1 /*
2  * Cell Broadband Engine OProfile Support
3  *
4  * (C) Copyright IBM Corporation 2006
5  *
6  * Author: David Erb (djerb@us.ibm.com)
7  * Modifications:
8  *	   Carl Love <carll@us.ibm.com>
9  *	   Maynard Johnson <maynardj@us.ibm.com>
10  *
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License
13  * as published by the Free Software Foundation; either version
14  * 2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/cpufreq.h>
18 #include <linux/delay.h>
19 #include <linux/jiffies.h>
20 #include <linux/kthread.h>
21 #include <linux/oprofile.h>
22 #include <linux/percpu.h>
23 #include <linux/smp.h>
24 #include <linux/spinlock.h>
25 #include <linux/timer.h>
26 #include <asm/cell-pmu.h>
27 #include <asm/cputable.h>
28 #include <asm/firmware.h>
29 #include <asm/io.h>
30 #include <asm/oprofile_impl.h>
31 #include <asm/processor.h>
32 #include <asm/prom.h>
33 #include <asm/ptrace.h>
34 #include <asm/reg.h>
35 #include <asm/rtas.h>
36 #include <asm/cell-regs.h>
37 
38 #include "../platforms/cell/interrupt.h"
39 #include "cell/pr_util.h"
40 
41 #define PPU_PROFILING            0
42 #define SPU_PROFILING_CYCLES     1
43 #define SPU_PROFILING_EVENTS     2
44 
45 #define SPU_EVENT_NUM_START      4100
46 #define SPU_EVENT_NUM_STOP       4399
47 #define SPU_PROFILE_EVENT_ADDR          4363  /* spu, address trace, decimal */
48 #define SPU_PROFILE_EVENT_ADDR_MASK_A   0x146 /* sub unit set to zero */
49 #define SPU_PROFILE_EVENT_ADDR_MASK_B   0x186 /* sub unit set to zero */
50 
51 #define NUM_SPUS_PER_NODE    8
52 #define SPU_CYCLES_EVENT_NUM 2	/*  event number for SPU_CYCLES */
53 
54 #define PPU_CYCLES_EVENT_NUM 1	/*  event number for CYCLES */
55 #define PPU_CYCLES_GRP_NUM   1	/* special group number for identifying
56 				 * PPU_CYCLES event
57 				 */
58 #define CBE_COUNT_ALL_CYCLES 0x42800000 /* PPU cycle event specifier */
59 
60 #define NUM_THREADS 2         /* number of physical threads in
61 			       * physical processor
62 			       */
63 #define NUM_DEBUG_BUS_WORDS 4
64 #define NUM_INPUT_BUS_WORDS 2
65 
66 #define MAX_SPU_COUNT 0xFFFFFF	/* maximum 24 bit LFSR value */
67 
68 /* Minimum HW interval timer setting to send value to trace buffer is 10 cycle.
69  * To configure counter to send value every N cycles set counter to
70  * 2^32 - 1 - N.
71  */
72 #define NUM_INTERVAL_CYC  0xFFFFFFFF - 10
73 
74 /*
75  * spu_cycle_reset is the number of cycles between samples.
76  * This variable is used for SPU profiling and should ONLY be set
77  * at the beginning of cell_reg_setup; otherwise, it's read-only.
78  */
79 static unsigned int spu_cycle_reset;
80 static unsigned int profiling_mode;
81 static int spu_evnt_phys_spu_indx;
82 
83 struct pmc_cntrl_data {
84 	unsigned long vcntr;
85 	unsigned long evnts;
86 	unsigned long masks;
87 	unsigned long enabled;
88 };
89 
90 /*
91  * ibm,cbe-perftools rtas parameters
92  */
93 struct pm_signal {
94 	u16 cpu;		/* Processor to modify */
95 	u16 sub_unit;		/* hw subunit this applies to (if applicable)*/
96 	short int signal_group; /* Signal Group to Enable/Disable */
97 	u8 bus_word;		/* Enable/Disable on this Trace/Trigger/Event
98 				 * Bus Word(s) (bitmask)
99 				 */
100 	u8 bit;			/* Trigger/Event bit (if applicable) */
101 };
102 
103 /*
104  * rtas call arguments
105  */
106 enum {
107 	SUBFUNC_RESET = 1,
108 	SUBFUNC_ACTIVATE = 2,
109 	SUBFUNC_DEACTIVATE = 3,
110 
111 	PASSTHRU_IGNORE = 0,
112 	PASSTHRU_ENABLE = 1,
113 	PASSTHRU_DISABLE = 2,
114 };
115 
116 struct pm_cntrl {
117 	u16 enable;
118 	u16 stop_at_max;
119 	u16 trace_mode;
120 	u16 freeze;
121 	u16 count_mode;
122 	u16 spu_addr_trace;
123 	u8  trace_buf_ovflw;
124 };
125 
126 static struct {
127 	u32 group_control;
128 	u32 debug_bus_control;
129 	struct pm_cntrl pm_cntrl;
130 	u32 pm07_cntrl[NR_PHYS_CTRS];
131 } pm_regs;
132 
133 #define GET_SUB_UNIT(x) ((x & 0x0000f000) >> 12)
134 #define GET_BUS_WORD(x) ((x & 0x000000f0) >> 4)
135 #define GET_BUS_TYPE(x) ((x & 0x00000300) >> 8)
136 #define GET_POLARITY(x) ((x & 0x00000002) >> 1)
137 #define GET_COUNT_CYCLES(x) (x & 0x00000001)
138 #define GET_INPUT_CONTROL(x) ((x & 0x00000004) >> 2)
139 
140 static DEFINE_PER_CPU(unsigned long[NR_PHYS_CTRS], pmc_values);
141 static unsigned long spu_pm_cnt[MAX_NUMNODES * NUM_SPUS_PER_NODE];
142 static struct pmc_cntrl_data pmc_cntrl[NUM_THREADS][NR_PHYS_CTRS];
143 
144 /*
145  * The CELL profiling code makes rtas calls to setup the debug bus to
146  * route the performance signals.  Additionally, SPU profiling requires
147  * a second rtas call to setup the hardware to capture the SPU PCs.
148  * The EIO error value is returned if the token lookups or the rtas
149  * call fail.  The EIO error number is the best choice of the existing
150  * error numbers.  The probability of rtas related error is very low.  But
151  * by returning EIO and printing additional information to dmsg the user
152  * will know that OProfile did not start and dmesg will tell them why.
153  * OProfile does not support returning errors on Stop.	Not a huge issue
154  * since failure to reset the debug bus or stop the SPU PC collection is
155  * not a fatel issue.  Chances are if the Stop failed, Start doesn't work
156  * either.
157  */
158 
159 /*
160  * Interpetation of hdw_thread:
161  * 0 - even virtual cpus 0, 2, 4,...
162  * 1 - odd virtual cpus 1, 3, 5, ...
163  *
164  * FIXME: this is strictly wrong, we need to clean this up in a number
165  * of places. It works for now. -arnd
166  */
167 static u32 hdw_thread;
168 
169 static u32 virt_cntr_inter_mask;
170 static struct timer_list timer_virt_cntr;
171 static struct timer_list timer_spu_event_swap;
172 
173 /*
174  * pm_signal needs to be global since it is initialized in
175  * cell_reg_setup at the time when the necessary information
176  * is available.
177  */
178 static struct pm_signal pm_signal[NR_PHYS_CTRS];
179 static int pm_rtas_token;    /* token for debug bus setup call */
180 static int spu_rtas_token;   /* token for SPU cycle profiling */
181 
182 static u32 reset_value[NR_PHYS_CTRS];
183 static int num_counters;
184 static int oprofile_running;
185 static DEFINE_SPINLOCK(cntr_lock);
186 
187 static u32 ctr_enabled;
188 
189 static unsigned char input_bus[NUM_INPUT_BUS_WORDS];
190 
191 /*
192  * Firmware interface functions
193  */
194 static int
rtas_ibm_cbe_perftools(int subfunc,int passthru,void * address,unsigned long length)195 rtas_ibm_cbe_perftools(int subfunc, int passthru,
196 		       void *address, unsigned long length)
197 {
198 	u64 paddr = __pa(address);
199 
200 	return rtas_call(pm_rtas_token, 5, 1, NULL, subfunc,
201 			 passthru, paddr >> 32, paddr & 0xffffffff, length);
202 }
203 
pm_rtas_reset_signals(u32 node)204 static void pm_rtas_reset_signals(u32 node)
205 {
206 	int ret;
207 	struct pm_signal pm_signal_local;
208 
209 	/*
210 	 * The debug bus is being set to the passthru disable state.
211 	 * However, the FW still expects at least one legal signal routing
212 	 * entry or it will return an error on the arguments.	If we don't
213 	 * supply a valid entry, we must ignore all return values.  Ignoring
214 	 * all return values means we might miss an error we should be
215 	 * concerned about.
