1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Kernel Probes (KProbes)
4 *
5 * Copyright IBM Corp. 2002, 2006
6 *
7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
8 */
9
10 #include <linux/kprobes.h>
11 #include <linux/ptrace.h>
12 #include <linux/preempt.h>
13 #include <linux/stop_machine.h>
14 #include <linux/kdebug.h>
15 #include <linux/uaccess.h>
16 #include <linux/extable.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/hardirq.h>
20 #include <linux/ftrace.h>
21 #include <asm/set_memory.h>
22 #include <asm/sections.h>
23 #include <asm/dis.h>
24
25 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
26 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
27
28 struct kretprobe_blackpoint kretprobe_blacklist[] = { };
29
30 DEFINE_INSN_CACHE_OPS(dmainsn);
31
alloc_dmainsn_page(void)32 static void *alloc_dmainsn_page(void)
33 {
34 void *page;
35
36 page = (void *) __get_free_page(GFP_KERNEL | GFP_DMA);
37 if (page)
38 set_memory_x((unsigned long) page, 1);
39 return page;
40 }
41
free_dmainsn_page(void * page)42 static void free_dmainsn_page(void *page)
43 {
44 set_memory_nx((unsigned long) page, 1);
45 free_page((unsigned long)page);
46 }
47
48 struct kprobe_insn_cache kprobe_dmainsn_slots = {
49 .mutex = __MUTEX_INITIALIZER(kprobe_dmainsn_slots.mutex),
50 .alloc = alloc_dmainsn_page,
51 .free = free_dmainsn_page,
52 .pages = LIST_HEAD_INIT(kprobe_dmainsn_slots.pages),
53 .insn_size = MAX_INSN_SIZE,
54 };
55
copy_instruction(struct kprobe * p)56 static void copy_instruction(struct kprobe *p)
57 {
58 unsigned long ip = (unsigned long) p->addr;
59 s64 disp, new_disp;
60 u64 addr, new_addr;
61
62 if (ftrace_location(ip) == ip) {
63 /*
64 * If kprobes patches the instruction that is morphed by
65 * ftrace make sure that kprobes always sees the branch
66 * "jg .+24" that skips the mcount block or the "brcl 0,0"
67 * in case of hotpatch.
68 */
69 ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn);
70 p->ainsn.is_ftrace_insn = 1;
71 } else
72 memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
73 p->opcode = p->ainsn.insn[0];
74 if (!probe_is_insn_relative_long(p->ainsn.insn))
75 return;
76 /*
77 * For pc-relative instructions in RIL-b or RIL-c format patch the
78 * RI2 displacement field. We have already made sure that the insn
79 * slot for the patched instruction is within the same 2GB area
80 * as the original instruction (either kernel image or module area).
81 * Therefore the new displacement will always fit.
82 */
83 disp = *(s32 *)&p->ainsn.insn[1];
84 addr = (u64)(unsigned long)p->addr;
85 new_addr = (u64)(unsigned long)p->ainsn.insn;
86 new_disp = ((addr + (disp * 2)) - new_addr) / 2;
87 *(s32 *)&p->ainsn.insn[1] = new_disp;
88 }
89 NOKPROBE_SYMBOL(copy_instruction);
90
is_kernel_addr(void * addr)91 static inline int is_kernel_addr(void *addr)
92 {
93 return addr < (void *)_end;
94 }
95
s390_get_insn_slot(struct kprobe * p)96 static int s390_get_insn_slot(struct kprobe *p)
97 {
98 /*
99 * Get an insn slot that is within the same 2GB area like the original
100 * instruction. That way instructions with a 32bit signed displacement
101 * field can be patched and executed within the insn slot.
