1 /*
2 * Single-step support.
3 *
4 * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11 #include <linux/kernel.h>
12 #include <linux/kprobes.h>
13 #include <linux/ptrace.h>
14 #include <linux/prefetch.h>
15 #include <asm/sstep.h>
16 #include <asm/processor.h>
17 #include <linux/uaccess.h>
18 #include <asm/cpu_has_feature.h>
19 #include <asm/cputable.h>
20
21 extern char system_call_common[];
22
23 #ifdef CONFIG_PPC64
24 /* Bits in SRR1 that are copied from MSR */
25 #define MSR_MASK 0xffffffff87c0ffffUL
26 #else
27 #define MSR_MASK 0x87c0ffff
28 #endif
29
30 /* Bits in XER */
31 #define XER_SO 0x80000000U
32 #define XER_OV 0x40000000U
33 #define XER_CA 0x20000000U
34 #define XER_OV32 0x00080000U
35 #define XER_CA32 0x00040000U
36
37 #ifdef CONFIG_PPC_FPU
38 /*
39 * Functions in ldstfp.S
40 */
41 extern void get_fpr(int rn, double *p);
42 extern void put_fpr(int rn, const double *p);
43 extern void get_vr(int rn, __vector128 *p);
44 extern void put_vr(int rn, __vector128 *p);
45 extern void load_vsrn(int vsr, const void *p);
46 extern void store_vsrn(int vsr, void *p);
47 extern void conv_sp_to_dp(const float *sp, double *dp);
48 extern void conv_dp_to_sp(const double *dp, float *sp);
49 #endif
50
51 #ifdef __powerpc64__
52 /*
53 * Functions in quad.S
54 */
55 extern int do_lq(unsigned long ea, unsigned long *regs);
56 extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
57 extern int do_lqarx(unsigned long ea, unsigned long *regs);
58 extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
59 unsigned int *crp);
60 #endif
61
62 #ifdef __LITTLE_ENDIAN__
63 #define IS_LE 1
64 #define IS_BE 0
65 #else
66 #define IS_LE 0
67 #define IS_BE 1
68 #endif
69
70 /*
71 * Emulate the truncation of 64 bit values in 32-bit mode.
72 */
truncate_if_32bit(unsigned long msr,unsigned long val)73 static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
74 unsigned long val)
75 {
76 #ifdef __powerpc64__
77 if ((msr & MSR_64BIT) == 0)
78 val &= 0xffffffffUL;
79 #endif
80 return val;
81 }
82
83 /*
84 * Determine whether a conditional branch instruction would branch.
85 */
branch_taken(unsigned int instr,const struct pt_regs * regs,struct instruction_op * op)86 static nokprobe_inline int branch_taken(unsigned int instr,
87 const struct pt_regs *regs,
88 struct instruction_op *op)
89 {
90 unsigned int bo = (instr >> 21) & 0x1f;
91 unsigned int bi;
92
93 if ((bo & 4) == 0) {
94 /* decrement counter */
95 op->type |= DECCTR;
96 if (((bo >> 1) & 1) ^ (regs->ctr == 1))
97 return 0;
98 }
99 if ((bo & 0x10) == 0) {
100 /* check bit from CR */
101 bi = (instr >> 16) & 0x1f;
102 if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
103 return 0;
104 }
105 return 1;
106 }
107
address_ok(struct pt_regs * regs,unsigned long ea,int nb)108 static nokprobe_inline long address_ok(struct pt_regs *regs,
109 unsigned long ea, int nb)
110 {
111 if (!user_mode(regs))
112 return 1;
113 if (__access_ok(ea, nb, USER_DS))
114 return 1;
115 if (__access_ok(ea, 1, USER_DS))
116 /* Access overlaps the end of the user region */
117 regs->dar = USER_DS.seg;
118 else
119 regs->dar = ea;
120 return 0;
121 }
122
123 /*
124 * Calculate effective address for a D-form instruction
125 */
dform_ea(unsigned int instr,const struct pt_regs * regs)126 static nokprobe_inline unsigned long dform_ea(unsigned int instr,
127 const struct pt_regs *regs)
128 {
129 int ra;
130 unsigned long ea;
131
132 ra = (instr >> 16) & 0x1f;
133 ea = (signed short) instr; /* sign-extend */
134 if (ra)
135 ea += regs->gpr[ra];
136
137 return ea;
138 }
139
140 #ifdef __powerpc64__
141 /*
142 * Calculate effective address for a DS-form instruction
143 */
dsform_ea(unsigned int instr,const struct pt_regs * regs)144 static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
145 const struct pt_regs *regs)
146 {
147 int ra;
148 unsigned long ea;
149
150 ra = (instr >> 16) & 0x1f;
151 ea = (signed short) (instr & ~3); /* sign-extend */
152 if (ra)
153 ea += regs->gpr[ra];
154
155 return ea;
156 }
157
158 /*
159 * Calculate effective address for a DQ-form instruction
160 */
dqform_ea(unsigned int instr,const struct pt_regs * regs)161 static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
162 const struct pt_regs *regs)
163 {
164 int ra;
165 unsigned long ea;
166
167 ra = (instr >> 16) & 0x1f;
168 ea = (signed short) (instr & ~0xf); /* sign-extend */
169 if (ra)
170 ea += regs->gpr[ra];
171
172 return ea;
173 }
174 #endif /* __powerpc64 */
175
176 /*
177 * Calculate effective address for an X-form instruction
178 */
xform_ea(unsigned int instr,const struct pt_regs * regs)179 static nokprobe_inline unsigned long xform_ea(unsigned int instr,
180 const struct pt_regs *regs)
181 {
182 int ra, rb;
183 unsigned long ea;
184
185 ra = (instr >> 16) & 0x1f;
186 rb = (instr >> 11) & 0x1f;
187 ea = regs->gpr[rb];
188 if (ra)
189 ea += regs->gpr[ra];
190
191 return ea;
192 }
193
194 /*
195 * Return the largest power of 2, not greater than sizeof(unsigned long),
196 * such that x is a multiple of it.
197 */
max_align(unsigned long x)198 static nokprobe_inline unsigned long max_align(unsigned long x)
199 {
200 x |= sizeof(unsigned long);
201 return x & -x; /* isolates rightmost bit */
202 }
203
byterev_2(unsigned long x)204 static nokprobe_inline unsigned long byterev_2(unsigned long x)
205 {
206 return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
207 }
208
byterev_4(unsigned long x)209 static nokprobe_inline unsigned long byterev_4(unsigned long x)
210 {
211 return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
212 ((x & 0xff00) << 8) | ((x & 0xff) << 24);
213 }
214
215 #ifdef __powerpc64__
byterev_8(unsigned long x)216 static nokprobe_inline unsigned long byterev_8(unsigned long x)
217 {
218 return (byterev_4(x) << 32) | byterev_4(x >> 32);
219 }
220 #endif
221
do_byte_reverse(void * ptr,int nb)222 static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
223 {
224 switch (nb) {
225 case 2:
226 *(u16 *)ptr = byterev_2(*(u16 *)ptr);
227 break;
228 case 4:
229 *(u32 *)ptr = byterev_4(*(u32 *)ptr);
230 break;
231 #ifdef __powerpc64__
232 case 8:
233 *(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
234 break;
235 case 16: {
236 unsigned long *up = (unsigned long *)ptr;
237 unsigned long tmp;
238 tmp = byterev_8(up[0]);
239 up[0] = byterev_8(up[1]);
240 up[1] = tmp;
241 break;
242 }
243 #endif
244 default:
245 WARN_ON_ONCE(1);
246 }
247 }
248
read_mem_aligned(unsigned long * dest,unsigned long ea,int nb,struct pt_regs * regs)249 static nokprobe_inline int read_mem_aligned(unsigned long *dest,
250 unsigned long ea, int nb,
251 struct pt_regs *regs)
252 {
253 int err = 0;
254 unsigned long x = 0;
255
256 switch (nb) {
257 case 1:
258 err = __get_user(x, (unsigned char __user *) ea);
259 break;
260 case 2:
261 err = __get_user(x, (unsigned short __user *) ea);
262 break;
263 case 4:
264 err = __get_user(x, (unsigned int __user *) ea);
265 break;
266 #ifdef __powerpc64__
267 case 8:
268 err = __get_user(x, (unsigned long __user *) ea);
269 break;
270 #endif
271 }
272 if (!err)
273 *dest = x;
274 else
275 regs->dar = ea;
276 return err;
277 }
278
279 /*
280 * Copy from userspace to a buffer, using the largest possible
281 * aligned accesses, up to sizeof(long).
282 */
copy_mem_in(u8 * dest,unsigned long ea,int nb,struct pt_regs * regs)283 static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb,
284 struct pt_regs *regs)
285 {
286 int err = 0;
287 int c;
288
289 for (; nb > 0; nb -= c) {
290 c = max_align(ea);
291 if (c > nb)
292 c = max_align(nb);
293 switch (c) {
294 case 1:
295 err = __get_user(*dest, (unsigned char __user *) ea);
296 break;
297 case 2:
298 err = __get_user(*(u16 *)dest,
299 (unsigned short __user *) ea);
300 break;
301 case 4:
302 err = __get_user(*(u32 *)dest,
303 (unsigned int __user *) ea);
304 break;
305 #ifdef __powerpc64__
306 case 8:
307 err = __get_user(*(unsigned long *)dest,
308 (unsigned long __user *) ea);
309 break;
310 #endif
311 }
312 if (err) {
313 regs->dar = ea;
314 return err;
315 }
316 dest += c;
317 ea += c;
318 }
319 return 0;
320 }
321
read_mem_unaligned(unsigned long * dest,unsigned long ea,int nb,struct pt_regs * regs)322 static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
323 unsigned long ea, int nb,
324 struct pt_regs *regs)
325 {
326 union {
327 unsigned long ul;
328 u8 b[sizeof(unsigned long)];
329 } u;
330 int i;
331 int err;
332
333 u.ul = 0;
334 i = IS_BE ? sizeof(unsigned long) - nb : 0;
335 err = copy_mem_in(&u.b[i], ea, nb, regs);
336 if (!err)
337 *dest = u.ul;
338 return err;
339 }
340
341 /*
342 * Read memory at address ea for nb bytes, return 0 for success
343 * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8.
344 * If nb < sizeof(long), the result is right-justified on BE systems.
