leap_seconds + TOD_UNIX_EPOCH;
217 get_tod_clock_ext(clk);
218 *(__u64 *) &clk[1] -= delta;
219 if (*(__u64 *) &clk[1] > delta)
220 clk[0]--;
221 ext_to_timespec64(clk, ts);
222 }
223
read_persistent_wall_and_boot_offset(struct timespec64 * wall_time,struct timespec64 * boot_offset)224 void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
225 struct timespec64 *boot_offset)
226 {
227 unsigned char clk[STORE_CLOCK_EXT_SIZE];
228 struct timespec64 boot_time;
229 __u64 delta;
230
231 delta = initial_leap_seconds + TOD_UNIX_EPOCH;
232 memcpy(clk, tod_clock_base, STORE_CLOCK_EXT_SIZE);
233 *(__u64 *)&clk[1] -= delta;
234 if (*(__u64 *)&clk[1] > delta)
235 clk[0]--;
236 ext_to_timespec64(clk, &boot_time);
237
238 read_persistent_clock64(wall_time);
239 *boot_offset = timespec64_sub(*wall_time, boot_time);
240 }
241
read_tod_clock(struct clocksource * cs)242 static u64 read_tod_clock(struct clocksource *cs)
243 {
244 unsigned long long now, adj;
245
246 preempt_disable(); /* protect from changes to steering parameters */
247 now = get_tod_clock();
248 adj = tod_steering_end - now;
249 if (unlikely((s64) adj >= 0))
250 /*
251 * manually steer by 1 cycle every 2^16 cycles. This
252 * corresponds to shifting the tod delta by 15. 1s is
253 * therefore steered in ~9h. The adjust will decrease
254 * over time, until it finally reaches 0.
255 */
256 now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15);
257 preempt_enable();
258 return now;
259 }
260
261 static struct clocksource clocksource_tod = {
262 .name = "tod",
263 .rating = 400,
264 .read = read_tod_clock,
265 .mask = -1ULL,
266 .mult = 1000,
267 .shift = 12,
268 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
269 };
270
clocksource_default_clock(void)271 struct clocksource * __init clocksource_default_clock(void)
272 {
273 return &clocksource_tod;
274 }
275
update_vsyscall(struct timekeeper * tk)276 void update_vsyscall(struct timekeeper *tk)
277 {
278 u64 nsecps;
279
280 if (tk->tkr_mono.clock != &clocksource_tod)
281 return;
282
283 /* Make userspace gettimeofday spin until we're done. */
284 ++vdso_data->tb_update_count;
285 smp_wmb();
286 vdso_data->xtime_tod_stamp = tk->tkr_mono.cycle_last;
287 vdso_data->xtime_clock_sec = tk->xtime_sec;
288 vdso_data->xtime_clock_nsec = tk->tkr_mono.xtime_nsec;
289 vdso_data->wtom_clock_sec =
290 tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
291 vdso_data->wtom_clock_nsec = tk->tkr_mono.xtime_nsec +
292 + ((u64) tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift);
293 nsecps = (u64) NSEC_PER_SEC << tk->tkr_mono.shift;
294 while (vdso_data->wtom_clock_nsec >= nsecps) {
295 vdso_data->wtom_clock_nsec -= nsecps;
296 vdso_data->wtom_clock_sec++;
297 }
298
299 vdso_data->xtime_coarse_sec = tk->xtime_sec;
300 vdso_data->xtime_coarse_nsec =
301 (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
302 vdso_data->wtom_coarse_sec =
303 vdso_data->xtime_coarse_sec + tk->wall_to_monotonic.tv_sec;
304 vdso_data->wtom_coarse_nsec =
305 vdso_data->xtime_coarse_nsec + tk->wall_to_monotonic.tv_nsec;
306 while (vdso_data->wtom_coarse_nsec >= NSEC_PER_SEC) {
307 vdso_data->wtom_coarse_nsec -= NSEC_PER_SEC;
308 vdso_data->wtom_coarse_sec++;
309 }
310
311 vdso_data->tk_mult = tk->tkr_mono.mult;
312 vdso_data->tk_shift = tk->tkr_mono.shift;
313 smp_wmb();
314 ++vdso_data->tb_update_count;
315 }
316
317 extern struct timezone sys_tz;
318
update_vsyscall_tz(void)319 void update_vsyscall_tz(void)
320 {
321 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
322 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
323 }
324
325 /*
326 * Initialize the TOD clock and the CPU timer of
327 * the boot cpu.