216 	 */
217 
218 	/*  fw expects physical cpu #. */
219 	pm_signal_local.cpu = node;
220 	pm_signal_local.signal_group = 21;
221 	pm_signal_local.bus_word = 1;
222 	pm_signal_local.sub_unit = 0;
223 	pm_signal_local.bit = 0;
224 
225 	ret = rtas_ibm_cbe_perftools(SUBFUNC_RESET, PASSTHRU_DISABLE,
226 				     &pm_signal_local,
227 				     sizeof(struct pm_signal));
228 
229 	if (unlikely(ret))
230 		/*
231 		 * Not a fatal error. For Oprofile stop, the oprofile
232 		 * functions do not support returning an error for
233 		 * failure to stop OProfile.
234 		 */
235 		printk(KERN_WARNING "%s: rtas returned: %d\n",
236 		       __func__, ret);
237 }
238 
pm_rtas_activate_signals(u32 node,u32 count)239 static int pm_rtas_activate_signals(u32 node, u32 count)
240 {
241 	int ret;
242 	int i, j;
243 	struct pm_signal pm_signal_local[NR_PHYS_CTRS];
244 
245 	/*
246 	 * There is no debug setup required for the cycles event.
247 	 * Note that only events in the same group can be used.
248 	 * Otherwise, there will be conflicts in correctly routing
249 	 * the signals on the debug bus.  It is the responsibility
250 	 * of the OProfile user tool to check the events are in
251 	 * the same group.
252 	 */
253 	i = 0;
254 	for (j = 0; j < count; j++) {
255 		if (pm_signal[j].signal_group != PPU_CYCLES_GRP_NUM) {
256 
257 			/* fw expects physical cpu # */
258 			pm_signal_local[i].cpu = node;
259 			pm_signal_local[i].signal_group
260 				= pm_signal[j].signal_group;
261 			pm_signal_local[i].bus_word = pm_signal[j].bus_word;
262 			pm_signal_local[i].sub_unit = pm_signal[j].sub_unit;
263 			pm_signal_local[i].bit = pm_signal[j].bit;
264 			i++;
265 		}
266 	}
267 
268 	if (i != 0) {
269 		ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE, PASSTHRU_ENABLE,
270 					     pm_signal_local,
271 					     i * sizeof(struct pm_signal));
272 
273 		if (unlikely(ret)) {
274 			printk(KERN_WARNING "%s: rtas returned: %d\n",
275 			       __func__, ret);
276 			return -EIO;
277 		}
278 	}
279 
280 	return 0;
281 }
282 
283 /*
284  * PM Signal functions
285  */
set_pm_event(u32 ctr,int event,u32 unit_mask)286 static void set_pm_event(u32 ctr, int event, u32 unit_mask)
287 {
288 	struct pm_signal *p;
289 	u32 signal_bit;
290 	u32 bus_word, bus_type, count_cycles, polarity, input_control;
291 	int j, i;
292 
293 	if (event == PPU_CYCLES_EVENT_NUM) {
294 		/* Special Event: Count all cpu cycles */
295 		pm_regs.pm07_cntrl[ctr] = CBE_COUNT_ALL_CYCLES;
296 		p = &(pm_signal[ctr]);
297 		p->signal_group = PPU_CYCLES_GRP_NUM;
298 		p->bus_word = 1;
299 		p->sub_unit = 0;
300 		p->bit = 0;
301 		goto out;
302 	} else {
303 		pm_regs.pm07_cntrl[ctr] = 0;
304 	}
305 
306 	bus_word = GET_BUS_WORD(unit_mask);
307 	bus_type = GET_BUS_TYPE(unit_mask);
308 	count_cycles = GET_COUNT_CYCLES(unit_mask);
309 	polarity = GET_POLARITY(unit_mask);
310 	input_control = GET_INPUT_CONTROL(unit_mask);
311 	signal_bit = (event % 100);
312 
313 	p = &(pm_signal[ctr]);
314 
315 	p->signal_group = event / 100;
316 	p->bus_word = bus_word;
317 	p->sub_unit = GET_SUB_UNIT(unit_mask);
318 
319 	pm_regs.pm07_cntrl[ctr] = 0;
320 	pm_regs.pm07_cntrl[ctr] |= PM07_CTR_COUNT_CYCLES(count_cycles);
321 	pm_regs.pm07_cntrl[ctr] |= PM07_CTR_POLARITY(polarity);
322 	pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_CONTROL(input_control);
323 
324 	/*
325 	 * Some of the islands signal selection is based on 64 bit words.
326 	 * The debug bus words are 32 bits, the input words to the performance
327 	 * counters are defined as 32 bits.  Need to convert the 64 bit island
328 	 * specification to the appropriate 32 input bit and bus word for the
329 	 * performance counter event selection.	 See the CELL Performance
330 	 * monitoring signals manual and the Perf cntr hardware descriptions
331 	 * for the details.
332 	 */
333 	if (input_control == 0) {
334 		if (signal_bit > 31) {
335 			signal_bit -= 32;
336 			if (bus_word == 0x3)
337 				bus_word = 0x2;
338 			else if (bus_word == 0xc)
339 				bus_word = 0x8;
340 		}
341 
342 		if ((bus_type == 0) && p->signal_group >= 60)
343 			bus_type = 2;
344 		if ((bus_type == 1) && p->signal_group >= 50)
345 			bus_type = 0;
346 
347 		pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_MUX(signal_bit);
348 	} else {
349 		pm_regs.pm07_cntrl[ctr] = 0;
350 		p->bit = signal_bit;
351 	}
352 
353 	for (i = 0; i < NUM_DEBUG_BUS_WORDS; i++) {
354 		if (bus_word & (1 << i)) {
355 			pm_regs.debug_bus_control |=
356 				(bus_type << (30 - (2 * i)));
357 
358 			for (j = 0; j < NUM_INPUT_BUS_WORDS; j++) {
359 				if (input_bus[j] == 0xff) {
360 					input_bus[j] = i;
361 					pm_regs.group_control |=
362 						(i << (30 - (2 * j)));
363 
364 					break;
365 				}
366 			}
367 		}
368 	}
369 out:
370 	;
371 }
372 
write_pm_cntrl(int cpu)373 static void write_pm_cntrl(int cpu)
374 {
375 	/*
376 	 * Oprofile will use 32 bit counters, set bits 7:10 to 0
377 	 * pmregs.pm_cntrl is a global
378 	 */
379 
380 	u32 val = 0;
381 	if (pm_regs.pm_cntrl.enable == 1)
382 		val |= CBE_PM_ENABLE_PERF_MON;
383 
384 	if (pm_regs.pm_cntrl.stop_at_max == 1)
385 		val |= CBE_PM_STOP_AT_MAX;
386 
387 	if (pm_regs.pm_cntrl.trace_mode != 0)
388 		val |= CBE_PM_TRACE_MODE_SET(pm_regs.pm_cntrl.trace_mode);
389 
390 	if (pm_regs.pm_cntrl.trace_buf_ovflw == 1)
391 		val |= CBE_PM_TRACE_BUF_OVFLW(pm_regs.pm_cntrl.trace_buf_ovflw);
392 	if (pm_regs.pm_cntrl.freeze == 1)
393 		val |= CBE_PM_FREEZE_ALL_CTRS;
394 
395 	val |= CBE_PM_SPU_ADDR_TRACE_SET(pm_regs.pm_cntrl.spu_addr_trace);
396 
397 	/*
398 	 * Routine set_count_mode must be called previously to set
399 	 * the count mode based on the user selection of user and kernel.
400 	 */
401 	val |= CBE_PM_COUNT_MODE_SET(pm_regs.pm_cntrl.count_mode);
402 	cbe_write_pm(cpu, pm_control, val);
403 }
404 
405 static inline void
set_count_mode(u32 kernel,u32 user)406 set_count_mode(u32 kernel, u32 user)
407 {
408 	/*
409 	 * The user must specify user and kernel if they want them. If
410 	 *  neither is specified, OProfile will count in hypervisor mode.
411 	 *  pm_regs.pm_cntrl is a global
412 	 */
413 	if (kernel) {
414 		if (user)
415 			pm_regs.pm_cntrl.count_mode = CBE_COUNT_ALL_MODES;
416 		else
417 			pm_regs.pm_cntrl.count_mode =
418 				CBE_COUNT_SUPERVISOR_MODE;
419 	} else {
420 		if (user)
421 			pm_regs.pm_cntrl.count_mode = CBE_COUNT_PROBLEM_MODE;
422 		else
423 			pm_regs.pm_cntrl.count_mode =
424 				CBE_COUNT_HYPERVISOR_MODE;
425 	}
426 }
427 
enable_ctr(u32 cpu,u32 ctr,u32 * pm07_cntrl)428 static inline void enable_ctr(u32 cpu, u32 ctr, u32 *pm07_cntrl)
429 {
430 
431 	pm07_cntrl[ctr] |= CBE_PM_CTR_ENABLE;
432 	cbe_write_pm07_control(cpu, ctr, pm07_cntrl[ctr]);
433 }
434 
435 /*
436  * Oprofile is expected to collect data on all CPUs simultaneously.
437  * However, there is one set of performance counters per node.	There are
438  * two hardware threads or virtual CPUs on each node.  Hence, OProfile must
439  * multiplex in time the performance counter collection on the two virtual
440  * CPUs.  The multiplexing of the performance counters is done by this
441  * virtual counter routine.