102 */
103 p->ainsn.insn = NULL;
104 if (is_kernel_addr(p->addr))
105 p->ainsn.insn = get_dmainsn_slot();
106 else if (is_module_addr(p->addr))
107 p->ainsn.insn = get_insn_slot();
108 return p->ainsn.insn ? 0 : -ENOMEM;
109 }
110 NOKPROBE_SYMBOL(s390_get_insn_slot);
111
s390_free_insn_slot(struct kprobe * p)112 static void s390_free_insn_slot(struct kprobe *p)
113 {
114 if (!p->ainsn.insn)
115 return;
116 if (is_kernel_addr(p->addr))
117 free_dmainsn_slot(p->ainsn.insn, 0);
118 else
119 free_insn_slot(p->ainsn.insn, 0);
120 p->ainsn.insn = NULL;
121 }
122 NOKPROBE_SYMBOL(s390_free_insn_slot);
123
arch_prepare_kprobe(struct kprobe * p)124 int arch_prepare_kprobe(struct kprobe *p)
125 {
126 if ((unsigned long) p->addr & 0x01)
127 return -EINVAL;
128 /* Make sure the probe isn't going on a difficult instruction */
129 if (probe_is_prohibited_opcode(p->addr))
130 return -EINVAL;
131 if (s390_get_insn_slot(p))
132 return -ENOMEM;
133 copy_instruction(p);
134 return 0;
135 }
136 NOKPROBE_SYMBOL(arch_prepare_kprobe);
137
arch_check_ftrace_location(struct kprobe * p)138 int arch_check_ftrace_location(struct kprobe *p)
139 {
140 return 0;
141 }
142
143 struct swap_insn_args {
144 struct kprobe *p;
145 unsigned int arm_kprobe : 1;
146 };
147
swap_instruction(void * data)148 static int swap_instruction(void *data)
149 {
150 struct swap_insn_args *args = data;
151 struct ftrace_insn new_insn, *insn;
152 struct kprobe *p = args->p;
153 size_t len;
154
155 new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
156 len = sizeof(new_insn.opc);
157 if (!p->ainsn.is_ftrace_insn)
158 goto skip_ftrace;
159 len = sizeof(new_insn);
160 insn = (struct ftrace_insn *) p->addr;
161 if (args->arm_kprobe) {
162 if (is_ftrace_nop(insn))
163 new_insn.disp = KPROBE_ON_FTRACE_NOP;
164 else
165 new_insn.disp = KPROBE_ON_FTRACE_CALL;
166 } else {
167 ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr);
168 if (insn->disp == KPROBE_ON_FTRACE_NOP)
169 ftrace_generate_nop_insn(&new_insn);
170 }
171 skip_ftrace:
172 s390_kernel_write(p->addr, &new_insn, len);
173 return 0;
174 }
175 NOKPROBE_SYMBOL(swap_instruction);
176
arch_arm_kprobe(struct kprobe * p)177 void arch_arm_kprobe(struct kprobe *p)
178 {
179 struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
180
181 stop_machine_cpuslocked(swap_instruction, &args, NULL);
182 }
183 NOKPROBE_SYMBOL(arch_arm_kprobe);
184
arch_disarm_kprobe(struct kprobe * p)185 void arch_disarm_kprobe(struct kprobe *p)
186 {
187 struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
188
189 stop_machine_cpuslocked(swap_instruction, &args, NULL);
190 }
191 NOKPROBE_SYMBOL(arch_disarm_kprobe);
192
arch_remove_kprobe(struct kprobe * p)193 void arch_remove_kprobe(struct kprobe *p)
194 {
195 s390_free_insn_slot(p);
196 }
197 NOKPROBE_SYMBOL(arch_remove_kprobe);
198
enable_singlestep(struct kprobe_ctlblk * kcb,struct pt_regs * regs,unsigned long ip)199 static void enable_singlestep(struct kprobe_ctlblk *kcb,
200 struct pt_regs *regs,
201 unsigned long ip)
202 {
203 struct per_regs per_kprobe;
204
205 /* Set up the PER control registers %cr9-%cr11 */
206 per_kprobe.control = PER_EVENT_IFETCH;
207 per_kprobe.start = ip;
208 per_kprobe.end = ip;
209
210 /* Save control regs and psw mask */
211 __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
212 kcb->kprobe_saved_imask = regs->psw.mask &
213 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
214
215 /* Set PER control regs, turns on single step for the given address */
216 __ctl_load(per_kprobe, 9, 11);
217 regs->psw.mask |= PSW_MASK_PER;
218 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
219 regs->psw.addr = ip;
220 }
221 NOKPROBE_SYMBOL(enable_singlestep);
222
disable_singlestep(struct kprobe_ctlblk * kcb,struct pt_regs * regs,unsigned long ip)223 static void disable_singlestep(struct kprobe_ctlblk *kcb,
224 struct pt_regs *regs,
225 unsigned long ip)
226 {
227 /* Restore control regs and psw mask, set new psw address */
228 __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
229 regs->psw.mask &= ~PSW_MASK_PER;
230 regs->psw.mask |= kcb->kprobe_saved_imask;
231 regs->psw.addr = ip;
232 }
233 NOKPROBE_SYMBOL(disable_singlestep);
234
235 /*
236 * Activate a kprobe by storing its pointer to current_kprobe. The
237 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
238 * two kprobes can be active, see KPROBE_REENTER.
