1 /*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 *
5 * Derived from "arch/i386/mm/fault.c"
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 *
8 * Modified by Cort Dougan and Paul Mackerras.
9 *
10 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 */
17
18 #include <linux/signal.h>
19 #include <linux/sched.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/types.h>
25 #include <linux/pagemap.h>
26 #include <linux/ptrace.h>
27 #include <linux/mman.h>
28 #include <linux/mm.h>
29 #include <linux/interrupt.h>
30 #include <linux/highmem.h>
31 #include <linux/extable.h>
32 #include <linux/kprobes.h>
33 #include <linux/kdebug.h>
34 #include <linux/perf_event.h>
35 #include <linux/ratelimit.h>
36 #include <linux/context_tracking.h>
37 #include <linux/hugetlb.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/firmware.h>
41 #include <asm/page.h>
42 #include <asm/pgtable.h>
43 #include <asm/mmu.h>
44 #include <asm/mmu_context.h>
45 #include <asm/siginfo.h>
46 #include <asm/debug.h>
47
notify_page_fault(struct pt_regs * regs)48 static inline bool notify_page_fault(struct pt_regs *regs)
49 {
50 bool ret = false;
51
52 #ifdef CONFIG_KPROBES
53 /* kprobe_running() needs smp_processor_id() */
54 if (!user_mode(regs)) {
55 preempt_disable();
56 if (kprobe_running() && kprobe_fault_handler(regs, 11))
57 ret = true;
58 preempt_enable();
59 }
60 #endif /* CONFIG_KPROBES */
61
62 if (unlikely(debugger_fault_handler(regs)))
63 ret = true;
64
65 return ret;
66 }
67
68 /*
69 * Check whether the instruction inst is a store using
70 * an update addressing form which will update r1.
71 */
store_updates_sp(unsigned int inst)72 static bool store_updates_sp(unsigned int inst)
73 {
74 /* check for 1 in the rA field */
75 if (((inst >> 16) & 0x1f) != 1)
76 return false;
77 /* check major opcode */
78 switch (inst >> 26) {
79 case OP_STWU:
80 case OP_STBU:
81 case OP_STHU:
82 case OP_STFSU:
83 case OP_STFDU:
84 return true;
85 case OP_STD: /* std or stdu */
86 return (inst & 3) == 1;
87 case OP_31:
88 /* check minor opcode */
89 switch ((inst >> 1) & 0x3ff) {
90 case OP_31_XOP_STDUX:
91 case OP_31_XOP_STWUX:
92 case OP_31_XOP_STBUX:
93 case OP_31_XOP_STHUX:
94 case OP_31_XOP_STFSUX:
95 case OP_31_XOP_STFDUX:
96 return true;
97 }
98 }
99 return false;
100 }
101 /*
102 * do_page_fault error handling helpers
103 */
104
105 static int
__bad_area_nosemaphore(struct pt_regs * regs,unsigned long address,int si_code,int pkey)106 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code,
107 int pkey)
108 {
109 /*
110 * If we are in kernel mode, bail out with a SEGV, this will
111 * be caught by the assembly which will restore the non-volatile
112 * registers before calling bad_page_fault()
113 */
114 if (!user_mode(regs))
115 return SIGSEGV;
116
117 _exception_pkey(SIGSEGV, regs, si_code, address, pkey);
118
119 return 0;
120 }
121
bad_area_nosemaphore(struct pt_regs * regs,unsigned long address)122 static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
123 {
124 return __bad_area_nosemaphore(regs, address, SEGV_MAPERR, 0);
125 }
126
__bad_area(struct pt_regs * regs,unsigned long address,int si_code,int pkey)127 static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code,
128 int pkey)
129 {
130 struct mm_struct *mm = current->mm;
131
132 /*
133 * Something tried to access memory that isn't in our memory map..
134 * Fix it, but check if it's kernel or user first..