442  *
443  * The pmc_values used below is defined as 'per-cpu' but its use is
444  * more akin to 'per-node'.  We need to store two sets of counter
445  * values per node -- one for the previous run and one for the next.
446  * The per-cpu[NR_PHYS_CTRS] gives us the storage we need.  Each odd/even
447  * pair of per-cpu arrays is used for storing the previous and next
448  * pmc values for a given node.
449  * NOTE: We use the per-cpu variable to improve cache performance.
450  *
451  * This routine will alternate loading the virtual counters for
452  * virtual CPUs
453  */
cell_virtual_cntr(struct timer_list * unused)454 static void cell_virtual_cntr(struct timer_list *unused)
455 {
456 	int i, prev_hdw_thread, next_hdw_thread;
457 	u32 cpu;
458 	unsigned long flags;
459 
460 	/*
461 	 * Make sure that the interrupt_hander and the virt counter are
462 	 * not both playing with the counters on the same node.
463 	 */
464 
465 	spin_lock_irqsave(&cntr_lock, flags);
466 
467 	prev_hdw_thread = hdw_thread;
468 
469 	/* switch the cpu handling the interrupts */
470 	hdw_thread = 1 ^ hdw_thread;
471 	next_hdw_thread = hdw_thread;
472 
473 	pm_regs.group_control = 0;
474 	pm_regs.debug_bus_control = 0;
475 
476 	for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
477 		input_bus[i] = 0xff;
478 
479 	/*
480 	 * There are some per thread events.  Must do the
481 	 * set event, for the thread that is being started
482 	 */
483 	for (i = 0; i < num_counters; i++)
484 		set_pm_event(i,
485 			pmc_cntrl[next_hdw_thread][i].evnts,
486 			pmc_cntrl[next_hdw_thread][i].masks);
487 
488 	/*
489 	 * The following is done only once per each node, but
490 	 * we need cpu #, not node #, to pass to the cbe_xxx functions.
491 	 */
492 	for_each_online_cpu(cpu) {
493 		if (cbe_get_hw_thread_id(cpu))
494 			continue;
495 
496 		/*
497 		 * stop counters, save counter values, restore counts
498 		 * for previous thread
499 		 */
500 		cbe_disable_pm(cpu);
501 		cbe_disable_pm_interrupts(cpu);
502 		for (i = 0; i < num_counters; i++) {
503 			per_cpu(pmc_values, cpu + prev_hdw_thread)[i]
504 				= cbe_read_ctr(cpu, i);
505 
506 			if (per_cpu(pmc_values, cpu + next_hdw_thread)[i]
507 			    == 0xFFFFFFFF)
508 				/* If the cntr value is 0xffffffff, we must
509 				 * reset that to 0xfffffff0 when the current
510 				 * thread is restarted.	 This will generate a
511 				 * new interrupt and make sure that we never
512 				 * restore the counters to the max value.  If
513 				 * the counters were restored to the max value,
514 				 * they do not increment and no interrupts are
515 				 * generated.  Hence no more samples will be
516 				 * collected on that cpu.
517 				 */
518 				cbe_write_ctr(cpu, i, 0xFFFFFFF0);
519 			else
520 				cbe_write_ctr(cpu, i,
521 					      per_cpu(pmc_values,
522 						      cpu +
523 						      next_hdw_thread)[i]);
524 		}
525 
526 		/*
527 		 * Switch to the other thread. Change the interrupt
528 		 * and control regs to be scheduled on the CPU
529 		 * corresponding to the thread to execute.
530 		 */
531 		for (i = 0; i < num_counters; i++) {
532 			if (pmc_cntrl[next_hdw_thread][i].enabled) {
533 				/*
534 				 * There are some per thread events.
535 				 * Must do the set event, enable_cntr
536 				 * for each cpu.
537 				 */
538 				enable_ctr(cpu, i,
539 					   pm_regs.pm07_cntrl);
540 			} else {
541 				cbe_write_pm07_control(cpu, i, 0);
542 			}
543 		}
544 
545 		/* Enable interrupts on the CPU thread that is starting */
546 		cbe_enable_pm_interrupts(cpu, next_hdw_thread,
547 					 virt_cntr_inter_mask);
548 		cbe_enable_pm(cpu);
549 	}
550 
551 	spin_unlock_irqrestore(&cntr_lock, flags);
552 
553 	mod_timer(&timer_virt_cntr, jiffies + HZ / 10);
554 }
555 
start_virt_cntrs(void)556 static void start_virt_cntrs(void)
557 {
558 	timer_setup(&timer_virt_cntr, cell_virtual_cntr, 0);
559 	timer_virt_cntr.expires = jiffies + HZ / 10;
560 	add_timer(&timer_virt_cntr);
561 }
562 
cell_reg_setup_spu_cycles(struct op_counter_config * ctr,struct op_system_config * sys,int num_ctrs)563 static int cell_reg_setup_spu_cycles(struct op_counter_config *ctr,
564 			struct op_system_config *sys, int num_ctrs)
565 {
566 	spu_cycle_reset = ctr[0].count;
567 
568 	/*
569 	 * Each node will need to make the rtas call to start
570 	 * and stop SPU profiling.  Get the token once and store it.
571 	 */
572 	spu_rtas_token = rtas_token("ibm,cbe-spu-perftools");
573 
574 	if (unlikely(spu_rtas_token == RTAS_UNKNOWN_SERVICE)) {
575 		printk(KERN_ERR
576 		       "%s: rtas token ibm,cbe-spu-perftools unknown\n",
577 		       __func__);
578 		return -EIO;
579 	}
580 	return 0;
581 }
582 
583 /* Unfortunately, the hardware will only support event profiling
584  * on one SPU per node at a time.  Therefore, we must time slice
585  * the profiling across all SPUs in the node.  Note, we do this
586  * in parallel for each node.  The following routine is called
587  * periodically based on kernel timer to switch which SPU is
588  * being monitored in a round robbin fashion.
589  */
spu_evnt_swap(struct timer_list * unused)590 static void spu_evnt_swap(struct timer_list *unused)
591 {
592 	int node;
593 	int cur_phys_spu, nxt_phys_spu, cur_spu_evnt_phys_spu_indx;
594 	unsigned long flags;
595 	int cpu;
596 	int ret;
597 	u32 interrupt_mask;
598 
599 
600 	/* enable interrupts on cntr 0 */
601 	interrupt_mask = CBE_PM_CTR_OVERFLOW_INTR(0);
602 
603 	hdw_thread = 0;
604 
605 	/* Make sure spu event interrupt handler and spu event swap
606 	 * don't access the counters simultaneously.
607 	 */
608 	spin_lock_irqsave(&cntr_lock, flags);
609 
610 	cur_spu_evnt_phys_spu_indx = spu_evnt_phys_spu_indx;
611 
612 	if (++(spu_evnt_phys_spu_indx) == NUM_SPUS_PER_NODE)
613 		spu_evnt_phys_spu_indx = 0;
614 
615 	pm_signal[0].sub_unit = spu_evnt_phys_spu_indx;
616 	pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
617 	pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
618 
619 	/* switch the SPU being profiled on each node */
620 	for_each_online_cpu(cpu) {
621 		if (cbe_get_hw_thread_id(cpu))
622 			continue;
623 
624 		node = cbe_cpu_to_node(cpu);
625 		cur_phys_spu = (node * NUM_SPUS_PER_NODE)
626 			+ cur_spu_evnt_phys_spu_indx;
627 		nxt_phys_spu = (node * NUM_SPUS_PER_NODE)
628 			+ spu_evnt_phys_spu_indx;
629 
630 		/*
631 		 * stop counters, save counter values, restore counts
632 		 * for previous physical SPU
633 		 */
634 		cbe_disable_pm(cpu);
635 		cbe_disable_pm_interrupts(cpu);
636 
637 		spu_pm_cnt[cur_phys_spu]
638 			= cbe_read_ctr(cpu, 0);
639 
640 		/* restore previous count for the next spu to sample */
641 		/* NOTE, hardware issue, counter will not start if the
642 		 * counter value is at max (0xFFFFFFFF).