239 */
push_kprobe(struct kprobe_ctlblk * kcb,struct kprobe * p)240 static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
241 {
242 kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
243 kcb->prev_kprobe.status = kcb->kprobe_status;
244 __this_cpu_write(current_kprobe, p);
245 }
246 NOKPROBE_SYMBOL(push_kprobe);
247
248 /*
249 * Deactivate a kprobe by backing up to the previous state. If the
250 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
251 * for any other state prev_kprobe.kp will be NULL.
252 */
pop_kprobe(struct kprobe_ctlblk * kcb)253 static void pop_kprobe(struct kprobe_ctlblk *kcb)
254 {
255 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
256 kcb->kprobe_status = kcb->prev_kprobe.status;
257 }
258 NOKPROBE_SYMBOL(pop_kprobe);
259
arch_prepare_kretprobe(struct kretprobe_instance * ri,struct pt_regs * regs)260 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
261 {
262 ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
263
264 /* Replace the return addr with trampoline addr */
265 regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
266 }
267 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
268
kprobe_reenter_check(struct kprobe_ctlblk * kcb,struct kprobe * p)269 static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
270 {
271 switch (kcb->kprobe_status) {
272 case KPROBE_HIT_SSDONE:
273 case KPROBE_HIT_ACTIVE:
274 kprobes_inc_nmissed_count(p);
275 break;
276 case KPROBE_HIT_SS:
277 case KPROBE_REENTER:
278 default:
279 /*
280 * A kprobe on the code path to single step an instruction
281 * is a BUG. The code path resides in the .kprobes.text
282 * section and is executed with interrupts disabled.
283 */
284 pr_err("Invalid kprobe detected.\n");
285 dump_kprobe(p);
286 BUG();
287 }
288 }
289 NOKPROBE_SYMBOL(kprobe_reenter_check);
290
kprobe_handler(struct pt_regs * regs)291 static int kprobe_handler(struct pt_regs *regs)
292 {
293 struct kprobe_ctlblk *kcb;
294 struct kprobe *p;
295
296 /*
297 * We want to disable preemption for the entire duration of kprobe
298 * processing. That includes the calls to the pre/post handlers
299 * and single stepping the kprobe instruction.
300 */
301 preempt_disable();
302 kcb = get_kprobe_ctlblk();
303 p = get_kprobe((void *)(regs->psw.addr - 2));
304
305 if (p) {
306 if (kprobe_running()) {
307 /*
308 * We have hit a kprobe while another is still
309 * active. This can happen in the pre and post
310 * handler. Single step the instruction of the
311 * new probe but do not call any handler function
312 * of this secondary kprobe.
313 * push_kprobe and pop_kprobe saves and restores
314 * the currently active kprobe.
315 */
316 kprobe_reenter_check(kcb, p);
317 push_kprobe(kcb, p);
318 kcb->kprobe_status = KPROBE_REENTER;
319 } else {
320 /*
321 * If we have no pre-handler or it returned 0, we
322 * continue with single stepping. If we have a
323 * pre-handler and it returned non-zero, it prepped
324 * for changing execution path, so get out doing
325 * nothing more here.
326 */
327 push_kprobe(kcb, p);
328 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
329 if (p->pre_handler && p->pre_handler(p, regs)) {
330 pop_kprobe(kcb);
331 preempt_enable_no_resched();
332 return 1;
333 }
334 kcb->kprobe_status = KPROBE_HIT_SS;
335 }
336 enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
337 return 1;
338 } /* else:
339 * No kprobe at this address and no active kprobe. The trap has
340 * not been caused by a kprobe breakpoint. The race of breakpoint
341 * vs. kprobe remove does not exist because on s390 as we use
342 * stop_machine to arm/disarm the breakpoints.
343 */
344 preempt_enable_no_resched();
345 return 0;
346 }
347 NOKPROBE_SYMBOL(kprobe_handler);
348
349 /*
350 * Function return probe trampoline:
351 * - init_kprobes() establishes a probepoint here
352 * - When the probed function returns, this probe
353 * causes the handlers to fire
354 */
kretprobe_trampoline_holder(void)355 static void __used kretprobe_trampoline_holder(void)
356 {
357 asm volatile(".global kretprobe_trampoline\n"
358 "kretprobe_trampoline: bcr 0,0\n");
359 }
360
361 /*
362 * Called when the probe at kretprobe trampoline is hit
363 */
trampoline_probe_handler(struct kprobe * p,struct pt_regs * regs)364 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
365 {
366 struct kretprobe_instance *ri;
367 struct hlist_head *head, empty_rp;
368 struct hlist_node *tmp;
369 unsigned long flags, orig_ret_address;
370 unsigned long trampoline_address;
371 kprobe_opcode_t *correct_ret_addr;
372
373 INIT_HLIST_HEAD(&empty_rp);
374 kretprobe_hash_lock(current, &head, &flags);
375
376 /*
377 * It is possible to have multiple instances associated with a given
378 * task either because an multiple functions in the call path
379 * have a return probe installed on them, and/or more than one return
380 * return probe was registered for a target function.
