1 /*
2 * TLB flush routines for radix kernels.
3 *
4 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #include <linux/mm.h>
13 #include <linux/hugetlb.h>
14 #include <linux/memblock.h>
15 #include <linux/mmu_context.h>
16 #include <linux/sched/mm.h>
17
18 #include <asm/ppc-opcode.h>
19 #include <asm/tlb.h>
20 #include <asm/tlbflush.h>
21 #include <asm/trace.h>
22 #include <asm/cputhreads.h>
23
24 #define RIC_FLUSH_TLB 0
25 #define RIC_FLUSH_PWC 1
26 #define RIC_FLUSH_ALL 2
27
28 /*
29 * tlbiel instruction for radix, set invalidation
30 * i.e., r=1 and is=01 or is=10 or is=11
31 */
tlbiel_radix_set_isa300(unsigned int set,unsigned int is,unsigned int pid,unsigned int ric,unsigned int prs)32 static inline void tlbiel_radix_set_isa300(unsigned int set, unsigned int is,
33 unsigned int pid,
34 unsigned int ric, unsigned int prs)
35 {
36 unsigned long rb;
37 unsigned long rs;
38
39 rb = (set << PPC_BITLSHIFT(51)) | (is << PPC_BITLSHIFT(53));
40 rs = ((unsigned long)pid << PPC_BITLSHIFT(31));
41
42 asm volatile(PPC_TLBIEL(%0, %1, %2, %3, 1)
43 : : "r"(rb), "r"(rs), "i"(ric), "i"(prs)
44 : "memory");
45 }
46
tlbiel_all_isa300(unsigned int num_sets,unsigned int is)47 static void tlbiel_all_isa300(unsigned int num_sets, unsigned int is)
48 {
49 unsigned int set;
50
51 asm volatile("ptesync": : :"memory");
52
53 /*
54 * Flush the first set of the TLB, and the entire Page Walk Cache
55 * and partition table entries. Then flush the remaining sets of the
56 * TLB.
57 */
58 tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 0);
59 for (set = 1; set < num_sets; set++)
60 tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 0);
61
62 /* Do the same for process scoped entries. */
63 tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 1);
64 for (set = 1; set < num_sets; set++)
65 tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 1);
66
67 asm volatile("ptesync": : :"memory");
68 }
69
radix__tlbiel_all(unsigned int action)70 void radix__tlbiel_all(unsigned int action)
71 {
72 unsigned int is;
73
74 switch (action) {
75 case TLB_INVAL_SCOPE_GLOBAL:
76 is = 3;
77 break;
78 case TLB_INVAL_SCOPE_LPID:
79 is = 2;
80 break;
81 default:
82 BUG();
83 }
84
85 if (early_cpu_has_feature(CPU_FTR_ARCH_300))
86 tlbiel_all_isa300(POWER9_TLB_SETS_RADIX, is);
87 else
88 WARN(1, "%s called on pre-POWER9 CPU\n", __func__);
89
90 asm volatile(PPC_INVALIDATE_ERAT "; isync" : : :"memory");
91 }
92
__tlbiel_pid(unsigned long pid,int set,unsigned long ric)93 static inline void __tlbiel_pid(unsigned long pid, int set,
94 unsigned long ric)
95 {
96 unsigned long rb,rs,prs,r;
97
98 rb = PPC_BIT(53); /* IS = 1 */
99 rb |= set << PPC_BITLSHIFT(51);
100 rs = ((unsigned long)pid) << PPC_BITLSHIFT(31);
101 prs = 1; /* process scoped */
102 r = 1; /* radix format */
103
104 asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
105 : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
106 trace_tlbie(0, 1, rb, rs, ric, prs, r);
107 }
108
__tlbie_pid(unsigned long pid,unsigned long ric)109 static inline void __tlbie_pid(unsigned long pid, unsigned long ric)
110 {
111 unsigned long rb,rs,prs,r;
112
113 rb = PPC_BIT(53); /* IS = 1 */
114 rs = pid << PPC_BITLSHIFT(31);
115 prs = 1; /* process scoped */
116 r = 1; /* radix format */
117
118 asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
119 : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
120 trace_tlbie(0, 0, rb, rs, ric, prs, r);
121 }
122
__tlbiel_lpid(unsigned long lpid,int set,unsigned long ric)123 static inline void __tlbiel_lpid(unsigned long lpid, int set,
124 unsigned long ric)
125 {
126 unsigned long rb,rs,prs,r;
127
128 rb = PPC_BIT(52); /* IS = 2 */
129 rb |= set << PPC_BITLSHIFT(51);
130 rs = 0; /* LPID comes from LPIDR */
131 prs = 0; /* partition scoped */
132 r = 1; /* radix format */
133
134 asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
135 : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
136 trace_tlbie(lpid, 1, rb, rs, ric, prs, r);
137 }
138
__tlbie_lpid(unsigned long lpid,unsigned long ric)139 static inline void __tlbie_lpid(unsigned long lpid, unsigned long ric)
140 {
141 unsigned long rb,rs,prs,r;
142
143 rb = PPC_BIT(52); /* IS = 2 */
144 rs = lpid;
145 prs = 0; /* partition scoped */
146 r = 1; /* radix format */
147
148 asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
149 : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
150 trace_tlbie(lpid, 0, rb, rs, ric, prs, r);
151 }
152
__tlbiel_lpid_guest(unsigned long lpid,int set,unsigned long ric)153 static inline void __tlbiel_lpid_guest(unsigned long lpid, int set,
154 unsigned long ric)
155 {
156 unsigned long rb,rs,prs,r;