643 		 */
644 		if (spu_pm_cnt[nxt_phys_spu] >= 0xFFFFFFFF)
645 			cbe_write_ctr(cpu, 0, 0xFFFFFFF0);
646 		 else
647 			 cbe_write_ctr(cpu, 0, spu_pm_cnt[nxt_phys_spu]);
648 
649 		pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
650 
651 		/* setup the debug bus measure the one event and
652 		 * the two events to route the next SPU's PC on
653 		 * the debug bus
654 		 */
655 		ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu), 3);
656 		if (ret)
657 			printk(KERN_ERR "%s: pm_rtas_activate_signals failed, "
658 			       "SPU event swap\n", __func__);
659 
660 		/* clear the trace buffer, don't want to take PC for
661 		 * previous SPU*/
662 		cbe_write_pm(cpu, trace_address, 0);
663 
664 		enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
665 
666 		/* Enable interrupts on the CPU thread that is starting */
667 		cbe_enable_pm_interrupts(cpu, hdw_thread,
668 					 interrupt_mask);
669 		cbe_enable_pm(cpu);
670 	}
671 
672 	spin_unlock_irqrestore(&cntr_lock, flags);
673 
674 	/* swap approximately every 0.1 seconds */
675 	mod_timer(&timer_spu_event_swap, jiffies + HZ / 25);
676 }
677 
start_spu_event_swap(void)678 static void start_spu_event_swap(void)
679 {
680 	timer_setup(&timer_spu_event_swap, spu_evnt_swap, 0);
681 	timer_spu_event_swap.expires = jiffies + HZ / 25;
682 	add_timer(&timer_spu_event_swap);
683 }
684 
cell_reg_setup_spu_events(struct op_counter_config * ctr,struct op_system_config * sys,int num_ctrs)685 static int cell_reg_setup_spu_events(struct op_counter_config *ctr,
686 			struct op_system_config *sys, int num_ctrs)
687 {
688 	int i;
689 
690 	/* routine is called once for all nodes */
691 
692 	spu_evnt_phys_spu_indx = 0;
693 	/*
694 	 * For all events except PPU CYCLEs, each node will need to make
695 	 * the rtas cbe-perftools call to setup and reset the debug bus.
696 	 * Make the token lookup call once and store it in the global
697 	 * variable pm_rtas_token.
698 	 */
699 	pm_rtas_token = rtas_token("ibm,cbe-perftools");
700 
701 	if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
702 		printk(KERN_ERR
703 		       "%s: rtas token ibm,cbe-perftools unknown\n",
704 		       __func__);
705 		return -EIO;
706 	}
707 
708 	/* setup the pm_control register settings,
709 	 * settings will be written per node by the
710 	 * cell_cpu_setup() function.
711 	 */
712 	pm_regs.pm_cntrl.trace_buf_ovflw = 1;
713 
714 	/* Use the occurrence trace mode to have SPU PC saved
715 	 * to the trace buffer.  Occurrence data in trace buffer
716 	 * is not used.  Bit 2 must be set to store SPU addresses.
717 	 */
718 	pm_regs.pm_cntrl.trace_mode = 2;
719 
720 	pm_regs.pm_cntrl.spu_addr_trace = 0x1;  /* using debug bus
721 						   event 2 & 3 */
722 
723 	/* setup the debug bus event array with the SPU PC routing events.
724 	*  Note, pm_signal[0] will be filled in by set_pm_event() call below.
725 	*/
726 	pm_signal[1].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
727 	pm_signal[1].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_A);
728 	pm_signal[1].bit = SPU_PROFILE_EVENT_ADDR % 100;
729 	pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
730 
731 	pm_signal[2].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
732 	pm_signal[2].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_B);
733 	pm_signal[2].bit = SPU_PROFILE_EVENT_ADDR % 100;
734 	pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
735 
736 	/* Set the user selected spu event to profile on,
737 	 * note, only one SPU profiling event is supported
738 	 */
739 	num_counters = 1;  /* Only support one SPU event at a time */
740 	set_pm_event(0, ctr[0].event, ctr[0].unit_mask);
741 
742 	reset_value[0] = 0xFFFFFFFF - ctr[0].count;
743 
744 	/* global, used by cell_cpu_setup */
745 	ctr_enabled |= 1;
746 
747 	/* Initialize the count for each SPU to the reset value */
748 	for (i=0; i < MAX_NUMNODES * NUM_SPUS_PER_NODE; i++)
749 		spu_pm_cnt[i] = reset_value[0];
750 
751 	return 0;
752 }
753 
cell_reg_setup_ppu(struct op_counter_config * ctr,struct op_system_config * sys,int num_ctrs)754 static int cell_reg_setup_ppu(struct op_counter_config *ctr,
755 			struct op_system_config *sys, int num_ctrs)
756 {
757 	/* routine is called once for all nodes */
758 	int i, j, cpu;
759 
760 	num_counters = num_ctrs;
761 
762 	if (unlikely(num_ctrs > NR_PHYS_CTRS)) {
763 		printk(KERN_ERR
764 		       "%s: Oprofile, number of specified events " \
765 		       "exceeds number of physical counters\n",
766 		       __func__);
767 		return -EIO;
768 	}
769 
770 	set_count_mode(sys->enable_kernel, sys->enable_user);
771 
772 	/* Setup the thread 0 events */
773 	for (i = 0; i < num_ctrs; ++i) {
774 
775 		pmc_cntrl[0][i].evnts = ctr[i].event;
776 		pmc_cntrl[0][i].masks = ctr[i].unit_mask;
777 		pmc_cntrl[0][i].enabled = ctr[i].enabled;
778 		pmc_cntrl[0][i].vcntr = i;
779 
780 		for_each_possible_cpu(j)
781 			per_cpu(pmc_values, j)[i] = 0;
782 	}
783 
784 	/*
785 	 * Setup the thread 1 events, map the thread 0 event to the
786 	 * equivalent thread 1 event.
787 	 */
788 	for (i = 0; i < num_ctrs; ++i) {
789 		if ((ctr[i].event >= 2100) && (ctr[i].event <= 2111))
790 			pmc_cntrl[1][i].evnts = ctr[i].event + 19;
791 		else if (ctr[i].event == 2203)
792 			pmc_cntrl[1][i].evnts = ctr[i].event;
793 		else if ((ctr[i].event >= 2200) && (ctr[i].event <= 2215))
794 			pmc_cntrl[1][i].evnts = ctr[i].event + 16;
795 		else
796 			pmc_cntrl[1][i].evnts = ctr[i].event;
797 
798 		pmc_cntrl[1][i].masks = ctr[i].unit_mask;
799 		pmc_cntrl[1][i].enabled = ctr[i].enabled;
800 		pmc_cntrl[1][i].vcntr = i;
801 	}
802 
803 	for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
804 		input_bus[i] = 0xff;
805 
806 	/*
807 	 * Our counters count up, and "count" refers to
808 	 * how much before the next interrupt, and we interrupt
809 	 * on overflow.	 So we calculate the starting value
810 	 * which will give us "count" until overflow.
811 	 * Then we set the events on the enabled counters.
812 	 */
813 	for (i = 0; i < num_counters; ++i) {
814 		/* start with virtual counter set 0 */
815 		if (pmc_cntrl[0][i].enabled) {
816 			/* Using 32bit counters, reset max - count */
817 			reset_value[i] = 0xFFFFFFFF - ctr[i].count;
818 			set_pm_event(i,
819 				     pmc_cntrl[0][i].evnts,
820 				     pmc_cntrl[0][i].masks);
821 
822 			/* global, used by cell_cpu_setup */
823 			ctr_enabled |= (1 << i);
824 		}
825 	}
826 
827 	/* initialize the previous counts for the virtual cntrs */
828 	for_each_online_cpu(cpu)
829 		for (i = 0; i < num_counters; ++i) {
830 			per_cpu(pmc_values, cpu)[i] = reset_value[i];
831 		}
832 
833 	return 0;
834 }
835 
836 
837 /* This function is called once for all cpus combined */
cell_reg_setup(struct op_counter_config * ctr,struct op_system_config * sys,int num_ctrs)838 static int cell_reg_setup(struct op_counter_config *ctr,
839 			struct op_system_config *sys, int num_ctrs)
840 {
841 	int ret=0;
842 	spu_cycle_reset = 0;
843 
844 	/* initialize the spu_arr_trace value, will be reset if
845 	 * doing spu event profiling.
846 	 */
847 	pm_regs.group_control = 0;
848 	pm_regs.debug_bus_control = 0;
849 	pm_regs.pm_cntrl.stop_at_max = 1;
850 	pm_regs.pm_cntrl.trace_mode = 0;
851 	pm_regs.pm_cntrl.freeze = 1;
852 	pm_regs.pm_cntrl.trace_buf_ovflw = 0;
853 	pm_regs.pm_cntrl.spu_addr_trace = 0;
854 
855 	/*
856 	 * For all events except PPU CYCLEs, each node will need to make
857 	 * the rtas cbe-perftools call to setup and reset the debug bus.
858 	 * Make the token lookup call once and store it in the global
859 	 * variable pm_rtas_token.
860 	 */
861 	pm_rtas_token = rtas_token("ibm,cbe-perftools");
862 
863 	if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
864 		printk(KERN_ERR
865 		       "%s: rtas token ibm,cbe-perftools unknown\n",
866 		       __func__);
867 		return -EIO;
868 	}
869 
870 	if (ctr[0].event == SPU_CYCLES_EVENT_NUM) {
871 		profiling_mode = SPU_PROFILING_CYCLES;
872 		ret = cell_reg_setup_spu_cycles(ctr, sys, num_ctrs);
873 	} else if ((ctr[0].event >= SPU_EVENT_NUM_START) &&
874 		   (ctr[0].event <= SPU_EVENT_NUM_STOP)) {
875 		profiling_mode = SPU_PROFILING_EVENTS;
876 		spu_cycle_reset = ctr[0].count;
877 
878 		/* for SPU event profiling, need to setup the
879 		 * pm_signal array with the events to route the
880 		 * SPU PC before making the FW call.  Note, only
881 		 * one SPU event for profiling can be specified
882 		 * at a time.