345 */
read_mem(unsigned long * dest,unsigned long ea,int nb,struct pt_regs * regs)346 static int read_mem(unsigned long *dest, unsigned long ea, int nb,
347 struct pt_regs *regs)
348 {
349 if (!address_ok(regs, ea, nb))
350 return -EFAULT;
351 if ((ea & (nb - 1)) == 0)
352 return read_mem_aligned(dest, ea, nb, regs);
353 return read_mem_unaligned(dest, ea, nb, regs);
354 }
355 NOKPROBE_SYMBOL(read_mem);
356
write_mem_aligned(unsigned long val,unsigned long ea,int nb,struct pt_regs * regs)357 static nokprobe_inline int write_mem_aligned(unsigned long val,
358 unsigned long ea, int nb,
359 struct pt_regs *regs)
360 {
361 int err = 0;
362
363 switch (nb) {
364 case 1:
365 err = __put_user(val, (unsigned char __user *) ea);
366 break;
367 case 2:
368 err = __put_user(val, (unsigned short __user *) ea);
369 break;
370 case 4:
371 err = __put_user(val, (unsigned int __user *) ea);
372 break;
373 #ifdef __powerpc64__
374 case 8:
375 err = __put_user(val, (unsigned long __user *) ea);
376 break;
377 #endif
378 }
379 if (err)
380 regs->dar = ea;
381 return err;
382 }
383
384 /*
385 * Copy from a buffer to userspace, using the largest possible
386 * aligned accesses, up to sizeof(long).
387 */
copy_mem_out(u8 * dest,unsigned long ea,int nb,struct pt_regs * regs)388 static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb,
389 struct pt_regs *regs)
390 {
391 int err = 0;
392 int c;
393
394 for (; nb > 0; nb -= c) {
395 c = max_align(ea);
396 if (c > nb)
397 c = max_align(nb);
398 switch (c) {
399 case 1:
400 err = __put_user(*dest, (unsigned char __user *) ea);
401 break;
402 case 2:
403 err = __put_user(*(u16 *)dest,
404 (unsigned short __user *) ea);
405 break;
406 case 4:
407 err = __put_user(*(u32 *)dest,
408 (unsigned int __user *) ea);
409 break;
410 #ifdef __powerpc64__
411 case 8:
412 err = __put_user(*(unsigned long *)dest,
413 (unsigned long __user *) ea);
414 break;
415 #endif
416 }
417 if (err) {
418 regs->dar = ea;
419 return err;
420 }
421 dest += c;
422 ea += c;
423 }
424 return 0;
425 }
426
write_mem_unaligned(unsigned long val,unsigned long ea,int nb,struct pt_regs * regs)427 static nokprobe_inline int write_mem_unaligned(unsigned long val,
428 unsigned long ea, int nb,
429 struct pt_regs *regs)
430 {
431 union {
432 unsigned long ul;
433 u8 b[sizeof(unsigned long)];
434 } u;
435 int i;
436
437 u.ul = val;
438 i = IS_BE ? sizeof(unsigned long) - nb : 0;
439 return copy_mem_out(&u.b[i], ea, nb, regs);
440 }
441
442 /*
443 * Write memory at address ea for nb bytes, return 0 for success
444 * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8.
445 */
write_mem(unsigned long val,unsigned long ea,int nb,struct pt_regs * regs)446 static int write_mem(unsigned long val, unsigned long ea, int nb,
447 struct pt_regs *regs)
448 {
449 if (!address_ok(regs, ea, nb))
450 return -EFAULT;
451 if ((ea & (nb - 1)) == 0)
452 return write_mem_aligned(val, ea, nb, regs);
453 return write_mem_unaligned(val, ea, nb, regs);
454 }
455 NOKPROBE_SYMBOL(write_mem);
456
457 #ifdef CONFIG_PPC_FPU
458 /*
459 * These access either the real FP register or the image in the
460 * thread_struct, depending on regs->msr & MSR_FP.
461 */
do_fp_load(struct instruction_op * op,unsigned long ea,struct pt_regs * regs,bool cross_endian)462 static int do_fp_load(struct instruction_op *op, unsigned long ea,
463 struct pt_regs *regs, bool cross_endian)
464 {
465 int err, rn, nb;
466 union {
467 int i;
468 unsigned int u;
469 float f;
470 double d[2];
471 unsigned long l[2];
472 u8 b[2 * sizeof(double)];
473 } u;
474
475 nb = GETSIZE(op->type);
476 if (!address_ok(regs, ea, nb))
477 return -EFAULT;
478 rn = op->reg;
479 err = copy_mem_in(u.b, ea, nb, regs);
480 if (err)
481 return err;
482 if (unlikely(cross_endian)) {
483 do_byte_reverse(u.b, min(nb, 8));
484 if (nb == 16)
485 do_byte_reverse(&u.b[8], 8);
486 }
487 preempt_disable();
488 if (nb == 4) {
489 if (op->type & FPCONV)
490 conv_sp_to_dp(&u.f, &u.d[0]);
491 else if (op->type & SIGNEXT)
492 u.l[0] = u.i;
493 else
494 u.l[0] = u.u;
495 }
496 if (regs->msr & MSR_FP)
497 put_fpr(rn, &u.d[0]);
498 else
499 current->thread.TS_FPR(rn) = u.l[0];
500 if (nb == 16) {
501 /* lfdp */
502 rn |= 1;
503 if (regs->msr & MSR_FP)
504 put_fpr(rn, &u.d[1]);
505 else
506 current->thread.TS_FPR(rn) = u.l[1];
507 }
508 preempt_enable();
509 return 0;
510 }
511 NOKPROBE_SYMBOL(do_fp_load);
512
do_fp_store(struct instruction_op * op,unsigned long ea,struct pt_regs * regs,bool cross_endian)513 static int do_fp_store(struct instruction_op *op, unsigned long ea,
514 struct pt_regs *regs, bool cross_endian)
515 {
516 int rn, nb;
517 union {
518 unsigned int u;
519 float f;
520 double d[2];
521 unsigned long l[2];
522 u8 b[2 * sizeof(double)];
523 } u;
524
525 nb = GETSIZE(op->type);
526 if (!address_ok(regs, ea, nb))
527 return -EFAULT;
528 rn = op->reg;
529 preempt_disable();
530 if (regs->msr & MSR_FP)
531 get_fpr(rn, &u.d[0]);
532 else
533 u.l[0] = current->thread.TS_FPR(rn);
534 if (nb == 4) {
535 if (op->type & FPCONV)
536 conv_dp_to_sp(&u.d[0], &u.f);
537 else
538 u.u = u.l[0];
539 }
540 if (nb == 16) {
541 rn |= 1;
542 if (regs->msr & MSR_FP)
543 get_fpr(rn, &u.d[1]);
544 else
545 u.l[1] = current->thread.TS_FPR(rn);
546 }
547 preempt_enable();
548 if (unlikely(cross_endian)) {
549 do_byte_reverse(u.b, min(nb, 8));
550 if (nb == 16)
551 do_byte_reverse(&u.b[8], 8);
552 }
553 return copy_mem_out(u.b, ea, nb, regs);
554 }
555 NOKPROBE_SYMBOL(do_fp_store);
556 #endif
557
558 #ifdef CONFIG_ALTIVEC
559 /* For Altivec/VMX, no need to worry about alignment */
do_vec_load(int rn,unsigned long ea,int size,struct pt_regs * regs,bool cross_endian)560 static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
561 int size, struct pt_regs *regs,
562 bool cross_endian)
563 {
564 int err;
565 union {
566 __vector128 v;
567 u8 b[sizeof(__vector128)];
568 } u = {};
569
570 if (!address_ok(regs, ea & ~0xfUL, 16))
571 return -EFAULT;
572 /* align to multiple of size */
573 ea &= ~(size - 1);
574 err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
575 if (err)
576 return err;
577 if (unlikely(cross_endian))
578 do_byte_reverse(&u.b[ea & 0xf], size);
579 preempt_disable();
580 if (regs->msr & MSR_VEC)
581 put_vr(rn, &u.v);
582 else
583 current->thread.vr_state.vr[rn] = u.v;
584 preempt_enable();
585 return 0;
586 }
587
do_vec_store(int rn,unsigned long ea,int size,struct pt_regs * regs,bool cross_endian)588 static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
589 int size, struct pt_regs *regs,
590 bool cross_endian)
591 {
592 union {
593 __vector128 v;
594 u8 b[sizeof(__vector128)];
595 } u;
596
597 if (!address_ok(regs, ea & ~0xfUL, 16))
598 return -EFAULT;
599 /* align to multiple of size */
600 ea &= ~(size - 1);
601
602 preempt_disable();
603 if (regs->msr & MSR_VEC)
604 get_vr(rn, &u.v);
605 else
606 u.v = current->thread.vr_state.vr[rn];
607 preempt_enable();
608 if (unlikely(cross_endian))
609 do_byte_reverse(&u.b[ea & 0xf], size);
610 return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
611 }
612 #endif /* CONFIG_ALTIVEC */
613
614 #ifdef __powerpc64__
emulate_lq(struct pt_regs * regs,unsigned long ea,int reg,bool cross_endian)615 static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
616 int reg, bool cross_endian)
617 {
618 int err;
619
620 if (!address_ok(regs, ea, 16))
621 return -EFAULT;
622 /* if aligned, should be atomic */
623 if ((ea & 0xf) == 0) {
624 err = do_lq(ea, ®s->gpr[reg]);
625 } else {
626 err = read_mem(®s->gpr[reg + IS_LE], ea, 8, regs);
627 if (!err)
628 err = read_mem(®s->gpr[reg + IS_BE], ea + 8, 8, regs);
629 }
630 if (!err && unlikely(cross_endian))
631 do_byte_reverse(®s->gpr[reg], 16);
632 return err;
633 }
634
emulate_stq(struct pt_regs * regs,unsigned long ea,int reg,bool cross_endian)635 static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
636 int reg, bool cross_endian)
637 {
638 int err;
639 unsigned long vals[2];
640
641 if (!address_ok(regs, ea, 16))
642 return -EFAULT;
643 vals[0] = regs->gpr[reg];
644 vals[1] = regs->gpr[reg + 1];
645 if (unlikely(cross_endian))
646 do_byte_reverse(vals, 16);
647
648 /* if aligned, should be atomic */
649 if ((ea & 0xf) == 0)
650 return do_stq(ea, vals[0], vals[1]);
651
652 err = write_mem(vals[IS_LE], ea, 8, regs);
653 if (!err)
654 err = write_mem(vals[IS_BE], ea + 8, 8, regs);
655 return err;
656 }
657 #endif /* __powerpc64 */
658
659 #ifdef CONFIG_VSX
emulate_vsx_load(struct instruction_op * op,union vsx_reg * reg,const void * mem,bool rev)660 void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
661 const void *mem, bool rev)
662 {
663 int size, read_size;
664 int i, j;
665 const unsigned int *wp;
666 const unsigned short *hp;
667 const unsigned char *bp;
668
669 size = GETSIZE(op->type);
670 reg->d[0] = reg->d[1] = 0;
671
672 switch (op->element_size) {
673 case 16:
674 /* whole vector; lxv[x] or lxvl[l] */
675 if (size == 0)
676 break;
677 memcpy(reg, mem, size);
678 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
679 rev = !rev;
680 if (rev)
681 do_byte_reverse(reg, 16);
682 break;
683 case 8:
684 /* scalar loads, lxvd2x, lxvdsx */
685 read_size = (size >= 8) ? 8 : size;
686 i = IS_LE ? 8 : 8 - read_size;
687 memcpy(®->b[i], mem, read_size);
688 if (rev)
689 do_byte_reverse(®->b[i], 8);
690 if (size < 8) {
691 if (op->type & SIGNEXT) {
692 /* size == 4 is the only case here */
693 reg->d[IS_LE] = (signed int) reg->d[IS_LE];
694 } else if (op->vsx_flags & VSX_FPCONV) {
695 preempt_disable();
696 conv_sp_to_dp(®->fp[1 + IS_LE],
697 ®->dp[IS_LE]);
698 preempt_enable();
699 }
700 } else {
701 if (size == 16) {
702 unsigned long v = *(unsigned long *)(mem + 8);