328 */
time_init(void)329 void __init time_init(void)
330 {
331 /* Reset time synchronization interfaces. */
332 stp_reset();
333
334 /* request the clock comparator external interrupt */
335 if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
336 panic("Couldn't request external interrupt 0x1004");
337
338 /* request the timing alert external interrupt */
339 if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
340 panic("Couldn't request external interrupt 0x1406");
341
342 if (__clocksource_register(&clocksource_tod) != 0)
343 panic("Could not register TOD clock source");
344
345 /* Enable TOD clock interrupts on the boot cpu. */
346 init_cpu_timer();
347
348 /* Enable cpu timer interrupts on the boot cpu. */
349 vtime_init();
350 }
351
352 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
353 static DEFINE_MUTEX(clock_sync_mutex);
354 static unsigned long clock_sync_flags;
355
356 #define CLOCK_SYNC_HAS_STP 0
357 #define CLOCK_SYNC_STP 1
358
359 /*
360 * The get_clock function for the physical clock. It will get the current
361 * TOD clock, subtract the LPAR offset and write the result to *clock.
362 * The function returns 0 if the clock is in sync with the external time
363 * source. If the clock mode is local it will return -EOPNOTSUPP and
364 * -EAGAIN if the clock is not in sync with the external reference.
365 */
get_phys_clock(unsigned long * clock)366 int get_phys_clock(unsigned long *clock)
367 {
368 atomic_t *sw_ptr;
369 unsigned int sw0, sw1;
370
371 sw_ptr = &get_cpu_var(clock_sync_word);
372 sw0 = atomic_read(sw_ptr);
373 *clock = get_tod_clock() - lpar_offset;
374 sw1 = atomic_read(sw_ptr);
375 put_cpu_var(clock_sync_word);
376 if (sw0 == sw1 && (sw0 & 0x80000000U))
377 /* Success: time is in sync. */
378 return 0;
379 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
380 return -EOPNOTSUPP;
381 if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
382 return -EACCES;
383 return -EAGAIN;
384 }
385 EXPORT_SYMBOL(get_phys_clock);
386
387 /*
388 * Make get_phys_clock() return -EAGAIN.
389 */
disable_sync_clock(void * dummy)390 static void disable_sync_clock(void *dummy)
391 {
392 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
393 /*
394 * Clear the in-sync bit 2^31. All get_phys_clock calls will
395 * fail until the sync bit is turned back on. In addition
396 * increase the "sequence" counter to avoid the race of an
397 * stp event and the complete recovery against get_phys_clock.
398 */
399 atomic_andnot(0x80000000, sw_ptr);
400 atomic_inc(sw_ptr);
401 }
402
403 /*
404 * Make get_phys_clock() return 0 again.
405 * Needs to be called from a context disabled for preemption.
406 */
enable_sync_clock(void)407 static void enable_sync_clock(void)
408 {
409 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
410 atomic_or(0x80000000, sw_ptr);
411 }
412
413 /*
414 * Function to check if the clock is in sync.
415 */
check_sync_clock(void)416 static inline int check_sync_clock(void)
417 {
418 atomic_t *sw_ptr;
419 int rc;
420
421 sw_ptr = &get_cpu_var(clock_sync_word);
422 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
423 put_cpu_var(clock_sync_word);
424 return rc;
425 }
426
427 /*
428 * Apply clock delta to the global data structures.
429 * This is called once on the CPU that performed the clock sync.
430 */
clock_sync_global(unsigned long long delta)431 static void clock_sync_global(unsigned long long delta)
432 {
433 unsigned long now, adj;
434 struct ptff_qto qto;
435
436 /* Fixup the monotonic sched clock. */
437 *(unsigned long long *) &tod_clock_base[1] += delta;
438 if (*(unsigned long long *) &tod_clock_base[1] < delta)
439 /* Epoch overflow */
440 tod_clock_base[0]++;
441 /* Adjust TOD steering parameters. */
442 vdso_data->tb_update_count++;
443 now = get_tod_clock();
444 adj = tod_steering_end - now;
445 if (unlikely((s64) adj >= 0))
446 /* Calculate how much of the old adjustment is left. */
447 tod_steering_delta = (tod_steering_delta < 0) ?