883 		 */
884 		cell_reg_setup_spu_events(ctr, sys, num_ctrs);
885 	} else {
886 		profiling_mode = PPU_PROFILING;
887 		ret = cell_reg_setup_ppu(ctr, sys, num_ctrs);
888 	}
889 
890 	return ret;
891 }
892 
893 
894 
895 /* This function is called once for each cpu */
cell_cpu_setup(struct op_counter_config * cntr)896 static int cell_cpu_setup(struct op_counter_config *cntr)
897 {
898 	u32 cpu = smp_processor_id();
899 	u32 num_enabled = 0;
900 	int i;
901 	int ret;
902 
903 	/* Cycle based SPU profiling does not use the performance
904 	 * counters.  The trace array is configured to collect
905 	 * the data.
906 	 */
907 	if (profiling_mode == SPU_PROFILING_CYCLES)
908 		return 0;
909 
910 	/* There is one performance monitor per processor chip (i.e. node),
911 	 * so we only need to perform this function once per node.
912 	 */
913 	if (cbe_get_hw_thread_id(cpu))
914 		return 0;
915 
916 	/* Stop all counters */
917 	cbe_disable_pm(cpu);
918 	cbe_disable_pm_interrupts(cpu);
919 
920 	cbe_write_pm(cpu, pm_start_stop, 0);
921 	cbe_write_pm(cpu, group_control, pm_regs.group_control);
922 	cbe_write_pm(cpu, debug_bus_control, pm_regs.debug_bus_control);
923 	write_pm_cntrl(cpu);
924 
925 	for (i = 0; i < num_counters; ++i) {
926 		if (ctr_enabled & (1 << i)) {
927 			pm_signal[num_enabled].cpu = cbe_cpu_to_node(cpu);
928 			num_enabled++;
929 		}
930 	}
931 
932 	/*
933 	 * The pm_rtas_activate_signals will return -EIO if the FW
934 	 * call failed.
935 	 */
936 	if (profiling_mode == SPU_PROFILING_EVENTS) {
937 		/* For SPU event profiling also need to setup the
938 		 * pm interval timer
939 		 */
940 		ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
941 					       num_enabled+2);
942 		/* store PC from debug bus to Trace buffer as often
943 		 * as possible (every 10 cycles)
944 		 */
945 		cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
946 		return ret;
947 	} else
948 		return pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
949 						num_enabled);
950 }
951 
952 #define ENTRIES	 303
953 #define MAXLFSR	 0xFFFFFF
954 
955 /* precomputed table of 24 bit LFSR values */
956 static int initial_lfsr[] = {
957  8221349, 12579195, 5379618, 10097839, 7512963, 7519310, 3955098, 10753424,
958  15507573, 7458917, 285419, 2641121, 9780088, 3915503, 6668768, 1548716,
959  4885000, 8774424, 9650099, 2044357, 2304411, 9326253, 10332526, 4421547,
960  3440748, 10179459, 13332843, 10375561, 1313462, 8375100, 5198480, 6071392,
961  9341783, 1526887, 3985002, 1439429, 13923762, 7010104, 11969769, 4547026,
962  2040072, 4025602, 3437678, 7939992, 11444177, 4496094, 9803157, 10745556,
963  3671780, 4257846, 5662259, 13196905, 3237343, 12077182, 16222879, 7587769,
964  14706824, 2184640, 12591135, 10420257, 7406075, 3648978, 11042541, 15906893,
965  11914928, 4732944, 10695697, 12928164, 11980531, 4430912, 11939291, 2917017,
966  6119256, 4172004, 9373765, 8410071, 14788383, 5047459, 5474428, 1737756,
967  15967514, 13351758, 6691285, 8034329, 2856544, 14394753, 11310160, 12149558,
968  7487528, 7542781, 15668898, 12525138, 12790975, 3707933, 9106617, 1965401,
969  16219109, 12801644, 2443203, 4909502, 8762329, 3120803, 6360315, 9309720,
970  15164599, 10844842, 4456529, 6667610, 14924259, 884312, 6234963, 3326042,
971  15973422, 13919464, 5272099, 6414643, 3909029, 2764324, 5237926, 4774955,
972  10445906, 4955302, 5203726, 10798229, 11443419, 2303395, 333836, 9646934,
973  3464726, 4159182, 568492, 995747, 10318756, 13299332, 4836017, 8237783,
974  3878992, 2581665, 11394667, 5672745, 14412947, 3159169, 9094251, 16467278,
975  8671392, 15230076, 4843545, 7009238, 15504095, 1494895, 9627886, 14485051,
976  8304291, 252817, 12421642, 16085736, 4774072, 2456177, 4160695, 15409741,
977  4902868, 5793091, 13162925, 16039714, 782255, 11347835, 14884586, 366972,
978  16308990, 11913488, 13390465, 2958444, 10340278, 1177858, 1319431, 10426302,
979  2868597, 126119, 5784857, 5245324, 10903900, 16436004, 3389013, 1742384,
980  14674502, 10279218, 8536112, 10364279, 6877778, 14051163, 1025130, 6072469,
981  1988305, 8354440, 8216060, 16342977, 13112639, 3976679, 5913576, 8816697,
982  6879995, 14043764, 3339515, 9364420, 15808858, 12261651, 2141560, 5636398,
983  10345425, 10414756, 781725, 6155650, 4746914, 5078683, 7469001, 6799140,
984  10156444, 9667150, 10116470, 4133858, 2121972, 1124204, 1003577, 1611214,
985  14304602, 16221850, 13878465, 13577744, 3629235, 8772583, 10881308, 2410386,
986  7300044, 5378855, 9301235, 12755149, 4977682, 8083074, 10327581, 6395087,
987  9155434, 15501696, 7514362, 14520507, 15808945, 3244584, 4741962, 9658130,
988  14336147, 8654727, 7969093, 15759799, 14029445, 5038459, 9894848, 8659300,
989  13699287, 8834306, 10712885, 14753895, 10410465, 3373251, 309501, 9561475,
990  5526688, 14647426, 14209836, 5339224, 207299, 14069911, 8722990, 2290950,
991  3258216, 12505185, 6007317, 9218111, 14661019, 10537428, 11731949, 9027003,
992  6641507, 9490160, 200241, 9720425, 16277895, 10816638, 1554761, 10431375,
993  7467528, 6790302, 3429078, 14633753, 14428997, 11463204, 3576212, 2003426,
994  6123687, 820520, 9992513, 15784513, 5778891, 6428165, 8388607
995 };
996 
997 /*
998  * The hardware uses an LFSR counting sequence to determine when to capture
999  * the SPU PCs.	 An LFSR sequence is like a puesdo random number sequence
1000  * where each number occurs once in the sequence but the sequence is not in
1001  * numerical order. The SPU PC capture is done when the LFSR sequence reaches
1002  * the last value in the sequence.  Hence the user specified value N
1003  * corresponds to the LFSR number that is N from the end of the sequence.
1004  *
1005  * To avoid the time to compute the LFSR, a lookup table is used.  The 24 bit
1006  * LFSR sequence is broken into four ranges.  The spacing of the precomputed
1007  * values is adjusted in each range so the error between the user specified
1008  * number (N) of events between samples and the actual number of events based
1009  * on the precomputed value will be les then about 6.2%.  Note, if the user
1010  * specifies N < 2^16, the LFSR value that is 2^16 from the end will be used.
1011  * This is to prevent the loss of samples because the trace buffer is full.
1012  *
1013  *	   User specified N		     Step between	   Index in
1014  *					 precomputed values	 precomputed
1015  *								    table
1016  * 0		    to	2^16-1			----		      0
1017  * 2^16	    to	2^16+2^19-1		2^12		    1 to 128
1018  * 2^16+2^19	    to	2^16+2^19+2^22-1	2^15		  129 to 256
1019  * 2^16+2^19+2^22  to	2^24-1			2^18		  257 to 302
1020  *
1021  *
1022  * For example, the LFSR values in the second range are computed for 2^16,
1023  * 2^16+2^12, ... , 2^19-2^16, 2^19 and stored in the table at indicies
1024  * 1, 2,..., 127, 128.
1025  *
1026  * The 24 bit LFSR value for the nth number in the sequence can be
1027  * calculated using the following code:
1028  *
1029  * #define size 24
1030  * int calculate_lfsr(int n)
1031  * {
1032  *	int i;
1033  *	unsigned int newlfsr0;
1034  *	unsigned int lfsr = 0xFFFFFF;
1035  *	unsigned int howmany = n;
1036  *
1037  *	for (i = 2; i < howmany + 2; i++) {
1038  *		newlfsr0 = (((lfsr >> (size - 1 - 0)) & 1) ^
1039  *		((lfsr >> (size - 1 - 1)) & 1) ^
1040  *		(((lfsr >> (size - 1 - 6)) & 1) ^
1041  *		((lfsr >> (size - 1 - 23)) & 1)));
1042  *
1043  *		lfsr >>= 1;
1044  *		lfsr = lfsr | (newlfsr0 << (size - 1));
1045  *	}
1046  *	return lfsr;
1047  * }
1048  */
1049 
1050 #define V2_16  (0x1 << 16)
1051 #define V2_19  (0x1 << 19)
1052 #define V2_22  (0x1 << 22)
1053 
calculate_lfsr(int n)1054 static int calculate_lfsr(int n)
1055 {
1056 	/*
1057 	 * The ranges and steps are in powers of 2 so the calculations
1058 	 * can be done using shifts rather then divide.