381 *
382 * We can handle this because:
383 * - instances are always inserted at the head of the list
384 * - when multiple return probes are registered for the same
385 * function, the first instance's ret_addr will point to the
386 * real return address, and all the rest will point to
387 * kretprobe_trampoline
388 */
389 ri = NULL;
390 orig_ret_address = 0;
391 correct_ret_addr = NULL;
392 trampoline_address = (unsigned long) &kretprobe_trampoline;
393 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
394 if (ri->task != current)
395 /* another task is sharing our hash bucket */
396 continue;
397
398 orig_ret_address = (unsigned long) ri->ret_addr;
399
400 if (orig_ret_address != trampoline_address)
401 /*
402 * This is the real return address. Any other
403 * instances associated with this task are for
404 * other calls deeper on the call stack
405 */
406 break;
407 }
408
409 kretprobe_assert(ri, orig_ret_address, trampoline_address);
410
411 correct_ret_addr = ri->ret_addr;
412 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
413 if (ri->task != current)
414 /* another task is sharing our hash bucket */
415 continue;
416
417 orig_ret_address = (unsigned long) ri->ret_addr;
418
419 if (ri->rp && ri->rp->handler) {
420 ri->ret_addr = correct_ret_addr;
421 ri->rp->handler(ri, regs);
422 }
423
424 recycle_rp_inst(ri, &empty_rp);
425
426 if (orig_ret_address != trampoline_address)
427 /*
428 * This is the real return address. Any other
429 * instances associated with this task are for
430 * other calls deeper on the call stack
431 */
432 break;
433 }
434
435 regs->psw.addr = orig_ret_address;
436
437 kretprobe_hash_unlock(current, &flags);
438
439 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
440 hlist_del(&ri->hlist);
441 kfree(ri);
442 }
443 /*
444 * By returning a non-zero value, we are telling
445 * kprobe_handler() that we don't want the post_handler
446 * to run (and have re-enabled preemption)
447 */
448 return 1;
449 }
450 NOKPROBE_SYMBOL(trampoline_probe_handler);
451
452 /*
453 * Called after single-stepping. p->addr is the address of the
454 * instruction whose first byte has been replaced by the "breakpoint"
455 * instruction. To avoid the SMP problems that can occur when we
456 * temporarily put back the original opcode to single-step, we
457 * single-stepped a copy of the instruction. The address of this
458 * copy is p->ainsn.insn.
459 */
resume_execution(struct kprobe * p,struct pt_regs * regs)460 static void resume_execution(struct kprobe *p, struct pt_regs *regs)
461 {
462 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
463 unsigned long ip = regs->psw.addr;
464 int fixup = probe_get_fixup_type(p->ainsn.insn);
465
466 /* Check if the kprobes location is an enabled ftrace caller */
467 if (p->ainsn.is_ftrace_insn) {
468 struct ftrace_insn *insn = (struct ftrace_insn *) p->addr;
469 struct ftrace_insn call_insn;
470
471 ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr);
472 /*
473 * A kprobe on an enabled ftrace call site actually single
474 * stepped an unconditional branch (ftrace nop equivalent).
475 * Now we need to fixup things and pretend that a brasl r0,...
476 * was executed instead.
477 */
478 if (insn->disp == KPROBE_ON_FTRACE_CALL) {
479 ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE;
480 regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn);
481 }
482 }
483
484 if (fixup & FIXUP_PSW_NORMAL)
485 ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
486
487 if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
488 int ilen = insn_length(p->ainsn.insn[0] >> 8);
489 if (ip - (unsigned long) p->ainsn.insn == ilen)
490 ip = (unsigned long) p->addr + ilen;
491 }
492
493 if (fixup & FIXUP_RETURN_REGISTER) {
494 int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
495 regs->gprs[reg] += (unsigned long) p->addr -
496 (unsigned long) p->ainsn.insn;
497 }
498
499 disable_singlestep(kcb, regs, ip);
500 }
501 NOKPROBE_SYMBOL(resume_execution);
502
post_kprobe_handler(struct pt_regs * regs)503 static int post_kprobe_handler(struct pt_regs *regs)
504 {
505 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
506 struct kprobe *p = kprobe_running();
507
508 if (!p)
509 return 0;
510
511 if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
512 kcb->kprobe_status = KPROBE_HIT_SSDONE;
513 p->post_handler(p, regs, 0);
514 }
515
516 resume_execution(p, regs);
517 pop_kprobe(kcb);
518 preempt_enable_no_resched();
519
520 /*
521 * if somebody else is singlestepping across a probe point, psw mask
522 * will have PER set, in which case, continue the remaining processing
523 * of do_single_step, as if this is not a probe hit.