703 reg->d[IS_BE] = !rev ? v : byterev_8(v);
704 } else if (op->vsx_flags & VSX_SPLAT)
705 reg->d[IS_BE] = reg->d[IS_LE];
706 }
707 break;
708 case 4:
709 /* lxvw4x, lxvwsx */
710 wp = mem;
711 for (j = 0; j < size / 4; ++j) {
712 i = IS_LE ? 3 - j : j;
713 reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
714 }
715 if (op->vsx_flags & VSX_SPLAT) {
716 u32 val = reg->w[IS_LE ? 3 : 0];
717 for (; j < 4; ++j) {
718 i = IS_LE ? 3 - j : j;
719 reg->w[i] = val;
720 }
721 }
722 break;
723 case 2:
724 /* lxvh8x */
725 hp = mem;
726 for (j = 0; j < size / 2; ++j) {
727 i = IS_LE ? 7 - j : j;
728 reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
729 }
730 break;
731 case 1:
732 /* lxvb16x */
733 bp = mem;
734 for (j = 0; j < size; ++j) {
735 i = IS_LE ? 15 - j : j;
736 reg->b[i] = *bp++;
737 }
738 break;
739 }
740 }
741 EXPORT_SYMBOL_GPL(emulate_vsx_load);
742 NOKPROBE_SYMBOL(emulate_vsx_load);
743
emulate_vsx_store(struct instruction_op * op,const union vsx_reg * reg,void * mem,bool rev)744 void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
745 void *mem, bool rev)
746 {
747 int size, write_size;
748 int i, j;
749 union vsx_reg buf;
750 unsigned int *wp;
751 unsigned short *hp;
752 unsigned char *bp;
753
754 size = GETSIZE(op->type);
755
756 switch (op->element_size) {
757 case 16:
758 /* stxv, stxvx, stxvl, stxvll */
759 if (size == 0)
760 break;
761 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
762 rev = !rev;
763 if (rev) {
764 /* reverse 16 bytes */
765 buf.d[0] = byterev_8(reg->d[1]);
766 buf.d[1] = byterev_8(reg->d[0]);
767 reg = &buf;
768 }
769 memcpy(mem, reg, size);
770 break;
771 case 8:
772 /* scalar stores, stxvd2x */
773 write_size = (size >= 8) ? 8 : size;
774 i = IS_LE ? 8 : 8 - write_size;
775 if (size < 8 && op->vsx_flags & VSX_FPCONV) {
776 buf.d[0] = buf.d[1] = 0;
777 preempt_disable();
778 conv_dp_to_sp(®->dp[IS_LE], &buf.fp[1 + IS_LE]);
779 preempt_enable();
780 reg = &buf;
781 }
782 memcpy(mem, ®->b[i], write_size);
783 if (size == 16)
784 memcpy(mem + 8, ®->d[IS_BE], 8);
785 if (unlikely(rev)) {
786 do_byte_reverse(mem, write_size);
787 if (size == 16)
788 do_byte_reverse(mem + 8, 8);
789 }
790 break;
791 case 4:
792 /* stxvw4x */
793 wp = mem;
794 for (j = 0; j < size / 4; ++j) {
795 i = IS_LE ? 3 - j : j;
796 *wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
797 }
798 break;
799 case 2:
800 /* stxvh8x */
801 hp = mem;
802 for (j = 0; j < size / 2; ++j) {
803 i = IS_LE ? 7 - j : j;
804 *hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
805 }
806 break;
807 case 1:
808 /* stvxb16x */
809 bp = mem;
810 for (j = 0; j < size; ++j) {
811 i = IS_LE ? 15 - j : j;
812 *bp++ = reg->b[i];
813 }
814 break;
815 }
816 }
817 EXPORT_SYMBOL_GPL(emulate_vsx_store);
818 NOKPROBE_SYMBOL(emulate_vsx_store);
819
do_vsx_load(struct instruction_op * op,unsigned long ea,struct pt_regs * regs,bool cross_endian)820 static nokprobe_inline int do_vsx_load(struct instruction_op *op,
821 unsigned long ea, struct pt_regs *regs,
822 bool cross_endian)
823 {
824 int reg = op->reg;
825 u8 mem[16];
826 union vsx_reg buf;
827 int size = GETSIZE(op->type);
828
829 if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
830 return -EFAULT;
831
832 emulate_vsx_load(op, &buf, mem, cross_endian);
833 preempt_disable();
834 if (reg < 32) {
835 /* FP regs + extensions */
836 if (regs->msr & MSR_FP) {
837 load_vsrn(reg, &buf);
838 } else {
839 current->thread.fp_state.fpr[reg][0] = buf.d[0];
840 current->thread.fp_state.fpr[reg][1] = buf.d[1];
841 }
842 } else {
843 if (regs->msr & MSR_VEC)
844 load_vsrn(reg, &buf);
845 else
846 current->thread.vr_state.vr[reg - 32] = buf.v;
847 }
848 preempt_enable();
849 return 0;
850 }
851
do_vsx_store(struct instruction_op * op,unsigned long ea,struct pt_regs * regs,bool cross_endian)852 static nokprobe_inline int do_vsx_store(struct instruction_op *op,
853 unsigned long ea, struct pt_regs *regs,
854 bool cross_endian)
855 {
856 int reg = op->reg;
857 u8 mem[16];
858 union vsx_reg buf;
859 int size = GETSIZE(op->type);
860
861 if (!address_ok(regs, ea, size))
862 return -EFAULT;
863
864 preempt_disable();
865 if (reg < 32) {
866 /* FP regs + extensions */
867 if (regs->msr & MSR_FP) {
868 store_vsrn(reg, &buf);
869 } else {
870 buf.d[0] = current->thread.fp_state.fpr[reg][0];
871 buf.d[1] = current->thread.fp_state.fpr[reg][1];
872 }
873 } else {
874 if (regs->msr & MSR_VEC)
875 store_vsrn(reg, &buf);
876 else
877 buf.v = current->thread.vr_state.vr[reg - 32];
878 }
879 preempt_enable();
880 emulate_vsx_store(op, &buf, mem, cross_endian);
881 return copy_mem_out(mem, ea, size, regs);
882 }
883 #endif /* CONFIG_VSX */
884
emulate_dcbz(unsigned long ea,struct pt_regs * regs)885 int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
886 {
887 int err;
888 unsigned long i, size;
889
890 #ifdef __powerpc64__
891 size = ppc64_caches.l1d.block_size;
892 if (!(regs->msr & MSR_64BIT))
893 ea &= 0xffffffffUL;
894 #else
895 size = L1_CACHE_BYTES;
896 #endif
897 ea &= ~(size - 1);
898 if (!address_ok(regs, ea, size))
899 return -EFAULT;
900 for (i = 0; i < size; i += sizeof(long)) {
901 err = __put_user(0, (unsigned long __user *) (ea + i));
902 if (err) {
903 regs->dar = ea;
904 return err;
905 }
906 }
907 return 0;
908 }
909 NOKPROBE_SYMBOL(emulate_dcbz);
910
911 #define __put_user_asmx(x, addr, err, op, cr) \
912 __asm__ __volatile__( \
913 "1: " op " %2,0,%3\n" \
914 " mfcr %1\n" \
915 "2:\n" \
916 ".section .fixup,\"ax\"\n" \
917 "3: li %0,%4\n" \
918 " b 2b\n" \
919 ".previous\n" \
920 EX_TABLE(1b, 3b) \
921 : "=r" (err), "=r" (cr) \
922 : "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
923
924 #define __get_user_asmx(x, addr, err, op) \
925 __asm__ __volatile__( \
926 "1: "op" %1,0,%2\n" \
927 "2:\n" \
928 ".section .fixup,\"ax\"\n" \
929 "3: li %0,%3\n" \
930 " b 2b\n" \
931 ".previous\n" \
932 EX_TABLE(1b, 3b) \
933 : "=r" (err), "=r" (x) \
934 : "r" (addr), "i" (-EFAULT), "0" (err))
935
936 #define __cacheop_user_asmx(addr, err, op) \
937 __asm__ __volatile__( \
938 "1: "op" 0,%1\n" \
939 "2:\n" \
940 ".section .fixup,\"ax\"\n" \
941 "3: li %0,%3\n" \
942 " b 2b\n" \
943 ".previous\n" \
944 EX_TABLE(1b, 3b) \
945 : "=r" (err) \
946 : "r" (addr), "i" (-EFAULT), "0" (err))
947
set_cr0(const struct pt_regs * regs,struct instruction_op * op)948 static nokprobe_inline void set_cr0(const struct pt_regs *regs,
949 struct instruction_op *op)
950 {
951 long val = op->val;
952
953 op->type |= SETCC;
954 op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
955 #ifdef __powerpc64__
956 if (!(regs->msr & MSR_64BIT))
957 val = (int) val;
958 #endif
959 if (val < 0)
960 op->ccval |= 0x80000000;
961 else if (val > 0)
962 op->ccval |= 0x40000000;
963 else
964 op->ccval |= 0x20000000;
965 }
966
set_ca32(struct instruction_op * op,bool val)967 static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
968 {
969 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
970 if (val)
971 op->xerval |= XER_CA32;
972 else
973 op->xerval &= ~XER_CA32;
974 }
975 }
976
add_with_carry(const struct pt_regs * regs,struct instruction_op * op,int rd,unsigned long val1,unsigned long val2,unsigned long carry_in)977 static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
978 struct instruction_op *op, int rd,
979 unsigned long val1, unsigned long val2,
980 unsigned long carry_in)
981 {
982 unsigned long val = val1 + val2;
983
984 if (carry_in)
985 ++val;
986 op->type = COMPUTE + SETREG + SETXER;
987 op->reg = rd;
988 op->val = val;
989 #ifdef __powerpc64__
990 if (!(regs->msr & MSR_64BIT)) {
991 val = (unsigned int) val;
992 val1 = (unsigned int) val1;
993 }
994 #endif
995 op->xerval = regs->xer;
996 if (val < val1 || (carry_in && val == val1))
997 op->xerval |= XER_CA;
998 else
999 op->xerval &= ~XER_CA;
1000
1001 set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
1002 (carry_in && (unsigned int)val == (unsigned int)val1));
1003 }
1004
do_cmp_signed(const struct pt_regs * regs,struct instruction_op * op,long v1,long v2,int crfld)1005 static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
1006 struct instruction_op *op,
1007 long v1, long v2, int crfld)
1008 {
1009 unsigned int crval, shift;
1010
1011 op->type = COMPUTE + SETCC;
1012 crval = (regs->xer >> 31) & 1; /* get SO bit */
1013 if (v1 < v2)
1014 crval |= 8;
1015 else if (v1 > v2)
1016 crval |= 4;
1017 else
1018 crval |= 2;
1019 shift = (7 - crfld) * 4;
1020 op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1021 }
1022
do_cmp_unsigned(const struct pt_regs * regs,struct instruction_op * op,unsigned long v1,unsigned long v2,int crfld)1023 static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
1024 struct instruction_op *op,
1025 unsigned long v1,
1026 unsigned long v2, int crfld)
1027 {
1028 unsigned int crval, shift;
1029
1030 op->type = COMPUTE + SETCC;
1031 crval = (regs->xer >> 31) & 1; /* get SO bit */
1032 if (v1 < v2)
1033 crval |= 8;
1034 else if (v1 > v2)
1035 crval |= 4;
1036 else
1037 crval |= 2;
1038 shift = (7 - crfld) * 4;
1039 op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1040 }
1041
do_cmpb(const struct pt_regs * regs,struct instruction_op * op,unsigned long v1,unsigned long v2)1042 static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
1043 struct instruction_op *op,
1044 unsigned long v1, unsigned long v2)
1045 {
1046 unsigned long long out_val, mask;
1047 int i;
1048
1049 out_val = 0;
1050 for (i = 0; i < 8; i++) {
1051 mask = 0xffUL << (i * 8);
1052 if ((v1 & mask) == (v2 & mask))
1053 out_val |= mask;
1054 }
1055 op->val = out_val;
1056 }
1057
1058 /*
1059 * The size parameter is used to adjust the equivalent popcnt instruction.