157
158 rb = PPC_BIT(52); /* IS = 2 */
159 rb |= set << PPC_BITLSHIFT(51);
160 rs = 0; /* LPID comes from LPIDR */
161 prs = 1; /* process scoped */
162 r = 1; /* radix format */
163
164 asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
165 : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
166 trace_tlbie(lpid, 1, rb, rs, ric, prs, r);
167 }
168
169
__tlbiel_va(unsigned long va,unsigned long pid,unsigned long ap,unsigned long ric)170 static inline void __tlbiel_va(unsigned long va, unsigned long pid,
171 unsigned long ap, unsigned long ric)
172 {
173 unsigned long rb,rs,prs,r;
174
175 rb = va & ~(PPC_BITMASK(52, 63));
176 rb |= ap << PPC_BITLSHIFT(58);
177 rs = pid << PPC_BITLSHIFT(31);
178 prs = 1; /* process scoped */
179 r = 1; /* radix format */
180
181 asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
182 : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
183 trace_tlbie(0, 1, rb, rs, ric, prs, r);
184 }
185
__tlbie_va(unsigned long va,unsigned long pid,unsigned long ap,unsigned long ric)186 static inline void __tlbie_va(unsigned long va, unsigned long pid,
187 unsigned long ap, unsigned long ric)
188 {
189 unsigned long rb,rs,prs,r;
190
191 rb = va & ~(PPC_BITMASK(52, 63));
192 rb |= ap << PPC_BITLSHIFT(58);
193 rs = pid << PPC_BITLSHIFT(31);
194 prs = 1; /* process scoped */
195 r = 1; /* radix format */
196
197 asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
198 : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
199 trace_tlbie(0, 0, rb, rs, ric, prs, r);
200 }
201
__tlbie_lpid_va(unsigned long va,unsigned long lpid,unsigned long ap,unsigned long ric)202 static inline void __tlbie_lpid_va(unsigned long va, unsigned long lpid,
203 unsigned long ap, unsigned long ric)
204 {
205 unsigned long rb,rs,prs,r;
206
207 rb = va & ~(PPC_BITMASK(52, 63));
208 rb |= ap << PPC_BITLSHIFT(58);
209 rs = lpid;
210 prs = 0; /* partition scoped */
211 r = 1; /* radix format */
212
213 asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
214 : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
215 trace_tlbie(lpid, 0, rb, rs, ric, prs, r);
216 }
217
fixup_tlbie(void)218 static inline void fixup_tlbie(void)
219 {
220 unsigned long pid = 0;
221 unsigned long va = ((1UL << 52) - 1);
222
223 if (cpu_has_feature(CPU_FTR_P9_TLBIE_BUG)) {
224 asm volatile("ptesync": : :"memory");
225 __tlbie_va(va, pid, mmu_get_ap(MMU_PAGE_64K), RIC_FLUSH_TLB);
226 }
227 }
228
fixup_tlbie_lpid(unsigned long lpid)229 static inline void fixup_tlbie_lpid(unsigned long lpid)
230 {
231 unsigned long va = ((1UL << 52) - 1);
232
233 if (cpu_has_feature(CPU_FTR_P9_TLBIE_BUG)) {
234 asm volatile("ptesync": : :"memory");
235 __tlbie_lpid_va(va, lpid, mmu_get_ap(MMU_PAGE_64K), RIC_FLUSH_TLB);
236 }
237 }
238
239 /*
240 * We use 128 set in radix mode and 256 set in hpt mode.
241 */
_tlbiel_pid(unsigned long pid,unsigned long ric)242 static inline void _tlbiel_pid(unsigned long pid, unsigned long ric)
243 {
244 int set;
245
246 asm volatile("ptesync": : :"memory");
247
248 /*
249 * Flush the first set of the TLB, and if we're doing a RIC_FLUSH_ALL,
250 * also flush the entire Page Walk Cache.
251 */
252 __tlbiel_pid(pid, 0, ric);
253
254 /* For PWC, only one flush is needed */
255 if (ric == RIC_FLUSH_PWC) {
256 asm volatile("ptesync": : :"memory");
257 return;
258 }
259
260 /* For the remaining sets, just flush the TLB */
261 for (set = 1; set < POWER9_TLB_SETS_RADIX ; set++)
262 __tlbiel_pid(pid, set, RIC_FLUSH_TLB);
263
264 asm volatile("ptesync": : :"memory");
265 asm volatile(PPC_INVALIDATE_ERAT "; isync" : : :"memory");
266 }
267
_tlbie_pid(unsigned long pid,unsigned long ric)268 static inline void _tlbie_pid(unsigned long pid, unsigned long ric)
269 {
270 asm volatile("ptesync": : :"memory");
271
272 /*
273 * Workaround the fact that the "ric" argument to __tlbie_pid
274 * must be a compile-time contraint to match the "i" constraint
275 * in the asm statement.
276 */
277 switch (ric) {
278 case RIC_FLUSH_TLB:
279 __tlbie_pid(pid, RIC_FLUSH_TLB);
280 break;
281 case RIC_FLUSH_PWC:
282 __tlbie_pid(pid, RIC_FLUSH_PWC);
283 break;
284 case RIC_FLUSH_ALL:
285 default:
286 __tlbie_pid(pid, RIC_FLUSH_ALL);
287 }
288 fixup_tlbie();
289 asm volatile("eieio; tlbsync; ptesync": : :"memory");
290 }
291
_tlbiel_lpid(unsigned long lpid,unsigned long ric)292 static inline void _tlbiel_lpid(unsigned long lpid, unsigned long ric)
293 {
294 int set;
295
296 VM_BUG_ON(mfspr(SPRN_LPID) != lpid);
297
298 asm volatile("ptesync": : :"memory");
299
300 /*
301 * Flush the first set of the TLB, and if we're doing a RIC_FLUSH_ALL,
302 * also flush the entire Page Walk Cache.