1059 	 */
1060 	int index;
1061 
1062 	if ((n >> 16) == 0)
1063 		index = 0;
1064 	else if (((n - V2_16) >> 19) == 0)
1065 		index = ((n - V2_16) >> 12) + 1;
1066 	else if (((n - V2_16 - V2_19) >> 22) == 0)
1067 		index = ((n - V2_16 - V2_19) >> 15 ) + 1 + 128;
1068 	else if (((n - V2_16 - V2_19 - V2_22) >> 24) == 0)
1069 		index = ((n - V2_16 - V2_19 - V2_22) >> 18 ) + 1 + 256;
1070 	else
1071 		index = ENTRIES-1;
1072 
1073 	/* make sure index is valid */
1074 	if ((index >= ENTRIES) || (index < 0))
1075 		index = ENTRIES-1;
1076 
1077 	return initial_lfsr[index];
1078 }
1079 
pm_rtas_activate_spu_profiling(u32 node)1080 static int pm_rtas_activate_spu_profiling(u32 node)
1081 {
1082 	int ret, i;
1083 	struct pm_signal pm_signal_local[NUM_SPUS_PER_NODE];
1084 
1085 	/*
1086 	 * Set up the rtas call to configure the debug bus to
1087 	 * route the SPU PCs.  Setup the pm_signal for each SPU
1088 	 */
1089 	for (i = 0; i < ARRAY_SIZE(pm_signal_local); i++) {
1090 		pm_signal_local[i].cpu = node;
1091 		pm_signal_local[i].signal_group = 41;
1092 		/* spu i on word (i/2) */
1093 		pm_signal_local[i].bus_word = 1 << i / 2;
1094 		/* spu i */
1095 		pm_signal_local[i].sub_unit = i;
1096 		pm_signal_local[i].bit = 63;
1097 	}
1098 
1099 	ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE,
1100 				     PASSTHRU_ENABLE, pm_signal_local,
1101 				     (ARRAY_SIZE(pm_signal_local)
1102 				      * sizeof(struct pm_signal)));
1103 
1104 	if (unlikely(ret)) {
1105 		printk(KERN_WARNING "%s: rtas returned: %d\n",
1106 		       __func__, ret);
1107 		return -EIO;
1108 	}
1109 
1110 	return 0;
1111 }
1112 
1113 #ifdef CONFIG_CPU_FREQ
1114 static int
oprof_cpufreq_notify(struct notifier_block * nb,unsigned long val,void * data)1115 oprof_cpufreq_notify(struct notifier_block *nb, unsigned long val, void *data)
1116 {
1117 	int ret = 0;
1118 	struct cpufreq_freqs *frq = data;
1119 	if ((val == CPUFREQ_PRECHANGE && frq->old < frq->new) ||
1120 	    (val == CPUFREQ_POSTCHANGE && frq->old > frq->new))
1121 		set_spu_profiling_frequency(frq->new, spu_cycle_reset);
1122 	return ret;
1123 }
1124 
1125 static struct notifier_block cpu_freq_notifier_block = {
1126 	.notifier_call	= oprof_cpufreq_notify
1127 };
1128 #endif
1129 
1130 /*
1131  * Note the generic OProfile stop calls do not support returning
1132  * an error on stop.  Hence, will not return an error if the FW
1133  * calls fail on stop.	Failure to reset the debug bus is not an issue.
1134  * Failure to disable the SPU profiling is not an issue.  The FW calls
1135  * to enable the performance counters and debug bus will work even if
1136  * the hardware was not cleanly reset.
1137  */
cell_global_stop_spu_cycles(void)1138 static void cell_global_stop_spu_cycles(void)
1139 {
1140 	int subfunc, rtn_value;
1141 	unsigned int lfsr_value;
1142 	int cpu;
1143 
1144 	oprofile_running = 0;
1145 	smp_wmb();
1146 
1147 #ifdef CONFIG_CPU_FREQ
1148 	cpufreq_unregister_notifier(&cpu_freq_notifier_block,
1149 				    CPUFREQ_TRANSITION_NOTIFIER);
1150 #endif
1151 
1152 	for_each_online_cpu(cpu) {
1153 		if (cbe_get_hw_thread_id(cpu))
1154 			continue;
1155 
1156 		subfunc = 3;	/*
1157 				 * 2 - activate SPU tracing,
1158 				 * 3 - deactivate
1159 				 */
1160 		lfsr_value = 0x8f100000;
1161 
1162 		rtn_value = rtas_call(spu_rtas_token, 3, 1, NULL,
1163 				      subfunc, cbe_cpu_to_node(cpu),
1164 				      lfsr_value);
1165 
1166 		if (unlikely(rtn_value != 0)) {
1167 			printk(KERN_ERR
1168 			       "%s: rtas call ibm,cbe-spu-perftools " \
1169 			       "failed, return = %d\n",
1170 			       __func__, rtn_value);
1171 		}
1172 
1173 		/* Deactivate the signals */
1174 		pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1175 	}
1176 
1177 	stop_spu_profiling_cycles();
1178 }
1179 
cell_global_stop_spu_events(void)1180 static void cell_global_stop_spu_events(void)
1181 {
1182 	int cpu;
1183 	oprofile_running = 0;
1184 
1185 	stop_spu_profiling_events();
1186 	smp_wmb();
1187 
1188 	for_each_online_cpu(cpu) {
1189 		if (cbe_get_hw_thread_id(cpu))
1190 			continue;
1191 
1192 		cbe_sync_irq(cbe_cpu_to_node(cpu));
1193 		/* Stop the counters */
1194 		cbe_disable_pm(cpu);
1195 		cbe_write_pm07_control(cpu, 0, 0);
1196 
1197 		/* Deactivate the signals */
1198 		pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1199 
1200 		/* Deactivate interrupts */
1201 		cbe_disable_pm_interrupts(cpu);
1202 	}
1203 	del_timer_sync(&timer_spu_event_swap);
1204 }
1205 
cell_global_stop_ppu(void)1206 static void cell_global_stop_ppu(void)
1207 {
1208 	int cpu;
1209 
1210 	/*
1211 	 * This routine will be called once for the system.
1212 	 * There is one performance monitor per node, so we
1213 	 * only need to perform this function once per node.
1214 	 */
1215 	del_timer_sync(&timer_virt_cntr);
1216 	oprofile_running = 0;
1217 	smp_wmb();
1218 
1219 	for_each_online_cpu(cpu) {
1220 		if (cbe_get_hw_thread_id(cpu))
1221 			continue;
1222 
1223 		cbe_sync_irq(cbe_cpu_to_node(cpu));
1224 		/* Stop the counters */
1225 		cbe_disable_pm(cpu);
1226 
1227 		/* Deactivate the signals */
1228 		pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1229 
1230 		/* Deactivate interrupts */
1231 		cbe_disable_pm_interrupts(cpu);
1232 	}
1233 }
1234 
cell_global_stop(void)1235 static void cell_global_stop(void)
1236 {
1237 	if (profiling_mode == PPU_PROFILING)
1238 		cell_global_stop_ppu();
1239 	else if (profiling_mode == SPU_PROFILING_EVENTS)
1240 		cell_global_stop_spu_events();
1241 	else
1242 		cell_global_stop_spu_cycles();
1243 }
1244 
cell_global_start_spu_cycles(struct op_counter_config * ctr)1245 static int cell_global_start_spu_cycles(struct op_counter_config *ctr)
1246 {
1247 	int subfunc;
1248 	unsigned int lfsr_value;
1249 	int cpu;
1250 	int ret;
1251 	int rtas_error;
1252 	unsigned int cpu_khzfreq = 0;
1253 
1254 	/* The SPU profiling uses time-based profiling based on
1255 	 * cpu frequency, so if configured with the CPU_FREQ
1256 	 * option, we should detect frequency changes and react
1257 	 * accordingly.
1258 	 */
1259 #ifdef CONFIG_CPU_FREQ
1260 	ret = cpufreq_register_notifier(&cpu_freq_notifier_block,
1261 					CPUFREQ_TRANSITION_NOTIFIER);
1262 	if (ret < 0)
1263 		/* this is not a fatal error */
1264 		printk(KERN_ERR "CPU freq change registration failed: %d\n",
1265 		       ret);
1266 
1267 	else
1268 		cpu_khzfreq = cpufreq_quick_get(smp_processor_id());
1269 #endif
1270 
1271 	set_spu_profiling_frequency(cpu_khzfreq, spu_cycle_reset);
1272 
1273 	for_each_online_cpu(cpu) {
1274 		if (cbe_get_hw_thread_id(cpu))
1275 			continue;
1276 
1277 		/*
1278 		 * Setup SPU cycle-based profiling.