1060 * popcntb = 8, popcntw = 32, popcntd = 64
1061 */
do_popcnt(const struct pt_regs * regs,struct instruction_op * op,unsigned long v1,int size)1062 static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
1063 struct instruction_op *op,
1064 unsigned long v1, int size)
1065 {
1066 unsigned long long out = v1;
1067
1068 out -= (out >> 1) & 0x5555555555555555ULL;
1069 out = (0x3333333333333333ULL & out) +
1070 (0x3333333333333333ULL & (out >> 2));
1071 out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1072
1073 if (size == 8) { /* popcntb */
1074 op->val = out;
1075 return;
1076 }
1077 out += out >> 8;
1078 out += out >> 16;
1079 if (size == 32) { /* popcntw */
1080 op->val = out & 0x0000003f0000003fULL;
1081 return;
1082 }
1083
1084 out = (out + (out >> 32)) & 0x7f;
1085 op->val = out; /* popcntd */
1086 }
1087
1088 #ifdef CONFIG_PPC64
do_bpermd(const struct pt_regs * regs,struct instruction_op * op,unsigned long v1,unsigned long v2)1089 static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
1090 struct instruction_op *op,
1091 unsigned long v1, unsigned long v2)
1092 {
1093 unsigned char perm, idx;
1094 unsigned int i;
1095
1096 perm = 0;
1097 for (i = 0; i < 8; i++) {
1098 idx = (v1 >> (i * 8)) & 0xff;
1099 if (idx < 64)
1100 if (v2 & PPC_BIT(idx))
1101 perm |= 1 << i;
1102 }
1103 op->val = perm;
1104 }
1105 #endif /* CONFIG_PPC64 */
1106 /*
1107 * The size parameter adjusts the equivalent prty instruction.
1108 * prtyw = 32, prtyd = 64
1109 */
do_prty(const struct pt_regs * regs,struct instruction_op * op,unsigned long v,int size)1110 static nokprobe_inline void do_prty(const struct pt_regs *regs,
1111 struct instruction_op *op,
1112 unsigned long v, int size)
1113 {
1114 unsigned long long res = v ^ (v >> 8);
1115
1116 res ^= res >> 16;
1117 if (size == 32) { /* prtyw */
1118 op->val = res & 0x0000000100000001ULL;
1119 return;
1120 }
1121
1122 res ^= res >> 32;
1123 op->val = res & 1; /*prtyd */
1124 }
1125
trap_compare(long v1,long v2)1126 static nokprobe_inline int trap_compare(long v1, long v2)
1127 {
1128 int ret = 0;
1129
1130 if (v1 < v2)
1131 ret |= 0x10;
1132 else if (v1 > v2)
1133 ret |= 0x08;
1134 else
1135 ret |= 0x04;
1136 if ((unsigned long)v1 < (unsigned long)v2)
1137 ret |= 0x02;
1138 else if ((unsigned long)v1 > (unsigned long)v2)
1139 ret |= 0x01;
1140 return ret;
1141 }
1142
1143 /*
1144 * Elements of 32-bit rotate and mask instructions.
1145 */
1146 #define MASK32(mb, me) ((0xffffffffUL >> (mb)) + \
1147 ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
1148 #ifdef __powerpc64__
1149 #define MASK64_L(mb) (~0UL >> (mb))
1150 #define MASK64_R(me) ((signed long)-0x8000000000000000L >> (me))
1151 #define MASK64(mb, me) (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
1152 #define DATA32(x) (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
1153 #else
1154 #define DATA32(x) (x)
1155 #endif
1156 #define ROTATE(x, n) ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
1157
1158 /*
1159 * Decode an instruction, and return information about it in *op
1160 * without changing *regs.
1161 * Integer arithmetic and logical instructions, branches, and barrier
1162 * instructions can be emulated just using the information in *op.
1163 *
1164 * Return value is 1 if the instruction can be emulated just by
1165 * updating *regs with the information in *op, -1 if we need the
1166 * GPRs but *regs doesn't contain the full register set, or 0
1167 * otherwise.
1168 */
analyse_instr(struct instruction_op * op,const struct pt_regs * regs,unsigned int instr)1169 int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
1170 unsigned int instr)
1171 {
1172 unsigned int opcode, ra, rb, rd, spr, u;
1173 unsigned long int imm;
1174 unsigned long int val, val2;
1175 unsigned int mb, me, sh;
1176 long ival;
1177
1178 op->type = COMPUTE;
1179
1180 opcode = instr >> 26;
1181 switch (opcode) {
1182 case 16: /* bc */
1183 op->type = BRANCH;
1184 imm = (signed short)(instr & 0xfffc);
1185 if ((instr & 2) == 0)
1186 imm += regs->nip;
1187 op->val = truncate_if_32bit(regs->msr, imm);
1188 if (instr & 1)
1189 op->type |= SETLK;
1190 if (branch_taken(instr, regs, op))
1191 op->type |= BRTAKEN;
1192 return 1;
1193 #ifdef CONFIG_PPC64
1194 case 17: /* sc */
1195 if ((instr & 0xfe2) == 2)
1196 op->type = SYSCALL;
1197 else
1198 op->type = UNKNOWN;
1199 return 0;
1200 #endif
1201 case 18: /* b */
1202 op->type = BRANCH | BRTAKEN;
1203 imm = instr & 0x03fffffc;
1204 if (imm & 0x02000000)
1205 imm -= 0x04000000;
1206 if ((instr & 2) == 0)
1207 imm += regs->nip;
1208 op->val = truncate_if_32bit(regs->msr, imm);
1209 if (instr & 1)
1210 op->type |= SETLK;
1211 return 1;
1212 case 19:
1213 switch ((instr >> 1) & 0x3ff) {
1214 case 0: /* mcrf */
1215 op->type = COMPUTE + SETCC;
1216 rd = 7 - ((instr >> 23) & 0x7);
1217 ra = 7 - ((instr >> 18) & 0x7);
1218 rd *= 4;
1219 ra *= 4;
1220 val = (regs->ccr >> ra) & 0xf;
1221 op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
1222 return 1;
1223
1224 case 16: /* bclr */
1225 case 528: /* bcctr */
1226 op->type = BRANCH;
1227 imm = (instr & 0x400)? regs->ctr: regs->link;
1228 op->val = truncate_if_32bit(regs->msr, imm);
1229 if (instr & 1)
1230 op->type |= SETLK;
1231 if (branch_taken(instr, regs, op))
1232 op->type |= BRTAKEN;
1233 return 1;
1234
1235 case 18: /* rfid, scary */
1236 if (regs->msr & MSR_PR)
1237 goto priv;
1238 op->type = RFI;
1239 return 0;
1240
1241 case 150: /* isync */
1242 op->type = BARRIER | BARRIER_ISYNC;
1243 return 1;
1244
1245 case 33: /* crnor */
1246 case 129: /* crandc */
1247 case 193: /* crxor */
1248 case 225: /* crnand */
1249 case 257: /* crand */
1250 case 289: /* creqv */
1251 case 417: /* crorc */
1252 case 449: /* cror */
1253 op->type = COMPUTE + SETCC;
1254 ra = (instr >> 16) & 0x1f;
1255 rb = (instr >> 11) & 0x1f;
1256 rd = (instr >> 21) & 0x1f;
1257 ra = (regs->ccr >> (31 - ra)) & 1;
1258 rb = (regs->ccr >> (31 - rb)) & 1;
1259 val = (instr >> (6 + ra * 2 + rb)) & 1;
1260 op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
1261 (val << (31 - rd));
1262 return 1;
1263 }
1264 break;
1265 case 31:
1266 switch ((instr >> 1) & 0x3ff) {
1267 case 598: /* sync */
1268 op->type = BARRIER + BARRIER_SYNC;
1269 #ifdef __powerpc64__
1270 switch ((instr >> 21) & 3) {
1271 case 1: /* lwsync */
1272 op->type = BARRIER + BARRIER_LWSYNC;
1273 break;
1274 case 2: /* ptesync */
1275 op->type = BARRIER + BARRIER_PTESYNC;
1276 break;
1277 }
1278 #endif
1279 return 1;
1280
1281 case 854: /* eieio */
1282 op->type = BARRIER + BARRIER_EIEIO;
1283 return 1;
1284 }
1285 break;
1286 }
1287
1288 /* Following cases refer to regs->gpr[], so we need all regs */
1289 if (!FULL_REGS(regs))
1290 return -1;
1291
1292 rd = (instr >> 21) & 0x1f;
1293 ra = (instr >> 16) & 0x1f;
1294 rb = (instr >> 11) & 0x1f;
1295
1296 switch (opcode) {
1297 #ifdef __powerpc64__
1298 case 2: /* tdi */
1299 if (rd & trap_compare(regs->gpr[ra], (short) instr))
1300 goto trap;
1301 return 1;
1302 #endif
1303 case 3: /* twi */
1304 if (rd & trap_compare((int)regs->gpr[ra], (short) instr))
1305 goto trap;
1306 return 1;
1307
1308 case 7: /* mulli */
1309 op->val = regs->gpr[ra] * (short) instr;
1310 goto compute_done;
1311
1312 case 8: /* subfic */
1313 imm = (short) instr;
1314 add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
1315 return 1;
1316
1317 case 10: /* cmpli */
1318 imm = (unsigned short) instr;
1319 val = regs->gpr[ra];
1320 #ifdef __powerpc64__
1321 if ((rd & 1) == 0)
1322 val = (unsigned int) val;
1323 #endif
1324 do_cmp_unsigned(regs, op, val, imm, rd >> 2);
1325 return 1;
1326
1327 case 11: /* cmpi */
1328 imm = (short) instr;