303 */
304 __tlbiel_lpid(lpid, 0, ric);
305
306 /* For PWC, only one flush is needed */
307 if (ric == RIC_FLUSH_PWC) {
308 asm volatile("ptesync": : :"memory");
309 return;
310 }
311
312 /* For the remaining sets, just flush the TLB */
313 for (set = 1; set < POWER9_TLB_SETS_RADIX ; set++)
314 __tlbiel_lpid(lpid, set, RIC_FLUSH_TLB);
315
316 asm volatile("ptesync": : :"memory");
317 asm volatile(PPC_INVALIDATE_ERAT "; isync" : : :"memory");
318 }
319
_tlbie_lpid(unsigned long lpid,unsigned long ric)320 static inline void _tlbie_lpid(unsigned long lpid, unsigned long ric)
321 {
322 asm volatile("ptesync": : :"memory");
323
324 /*
325 * Workaround the fact that the "ric" argument to __tlbie_pid
326 * must be a compile-time contraint to match the "i" constraint
327 * in the asm statement.
328 */
329 switch (ric) {
330 case RIC_FLUSH_TLB:
331 __tlbie_lpid(lpid, RIC_FLUSH_TLB);
332 break;
333 case RIC_FLUSH_PWC:
334 __tlbie_lpid(lpid, RIC_FLUSH_PWC);
335 break;
336 case RIC_FLUSH_ALL:
337 default:
338 __tlbie_lpid(lpid, RIC_FLUSH_ALL);
339 }
340 fixup_tlbie_lpid(lpid);
341 asm volatile("eieio; tlbsync; ptesync": : :"memory");
342 }
343
_tlbiel_lpid_guest(unsigned long lpid,unsigned long ric)344 static inline void _tlbiel_lpid_guest(unsigned long lpid, unsigned long ric)
345 {
346 int set;
347
348 VM_BUG_ON(mfspr(SPRN_LPID) != lpid);
349
350 asm volatile("ptesync": : :"memory");
351
352 /*
353 * Flush the first set of the TLB, and if we're doing a RIC_FLUSH_ALL,
354 * also flush the entire Page Walk Cache.
355 */
356 __tlbiel_lpid_guest(lpid, 0, ric);
357
358 /* For PWC, only one flush is needed */
359 if (ric == RIC_FLUSH_PWC) {
360 asm volatile("ptesync": : :"memory");
361 return;
362 }
363
364 /* For the remaining sets, just flush the TLB */
365 for (set = 1; set < POWER9_TLB_SETS_RADIX ; set++)
366 __tlbiel_lpid_guest(lpid, set, RIC_FLUSH_TLB);
367
368 asm volatile("ptesync": : :"memory");
369 }
370
371
__tlbiel_va_range(unsigned long start,unsigned long end,unsigned long pid,unsigned long page_size,unsigned long psize)372 static inline void __tlbiel_va_range(unsigned long start, unsigned long end,
373 unsigned long pid, unsigned long page_size,
374 unsigned long psize)
375 {
376 unsigned long addr;
377 unsigned long ap = mmu_get_ap(psize);
378
379 for (addr = start; addr < end; addr += page_size)
380 __tlbiel_va(addr, pid, ap, RIC_FLUSH_TLB);
381 }
382
_tlbiel_va(unsigned long va,unsigned long pid,unsigned long psize,unsigned long ric)383 static inline void _tlbiel_va(unsigned long va, unsigned long pid,
384 unsigned long psize, unsigned long ric)
385 {
386 unsigned long ap = mmu_get_ap(psize);
387
388 asm volatile("ptesync": : :"memory");
389 __tlbiel_va(va, pid, ap, ric);
390 asm volatile("ptesync": : :"memory");
391 }
392
_tlbiel_va_range(unsigned long start,unsigned long end,unsigned long pid,unsigned long page_size,unsigned long psize,bool also_pwc)393 static inline void _tlbiel_va_range(unsigned long start, unsigned long end,
394 unsigned long pid, unsigned long page_size,
395 unsigned long psize, bool also_pwc)
396 {
397 asm volatile("ptesync": : :"memory");
398 if (also_pwc)
399 __tlbiel_pid(pid, 0, RIC_FLUSH_PWC);
400 __tlbiel_va_range(start, end, pid, page_size, psize);
401 asm volatile("ptesync": : :"memory");
402 }
403
__tlbie_va_range(unsigned long start,unsigned long end,unsigned long pid,unsigned long page_size,unsigned long psize)404 static inline void __tlbie_va_range(unsigned long start, unsigned long end,
405 unsigned long pid, unsigned long page_size,
406 unsigned long psize)
407 {
408 unsigned long addr;
409 unsigned long ap = mmu_get_ap(psize);
410
411 for (addr = start; addr < end; addr += page_size)
412 __tlbie_va(addr, pid, ap, RIC_FLUSH_TLB);
413 }
414
_tlbie_va(unsigned long va,unsigned long pid,unsigned long psize,unsigned long ric)415 static inline void _tlbie_va(unsigned long va, unsigned long pid,
416 unsigned long psize, unsigned long ric)
417 {
418 unsigned long ap = mmu_get_ap(psize);
419
420 asm volatile("ptesync": : :"memory");