448 -(adj >> 15) : (adj >> 15);
449 tod_steering_delta += delta;
450 if ((abs(tod_steering_delta) >> 48) != 0)
451 panic("TOD clock sync offset %lli is too large to drift\n",
452 tod_steering_delta);
453 tod_steering_end = now + (abs(tod_steering_delta) << 15);
454 vdso_data->ts_dir = (tod_steering_delta < 0) ? 0 : 1;
455 vdso_data->ts_end = tod_steering_end;
456 vdso_data->tb_update_count++;
457 /* Update LPAR offset. */
458 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
459 lpar_offset = qto.tod_epoch_difference;
460 /* Call the TOD clock change notifier. */
461 atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta);
462 }
463
464 /*
465 * Apply clock delta to the per-CPU data structures of this CPU.
466 * This is called for each online CPU after the call to clock_sync_global.
467 */
clock_sync_local(unsigned long long delta)468 static void clock_sync_local(unsigned long long delta)
469 {
470 /* Add the delta to the clock comparator. */
471 if (S390_lowcore.clock_comparator != clock_comparator_max) {
472 S390_lowcore.clock_comparator += delta;
473 set_clock_comparator(S390_lowcore.clock_comparator);
474 }
475 /* Adjust the last_update_clock time-stamp. */
476 S390_lowcore.last_update_clock += delta;
477 }
478
479 /* Single threaded workqueue used for stp sync events */
480 static struct workqueue_struct *time_sync_wq;
481
time_init_wq(void)482 static void __init time_init_wq(void)
483 {
484 if (time_sync_wq)
485 return;
486 time_sync_wq = create_singlethread_workqueue("timesync");
487 }
488
489 struct clock_sync_data {
490 atomic_t cpus;
491 int in_sync;
492 unsigned long long clock_delta;
493 };
494
495 /*
496 * Server Time Protocol (STP) code.
497 */
498 static bool stp_online;
499 static struct stp_sstpi stp_info;
500 static void *stp_page;
501
502 static void stp_work_fn(struct work_struct *work);
503 static DEFINE_MUTEX(stp_work_mutex);
504 static DECLARE_WORK(stp_work, stp_work_fn);
505 static struct timer_list stp_timer;
506
early_parse_stp(char * p)507 static int __init early_parse_stp(char *p)
508 {
509 return kstrtobool(p, &stp_online);
510 }
511 early_param("stp", early_parse_stp);
512
513 /*
514 * Reset STP attachment.
515 */
stp_reset(void)516 static void __init stp_reset(void)
517 {
518 int rc;
519
520 stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
521 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
522 if (rc == 0)
523 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
524 else if (stp_online) {
525 pr_warn("The real or virtual hardware system does not provide an STP interface\n");
526 free_page((unsigned long) stp_page);
527 stp_page = NULL;
528 stp_online = false;
529 }
530 }
531
stp_timeout(struct timer_list * unused)532 static void stp_timeout(struct timer_list *unused)
533 {
534 queue_work(time_sync_wq, &stp_work);
535 }
536
stp_init(void)537 static int __init stp_init(void)
538 {
539 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
540 return 0;
541 timer_setup(&stp_timer, stp_timeout, 0);
542 time_init_wq();
543 if (!stp_online)
544 return 0;
545 queue_work(time_sync_wq, &stp_work);
546 return 0;
547 }
548
549 arch_initcall(stp_init);
550
551 /*
552 * STP timing alert. There are three causes:
553 * 1) timing status change
554 * 2) link availability change
555 * 3) time control parameter change
556 * In all three cases we are only interested in the clock source state.
557 * If a STP clock source is now available use it.
558 */
stp_timing_alert(struct stp_irq_parm * intparm)559 static void stp_timing_alert(struct stp_irq_parm *intparm)
560 {
561 if (intparm->tsc || intparm->lac || intparm->tcpc)
562 queue_work(time_sync_wq, &stp_work);
563 }
564
565 /*
566 * STP sync check machine check. This is called when the timing state
567 * changes from the synchronized state to the unsynchronized state.
568 * After a STP sync check the clock is not in sync. The machine check
569 * is broadcasted to all cpus at the same time.
570 */
stp_sync_check(void)571 int stp_sync_check(void)
572 {
573 disable_sync_clock(NULL);
574 return 1;
575 }
576
577 /*
578 * STP island condition machine check. This is called when an attached
579 * server attempts to communicate over an STP link and the servers
580 * have matching CTN ids and have a valid stratum-1 configuration
581 * but the configurations do not match.