1329 val = regs->gpr[ra];
1330 #ifdef __powerpc64__
1331 if ((rd & 1) == 0)
1332 val = (int) val;
1333 #endif
1334 do_cmp_signed(regs, op, val, imm, rd >> 2);
1335 return 1;
1336
1337 case 12: /* addic */
1338 imm = (short) instr;
1339 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1340 return 1;
1341
1342 case 13: /* addic. */
1343 imm = (short) instr;
1344 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1345 set_cr0(regs, op);
1346 return 1;
1347
1348 case 14: /* addi */
1349 imm = (short) instr;
1350 if (ra)
1351 imm += regs->gpr[ra];
1352 op->val = imm;
1353 goto compute_done;
1354
1355 case 15: /* addis */
1356 imm = ((short) instr) << 16;
1357 if (ra)
1358 imm += regs->gpr[ra];
1359 op->val = imm;
1360 goto compute_done;
1361
1362 case 19:
1363 if (((instr >> 1) & 0x1f) == 2) {
1364 /* addpcis */
1365 imm = (short) (instr & 0xffc1); /* d0 + d2 fields */
1366 imm |= (instr >> 15) & 0x3e; /* d1 field */
1367 op->val = regs->nip + (imm << 16) + 4;
1368 goto compute_done;
1369 }
1370 op->type = UNKNOWN;
1371 return 0;
1372
1373 case 20: /* rlwimi */
1374 mb = (instr >> 6) & 0x1f;
1375 me = (instr >> 1) & 0x1f;
1376 val = DATA32(regs->gpr[rd]);
1377 imm = MASK32(mb, me);
1378 op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
1379 goto logical_done;
1380
1381 case 21: /* rlwinm */
1382 mb = (instr >> 6) & 0x1f;
1383 me = (instr >> 1) & 0x1f;
1384 val = DATA32(regs->gpr[rd]);
1385 op->val = ROTATE(val, rb) & MASK32(mb, me);
1386 goto logical_done;
1387
1388 case 23: /* rlwnm */
1389 mb = (instr >> 6) & 0x1f;
1390 me = (instr >> 1) & 0x1f;
1391 rb = regs->gpr[rb] & 0x1f;
1392 val = DATA32(regs->gpr[rd]);
1393 op->val = ROTATE(val, rb) & MASK32(mb, me);
1394 goto logical_done;
1395
1396 case 24: /* ori */
1397 op->val = regs->gpr[rd] | (unsigned short) instr;
1398 goto logical_done_nocc;
1399
1400 case 25: /* oris */
1401 imm = (unsigned short) instr;
1402 op->val = regs->gpr[rd] | (imm << 16);
1403 goto logical_done_nocc;
1404
1405 case 26: /* xori */
1406 op->val = regs->gpr[rd] ^ (unsigned short) instr;
1407 goto logical_done_nocc;
1408
1409 case 27: /* xoris */
1410 imm = (unsigned short) instr;
1411 op->val = regs->gpr[rd] ^ (imm << 16);
1412 goto logical_done_nocc;
1413
1414 case 28: /* andi. */
1415 op->val = regs->gpr[rd] & (unsigned short) instr;
1416 set_cr0(regs, op);
1417 goto logical_done_nocc;
1418
1419 case 29: /* andis. */
1420 imm = (unsigned short) instr;
1421 op->val = regs->gpr[rd] & (imm << 16);
1422 set_cr0(regs, op);
1423 goto logical_done_nocc;
1424
1425 #ifdef __powerpc64__
1426 case 30: /* rld* */
1427 mb = ((instr >> 6) & 0x1f) | (instr & 0x20);
1428 val = regs->gpr[rd];
1429 if ((instr & 0x10) == 0) {
1430 sh = rb | ((instr & 2) << 4);
1431 val = ROTATE(val, sh);
1432 switch ((instr >> 2) & 3) {
1433 case 0: /* rldicl */
1434 val &= MASK64_L(mb);
1435 break;
1436 case 1: /* rldicr */
1437 val &= MASK64_R(mb);
1438 break;
1439 case 2: /* rldic */
1440 val &= MASK64(mb, 63 - sh);
1441 break;
1442 case 3: /* rldimi */
1443 imm = MASK64(mb, 63 - sh);
1444 val = (regs->gpr[ra] & ~imm) |
1445 (val & imm);
1446 }
1447 op->val = val;
1448 goto logical_done;
1449 } else {
1450 sh = regs->gpr[rb] & 0x3f;
1451 val = ROTATE(val, sh);
1452 switch ((instr >> 1) & 7) {
1453 case 0: /* rldcl */
1454 op->val = val & MASK64_L(mb);
1455 goto logical_done;
1456 case 1: /* rldcr */
1457 op->val = val & MASK64_R(mb);
1458 goto logical_done;
1459 }
1460 }
1461 #endif
1462 op->type = UNKNOWN; /* illegal instruction */
1463 return 0;
1464
1465 case 31:
1466 /* isel occupies 32 minor opcodes */
1467 if (((instr >> 1) & 0x1f) == 15) {
1468 mb = (instr >> 6) & 0x1f; /* bc field */
1469 val = (regs->ccr >> (31 - mb)) & 1;
1470 val2 = (ra) ? regs->gpr[ra] : 0;
1471
1472 op->val = (val) ? val2 : regs->gpr[rb];
1473 goto compute_done;
1474 }
1475
1476 switch ((instr >> 1) & 0x3ff) {
1477 case 4: /* tw */
1478 if (rd == 0x1f ||
1479 (rd & trap_compare((int)regs->gpr[ra],
1480 (int)regs->gpr[rb])))
1481 goto trap;
1482 return 1;
1483 #ifdef __powerpc64__
1484 case 68: /* td */
1485 if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
1486 goto trap;
1487 return 1;
1488 #endif
1489 case 83: /* mfmsr */
1490 if (regs->msr & MSR_PR)
1491 goto priv;
1492 op->type = MFMSR;
1493 op->reg = rd;
1494 return 0;
1495 case 146: /* mtmsr */
1496 if (regs->msr & MSR_PR)
1497 goto priv;
1498 op->type = MTMSR;
1499 op->reg = rd;
1500 op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
1501 return 0;
1502 #ifdef CONFIG_PPC64
1503 case 178: /* mtmsrd */
1504 if (regs->msr & MSR_PR)
1505 goto priv;
1506 op->type = MTMSR;
1507 op->reg = rd;
1508 /* only MSR_EE and MSR_RI get changed if bit 15 set */
1509 /* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
1510 imm = (instr & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
1511 op->val = imm;
1512 return 0;
1513 #endif
1514
1515 case 19: /* mfcr */
1516 imm = 0xffffffffUL;
1517 if ((instr >> 20) & 1) {
1518 imm = 0xf0000000UL;
1519 for (sh = 0; sh < 8; ++sh) {
1520 if (instr & (0x80000 >> sh))
1521 break;
1522 imm >>= 4;
1523 }
1524 }
1525 op->val = regs->ccr & imm;
1526 goto compute_done;
1527
1528 case 144: /* mtcrf */
1529 op->type = COMPUTE + SETCC;
1530 imm = 0xf0000000UL;
1531 val = regs->gpr[rd];
1532 op->ccval = regs->ccr;
1533 for (sh = 0; sh < 8; ++sh) {
1534 if (instr & (0x80000 >> sh))
1535 op->ccval = (op->ccval & ~imm) |
1536 (val & imm);
1537 imm >>= 4;
1538 }
1539 return 1;
1540
1541 case 339: /* mfspr */
1542 spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
1543 op->type = MFSPR;
1544 op->reg = rd;
1545 op->spr = spr;
1546 if (spr == SPRN_XER || spr == SPRN_LR ||
1547 spr == SPRN_CTR)
1548 return 1;
1549 return 0;
1550
1551 case 467: /* mtspr */
1552 spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
1553 op->type = MTSPR;
1554 op->val = regs->gpr[rd];
1555 op->spr = spr;
1556 if (spr == SPRN_XER || spr == SPRN_LR ||
1557 spr == SPRN_CTR)
1558 return 1;
1559 return 0;
1560
1561 /*
1562 * Compare instructions
1563 */
1564 case 0: /* cmp */
1565 val = regs->gpr[ra];
1566 val2 = regs->gpr[rb];
1567 #ifdef __powerpc64__
1568 if ((rd & 1) == 0) {
1569 /* word (32-bit) compare */
1570 val = (int) val;
1571 val2 = (int) val2;
1572 }
1573 #endif
1574 do_cmp_signed(regs, op, val, val2, rd >> 2);
1575 return 1;
1576
1577 case 32: /* cmpl */
1578 val = regs->gpr[ra];
1579 val2 = regs->gpr[rb];
1580 #ifdef __powerpc64__
1581 if ((rd & 1) == 0) {
1582 /* word (32-bit) compare */
1583 val = (unsigned int) val;
1584 val2 = (unsigned int) val2;
1585 }
1586 #endif
1587 do_cmp_unsigned(regs, op, val, val2, rd >> 2);
1588 return 1;
1589
1590 case 508: /* cmpb */
1591 do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
1592 goto logical_done_nocc;
1593
1594 /*
1595 * Arithmetic instructions
1596 */
1597 case 8: /* subfc */
1598 add_with_carry(regs, op, rd, ~regs->gpr[ra],
1599 regs->gpr[rb], 1);
1600 goto arith_done;
1601 #ifdef __powerpc64__
1602 case 9: /* mulhdu */
1603 asm("mulhdu %0,%1,%2" : "=r" (op->val) :
1604 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1605 goto arith_done;
1606 #endif
1607 case 10: /* addc */
1608 add_with_carry(regs, op, rd, regs->gpr[ra],
1609 regs->gpr[rb], 0);
1610 goto arith_done;
1611
1612 case 11: /* mulhwu */
1613 asm("mulhwu %0,%1,%2" : "=r" (op->val) :
1614 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1615 goto arith_done;
1616
1617 case 40: /* subf */
1618 op->val = regs->gpr[rb] - regs->gpr[ra];
1619 goto arith_done;
1620 #ifdef __powerpc64__
1621 case 73: /* mulhd */
1622 asm("mulhd %0,%1,%2" : "=r" (op->val) :
1623 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1624 goto arith_done;