421 __tlbie_va(va, pid, ap, ric);
422 fixup_tlbie();
423 asm volatile("eieio; tlbsync; ptesync": : :"memory");
424 }
425
_tlbie_lpid_va(unsigned long va,unsigned long lpid,unsigned long psize,unsigned long ric)426 static inline void _tlbie_lpid_va(unsigned long va, unsigned long lpid,
427 unsigned long psize, unsigned long ric)
428 {
429 unsigned long ap = mmu_get_ap(psize);
430
431 asm volatile("ptesync": : :"memory");
432 __tlbie_lpid_va(va, lpid, ap, ric);
433 fixup_tlbie_lpid(lpid);
434 asm volatile("eieio; tlbsync; ptesync": : :"memory");
435 }
436
_tlbie_va_range(unsigned long start,unsigned long end,unsigned long pid,unsigned long page_size,unsigned long psize,bool also_pwc)437 static inline void _tlbie_va_range(unsigned long start, unsigned long end,
438 unsigned long pid, unsigned long page_size,
439 unsigned long psize, bool also_pwc)
440 {
441 asm volatile("ptesync": : :"memory");
442 if (also_pwc)
443 __tlbie_pid(pid, RIC_FLUSH_PWC);
444 __tlbie_va_range(start, end, pid, page_size, psize);
445 fixup_tlbie();
446 asm volatile("eieio; tlbsync; ptesync": : :"memory");
447 }
448
449 /*
450 * Base TLB flushing operations:
451 *
452 * - flush_tlb_mm(mm) flushes the specified mm context TLB's
453 * - flush_tlb_page(vma, vmaddr) flushes one page
454 * - flush_tlb_range(vma, start, end) flushes a range of pages
455 * - flush_tlb_kernel_range(start, end) flushes kernel pages
456 *
457 * - local_* variants of page and mm only apply to the current
458 * processor
459 */
radix__local_flush_tlb_mm(struct mm_struct * mm)460 void radix__local_flush_tlb_mm(struct mm_struct *mm)
461 {
462 unsigned long pid;
463
464 preempt_disable();
465 pid = mm->context.id;
466 if (pid != MMU_NO_CONTEXT)
467 _tlbiel_pid(pid, RIC_FLUSH_TLB);
468 preempt_enable();
469 }
470 EXPORT_SYMBOL(radix__local_flush_tlb_mm);
471
472 #ifndef CONFIG_SMP
radix__local_flush_all_mm(struct mm_struct * mm)473 void radix__local_flush_all_mm(struct mm_struct *mm)
474 {
475 unsigned long pid;
476
477 preempt_disable();
478 pid = mm->context.id;
479 if (pid != MMU_NO_CONTEXT)
480 _tlbiel_pid(pid, RIC_FLUSH_ALL);
481 preempt_enable();
482 }
483 EXPORT_SYMBOL(radix__local_flush_all_mm);
484 #endif /* CONFIG_SMP */
485
radix__local_flush_tlb_page_psize(struct mm_struct * mm,unsigned long vmaddr,int psize)486 void radix__local_flush_tlb_page_psize(struct mm_struct *mm, unsigned long vmaddr,
487 int psize)
488 {
489 unsigned long pid;
490
491 preempt_disable();
492 pid = mm->context.id;
493 if (pid != MMU_NO_CONTEXT)
494 _tlbiel_va(vmaddr, pid, psize, RIC_FLUSH_TLB);
495 preempt_enable();
496 }
497
radix__local_flush_tlb_page(struct vm_area_struct * vma,unsigned long vmaddr)498 void radix__local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
499 {
500 #ifdef CONFIG_HUGETLB_PAGE
501 /* need the return fix for nohash.c */
502 if (is_vm_hugetlb_page(vma))
503 return radix__local_flush_hugetlb_page(vma, vmaddr);
504 #endif
505 radix__local_flush_tlb_page_psize(vma->vm_mm, vmaddr, mmu_virtual_psize);
506 }
507 EXPORT_SYMBOL(radix__local_flush_tlb_page);
508
mm_is_singlethreaded(struct mm_struct * mm)509 static bool mm_is_singlethreaded(struct mm_struct *mm)
510 {
511 if (atomic_read(&mm->context.copros) > 0)
512 return false;
513 if (atomic_read(&mm->mm_users) <= 1 && current->mm == mm)
514 return true;
515 return false;
516 }
517
mm_needs_flush_escalation(struct mm_struct * mm)518 static bool mm_needs_flush_escalation(struct mm_struct *mm)
519 {
520 /*
521 * P9 nest MMU has issues with the page walk cache
522 * caching PTEs and not flushing them properly when
523 * RIC = 0 for a PID/LPID invalidate
524 */
525 if (atomic_read(&mm->context.copros) > 0)
526 return true;
527 return false;
528 }
529
530 #ifdef CONFIG_SMP
do_exit_flush_lazy_tlb(void * arg)531 static void do_exit_flush_lazy_tlb(void *arg)
532 {
533 struct mm_struct *mm = arg;
534 unsigned long pid = mm->context.id;
535
536 if (current->mm == mm)
537 return; /* Local CPU */
538
539 if (current->active_mm == mm) {
540 /*
541 * Must be a kernel thread because sender is single-threaded.