135 */
136 up_read(&mm->mmap_sem);
137
138 return __bad_area_nosemaphore(regs, address, si_code, pkey);
139 }
140
bad_area(struct pt_regs * regs,unsigned long address)141 static noinline int bad_area(struct pt_regs *regs, unsigned long address)
142 {
143 return __bad_area(regs, address, SEGV_MAPERR, 0);
144 }
145
bad_key_fault_exception(struct pt_regs * regs,unsigned long address,int pkey)146 static int bad_key_fault_exception(struct pt_regs *regs, unsigned long address,
147 int pkey)
148 {
149 return __bad_area_nosemaphore(regs, address, SEGV_PKUERR, pkey);
150 }
151
bad_access(struct pt_regs * regs,unsigned long address)152 static noinline int bad_access(struct pt_regs *regs, unsigned long address)
153 {
154 return __bad_area(regs, address, SEGV_ACCERR, 0);
155 }
156
do_sigbus(struct pt_regs * regs,unsigned long address,vm_fault_t fault)157 static int do_sigbus(struct pt_regs *regs, unsigned long address,
158 vm_fault_t fault)
159 {
160 siginfo_t info;
161 unsigned int lsb = 0;
162
163 if (!user_mode(regs))
164 return SIGBUS;
165
166 current->thread.trap_nr = BUS_ADRERR;
167 clear_siginfo(&info);
168 info.si_signo = SIGBUS;
169 info.si_errno = 0;
170 info.si_code = BUS_ADRERR;
171 info.si_addr = (void __user *)address;
172 #ifdef CONFIG_MEMORY_FAILURE
173 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
174 pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
175 current->comm, current->pid, address);
176 info.si_code = BUS_MCEERR_AR;
177 }
178
179 if (fault & VM_FAULT_HWPOISON_LARGE)
180 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
181 if (fault & VM_FAULT_HWPOISON)
182 lsb = PAGE_SHIFT;
183 #endif
184 info.si_addr_lsb = lsb;
185 force_sig_info(SIGBUS, &info, current);
186 return 0;
187 }
188
mm_fault_error(struct pt_regs * regs,unsigned long addr,vm_fault_t fault)189 static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
190 vm_fault_t fault)
191 {
192 /*
193 * Kernel page fault interrupted by SIGKILL. We have no reason to
194 * continue processing.
195 */
196 if (fatal_signal_pending(current) && !user_mode(regs))
197 return SIGKILL;
198
199 /* Out of memory */
200 if (fault & VM_FAULT_OOM) {
201 /*
202 * We ran out of memory, or some other thing happened to us that
203 * made us unable to handle the page fault gracefully.
204 */
205 if (!user_mode(regs))
206 return SIGSEGV;
207 pagefault_out_of_memory();
208 } else {
209 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
210 VM_FAULT_HWPOISON_LARGE))
211 return do_sigbus(regs, addr, fault);
212 else if (fault & VM_FAULT_SIGSEGV)
213 return bad_area_nosemaphore(regs, addr);
214 else
215 BUG();
216 }
217 return 0;
218 }
219
220 /* Is this a bad kernel fault ? */
bad_kernel_fault(bool is_exec,unsigned long error_code,unsigned long address)221 static bool bad_kernel_fault(bool is_exec, unsigned long error_code,
222 unsigned long address)
223 {
224 if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT))) {
225 printk_ratelimited(KERN_CRIT "kernel tried to execute"
226 " exec-protected page (%lx) -"
227 "exploit attempt? (uid: %d)\n",
228 address, from_kuid(&init_user_ns,
229 current_uid()));
230 }
231 return is_exec || (address >= TASK_SIZE);
232 }
233
bad_stack_expansion(struct pt_regs * regs,unsigned long address,struct vm_area_struct * vma,unsigned int flags,bool * must_retry)234 static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address,
235 struct vm_area_struct *vma, unsigned int flags,
236 bool *must_retry)
237 {
238 /*
239 * N.B. The POWER/Open ABI allows programs to access up to
240 * 288 bytes below the stack pointer.
241 * The kernel signal delivery code writes up to about 1.5kB
242 * below the stack pointer (r1) before decrementing it.
243 * The exec code can write slightly over 640kB to the stack
244 * before setting the user r1. Thus we allow the stack to
245 * expand to 1MB without further checks.
246 */
247 if (address + 0x100000 < vma->vm_end) {
248 unsigned int __user *nip = (unsigned int __user *)regs->nip;
249 /* get user regs even if this fault is in kernel mode */
250 struct pt_regs *uregs = current->thread.regs;
251 if (uregs == NULL)
252 return true;
253
254 /*
255 * A user-mode access to an address a long way below
256 * the stack pointer is only valid if the instruction
257 * is one which would update the stack pointer to the
258 * address accessed if the instruction completed,
259 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
260 * (or the byte, halfword, float or double forms).
261 *
262 * If we don't check this then any write to the area
263 * between the last mapped region and the stack will
264 * expand the stack rather than segfaulting.