1625 #endif
1626 case 75: /* mulhw */
1627 asm("mulhw %0,%1,%2" : "=r" (op->val) :
1628 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1629 goto arith_done;
1630
1631 case 104: /* neg */
1632 op->val = -regs->gpr[ra];
1633 goto arith_done;
1634
1635 case 136: /* subfe */
1636 add_with_carry(regs, op, rd, ~regs->gpr[ra],
1637 regs->gpr[rb], regs->xer & XER_CA);
1638 goto arith_done;
1639
1640 case 138: /* adde */
1641 add_with_carry(regs, op, rd, regs->gpr[ra],
1642 regs->gpr[rb], regs->xer & XER_CA);
1643 goto arith_done;
1644
1645 case 200: /* subfze */
1646 add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
1647 regs->xer & XER_CA);
1648 goto arith_done;
1649
1650 case 202: /* addze */
1651 add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
1652 regs->xer & XER_CA);
1653 goto arith_done;
1654
1655 case 232: /* subfme */
1656 add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
1657 regs->xer & XER_CA);
1658 goto arith_done;
1659 #ifdef __powerpc64__
1660 case 233: /* mulld */
1661 op->val = regs->gpr[ra] * regs->gpr[rb];
1662 goto arith_done;
1663 #endif
1664 case 234: /* addme */
1665 add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
1666 regs->xer & XER_CA);
1667 goto arith_done;
1668
1669 case 235: /* mullw */
1670 op->val = (long)(int) regs->gpr[ra] *
1671 (int) regs->gpr[rb];
1672
1673 goto arith_done;
1674
1675 case 266: /* add */
1676 op->val = regs->gpr[ra] + regs->gpr[rb];
1677 goto arith_done;
1678 #ifdef __powerpc64__
1679 case 457: /* divdu */
1680 op->val = regs->gpr[ra] / regs->gpr[rb];
1681 goto arith_done;
1682 #endif
1683 case 459: /* divwu */
1684 op->val = (unsigned int) regs->gpr[ra] /
1685 (unsigned int) regs->gpr[rb];
1686 goto arith_done;
1687 #ifdef __powerpc64__
1688 case 489: /* divd */
1689 op->val = (long int) regs->gpr[ra] /
1690 (long int) regs->gpr[rb];
1691 goto arith_done;
1692 #endif
1693 case 491: /* divw */
1694 op->val = (int) regs->gpr[ra] /
1695 (int) regs->gpr[rb];
1696 goto arith_done;
1697
1698
1699 /*
1700 * Logical instructions
1701 */
1702 case 26: /* cntlzw */
1703 val = (unsigned int) regs->gpr[rd];
1704 op->val = ( val ? __builtin_clz(val) : 32 );
1705 goto logical_done;
1706 #ifdef __powerpc64__
1707 case 58: /* cntlzd */
1708 val = regs->gpr[rd];
1709 op->val = ( val ? __builtin_clzl(val) : 64 );
1710 goto logical_done;
1711 #endif
1712 case 28: /* and */
1713 op->val = regs->gpr[rd] & regs->gpr[rb];
1714 goto logical_done;
1715
1716 case 60: /* andc */
1717 op->val = regs->gpr[rd] & ~regs->gpr[rb];
1718 goto logical_done;
1719
1720 case 122: /* popcntb */
1721 do_popcnt(regs, op, regs->gpr[rd], 8);
1722 goto logical_done_nocc;
1723
1724 case 124: /* nor */
1725 op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
1726 goto logical_done;
1727
1728 case 154: /* prtyw */
1729 do_prty(regs, op, regs->gpr[rd], 32);
1730 goto logical_done_nocc;
1731
1732 case 186: /* prtyd */
1733 do_prty(regs, op, regs->gpr[rd], 64);
1734 goto logical_done_nocc;
1735 #ifdef CONFIG_PPC64
1736 case 252: /* bpermd */
1737 do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
1738 goto logical_done_nocc;
1739 #endif
1740 case 284: /* xor */
1741 op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
1742 goto logical_done;
1743
1744 case 316: /* xor */
1745 op->val = regs->gpr[rd] ^ regs->gpr[rb];
1746 goto logical_done;
1747
1748 case 378: /* popcntw */
1749 do_popcnt(regs, op, regs->gpr[rd], 32);
1750 goto logical_done_nocc;
1751
1752 case 412: /* orc */
1753 op->val = regs->gpr[rd] | ~regs->gpr[rb];
1754 goto logical_done;
1755
1756 case 444: /* or */
1757 op->val = regs->gpr[rd] | regs->gpr[rb];
1758 goto logical_done;
1759
1760 case 476: /* nand */
1761 op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
1762 goto logical_done;
1763 #ifdef CONFIG_PPC64
1764 case 506: /* popcntd */
1765 do_popcnt(regs, op, regs->gpr[rd], 64);
1766 goto logical_done_nocc;
1767 #endif
1768 case 922: /* extsh */
1769 op->val = (signed short) regs->gpr[rd];
1770 goto logical_done;
1771
1772 case 954: /* extsb */
1773 op->val = (signed char) regs->gpr[rd];
1774 goto logical_done;
1775 #ifdef __powerpc64__
1776 case 986: /* extsw */
1777 op->val = (signed int) regs->gpr[rd];
1778 goto logical_done;
1779 #endif
1780
1781 /*
1782 * Shift instructions
1783 */
1784 case 24: /* slw */
1785 sh = regs->gpr[rb] & 0x3f;
1786 if (sh < 32)
1787 op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
1788 else
1789 op->val = 0;
1790 goto logical_done;
1791
1792 case 536: /* srw */
1793 sh = regs->gpr[rb] & 0x3f;
1794 if (sh < 32)
1795 op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
1796 else
1797 op->val = 0;
1798 goto logical_done;
1799
1800 case 792: /* sraw */
1801 op->type = COMPUTE + SETREG + SETXER;
1802 sh = regs->gpr[rb] & 0x3f;
1803 ival = (signed int) regs->gpr[rd];
1804 op->val = ival >> (sh < 32 ? sh : 31);
1805 op->xerval = regs->xer;
1806 if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
1807 op->xerval |= XER_CA;
1808 else
1809 op->xerval &= ~XER_CA;
1810 set_ca32(op, op->xerval & XER_CA);
1811 goto logical_done;
1812
1813 case 824: /* srawi */
1814 op->type = COMPUTE + SETREG + SETXER;
1815 sh = rb;
1816 ival = (signed int) regs->gpr[rd];
1817 op->val = ival >> sh;
1818 op->xerval = regs->xer;
1819 if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
1820 op->xerval |= XER_CA;
1821 else
1822 op->xerval &= ~XER_CA;
1823 set_ca32(op, op->xerval & XER_CA);
1824 goto logical_done;
1825
1826 #ifdef __powerpc64__
1827 case 27: /* sld */
1828 sh = regs->gpr[rb] & 0x7f;
1829 if (sh < 64)
1830 op->val = regs->gpr[rd] << sh;
1831 else
1832 op->val = 0;
1833 goto logical_done;
1834
1835 case 539: /* srd */
1836 sh = regs->gpr[rb] & 0x7f;
1837 if (sh < 64)
1838 op->val = regs->gpr[rd] >> sh;
1839 else
1840 op->val = 0;
1841 goto logical_done;
1842
1843 case 794: /* srad */
1844 op->type = COMPUTE + SETREG + SETXER;
1845 sh = regs->gpr[rb] & 0x7f;
1846 ival = (signed long int) regs->gpr[rd];
1847 op->val = ival >> (sh < 64 ? sh : 63);
1848 op->xerval = regs->xer;
1849 if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
1850 op->xerval |= XER_CA;
1851 else
1852 op->xerval &= ~XER_CA;
1853 set_ca32(op, op->xerval & XER_CA);
1854 goto logical_done;
1855
1856 case 826: /* sradi with sh_5 = 0 */
1857 case 827: /* sradi with sh_5 = 1 */
1858 op->type = COMPUTE + SETREG + SETXER;
1859 sh = rb | ((instr & 2) << 4);
1860 ival = (signed long int) regs->gpr[rd];
1861 op->val = ival >> sh;
1862 op->xerval = regs->xer;
1863 if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
1864 op->xerval |= XER_CA;
1865 else
1866 op->xerval &= ~XER_CA;
1867 set_ca32(op, op->xerval & XER_CA);
1868 goto logical_done;
1869 #endif /* __powerpc64__ */
1870
1871 /*
1872 * Cache instructions
1873 */
1874 case 54: /* dcbst */
1875 op->type = MKOP(CACHEOP, DCBST, 0);
1876 op->ea = xform_ea(instr, regs);
1877 return 0;
1878
1879 case 86: /* dcbf */
1880 op->type = MKOP(CACHEOP, DCBF, 0);
1881 op->ea = xform_ea(instr, regs);
1882 return 0;
1883
1884 case 246: /* dcbtst */
1885 op->type = MKOP(CACHEOP, DCBTST, 0);
1886 op->ea = xform_ea(instr, regs);
1887 op->reg = rd;
1888 return 0;
1889
1890 case 278: /* dcbt */
1891 op->type = MKOP(CACHEOP, DCBTST, 0);
1892 op->ea = xform_ea(instr, regs);
1893 op->reg = rd;
1894 return 0;
1895
1896 case 982: /* icbi */
1897 op->type = MKOP(CACHEOP, ICBI, 0);
1898 op->ea = xform_ea(instr, regs);
1899 return 0;
1900
1901 case 1014: /* dcbz */
1902 op->type = MKOP(CACHEOP, DCBZ, 0);
1903 op->ea = xform_ea(instr, regs);
1904 return 0;
1905 }
1906 break;
1907 }
1908
1909 /*
1910 * Loads and stores.