542 */
543 BUG_ON(current->mm);
544 mmgrab(&init_mm);
545 switch_mm(mm, &init_mm, current);
546 current->active_mm = &init_mm;
547 mmdrop(mm);
548 }
549 _tlbiel_pid(pid, RIC_FLUSH_ALL);
550 }
551
exit_flush_lazy_tlbs(struct mm_struct * mm)552 static void exit_flush_lazy_tlbs(struct mm_struct *mm)
553 {
554 /*
555 * Would be nice if this was async so it could be run in
556 * parallel with our local flush, but generic code does not
557 * give a good API for it. Could extend the generic code or
558 * make a special powerpc IPI for flushing TLBs.
559 * For now it's not too performance critical.
560 */
561 smp_call_function_many(mm_cpumask(mm), do_exit_flush_lazy_tlb,
562 (void *)mm, 1);
563 mm_reset_thread_local(mm);
564 }
565
radix__flush_tlb_mm(struct mm_struct * mm)566 void radix__flush_tlb_mm(struct mm_struct *mm)
567 {
568 unsigned long pid;
569
570 pid = mm->context.id;
571 if (unlikely(pid == MMU_NO_CONTEXT))
572 return;
573
574 preempt_disable();
575 /*
576 * Order loads of mm_cpumask vs previous stores to clear ptes before
577 * the invalidate. See barrier in switch_mm_irqs_off
578 */
579 smp_mb();
580 if (!mm_is_thread_local(mm)) {
581 if (unlikely(mm_is_singlethreaded(mm))) {
582 exit_flush_lazy_tlbs(mm);
583 goto local;
584 }
585
586 if (mm_needs_flush_escalation(mm))
587 _tlbie_pid(pid, RIC_FLUSH_ALL);
588 else
589 _tlbie_pid(pid, RIC_FLUSH_TLB);
590 } else {
591 local:
592 _tlbiel_pid(pid, RIC_FLUSH_TLB);
593 }
594 preempt_enable();
595 }
596 EXPORT_SYMBOL(radix__flush_tlb_mm);
597
__flush_all_mm(struct mm_struct * mm,bool fullmm)598 static void __flush_all_mm(struct mm_struct *mm, bool fullmm)
599 {
600 unsigned long pid;
601
602 pid = mm->context.id;
603 if (unlikely(pid == MMU_NO_CONTEXT))
604 return;
605
606 preempt_disable();
607 smp_mb(); /* see radix__flush_tlb_mm */
608 if (!mm_is_thread_local(mm)) {
609 if (unlikely(mm_is_singlethreaded(mm))) {
610 if (!fullmm) {
611 exit_flush_lazy_tlbs(mm);
612 goto local;
613 }
614 }
615 _tlbie_pid(pid, RIC_FLUSH_ALL);
616 } else {
617 local:
618 _tlbiel_pid(pid, RIC_FLUSH_ALL);
619 }
620 preempt_enable();
621 }
radix__flush_all_mm(struct mm_struct * mm)622 void radix__flush_all_mm(struct mm_struct *mm)
623 {
624 __flush_all_mm(mm, false);
625 }
626 EXPORT_SYMBOL(radix__flush_all_mm);
627
radix__flush_tlb_pwc(struct mmu_gather * tlb,unsigned long addr)628 void radix__flush_tlb_pwc(struct mmu_gather *tlb, unsigned long addr)
629 {
630 tlb->need_flush_all = 1;
631 }
632 EXPORT_SYMBOL(radix__flush_tlb_pwc);
633
radix__flush_tlb_page_psize(struct mm_struct * mm,unsigned long vmaddr,int psize)634 void radix__flush_tlb_page_psize(struct mm_struct *mm, unsigned long vmaddr,
635 int psize)
636 {
637 unsigned long pid;
638
639 pid = mm->context.id;
640 if (unlikely(pid == MMU_NO_CONTEXT))
641 return;
642
643 preempt_disable();
644 smp_mb(); /* see radix__flush_tlb_mm */
645 if (!mm_is_thread_local(mm)) {
646 if (unlikely(mm_is_singlethreaded(mm))) {
647 exit_flush_lazy_tlbs(mm);
648 goto local;
649 }
650 _tlbie_va(vmaddr, pid, psize, RIC_FLUSH_TLB);
651 } else {
652 local:
653 _tlbiel_va(vmaddr, pid, psize, RIC_FLUSH_TLB);
654 }
655 preempt_enable();
656 }
657
radix__flush_tlb_page(struct vm_area_struct * vma,unsigned long vmaddr)658 void radix__flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
659 {
660 #ifdef CONFIG_HUGETLB_PAGE
661 if (is_vm_hugetlb_page(vma))
662 return radix__flush_hugetlb_page(vma, vmaddr);
663 #endif
664 radix__flush_tlb_page_psize(vma->vm_mm, vmaddr, mmu_virtual_psize);
665 }
666 EXPORT_SYMBOL(radix__flush_tlb_page);
667
668 #else /* CONFIG_SMP */
669 #define radix__flush_all_mm radix__local_flush_all_mm
670 #endif /* CONFIG_SMP */
671
radix__flush_tlb_kernel_range(unsigned long start,unsigned long end)672 void radix__flush_tlb_kernel_range(unsigned long start, unsigned long end)
673 {
674 _tlbie_pid(0, RIC_FLUSH_ALL);
675 }
676 EXPORT_SYMBOL(radix__flush_tlb_kernel_range);
677
678 #define TLB_FLUSH_ALL -1UL
679
680 /*
681 * Number of pages above which we invalidate the entire PID rather than
682 * flush individual pages, for local and global flushes respectively.
683 *
684 * tlbie goes out to the interconnect and individual ops are more costly.
685 * It also does not iterate over sets like the local tlbiel variant when
686 * invalidating a full PID, so it has a far lower threshold to change from
687 * individual page flushes to full-pid flushes.