265 */
266 if (address + 2048 >= uregs->gpr[1])
267 return false;
268
269 if ((flags & FAULT_FLAG_WRITE) && (flags & FAULT_FLAG_USER) &&
270 access_ok(VERIFY_READ, nip, sizeof(*nip))) {
271 unsigned int inst;
272 int res;
273
274 pagefault_disable();
275 res = __get_user_inatomic(inst, nip);
276 pagefault_enable();
277 if (!res)
278 return !store_updates_sp(inst);
279 *must_retry = true;
280 }
281 return true;
282 }
283 return false;
284 }
285
access_error(bool is_write,bool is_exec,struct vm_area_struct * vma)286 static bool access_error(bool is_write, bool is_exec,
287 struct vm_area_struct *vma)
288 {
289 /*
290 * Allow execution from readable areas if the MMU does not
291 * provide separate controls over reading and executing.
292 *
293 * Note: That code used to not be enabled for 4xx/BookE.
294 * It is now as I/D cache coherency for these is done at
295 * set_pte_at() time and I see no reason why the test
296 * below wouldn't be valid on those processors. This -may-
297 * break programs compiled with a really old ABI though.
298 */
299 if (is_exec) {
300 return !(vma->vm_flags & VM_EXEC) &&
301 (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
302 !(vma->vm_flags & (VM_READ | VM_WRITE)));
303 }
304
305 if (is_write) {
306 if (unlikely(!(vma->vm_flags & VM_WRITE)))
307 return true;
308 return false;
309 }
310
311 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
312 return true;
313 /*
314 * We should ideally do the vma pkey access check here. But in the
315 * fault path, handle_mm_fault() also does the same check. To avoid
316 * these multiple checks, we skip it here and handle access error due
317 * to pkeys later.
318 */
319 return false;
320 }
321
322 #ifdef CONFIG_PPC_SMLPAR
cmo_account_page_fault(void)323 static inline void cmo_account_page_fault(void)
324 {
325 if (firmware_has_feature(FW_FEATURE_CMO)) {
326 u32 page_ins;
327
328 preempt_disable();
329 page_ins = be32_to_cpu(get_lppaca()->page_ins);
330 page_ins += 1 << PAGE_FACTOR;
331 get_lppaca()->page_ins = cpu_to_be32(page_ins);
332 preempt_enable();
333 }
334 }
335 #else
cmo_account_page_fault(void)336 static inline void cmo_account_page_fault(void) { }
337 #endif /* CONFIG_PPC_SMLPAR */
338
339 #ifdef CONFIG_PPC_STD_MMU
sanity_check_fault(bool is_write,unsigned long error_code)340 static void sanity_check_fault(bool is_write, unsigned long error_code)
341 {
342 /*
343 * For hash translation mode, we should never get a
344 * PROTFAULT. Any update to pte to reduce access will result in us
345 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
346 * fault instead of DSISR_PROTFAULT.
347 *
348 * A pte update to relax the access will not result in a hash page table
349 * entry invalidate and hence can result in DSISR_PROTFAULT.
350 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
351 * the special !is_write in the below conditional.
352 *
353 * For platforms that doesn't supports coherent icache and do support
354 * per page noexec bit, we do setup things such that we do the
355 * sync between D/I cache via fault. But that is handled via low level
356 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
357 * here in such case.
358 *
359 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
360 * check should handle those and hence we should fall to the bad_area
361 * handling correctly.
362 *
363 * For embedded with per page exec support that doesn't support coherent
364 * icache we do get PROTFAULT and we handle that D/I cache sync in
365 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
366 * is conditional for server MMU.
367 *
368 * For radix, we can get prot fault for autonuma case, because radix
369 * page table will have them marked noaccess for user.
370 */
371 if (!radix_enabled() && !is_write)
372 WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
373 }
374 #else
sanity_check_fault(bool is_write,unsigned long error_code)375 static void sanity_check_fault(bool is_write, unsigned long error_code) { }
376 #endif /* CONFIG_PPC_STD_MMU */
377
378 /*
379 * Define the correct "is_write" bit in error_code based
380 * on the processor family
381 */
382 #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
383 #define page_fault_is_write(__err) ((__err) & ESR_DST)
384 #define page_fault_is_bad(__err) (0)
385 #else
386 #define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE)
387 #if defined(CONFIG_PPC_8xx)
388 #define page_fault_is_bad(__err) ((__err) & DSISR_NOEXEC_OR_G)
389 #elif defined(CONFIG_PPC64)
390 #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_64S)
391 #else
392 #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S)
393 #endif
394 #endif
395
396 /*
397 * For 600- and 800-family processors, the error_code parameter is DSISR
398 * for a data fault, SRR1 for an instruction fault. For 400-family processors
399 * the error_code parameter is ESR for a data fault, 0 for an instruction
400 * fault.