524 */
525 if (regs->psw.mask & PSW_MASK_PER)
526 return 0;
527
528 return 1;
529 }
530 NOKPROBE_SYMBOL(post_kprobe_handler);
531
kprobe_trap_handler(struct pt_regs * regs,int trapnr)532 static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
533 {
534 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
535 struct kprobe *p = kprobe_running();
536 const struct exception_table_entry *entry;
537
538 switch(kcb->kprobe_status) {
539 case KPROBE_HIT_SS:
540 case KPROBE_REENTER:
541 /*
542 * We are here because the instruction being single
543 * stepped caused a page fault. We reset the current
544 * kprobe and the nip points back to the probe address
545 * and allow the page fault handler to continue as a
546 * normal page fault.
547 */
548 disable_singlestep(kcb, regs, (unsigned long) p->addr);
549 pop_kprobe(kcb);
550 preempt_enable_no_resched();
551 break;
552 case KPROBE_HIT_ACTIVE:
553 case KPROBE_HIT_SSDONE:
554 /*
555 * We increment the nmissed count for accounting,
556 * we can also use npre/npostfault count for accounting
557 * these specific fault cases.
558 */
559 kprobes_inc_nmissed_count(p);
560
561 /*
562 * We come here because instructions in the pre/post
563 * handler caused the page_fault, this could happen
564 * if handler tries to access user space by
565 * copy_from_user(), get_user() etc. Let the
566 * user-specified handler try to fix it first.
567 */
568 if (p->fault_handler && p->fault_handler(p, regs, trapnr))
569 return 1;
570
571 /*
572 * In case the user-specified fault handler returned
573 * zero, try to fix up.
574 */
575 entry = search_exception_tables(regs->psw.addr);
576 if (entry) {
577 regs->psw.addr = extable_fixup(entry);
578 return 1;
579 }
580
581 /*
582 * fixup_exception() could not handle it,
583 * Let do_page_fault() fix it.
584 */
585 break;
586 default:
587 break;
588 }
589 return 0;
590 }
591 NOKPROBE_SYMBOL(kprobe_trap_handler);
592
kprobe_fault_handler(struct pt_regs * regs,int trapnr)593 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
594 {
595 int ret;
596
597 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
598 local_irq_disable();
599 ret = kprobe_trap_handler(regs, trapnr);
600 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
601 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
602 return ret;
603 }
604 NOKPROBE_SYMBOL(kprobe_fault_handler);
605
606 /*
607 * Wrapper routine to for handling exceptions.
608 */
kprobe_exceptions_notify(struct notifier_block * self,unsigned long val,void * data)609 int kprobe_exceptions_notify(struct notifier_block *self,
610 unsigned long val, void *data)
611 {
612 struct die_args *args = (struct die_args *) data;
613 struct pt_regs *regs = args->regs;
614 int ret = NOTIFY_DONE;
615
616 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
617 local_irq_disable();
618
619 switch (val) {
620 case DIE_BPT:
621 if (kprobe_handler(regs))
622 ret = NOTIFY_STOP;
623 break;
624 case DIE_SSTEP:
625 if (post_kprobe_handler(regs))
626 ret = NOTIFY_STOP;
627 break;
628 case DIE_TRAP:
629 if (!preemptible() && kprobe_running() &&
630 kprobe_trap_handler(regs, args->trapnr))
631 ret = NOTIFY_STOP;
632 break;
633 default:
634 break;
635 }
636
637 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
638 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
639
640 return ret;
641 }
642 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
643
644 static struct kprobe trampoline = {
645 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
646 .pre_handler = trampoline_probe_handler
647 };
648
arch_init_kprobes(void)649 int __init arch_init_kprobes(void)
650 {
651 return register_kprobe(&trampoline);
652 }
653
arch_trampoline_kprobe(struct kprobe * p)654 int arch_trampoline_kprobe(struct kprobe *p)
655 {
656 return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
657 }
658 NOKPROBE_SYMBOL(arch_trampoline_kprobe);
659