688 */
689 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
690 static unsigned long tlb_local_single_page_flush_ceiling __read_mostly = POWER9_TLB_SETS_RADIX * 2;
691
__radix__flush_tlb_range(struct mm_struct * mm,unsigned long start,unsigned long end,bool flush_all_sizes)692 static inline void __radix__flush_tlb_range(struct mm_struct *mm,
693 unsigned long start, unsigned long end,
694 bool flush_all_sizes)
695
696 {
697 unsigned long pid;
698 unsigned int page_shift = mmu_psize_defs[mmu_virtual_psize].shift;
699 unsigned long page_size = 1UL << page_shift;
700 unsigned long nr_pages = (end - start) >> page_shift;
701 bool local, full;
702
703 pid = mm->context.id;
704 if (unlikely(pid == MMU_NO_CONTEXT))
705 return;
706
707 preempt_disable();
708 smp_mb(); /* see radix__flush_tlb_mm */
709 if (!mm_is_thread_local(mm)) {
710 if (unlikely(mm_is_singlethreaded(mm))) {
711 if (end != TLB_FLUSH_ALL) {
712 exit_flush_lazy_tlbs(mm);
713 goto is_local;
714 }
715 }
716 local = false;
717 full = (end == TLB_FLUSH_ALL ||
718 nr_pages > tlb_single_page_flush_ceiling);
719 } else {
720 is_local:
721 local = true;
722 full = (end == TLB_FLUSH_ALL ||
723 nr_pages > tlb_local_single_page_flush_ceiling);
724 }
725
726 if (full) {
727 if (local) {
728 _tlbiel_pid(pid, RIC_FLUSH_TLB);
729 } else {
730 if (mm_needs_flush_escalation(mm))
731 _tlbie_pid(pid, RIC_FLUSH_ALL);
732 else
733 _tlbie_pid(pid, RIC_FLUSH_TLB);
734 }
735 } else {
736 bool hflush = flush_all_sizes;
737 bool gflush = flush_all_sizes;
738 unsigned long hstart, hend;
739 unsigned long gstart, gend;
740
741 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
742 hflush = true;
743
744 if (hflush) {
745 hstart = (start + PMD_SIZE - 1) & PMD_MASK;
746 hend = end & PMD_MASK;
747 if (hstart == hend)
748 hflush = false;
749 }
750
751 if (gflush) {
752 gstart = (start + PUD_SIZE - 1) & PUD_MASK;
753 gend = end & PUD_MASK;
754 if (gstart == gend)
755 gflush = false;
756 }
757
758 asm volatile("ptesync": : :"memory");
759 if (local) {
760 __tlbiel_va_range(start, end, pid, page_size, mmu_virtual_psize);
761 if (hflush)
762 __tlbiel_va_range(hstart, hend, pid,
763 PMD_SIZE, MMU_PAGE_2M);
764 if (gflush)
765 __tlbiel_va_range(gstart, gend, pid,
766 PUD_SIZE, MMU_PAGE_1G);
767 asm volatile("ptesync": : :"memory");
768 } else {
769 __tlbie_va_range(start, end, pid, page_size, mmu_virtual_psize);
770 if (hflush)
771 __tlbie_va_range(hstart, hend, pid,
772 PMD_SIZE, MMU_PAGE_2M);
773 if (gflush)
774 __tlbie_va_range(gstart, gend, pid,
775 PUD_SIZE, MMU_PAGE_1G);
776 fixup_tlbie();
777 asm volatile("eieio; tlbsync; ptesync": : :"memory");
778 }
779 }
780 preempt_enable();
781 }
782
radix__flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)783 void radix__flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
784 unsigned long end)
785
786 {
787 #ifdef CONFIG_HUGETLB_PAGE
788 if (is_vm_hugetlb_page(vma))
789 return radix__flush_hugetlb_tlb_range(vma, start, end);
790 #endif
791
792 __radix__flush_tlb_range(vma->vm_mm, start, end, false);
793 }
794 EXPORT_SYMBOL(radix__flush_tlb_range);
795
radix_get_mmu_psize(int page_size)796 static int radix_get_mmu_psize(int page_size)
797 {
798 int psize;
799
800 if (page_size == (1UL << mmu_psize_defs[mmu_virtual_psize].shift))
801 psize = mmu_virtual_psize;
802 else if (page_size == (1UL << mmu_psize_defs[MMU_PAGE_2M].shift))
803 psize = MMU_PAGE_2M;
804 else if (page_size == (1UL << mmu_psize_defs[MMU_PAGE_1G].shift))
805 psize = MMU_PAGE_1G;
806 else
807 return -1;
808 return psize;
809 }
810
811 /*
812 * Flush partition scoped LPID address translation for all CPUs.
813 */
radix__flush_tlb_lpid_page(unsigned int lpid,unsigned long addr,unsigned long page_size)814 void radix__flush_tlb_lpid_page(unsigned int lpid,
815 unsigned long addr,
816 unsigned long page_size)
817 {
818 int psize = radix_get_mmu_psize(page_size);
819
820 _tlbie_lpid_va(addr, lpid, psize, RIC_FLUSH_TLB);
821 }
822 EXPORT_SYMBOL_GPL(radix__flush_tlb_lpid_page);
823
824 /*
825 * Flush partition scoped PWC from LPID for all CPUs.