401 * For 64-bit processors, the error_code parameter is
402 * - DSISR for a non-SLB data access fault,
403 * - SRR1 & 0x08000000 for a non-SLB instruction access fault
404 * - 0 any SLB fault.
405 *
406 * The return value is 0 if the fault was handled, or the signal
407 * number if this is a kernel fault that can't be handled here.
408 */
__do_page_fault(struct pt_regs * regs,unsigned long address,unsigned long error_code)409 static int __do_page_fault(struct pt_regs *regs, unsigned long address,
410 unsigned long error_code)
411 {
412 struct vm_area_struct * vma;
413 struct mm_struct *mm = current->mm;
414 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
415 int is_exec = TRAP(regs) == 0x400;
416 int is_user = user_mode(regs);
417 int is_write = page_fault_is_write(error_code);
418 vm_fault_t fault, major = 0;
419 bool must_retry = false;
420
421 if (notify_page_fault(regs))
422 return 0;
423
424 if (unlikely(page_fault_is_bad(error_code))) {
425 if (is_user) {
426 _exception(SIGBUS, regs, BUS_OBJERR, address);
427 return 0;
428 }
429 return SIGBUS;
430 }
431
432 /* Additional sanity check(s) */
433 sanity_check_fault(is_write, error_code);
434
435 /*
436 * The kernel should never take an execute fault nor should it
437 * take a page fault to a kernel address.
438 */
439 if (unlikely(!is_user && bad_kernel_fault(is_exec, error_code, address)))
440 return SIGSEGV;
441
442 /*
443 * If we're in an interrupt, have no user context or are running
444 * in a region with pagefaults disabled then we must not take the fault
445 */
446 if (unlikely(faulthandler_disabled() || !mm)) {
447 if (is_user)
448 printk_ratelimited(KERN_ERR "Page fault in user mode"
449 " with faulthandler_disabled()=%d"
450 " mm=%p\n",
451 faulthandler_disabled(), mm);
452 return bad_area_nosemaphore(regs, address);
453 }
454
455 /* We restore the interrupt state now */
456 if (!arch_irq_disabled_regs(regs))
457 local_irq_enable();
458
459 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
460
461 if (error_code & DSISR_KEYFAULT)
462 return bad_key_fault_exception(regs, address,
463 get_mm_addr_key(mm, address));
464
465 /*
466 * We want to do this outside mmap_sem, because reading code around nip
467 * can result in fault, which will cause a deadlock when called with
468 * mmap_sem held
469 */
470 if (is_user)
471 flags |= FAULT_FLAG_USER;
472 if (is_write)
473 flags |= FAULT_FLAG_WRITE;
474 if (is_exec)
475 flags |= FAULT_FLAG_INSTRUCTION;
476
477 /* When running in the kernel we expect faults to occur only to
478 * addresses in user space. All other faults represent errors in the
479 * kernel and should generate an OOPS. Unfortunately, in the case of an
480 * erroneous fault occurring in a code path which already holds mmap_sem
481 * we will deadlock attempting to validate the fault against the
482 * address space. Luckily the kernel only validly references user
483 * space from well defined areas of code, which are listed in the
484 * exceptions table.
485 *
486 * As the vast majority of faults will be valid we will only perform
487 * the source reference check when there is a possibility of a deadlock.
488 * Attempt to lock the address space, if we cannot we then validate the
489 * source. If this is invalid we can skip the address space check,
490 * thus avoiding the deadlock.
491 */
492 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
493 if (!is_user && !search_exception_tables(regs->nip))
494 return bad_area_nosemaphore(regs, address);
495
496 retry:
497 down_read(&mm->mmap_sem);
498 } else {
499 /*
500 * The above down_read_trylock() might have succeeded in
501 * which case we'll have missed the might_sleep() from
502 * down_read():
503 */
504 might_sleep();
505 }
506
507 vma = find_vma(mm, address);
508 if (unlikely(!vma))
509 return bad_area(regs, address);
510 if (likely(vma->vm_start <= address))
511 goto good_area;
512 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
513 return bad_area(regs, address);
514
515 /* The stack is being expanded, check if it's valid */
516 if (unlikely(bad_stack_expansion(regs, address, vma, flags,
517 &must_retry))) {
518 if (!must_retry)
519 return bad_area(regs, address);
520
521 up_read(&mm->mmap_sem);
522 if (fault_in_pages_readable((const char __user *)regs->nip,
523 sizeof(unsigned int)))
524 return bad_area_nosemaphore(regs, address);
525 goto retry;
526 }
527
528 /* Try to expand it */
529 if (unlikely(expand_stack(vma, address)))
530 return bad_area(regs, address);
531
532 good_area:
533 if (unlikely(access_error(is_write, is_exec, vma)))
534 return bad_access(regs, address);
535
536 /*
537 * If for any reason at all we couldn't handle the fault,
538 * make sure we exit gracefully rather than endlessly redo
539 * the fault.