1279 		 * Set perf_mon_control bit 0 to a zero before
1280 		 * enabling spu collection hardware.
1281 		 */
1282 		cbe_write_pm(cpu, pm_control, 0);
1283 
1284 		if (spu_cycle_reset > MAX_SPU_COUNT)
1285 			/* use largest possible value */
1286 			lfsr_value = calculate_lfsr(MAX_SPU_COUNT-1);
1287 		else
1288 			lfsr_value = calculate_lfsr(spu_cycle_reset);
1289 
1290 		/* must use a non zero value. Zero disables data collection. */
1291 		if (lfsr_value == 0)
1292 			lfsr_value = calculate_lfsr(1);
1293 
1294 		lfsr_value = lfsr_value << 8; /* shift lfsr to correct
1295 						* register location
1296 						*/
1297 
1298 		/* debug bus setup */
1299 		ret = pm_rtas_activate_spu_profiling(cbe_cpu_to_node(cpu));
1300 
1301 		if (unlikely(ret)) {
1302 			rtas_error = ret;
1303 			goto out;
1304 		}
1305 
1306 
1307 		subfunc = 2;	/* 2 - activate SPU tracing, 3 - deactivate */
1308 
1309 		/* start profiling */
1310 		ret = rtas_call(spu_rtas_token, 3, 1, NULL, subfunc,
1311 				cbe_cpu_to_node(cpu), lfsr_value);
1312 
1313 		if (unlikely(ret != 0)) {
1314 			printk(KERN_ERR
1315 			       "%s: rtas call ibm,cbe-spu-perftools failed, " \
1316 			       "return = %d\n", __func__, ret);
1317 			rtas_error = -EIO;
1318 			goto out;
1319 		}
1320 	}
1321 
1322 	rtas_error = start_spu_profiling_cycles(spu_cycle_reset);
1323 	if (rtas_error)
1324 		goto out_stop;
1325 
1326 	oprofile_running = 1;
1327 	return 0;
1328 
1329 out_stop:
1330 	cell_global_stop_spu_cycles();	/* clean up the PMU/debug bus */
1331 out:
1332 	return rtas_error;
1333 }
1334 
cell_global_start_spu_events(struct op_counter_config * ctr)1335 static int cell_global_start_spu_events(struct op_counter_config *ctr)
1336 {
1337 	int cpu;
1338 	u32 interrupt_mask = 0;
1339 	int rtn = 0;
1340 
1341 	hdw_thread = 0;
1342 
1343 	/* spu event profiling, uses the performance counters to generate
1344 	 * an interrupt.  The hardware is setup to store the SPU program
1345 	 * counter into the trace array.  The occurrence mode is used to
1346 	 * enable storing data to the trace buffer.  The bits are set
1347 	 * to send/store the SPU address in the trace buffer.  The debug
1348 	 * bus must be setup to route the SPU program counter onto the
1349 	 * debug bus.  The occurrence data in the trace buffer is not used.
1350 	 */
1351 
1352 	/* This routine gets called once for the system.
1353 	 * There is one performance monitor per node, so we
1354 	 * only need to perform this function once per node.
1355 	 */
1356 
1357 	for_each_online_cpu(cpu) {
1358 		if (cbe_get_hw_thread_id(cpu))
1359 			continue;
1360 
1361 		/*
1362 		 * Setup SPU event-based profiling.
1363 		 * Set perf_mon_control bit 0 to a zero before
1364 		 * enabling spu collection hardware.
1365 		 *
1366 		 * Only support one SPU event on one SPU per node.
1367 		 */
1368 		if (ctr_enabled & 1) {
1369 			cbe_write_ctr(cpu, 0, reset_value[0]);
1370 			enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
1371 			interrupt_mask |=
1372 				CBE_PM_CTR_OVERFLOW_INTR(0);
1373 		} else {
1374 			/* Disable counter */
1375 			cbe_write_pm07_control(cpu, 0, 0);
1376 		}
1377 
1378 		cbe_get_and_clear_pm_interrupts(cpu);
1379 		cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
1380 		cbe_enable_pm(cpu);
1381 
1382 		/* clear the trace buffer */
1383 		cbe_write_pm(cpu, trace_address, 0);
1384 	}
1385 
1386 	/* Start the timer to time slice collecting the event profile
1387 	 * on each of the SPUs.  Note, can collect profile on one SPU
1388 	 * per node at a time.
1389 	 */
1390 	start_spu_event_swap();
1391 	start_spu_profiling_events();
1392 	oprofile_running = 1;
1393 	smp_wmb();
1394 
1395 	return rtn;
1396 }
1397 
cell_global_start_ppu(struct op_counter_config * ctr)1398 static int cell_global_start_ppu(struct op_counter_config *ctr)
1399 {
1400 	u32 cpu, i;
1401 	u32 interrupt_mask = 0;
1402 
1403 	/* This routine gets called once for the system.
1404 	 * There is one performance monitor per node, so we
1405 	 * only need to perform this function once per node.
1406 	 */
1407 	for_each_online_cpu(cpu) {
1408 		if (cbe_get_hw_thread_id(cpu))
1409 			continue;
1410 
1411 		interrupt_mask = 0;
1412 
1413 		for (i = 0; i < num_counters; ++i) {
1414 			if (ctr_enabled & (1 << i)) {
1415 				cbe_write_ctr(cpu, i, reset_value[i]);
1416 				enable_ctr(cpu, i, pm_regs.pm07_cntrl);
1417 				interrupt_mask |= CBE_PM_CTR_OVERFLOW_INTR(i);
1418 			} else {
1419 				/* Disable counter */
1420 				cbe_write_pm07_control(cpu, i, 0);
1421 			}
1422 		}
1423 
1424 		cbe_get_and_clear_pm_interrupts(cpu);
1425 		cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
1426 		cbe_enable_pm(cpu);
1427 	}
1428 
1429 	virt_cntr_inter_mask = interrupt_mask;
1430 	oprofile_running = 1;
1431 	smp_wmb();
1432 
1433 	/*
1434 	 * NOTE: start_virt_cntrs will result in cell_virtual_cntr() being
1435 	 * executed which manipulates the PMU.	We start the "virtual counter"
1436 	 * here so that we do not need to synchronize access to the PMU in
1437 	 * the above for-loop.
1438 	 */
1439 	start_virt_cntrs();
1440 
1441 	return 0;
1442 }
1443 
cell_global_start(struct op_counter_config * ctr)1444 static int cell_global_start(struct op_counter_config *ctr)
1445 {
1446 	if (profiling_mode == SPU_PROFILING_CYCLES)
1447 		return cell_global_start_spu_cycles(ctr);
1448 	else if (profiling_mode == SPU_PROFILING_EVENTS)
1449 		return cell_global_start_spu_events(ctr);
1450 	else
1451 		return cell_global_start_ppu(ctr);
1452 }
1453 
1454 
1455 /* The SPU interrupt handler
1456  *
1457  * SPU event profiling works as follows:
1458  * The pm_signal[0] holds the one SPU event to be measured.  It is routed on
1459  * the debug bus using word 0 or 1.  The value of pm_signal[1] and
1460  * pm_signal[2] contain the necessary events to route the SPU program
1461  * counter for the selected SPU onto the debug bus using words 2 and 3.
1462  * The pm_interval register is setup to write the SPU PC value into the
1463  * trace buffer at the maximum rate possible.  The trace buffer is configured
1464  * to store the PCs, wrapping when it is full.  The performance counter is
1465  * initialized to the max hardware count minus the number of events, N, between
1466  * samples.  Once the N events have occurred, a HW counter overflow occurs
1467  * causing the generation of a HW counter interrupt which also stops the
1468  * writing of the SPU PC values to the trace buffer.  Hence the last PC
1469  * written to the trace buffer is the SPU PC that we want.  Unfortunately,
1470  * we have to read from the beginning of the trace buffer to get to the
1471  * last value written.  We just hope the PPU has nothing better to do then
1472  * service this interrupt. The PC for the specific SPU being profiled is
1473  * extracted from the trace buffer processed and stored.  The trace buffer
1474  * is cleared, interrupts are cleared, the counter is reset to max - N.
1475  * A kernel timer is used to periodically call the routine spu_evnt_swap()
1476  * to switch to the next physical SPU in the node to profile in round robbin
1477  * order.  This way data is collected for all SPUs on the node. It does mean
1478  * that we need to use a relatively small value of N to ensure enough samples
1479  * on each SPU are collected each SPU is being profiled 1/8 of the time.
1480  * It may also be necessary to use a longer sample collection period.
1481  */
cell_handle_interrupt_spu(struct pt_regs * regs,struct op_counter_config * ctr)1482 static void cell_handle_interrupt_spu(struct pt_regs *regs,
1483 				      struct op_counter_config *ctr)
1484 {
1485 	u32 cpu, cpu_tmp;
1486 	u64 trace_entry;
1487 	u32 interrupt_mask;
1488 	u64 trace_buffer[2];
1489 	u64 last_trace_buffer;
1490 	u32 sample;
1491 	u32 trace_addr;
1492 	unsigned long sample_array_lock_flags;
1493 	int spu_num;
1494 	unsigned long flags;
1495 
1496 	/* Make sure spu event interrupt handler and spu event swap
1497 	 * don't access the counters simultaneously.