826 */
radix__flush_pwc_lpid(unsigned int lpid)827 void radix__flush_pwc_lpid(unsigned int lpid)
828 {
829 _tlbie_lpid(lpid, RIC_FLUSH_PWC);
830 }
831 EXPORT_SYMBOL_GPL(radix__flush_pwc_lpid);
832
833 /*
834 * Flush partition scoped translations from LPID (=LPIDR)
835 */
radix__local_flush_tlb_lpid(unsigned int lpid)836 void radix__local_flush_tlb_lpid(unsigned int lpid)
837 {
838 _tlbiel_lpid(lpid, RIC_FLUSH_ALL);
839 }
840 EXPORT_SYMBOL_GPL(radix__local_flush_tlb_lpid);
841
842 /*
843 * Flush process scoped translations from LPID (=LPIDR).
844 * Important difference, the guest normally manages its own translations,
845 * but some cases e.g., vCPU CPU migration require KVM to flush.
846 */
radix__local_flush_tlb_lpid_guest(unsigned int lpid)847 void radix__local_flush_tlb_lpid_guest(unsigned int lpid)
848 {
849 _tlbiel_lpid_guest(lpid, RIC_FLUSH_ALL);
850 }
851 EXPORT_SYMBOL_GPL(radix__local_flush_tlb_lpid_guest);
852
853
854 static void radix__flush_tlb_pwc_range_psize(struct mm_struct *mm, unsigned long start,
855 unsigned long end, int psize);
856
radix__tlb_flush(struct mmu_gather * tlb)857 void radix__tlb_flush(struct mmu_gather *tlb)
858 {
859 int psize = 0;
860 struct mm_struct *mm = tlb->mm;
861 int page_size = tlb->page_size;
862 unsigned long start = tlb->start;
863 unsigned long end = tlb->end;
864
865 /*
866 * if page size is not something we understand, do a full mm flush
867 *
868 * A "fullmm" flush must always do a flush_all_mm (RIC=2) flush
869 * that flushes the process table entry cache upon process teardown.
870 * See the comment for radix in arch_exit_mmap().
871 */
872 if (tlb->fullmm) {
873 __flush_all_mm(mm, true);
874 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
875 } else if (mm_tlb_flush_nested(mm)) {
876 /*
877 * If there is a concurrent invalidation that is clearing ptes,
878 * then it's possible this invalidation will miss one of those
879 * cleared ptes and miss flushing the TLB. If this invalidate
880 * returns before the other one flushes TLBs, that can result
881 * in it returning while there are still valid TLBs inside the
882 * range to be invalidated.
883 *
884 * See mm/memory.c:tlb_finish_mmu() for more details.
885 *
886 * The solution to this is ensure the entire range is always
887 * flushed here. The problem for powerpc is that the flushes
888 * are page size specific, so this "forced flush" would not
889 * do the right thing if there are a mix of page sizes in
890 * the range to be invalidated. So use __flush_tlb_range
891 * which invalidates all possible page sizes in the range.
892 *
893 * PWC flush probably is not be required because the core code
894 * shouldn't free page tables in this path, but accounting
895 * for the possibility makes us a bit more robust.
896 *
897 * need_flush_all is an uncommon case because page table
898 * teardown should be done with exclusive locks held (but
899 * after locks are dropped another invalidate could come
900 * in), it could be optimized further if necessary.
901 */
902 if (!tlb->need_flush_all)
903 __radix__flush_tlb_range(mm, start, end, true);
904 else
905 radix__flush_all_mm(mm);
906 #endif
907 } else if ( (psize = radix_get_mmu_psize(page_size)) == -1) {
908 if (!tlb->need_flush_all)
909 radix__flush_tlb_mm(mm);
910 else
911 radix__flush_all_mm(mm);
912 } else {
913 if (!tlb->need_flush_all)
914 radix__flush_tlb_range_psize(mm, start, end, psize);
915 else
916 radix__flush_tlb_pwc_range_psize(mm, start, end, psize);
917 }
918 tlb->need_flush_all = 0;
919 }
920
__radix__flush_tlb_range_psize(struct mm_struct * mm,unsigned long start,unsigned long end,int psize,bool also_pwc)921 static inline void __radix__flush_tlb_range_psize(struct mm_struct *mm,
922 unsigned long start, unsigned long end,
923 int psize, bool also_pwc)
924 {
925 unsigned long pid;
926 unsigned int page_shift = mmu_psize_defs[psize].shift;
927 unsigned long page_size = 1UL << page_shift;
928 unsigned long nr_pages = (end - start) >> page_shift;
929 bool local, full;
930
931 pid = mm->context.id;
932 if (unlikely(pid == MMU_NO_CONTEXT))
933 return;
934
935 preempt_disable();
936 smp_mb(); /* see radix__flush_tlb_mm */
937 if (!mm_is_thread_local(mm)) {
938 if (unlikely(mm_is_singlethreaded(mm))) {
939 if (end != TLB_FLUSH_ALL) {
940 exit_flush_lazy_tlbs(mm);
941 goto is_local;
942 }
943 }
944 local = false;
945 full = (end == TLB_FLUSH_ALL ||
946 nr_pages > tlb_single_page_flush_ceiling);
947 } else {
948 is_local:
949 local = true;
950 full = (end == TLB_FLUSH_ALL ||
951 nr_pages > tlb_local_single_page_flush_ceiling);
952 }
953
954 if (full) {
955 if (local) {
956 _tlbiel_pid(pid, also_pwc ? RIC_FLUSH_ALL : RIC_FLUSH_TLB);
957 } else {
958 if (mm_needs_flush_escalation(mm))