1911 */
1912 op->type = UNKNOWN;
1913 op->update_reg = ra;
1914 op->reg = rd;
1915 op->val = regs->gpr[rd];
1916 u = (instr >> 20) & UPDATE;
1917 op->vsx_flags = 0;
1918
1919 switch (opcode) {
1920 case 31:
1921 u = instr & UPDATE;
1922 op->ea = xform_ea(instr, regs);
1923 switch ((instr >> 1) & 0x3ff) {
1924 case 20: /* lwarx */
1925 op->type = MKOP(LARX, 0, 4);
1926 break;
1927
1928 case 150: /* stwcx. */
1929 op->type = MKOP(STCX, 0, 4);
1930 break;
1931
1932 #ifdef __powerpc64__
1933 case 84: /* ldarx */
1934 op->type = MKOP(LARX, 0, 8);
1935 break;
1936
1937 case 214: /* stdcx. */
1938 op->type = MKOP(STCX, 0, 8);
1939 break;
1940
1941 case 52: /* lbarx */
1942 op->type = MKOP(LARX, 0, 1);
1943 break;
1944
1945 case 694: /* stbcx. */
1946 op->type = MKOP(STCX, 0, 1);
1947 break;
1948
1949 case 116: /* lharx */
1950 op->type = MKOP(LARX, 0, 2);
1951 break;
1952
1953 case 726: /* sthcx. */
1954 op->type = MKOP(STCX, 0, 2);
1955 break;
1956
1957 case 276: /* lqarx */
1958 if (!((rd & 1) || rd == ra || rd == rb))
1959 op->type = MKOP(LARX, 0, 16);
1960 break;
1961
1962 case 182: /* stqcx. */
1963 if (!(rd & 1))
1964 op->type = MKOP(STCX, 0, 16);
1965 break;
1966 #endif
1967
1968 case 23: /* lwzx */
1969 case 55: /* lwzux */
1970 op->type = MKOP(LOAD, u, 4);
1971 break;
1972
1973 case 87: /* lbzx */
1974 case 119: /* lbzux */
1975 op->type = MKOP(LOAD, u, 1);
1976 break;
1977
1978 #ifdef CONFIG_ALTIVEC
1979 /*
1980 * Note: for the load/store vector element instructions,
1981 * bits of the EA say which field of the VMX register to use.
1982 */
1983 case 7: /* lvebx */
1984 op->type = MKOP(LOAD_VMX, 0, 1);
1985 op->element_size = 1;
1986 break;
1987
1988 case 39: /* lvehx */
1989 op->type = MKOP(LOAD_VMX, 0, 2);
1990 op->element_size = 2;
1991 break;
1992
1993 case 71: /* lvewx */
1994 op->type = MKOP(LOAD_VMX, 0, 4);
1995 op->element_size = 4;
1996 break;
1997
1998 case 103: /* lvx */
1999 case 359: /* lvxl */
2000 op->type = MKOP(LOAD_VMX, 0, 16);
2001 op->element_size = 16;
2002 break;
2003
2004 case 135: /* stvebx */
2005 op->type = MKOP(STORE_VMX, 0, 1);
2006 op->element_size = 1;
2007 break;
2008
2009 case 167: /* stvehx */
2010 op->type = MKOP(STORE_VMX, 0, 2);
2011 op->element_size = 2;
2012 break;
2013
2014 case 199: /* stvewx */
2015 op->type = MKOP(STORE_VMX, 0, 4);
2016 op->element_size = 4;
2017 break;
2018
2019 case 231: /* stvx */
2020 case 487: /* stvxl */
2021 op->type = MKOP(STORE_VMX, 0, 16);
2022 break;
2023 #endif /* CONFIG_ALTIVEC */
2024
2025 #ifdef __powerpc64__
2026 case 21: /* ldx */
2027 case 53: /* ldux */
2028 op->type = MKOP(LOAD, u, 8);
2029 break;
2030
2031 case 149: /* stdx */
2032 case 181: /* stdux */
2033 op->type = MKOP(STORE, u, 8);
2034 break;
2035 #endif
2036
2037 case 151: /* stwx */
2038 case 183: /* stwux */
2039 op->type = MKOP(STORE, u, 4);
2040 break;
2041
2042 case 215: /* stbx */
2043 case 247: /* stbux */
2044 op->type = MKOP(STORE, u, 1);
2045 break;
2046
2047 case 279: /* lhzx */
2048 case 311: /* lhzux */
2049 op->type = MKOP(LOAD, u, 2);
2050 break;
2051
2052 #ifdef __powerpc64__
2053 case 341: /* lwax */
2054 case 373: /* lwaux */
2055 op->type = MKOP(LOAD, SIGNEXT | u, 4);
2056 break;
2057 #endif
2058
2059 case 343: /* lhax */
2060 case 375: /* lhaux */
2061 op->type = MKOP(LOAD, SIGNEXT | u, 2);
2062 break;
2063
2064 case 407: /* sthx */
2065 case 439: /* sthux */
2066 op->type = MKOP(STORE, u, 2);
2067 break;
2068
2069 #ifdef __powerpc64__
2070 case 532: /* ldbrx */
2071 op->type = MKOP(LOAD, BYTEREV, 8);
2072 break;
2073
2074 #endif
2075 case 533: /* lswx */
2076 op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
2077 break;
2078
2079 case 534: /* lwbrx */
2080 op->type = MKOP(LOAD, BYTEREV, 4);
2081 break;
2082
2083 case 597: /* lswi */
2084 if (rb == 0)
2085 rb = 32; /* # bytes to load */
2086 op->type = MKOP(LOAD_MULTI, 0, rb);
2087 op->ea = ra ? regs->gpr[ra] : 0;
2088 break;
2089
2090 #ifdef CONFIG_PPC_FPU
2091 case 535: /* lfsx */
2092 case 567: /* lfsux */
2093 op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2094 break;
2095
2096 case 599: /* lfdx */
2097 case 631: /* lfdux */
2098 op->type = MKOP(LOAD_FP, u, 8);
2099 break;
2100
2101 case 663: /* stfsx */
2102 case 695: /* stfsux */
2103 op->type = MKOP(STORE_FP, u | FPCONV, 4);
2104 break;
2105
2106 case 727: /* stfdx */
2107 case 759: /* stfdux */
2108 op->type = MKOP(STORE_FP, u, 8);
2109 break;
2110
2111 #ifdef __powerpc64__
2112 case 791: /* lfdpx */
2113 op->type = MKOP(LOAD_FP, 0, 16);
2114 break;
2115
2116 case 855: /* lfiwax */
2117 op->type = MKOP(LOAD_FP, SIGNEXT, 4);
2118 break;
2119
2120 case 887: /* lfiwzx */
2121 op->type = MKOP(LOAD_FP, 0, 4);
2122 break;
2123
2124 case 919: /* stfdpx */
2125 op->type = MKOP(STORE_FP, 0, 16);
2126 break;
2127
2128 case 983: /* stfiwx */
2129 op->type = MKOP(STORE_FP, 0, 4);
2130 break;
2131 #endif /* __powerpc64 */
2132 #endif /* CONFIG_PPC_FPU */
2133
2134 #ifdef __powerpc64__
2135 case 660: /* stdbrx */
2136 op->type = MKOP(STORE, BYTEREV, 8);
2137 op->val = byterev_8(regs->gpr[rd]);
2138 break;
2139
2140 #endif
2141 case 661: /* stswx */
2142 op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
2143 break;
2144
2145 case 662: /* stwbrx */
2146 op->type = MKOP(STORE, BYTEREV, 4);
2147 op->val = byterev_4(regs->gpr[rd]);
2148 break;
2149
2150 case 725: /* stswi */
2151 if (rb == 0)
2152 rb = 32; /* # bytes to store */
2153 op->type = MKOP(STORE_MULTI, 0, rb);
2154 op->ea = ra ? regs->gpr[ra] : 0;
2155 break;
2156
2157 case 790: /* lhbrx */
2158 op->type = MKOP(LOAD, BYTEREV, 2);
2159 break;
2160
2161 case 918: /* sthbrx */
2162 op->type = MKOP(STORE, BYTEREV, 2);
2163 op->val = byterev_2(regs->gpr[rd]);
2164 break;
2165
2166 #ifdef CONFIG_VSX
2167 case 12: /* lxsiwzx */
2168 op->reg = rd | ((instr & 1) << 5);
2169 op->type = MKOP(LOAD_VSX, 0, 4);
2170 op->element_size = 8;
2171 break;
2172
2173 case 76: /* lxsiwax */
2174 op->reg = rd | ((instr & 1) << 5);
2175 op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
2176 op->element_size = 8;
2177 break;
2178
2179 case 140: /* stxsiwx */
2180 op->reg = rd | ((instr & 1) << 5);
2181 op->type = MKOP(STORE_VSX, 0, 4);
2182 op->element_size = 8;
2183 break;
2184
2185 case 268: /* lxvx */
2186 op->reg = rd | ((instr & 1) << 5);
2187 op->type = MKOP(LOAD_VSX, 0, 16);
2188 op->element_size = 16;
2189 op->vsx_flags = VSX_CHECK_VEC;
2190 break;
2191
2192 case 269: /* lxvl */
2193 case 301: { /* lxvll */
2194 int nb;
2195 op->reg = rd | ((instr & 1) << 5);
2196 op->ea = ra ? regs->gpr[ra] : 0;
2197 nb = regs->gpr[rb] & 0xff;
2198 if (nb > 16)
2199 nb = 16;
2200 op->type = MKOP(LOAD_VSX, 0, nb);
2201 op->element_size = 16;
2202 op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
2203 VSX_CHECK_VEC;
2204 break;
2205 }
2206 case 332: /* lxvdsx */
2207 op->reg = rd | ((instr & 1) << 5);
2208 op->type = MKOP(LOAD_VSX, 0, 8);
2209 op->element_size = 8;
2210 op->vsx_flags = VSX_SPLAT;
2211 break;
2212
2213 case 364: /* lxvwsx */
2214 op->reg = rd | ((instr & 1) << 5);
2215 op->type = MKOP(LOAD_VSX, 0, 4);
2216 op->element_size = 4;
2217 op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
2218 break;
2219
2220 case 396: /* stxvx */
2221 op->reg = rd | ((instr & 1) << 5);
2222 op->type = MKOP(STORE_VSX, 0, 16);
2223 op->element_size = 16;