1498 	 */
1499 	cpu = smp_processor_id();
1500 	spin_lock_irqsave(&cntr_lock, flags);
1501 
1502 	cpu_tmp = cpu;
1503 	cbe_disable_pm(cpu);
1504 
1505 	interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
1506 
1507 	sample = 0xABCDEF;
1508 	trace_entry = 0xfedcba;
1509 	last_trace_buffer = 0xdeadbeaf;
1510 
1511 	if ((oprofile_running == 1) && (interrupt_mask != 0)) {
1512 		/* disable writes to trace buff */
1513 		cbe_write_pm(cpu, pm_interval, 0);
1514 
1515 		/* only have one perf cntr being used, cntr 0 */
1516 		if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(0))
1517 		    && ctr[0].enabled)
1518 			/* The SPU PC values will be read
1519 			 * from the trace buffer, reset counter
1520 			 */
1521 
1522 			cbe_write_ctr(cpu, 0, reset_value[0]);
1523 
1524 		trace_addr = cbe_read_pm(cpu, trace_address);
1525 
1526 		while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) {
1527 			/* There is data in the trace buffer to process
1528 			 * Read the buffer until you get to the last
1529 			 * entry.  This is the value we want.
1530 			 */
1531 
1532 			cbe_read_trace_buffer(cpu, trace_buffer);
1533 			trace_addr = cbe_read_pm(cpu, trace_address);
1534 		}
1535 
1536 		/* SPU Address 16 bit count format for 128 bit
1537 		 * HW trace buffer is used for the SPU PC storage
1538 		 *    HDR bits          0:15
1539 		 *    SPU Addr 0 bits   16:31
1540 		 *    SPU Addr 1 bits   32:47
1541 		 *    unused bits       48:127
1542 		 *
1543 		 * HDR: bit4 = 1 SPU Address 0 valid
1544 		 * HDR: bit5 = 1 SPU Address 1 valid
1545 		 *  - unfortunately, the valid bits don't seem to work
1546 		 *
1547 		 * Note trace_buffer[0] holds bits 0:63 of the HW
1548 		 * trace buffer, trace_buffer[1] holds bits 64:127
1549 		 */
1550 
1551 		trace_entry = trace_buffer[0]
1552 			& 0x00000000FFFF0000;
1553 
1554 		/* only top 16 of the 18 bit SPU PC address
1555 		 * is stored in trace buffer, hence shift right
1556 		 * by 16 -2 bits */
1557 		sample = trace_entry >> 14;
1558 		last_trace_buffer = trace_buffer[0];
1559 
1560 		spu_num = spu_evnt_phys_spu_indx
1561 			+ (cbe_cpu_to_node(cpu) * NUM_SPUS_PER_NODE);
1562 
1563 		/* make sure only one process at a time is calling
1564 		 * spu_sync_buffer()
1565 		 */
1566 		spin_lock_irqsave(&oprof_spu_smpl_arry_lck,
1567 				  sample_array_lock_flags);
1568 		spu_sync_buffer(spu_num, &sample, 1);
1569 		spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
1570 				       sample_array_lock_flags);
1571 
1572 		smp_wmb();    /* insure spu event buffer updates are written
1573 			       * don't want events intermingled... */
1574 
1575 		/* The counters were frozen by the interrupt.
1576 		 * Reenable the interrupt and restart the counters.
1577 		 */
1578 		cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
1579 		cbe_enable_pm_interrupts(cpu, hdw_thread,
1580 					 virt_cntr_inter_mask);
1581 
1582 		/* clear the trace buffer, re-enable writes to trace buff */
1583 		cbe_write_pm(cpu, trace_address, 0);
1584 		cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
1585 
1586 		/* The writes to the various performance counters only writes
1587 		 * to a latch.  The new values (interrupt setting bits, reset
1588 		 * counter value etc.) are not copied to the actual registers
1589 		 * until the performance monitor is enabled.  In order to get
1590 		 * this to work as desired, the performance monitor needs to
1591 		 * be disabled while writing to the latches.  This is a
1592 		 * HW design issue.
1593 		 */
1594 		write_pm_cntrl(cpu);
1595 		cbe_enable_pm(cpu);
1596 	}
1597 	spin_unlock_irqrestore(&cntr_lock, flags);
1598 }
1599 
cell_handle_interrupt_ppu(struct pt_regs * regs,struct op_counter_config * ctr)1600 static void cell_handle_interrupt_ppu(struct pt_regs *regs,
1601 				      struct op_counter_config *ctr)
1602 {
1603 	u32 cpu;
1604 	u64 pc;
1605 	int is_kernel;
1606 	unsigned long flags = 0;
1607 	u32 interrupt_mask;
1608 	int i;
1609 
1610 	cpu = smp_processor_id();
1611 
1612 	/*
1613 	 * Need to make sure the interrupt handler and the virt counter
1614 	 * routine are not running at the same time. See the
1615 	 * cell_virtual_cntr() routine for additional comments.
1616 	 */
1617 	spin_lock_irqsave(&cntr_lock, flags);
1618 
1619 	/*
1620 	 * Need to disable and reenable the performance counters
1621 	 * to get the desired behavior from the hardware.  This
1622 	 * is hardware specific.
1623 	 */
1624 
1625 	cbe_disable_pm(cpu);
1626 
1627 	interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
1628 
1629 	/*
1630 	 * If the interrupt mask has been cleared, then the virt cntr
1631 	 * has cleared the interrupt.  When the thread that generated
1632 	 * the interrupt is restored, the data count will be restored to
1633 	 * 0xffffff0 to cause the interrupt to be regenerated.
1634 	 */
1635 
1636 	if ((oprofile_running == 1) && (interrupt_mask != 0)) {
1637 		pc = regs->nip;
1638 		is_kernel = is_kernel_addr(pc);
1639 
1640 		for (i = 0; i < num_counters; ++i) {
1641 			if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(i))
1642 			    && ctr[i].enabled) {
1643 				oprofile_add_ext_sample(pc, regs, i, is_kernel);
1644 				cbe_write_ctr(cpu, i, reset_value[i]);
1645 			}
1646 		}
1647 
1648 		/*
1649 		 * The counters were frozen by the interrupt.
1650 		 * Reenable the interrupt and restart the counters.
1651 		 * If there was a race between the interrupt handler and
1652 		 * the virtual counter routine.	 The virtual counter
1653 		 * routine may have cleared the interrupts.  Hence must
1654 		 * use the virt_cntr_inter_mask to re-enable the interrupts.
1655 		 */
1656 		cbe_enable_pm_interrupts(cpu, hdw_thread,
1657 					 virt_cntr_inter_mask);
1658 
1659 		/*
1660 		 * The writes to the various performance counters only writes
1661 		 * to a latch.	The new values (interrupt setting bits, reset
1662 		 * counter value etc.) are not copied to the actual registers
1663 		 * until the performance monitor is enabled.  In order to get
1664 		 * this to work as desired, the performance monitor needs to
1665 		 * be disabled while writing to the latches.  This is a
1666 		 * HW design issue.
1667 		 */
1668 		cbe_enable_pm(cpu);
1669 	}
1670 	spin_unlock_irqrestore(&cntr_lock, flags);
1671 }
1672 
cell_handle_interrupt(struct pt_regs * regs,struct op_counter_config * ctr)1673 static void cell_handle_interrupt(struct pt_regs *regs,
1674 				  struct op_counter_config *ctr)
1675 {
1676 	if (profiling_mode == PPU_PROFILING)
1677 		cell_handle_interrupt_ppu(regs, ctr);
1678 	else
1679 		cell_handle_interrupt_spu(regs, ctr);
1680 }
1681 
1682 /*
1683  * This function is called from the generic OProfile
1684  * driver.  When profiling PPUs, we need to do the
1685  * generic sync start; otherwise, do spu_sync_start.
1686  */
cell_sync_start(void)1687 static int cell_sync_start(void)
1688 {
1689 	if ((profiling_mode == SPU_PROFILING_CYCLES) ||
1690 	    (profiling_mode == SPU_PROFILING_EVENTS))
1691 		return spu_sync_start();
1692 	else
1693 		return DO_GENERIC_SYNC;
1694 }
1695 
cell_sync_stop(void)1696 static int cell_sync_stop(void)
1697 {
1698 	if ((profiling_mode == SPU_PROFILING_CYCLES) ||
1699 	    (profiling_mode == SPU_PROFILING_EVENTS))
1700 		return spu_sync_stop();
1701 	else
1702 		return 1;
1703 }
1704 
1705 struct op_powerpc_model op_model_cell = {
1706 	.reg_setup = cell_reg_setup,
1707 	.cpu_setup = cell_cpu_setup,
1708 	.global_start = cell_global_start,
1709 	.global_stop = cell_global_stop,
1710 	.sync_start = cell_sync_start,
1711 	.sync_stop = cell_sync_stop,
1712 	.handle_interrupt = cell_handle_interrupt,
1713 };
1714