582 */
stp_island_check(void)583 int stp_island_check(void)
584 {
585 disable_sync_clock(NULL);
586 return 1;
587 }
588
stp_queue_work(void)589 void stp_queue_work(void)
590 {
591 queue_work(time_sync_wq, &stp_work);
592 }
593
stp_sync_clock(void * data)594 static int stp_sync_clock(void *data)
595 {
596 struct clock_sync_data *sync = data;
597 unsigned long long clock_delta;
598 static int first;
599 int rc;
600
601 enable_sync_clock();
602 if (xchg(&first, 1) == 0) {
603 /* Wait until all other cpus entered the sync function. */
604 while (atomic_read(&sync->cpus) != 0)
605 cpu_relax();
606 rc = 0;
607 if (stp_info.todoff[0] || stp_info.todoff[1] ||
608 stp_info.todoff[2] || stp_info.todoff[3] ||
609 stp_info.tmd != 2) {
610 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0,
611 &clock_delta);
612 if (rc == 0) {
613 sync->clock_delta = clock_delta;
614 clock_sync_global(clock_delta);
615 rc = chsc_sstpi(stp_page, &stp_info,
616 sizeof(struct stp_sstpi));
617 if (rc == 0 && stp_info.tmd != 2)
618 rc = -EAGAIN;
619 }
620 }
621 sync->in_sync = rc ? -EAGAIN : 1;
622 xchg(&first, 0);
623 } else {
624 /* Slave */
625 atomic_dec(&sync->cpus);
626 /* Wait for in_sync to be set. */
627 while (READ_ONCE(sync->in_sync) == 0)
628 __udelay(1);
629 }
630 if (sync->in_sync != 1)
631 /* Didn't work. Clear per-cpu in sync bit again. */
632 disable_sync_clock(NULL);
633 /* Apply clock delta to per-CPU fields of this CPU. */
634 clock_sync_local(sync->clock_delta);
635
636 return 0;
637 }
638
639 /*
640 * STP work. Check for the STP state and take over the clock
641 * synchronization if the STP clock source is usable.
642 */
stp_work_fn(struct work_struct * work)643 static void stp_work_fn(struct work_struct *work)
644 {
645 struct clock_sync_data stp_sync;
646 int rc;
647
648 /* prevent multiple execution. */
649 mutex_lock(&stp_work_mutex);
650
651 if (!stp_online) {
652 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
653 del_timer_sync(&stp_timer);
654 goto out_unlock;
655 }
656
657 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0, NULL);
658 if (rc)
659 goto out_unlock;
660
661 rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
662 if (rc || stp_info.c == 0)
663 goto out_unlock;
664
665 /* Skip synchronization if the clock is already in sync. */
666 if (check_sync_clock())
667 goto out_unlock;
668
669 memset(&stp_sync, 0, sizeof(stp_sync));
670 cpus_read_lock();
671 atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
672 stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask);
673 cpus_read_unlock();
674
675 if (!check_sync_clock())
676 /*
677 * There is a usable clock but the synchonization failed.
678 * Retry after a second.
679 */
680 mod_timer(&stp_timer, jiffies + HZ);
681
682 out_unlock:
683 mutex_unlock(&stp_work_mutex);
684 }
685
686 /*
687 * STP subsys sysfs interface functions
688 */
689 static struct bus_type stp_subsys = {
690 .name = "stp",
691 .dev_name = "stp",
692 };
693
stp_ctn_id_show(struct device * dev,struct device_attribute * attr,char * buf)694 static ssize_t stp_ctn_id_show(struct device *dev,
695 struct device_attribute *attr,
696 char *buf)
697 {
698 if (!stp_online)
699 return -ENODATA;
700 return sprintf(buf, "%016llx\n",
701 *(unsigned long long *) stp_info.ctnid);
702 }
703
704 static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
705
stp_ctn_type_show(struct device * dev,struct device_attribute * attr,char * buf)706 static ssize_t stp_ctn_type_show(struct device *dev,
707 struct device_attribute *attr,
708 char *buf)
709 {
710 if (!stp_online)
711 return -ENODATA;
712 return sprintf(buf, "%i\n", stp_info.ctn);
713 }
714
715 static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
716
stp_dst_offset_show(struct device * dev,struct device_attribute * attr,char * buf)717 static ssize_t stp_dst_offset_show(struct device *dev,
718 struct device_attribute *attr,
719 char *buf)
720 {
721 if (!stp_online || !(stp_info.vbits & 0x2000))
722 return -ENODATA;
723 return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
724 }
725
726 static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
727
stp_leap_seconds_show(struct device * dev,struct device_attribute * attr,char * buf)728 static ssize_t stp_leap_seconds_show(struct device *dev,
729 struct device_attribute *attr,
730 char *buf)
731 {
732 if (!stp_online || !(stp_info.vbits & 0x8000))