540 */
541 fault = handle_mm_fault(vma, address, flags);
542
543 #ifdef CONFIG_PPC_MEM_KEYS
544 /*
545 * we skipped checking for access error due to key earlier.
546 * Check that using handle_mm_fault error return.
547 */
548 if (unlikely(fault & VM_FAULT_SIGSEGV) &&
549 !arch_vma_access_permitted(vma, is_write, is_exec, 0)) {
550
551 int pkey = vma_pkey(vma);
552
553 up_read(&mm->mmap_sem);
554 return bad_key_fault_exception(regs, address, pkey);
555 }
556 #endif /* CONFIG_PPC_MEM_KEYS */
557
558 major |= fault & VM_FAULT_MAJOR;
559
560 /*
561 * Handle the retry right now, the mmap_sem has been released in that
562 * case.
563 */
564 if (unlikely(fault & VM_FAULT_RETRY)) {
565 /* We retry only once */
566 if (flags & FAULT_FLAG_ALLOW_RETRY) {
567 /*
568 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
569 * of starvation.
570 */
571 flags &= ~FAULT_FLAG_ALLOW_RETRY;
572 flags |= FAULT_FLAG_TRIED;
573 if (!fatal_signal_pending(current))
574 goto retry;
575 }
576
577 /*
578 * User mode? Just return to handle the fatal exception otherwise
579 * return to bad_page_fault
580 */
581 return is_user ? 0 : SIGBUS;
582 }
583
584 up_read(¤t->mm->mmap_sem);
585
586 if (unlikely(fault & VM_FAULT_ERROR))
587 return mm_fault_error(regs, address, fault);
588
589 /*
590 * Major/minor page fault accounting.
591 */
592 if (major) {
593 current->maj_flt++;
594 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
595 cmo_account_page_fault();
596 } else {
597 current->min_flt++;
598 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
599 }
600 return 0;
601 }
602 NOKPROBE_SYMBOL(__do_page_fault);
603
do_page_fault(struct pt_regs * regs,unsigned long address,unsigned long error_code)604 int do_page_fault(struct pt_regs *regs, unsigned long address,
605 unsigned long error_code)
606 {
607 enum ctx_state prev_state = exception_enter();
608 int rc = __do_page_fault(regs, address, error_code);
609 exception_exit(prev_state);
610 return rc;
611 }
612 NOKPROBE_SYMBOL(do_page_fault);
613
614 /*
615 * bad_page_fault is called when we have a bad access from the kernel.
616 * It is called from the DSI and ISI handlers in head.S and from some
617 * of the procedures in traps.c.
618 */
bad_page_fault(struct pt_regs * regs,unsigned long address,int sig)619 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
620 {
621 const struct exception_table_entry *entry;
622
623 /* Are we prepared to handle this fault? */
624 if ((entry = search_exception_tables(regs->nip)) != NULL) {
625 regs->nip = extable_fixup(entry);
626 return;
627 }
628
629 /* kernel has accessed a bad area */
630
631 switch (TRAP(regs)) {
632 case 0x300:
633 case 0x380:
634 printk(KERN_ALERT "Unable to handle kernel paging request for "
635 "data at address 0x%08lx\n", regs->dar);
636 break;
637 case 0x400:
638 case 0x480:
639 printk(KERN_ALERT "Unable to handle kernel paging request for "
640 "instruction fetch\n");
641 break;
642 case 0x600:
643 printk(KERN_ALERT "Unable to handle kernel paging request for "
644 "unaligned access at address 0x%08lx\n", regs->dar);
645 break;
646 default:
647 printk(KERN_ALERT "Unable to handle kernel paging request for "
648 "unknown fault\n");
649 break;
650 }
651 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
652 regs->nip);
653
654 if (task_stack_end_corrupted(current))
655 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
656
657 die("Kernel access of bad area", regs, sig);
658 }
659