959 also_pwc = true;
960
961 _tlbie_pid(pid, also_pwc ? RIC_FLUSH_ALL : RIC_FLUSH_TLB);
962 }
963 } else {
964 if (local)
965 _tlbiel_va_range(start, end, pid, page_size, psize, also_pwc);
966 else
967 _tlbie_va_range(start, end, pid, page_size, psize, also_pwc);
968 }
969 preempt_enable();
970 }
971
radix__flush_tlb_range_psize(struct mm_struct * mm,unsigned long start,unsigned long end,int psize)972 void radix__flush_tlb_range_psize(struct mm_struct *mm, unsigned long start,
973 unsigned long end, int psize)
974 {
975 return __radix__flush_tlb_range_psize(mm, start, end, psize, false);
976 }
977
radix__flush_tlb_pwc_range_psize(struct mm_struct * mm,unsigned long start,unsigned long end,int psize)978 static void radix__flush_tlb_pwc_range_psize(struct mm_struct *mm, unsigned long start,
979 unsigned long end, int psize)
980 {
981 __radix__flush_tlb_range_psize(mm, start, end, psize, true);
982 }
983
984 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
radix__flush_tlb_collapsed_pmd(struct mm_struct * mm,unsigned long addr)985 void radix__flush_tlb_collapsed_pmd(struct mm_struct *mm, unsigned long addr)
986 {
987 unsigned long pid, end;
988
989 pid = mm->context.id;
990 if (unlikely(pid == MMU_NO_CONTEXT))
991 return;
992
993 /* 4k page size, just blow the world */
994 if (PAGE_SIZE == 0x1000) {
995 radix__flush_all_mm(mm);
996 return;
997 }
998
999 end = addr + HPAGE_PMD_SIZE;
1000
1001 /* Otherwise first do the PWC, then iterate the pages. */
1002 preempt_disable();
1003 smp_mb(); /* see radix__flush_tlb_mm */
1004 if (!mm_is_thread_local(mm)) {
1005 if (unlikely(mm_is_singlethreaded(mm))) {
1006 exit_flush_lazy_tlbs(mm);
1007 goto local;
1008 }
1009 _tlbie_va_range(addr, end, pid, PAGE_SIZE, mmu_virtual_psize, true);
1010 goto local;
1011 } else {
1012 local:
1013 _tlbiel_va_range(addr, end, pid, PAGE_SIZE, mmu_virtual_psize, true);
1014 }
1015
1016 preempt_enable();
1017 }
1018 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1019
radix__flush_pmd_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)1020 void radix__flush_pmd_tlb_range(struct vm_area_struct *vma,
1021 unsigned long start, unsigned long end)
1022 {
1023 radix__flush_tlb_range_psize(vma->vm_mm, start, end, MMU_PAGE_2M);
1024 }
1025 EXPORT_SYMBOL(radix__flush_pmd_tlb_range);
1026
radix__flush_tlb_all(void)1027 void radix__flush_tlb_all(void)
1028 {
1029 unsigned long rb,prs,r,rs;
1030 unsigned long ric = RIC_FLUSH_ALL;
1031
1032 rb = 0x3 << PPC_BITLSHIFT(53); /* IS = 3 */
1033 prs = 0; /* partition scoped */
1034 r = 1; /* radix format */
1035 rs = 1 & ((1UL << 32) - 1); /* any LPID value to flush guest mappings */
1036
1037 asm volatile("ptesync": : :"memory");
1038 /*
1039 * now flush guest entries by passing PRS = 1 and LPID != 0
1040 */
1041 asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
1042 : : "r"(rb), "i"(r), "i"(1), "i"(ric), "r"(rs) : "memory");
1043 /*
1044 * now flush host entires by passing PRS = 0 and LPID == 0
1045 */
1046 asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
1047 : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(0) : "memory");
1048 asm volatile("eieio; tlbsync; ptesync": : :"memory");
1049 }
1050
1051 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
radix_kvm_prefetch_workaround(struct mm_struct * mm)1052 extern void radix_kvm_prefetch_workaround(struct mm_struct *mm)
1053 {
1054 unsigned long pid = mm->context.id;
1055
1056 if (unlikely(pid == MMU_NO_CONTEXT))
1057 return;
1058
1059 /*
1060 * If this context hasn't run on that CPU before and KVM is
1061 * around, there's a slim chance that the guest on another
1062 * CPU just brought in obsolete translation into the TLB of
1063 * this CPU due to a bad prefetch using the guest PID on
1064 * the way into the hypervisor.
1065 *
1066 * We work around this here. If KVM is possible, we check if
1067 * any sibling thread is in KVM. If it is, the window may exist
1068 * and thus we flush that PID from the core.
1069 *
1070 * A potential future improvement would be to mark which PIDs
1071 * have never been used on the system and avoid it if the PID
1072 * is new and the process has no other cpumask bit set.
1073 */
1074 if (cpu_has_feature(CPU_FTR_HVMODE) && radix_enabled()) {
1075 int cpu = smp_processor_id();
1076 int sib = cpu_first_thread_sibling(cpu);
1077 bool flush = false;
1078
1079 for (; sib <= cpu_last_thread_sibling(cpu) && !flush; sib++) {
1080 if (sib == cpu)
1081 continue;
1082 if (!cpu_possible(sib))
1083 continue;
1084 if (paca_ptrs[sib]->kvm_hstate.kvm_vcpu)
1085 flush = true;
1086 }
1087 if (flush)
1088 _tlbiel_pid(pid, RIC_FLUSH_ALL);
1089 }
1090 }
1091 EXPORT_SYMBOL_GPL(radix_kvm_prefetch_workaround);
1092 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1093