733 return -ENODATA;
734 return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
735 }
736
737 static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
738
stp_stratum_show(struct device * dev,struct device_attribute * attr,char * buf)739 static ssize_t stp_stratum_show(struct device *dev,
740 struct device_attribute *attr,
741 char *buf)
742 {
743 if (!stp_online)
744 return -ENODATA;
745 return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
746 }
747
748 static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL);
749
stp_time_offset_show(struct device * dev,struct device_attribute * attr,char * buf)750 static ssize_t stp_time_offset_show(struct device *dev,
751 struct device_attribute *attr,
752 char *buf)
753 {
754 if (!stp_online || !(stp_info.vbits & 0x0800))
755 return -ENODATA;
756 return sprintf(buf, "%i\n", (int) stp_info.tto);
757 }
758
759 static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
760
stp_time_zone_offset_show(struct device * dev,struct device_attribute * attr,char * buf)761 static ssize_t stp_time_zone_offset_show(struct device *dev,
762 struct device_attribute *attr,
763 char *buf)
764 {
765 if (!stp_online || !(stp_info.vbits & 0x4000))
766 return -ENODATA;
767 return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
768 }
769
770 static DEVICE_ATTR(time_zone_offset, 0400,
771 stp_time_zone_offset_show, NULL);
772
stp_timing_mode_show(struct device * dev,struct device_attribute * attr,char * buf)773 static ssize_t stp_timing_mode_show(struct device *dev,
774 struct device_attribute *attr,
775 char *buf)
776 {
777 if (!stp_online)
778 return -ENODATA;
779 return sprintf(buf, "%i\n", stp_info.tmd);
780 }
781
782 static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
783
stp_timing_state_show(struct device * dev,struct device_attribute * attr,char * buf)784 static ssize_t stp_timing_state_show(struct device *dev,
785 struct device_attribute *attr,
786 char *buf)
787 {
788 if (!stp_online)
789 return -ENODATA;
790 return sprintf(buf, "%i\n", stp_info.tst);
791 }
792
793 static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
794
stp_online_show(struct device * dev,struct device_attribute * attr,char * buf)795 static ssize_t stp_online_show(struct device *dev,
796 struct device_attribute *attr,
797 char *buf)
798 {
799 return sprintf(buf, "%i\n", stp_online);
800 }
801
stp_online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)802 static ssize_t stp_online_store(struct device *dev,
803 struct device_attribute *attr,
804 const char *buf, size_t count)
805 {
806 unsigned int value;
807
808 value = simple_strtoul(buf, NULL, 0);
809 if (value != 0 && value != 1)
810 return -EINVAL;
811 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
812 return -EOPNOTSUPP;
813 mutex_lock(&clock_sync_mutex);
814 stp_online = value;
815 if (stp_online)
816 set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
817 else
818 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
819 queue_work(time_sync_wq, &stp_work);
820 mutex_unlock(&clock_sync_mutex);
821 return count;
822 }
823
824 /*
825 * Can't use DEVICE_ATTR because the attribute should be named
826 * stp/online but dev_attr_online already exists in this file ..
827 */
828 static struct device_attribute dev_attr_stp_online = {
829 .attr = { .name = "online", .mode = 0600 },
830 .show = stp_online_show,
831 .store = stp_online_store,
832 };
833
834 static struct device_attribute *stp_attributes[] = {
835 &dev_attr_ctn_id,
836 &dev_attr_ctn_type,
837 &dev_attr_dst_offset,
838 &dev_attr_leap_seconds,
839 &dev_attr_stp_online,
840 &dev_attr_stratum,
841 &dev_attr_time_offset,
842 &dev_attr_time_zone_offset,
843 &dev_attr_timing_mode,
844 &dev_attr_timing_state,
845 NULL
846 };
847
stp_init_sysfs(void)848 static int __init stp_init_sysfs(void)
849 {
850 struct device_attribute **attr;
851 int rc;
852
853 rc = subsys_system_register(&stp_subsys, NULL);
854 if (rc)
855 goto out;
856 for (attr = stp_attributes; *attr; attr++) {
857 rc = device_create_file(stp_subsys.dev_root, *attr);
858 if (rc)
859 goto out_unreg;
860 }
861 return 0;
862 out_unreg:
863 for (; attr >= stp_attributes; attr--)
864 device_remove_file(stp_subsys.dev_root, *attr);
865 bus_unregister(&stp_subsys);
866 out:
867 return rc;
868 }
869
870 device_initcall(stp_init_sysfs);
871