2224 op->vsx_flags = VSX_CHECK_VEC;
2225 break;
2226
2227 case 397: /* stxvl */
2228 case 429: { /* stxvll */
2229 int nb;
2230 op->reg = rd | ((instr & 1) << 5);
2231 op->ea = ra ? regs->gpr[ra] : 0;
2232 nb = regs->gpr[rb] & 0xff;
2233 if (nb > 16)
2234 nb = 16;
2235 op->type = MKOP(STORE_VSX, 0, nb);
2236 op->element_size = 16;
2237 op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
2238 VSX_CHECK_VEC;
2239 break;
2240 }
2241 case 524: /* lxsspx */
2242 op->reg = rd | ((instr & 1) << 5);
2243 op->type = MKOP(LOAD_VSX, 0, 4);
2244 op->element_size = 8;
2245 op->vsx_flags = VSX_FPCONV;
2246 break;
2247
2248 case 588: /* lxsdx */
2249 op->reg = rd | ((instr & 1) << 5);
2250 op->type = MKOP(LOAD_VSX, 0, 8);
2251 op->element_size = 8;
2252 break;
2253
2254 case 652: /* stxsspx */
2255 op->reg = rd | ((instr & 1) << 5);
2256 op->type = MKOP(STORE_VSX, 0, 4);
2257 op->element_size = 8;
2258 op->vsx_flags = VSX_FPCONV;
2259 break;
2260
2261 case 716: /* stxsdx */
2262 op->reg = rd | ((instr & 1) << 5);
2263 op->type = MKOP(STORE_VSX, 0, 8);
2264 op->element_size = 8;
2265 break;
2266
2267 case 780: /* lxvw4x */
2268 op->reg = rd | ((instr & 1) << 5);
2269 op->type = MKOP(LOAD_VSX, 0, 16);
2270 op->element_size = 4;
2271 break;
2272
2273 case 781: /* lxsibzx */
2274 op->reg = rd | ((instr & 1) << 5);
2275 op->type = MKOP(LOAD_VSX, 0, 1);
2276 op->element_size = 8;
2277 op->vsx_flags = VSX_CHECK_VEC;
2278 break;
2279
2280 case 812: /* lxvh8x */
2281 op->reg = rd | ((instr & 1) << 5);
2282 op->type = MKOP(LOAD_VSX, 0, 16);
2283 op->element_size = 2;
2284 op->vsx_flags = VSX_CHECK_VEC;
2285 break;
2286
2287 case 813: /* lxsihzx */
2288 op->reg = rd | ((instr & 1) << 5);
2289 op->type = MKOP(LOAD_VSX, 0, 2);
2290 op->element_size = 8;
2291 op->vsx_flags = VSX_CHECK_VEC;
2292 break;
2293
2294 case 844: /* lxvd2x */
2295 op->reg = rd | ((instr & 1) << 5);
2296 op->type = MKOP(LOAD_VSX, 0, 16);
2297 op->element_size = 8;
2298 break;
2299
2300 case 876: /* lxvb16x */
2301 op->reg = rd | ((instr & 1) << 5);
2302 op->type = MKOP(LOAD_VSX, 0, 16);
2303 op->element_size = 1;
2304 op->vsx_flags = VSX_CHECK_VEC;
2305 break;
2306
2307 case 908: /* stxvw4x */
2308 op->reg = rd | ((instr & 1) << 5);
2309 op->type = MKOP(STORE_VSX, 0, 16);
2310 op->element_size = 4;
2311 break;
2312
2313 case 909: /* stxsibx */
2314 op->reg = rd | ((instr & 1) << 5);
2315 op->type = MKOP(STORE_VSX, 0, 1);
2316 op->element_size = 8;
2317 op->vsx_flags = VSX_CHECK_VEC;
2318 break;
2319
2320 case 940: /* stxvh8x */
2321 op->reg = rd | ((instr & 1) << 5);
2322 op->type = MKOP(STORE_VSX, 0, 16);
2323 op->element_size = 2;
2324 op->vsx_flags = VSX_CHECK_VEC;
2325 break;
2326
2327 case 941: /* stxsihx */
2328 op->reg = rd | ((instr & 1) << 5);
2329 op->type = MKOP(STORE_VSX, 0, 2);
2330 op->element_size = 8;
2331 op->vsx_flags = VSX_CHECK_VEC;
2332 break;
2333
2334 case 972: /* stxvd2x */
2335 op->reg = rd | ((instr & 1) << 5);
2336 op->type = MKOP(STORE_VSX, 0, 16);
2337 op->element_size = 8;
2338 break;
2339
2340 case 1004: /* stxvb16x */
2341 op->reg = rd | ((instr & 1) << 5);
2342 op->type = MKOP(STORE_VSX, 0, 16);
2343 op->element_size = 1;
2344 op->vsx_flags = VSX_CHECK_VEC;
2345 break;
2346
2347 #endif /* CONFIG_VSX */
2348 }
2349 break;
2350
2351 case 32: /* lwz */
2352 case 33: /* lwzu */
2353 op->type = MKOP(LOAD, u, 4);
2354 op->ea = dform_ea(instr, regs);
2355 break;
2356
2357 case 34: /* lbz */
2358 case 35: /* lbzu */
2359 op->type = MKOP(LOAD, u, 1);
2360 op->ea = dform_ea(instr, regs);
2361 break;
2362
2363 case 36: /* stw */
2364 case 37: /* stwu */
2365 op->type = MKOP(STORE, u, 4);
2366 op->ea = dform_ea(instr, regs);
2367 break;
2368
2369 case 38: /* stb */
2370 case 39: /* stbu */
2371 op->type = MKOP(STORE, u, 1);
2372 op->ea = dform_ea(instr, regs);
2373 break;
2374
2375 case 40: /* lhz */
2376 case 41: /* lhzu */
2377 op->type = MKOP(LOAD, u, 2);
2378 op->ea = dform_ea(instr, regs);
2379 break;
2380
2381 case 42: /* lha */
2382 case 43: /* lhau */
2383 op->type = MKOP(LOAD, SIGNEXT | u, 2);
2384 op->ea = dform_ea(instr, regs);
2385 break;
2386
2387 case 44: /* sth */
2388 case 45: /* sthu */
2389 op->type = MKOP(STORE, u, 2);
2390 op->ea = dform_ea(instr, regs);
2391 break;
2392
2393 case 46: /* lmw */
2394 if (ra >= rd)
2395 break; /* invalid form, ra in range to load */
2396 op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
2397 op->ea = dform_ea(instr, regs);
2398 break;
2399
2400 case 47: /* stmw */
2401 op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
2402 op->ea = dform_ea(instr, regs);
2403 break;
2404
2405 #ifdef CONFIG_PPC_FPU
2406 case 48: /* lfs */
2407 case 49: /* lfsu */
2408 op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2409 op->ea = dform_ea(instr, regs);
2410 break;
2411
2412 case 50: /* lfd */
2413 case 51: /* lfdu */
2414 op->type = MKOP(LOAD_FP, u, 8);
2415 op->ea = dform_ea(instr, regs);
2416 break;
2417
2418 case 52: /* stfs */
2419 case 53: /* stfsu */
2420 op->type = MKOP(STORE_FP, u | FPCONV, 4);
2421 op->ea = dform_ea(instr, regs);
2422 break;
2423
2424 case 54: /* stfd */
2425 case 55: /* stfdu */
2426 op->type = MKOP(STORE_FP, u, 8);
2427 op->ea = dform_ea(instr, regs);
2428 break;
2429 #endif
2430
2431 #ifdef __powerpc64__
2432 case 56: /* lq */
2433 if (!((rd & 1) || (rd == ra)))
2434 op->type = MKOP(LOAD, 0, 16);
2435 op->ea = dqform_ea(instr, regs);
2436 break;
2437 #endif
2438
2439 #ifdef CONFIG_VSX
2440 case 57: /* lfdp, lxsd, lxssp */
2441 op->ea = dsform_ea(instr, regs);
2442 switch (instr & 3) {
2443 case 0: /* lfdp */
2444 if (rd & 1)
2445 break; /* reg must be even */
2446 op->type = MKOP(LOAD_FP, 0, 16);
2447 break;
2448 case 2: /* lxsd */
2449 op->reg = rd + 32;
2450 op->type = MKOP(LOAD_VSX, 0, 8);
2451 op->element_size = 8;
2452 op->vsx_flags = VSX_CHECK_VEC;
2453 break;
2454 case 3: /* lxssp */
2455 op->reg = rd + 32;
2456 op->type = MKOP(LOAD_VSX, 0, 4);
2457 op->element_size = 8;
2458 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2459 break;
2460 }
2461 break;
2462 #endif /* CONFIG_VSX */
2463
2464 #ifdef __powerpc64__
2465 case 58: /* ld[u], lwa */
2466 op->ea = dsform_ea(instr, regs);
2467 switch (instr & 3) {
2468 case 0: /* ld */
2469 op->type = MKOP(LOAD, 0, 8);
2470 break;
2471 case 1: /* ldu */
2472 op->type = MKOP(LOAD, UPDATE, 8);
2473 break;
2474 case 2: /* lwa */
2475 op->type = MKOP(LOAD, SIGNEXT, 4);
2476 break;
2477 }
2478 break;
2479 #endif
2480
2481 #ifdef CONFIG_VSX
2482 case 61: /* stfdp, lxv, stxsd, stxssp, stxv */
2483 switch (instr & 7) {
2484 case 0: /* stfdp with LSB of DS field = 0 */
2485 case 4: /* stfdp with LSB of DS field = 1 */
2486 op->ea = dsform_ea(instr, regs);
2487 op->type = MKOP(STORE_FP, 0, 16);
2488 break;
2489
2490 case 1: /* lxv */
2491 op->ea = dqform_ea(instr, regs);
2492 if (instr & 8)
2493 op->reg = rd + 32;
2494 op->type = MKOP(LOAD_VSX, 0, 16);
2495 op->element_size = 16;
2496 op->vsx_flags = VSX_CHECK_VEC;
2497 break;
2498
2499 case 2: /* stxsd with LSB of DS field = 0 */
2500 case 6: /* stxsd with LSB of DS field = 1 */
2501 op->ea = dsform_ea(instr, regs);
2502 op->reg = rd + 32;
2503 op->type = MKOP(STORE_VSX, 0, 8);
2504 op->element_size = 8;
2505 op->vsx_flags = VSX_CHECK_VEC;
2506 break;
2507
2508 case 3: /* stxssp with LSB of DS field = 0 */
2509 case 7: /* stxssp with LSB of DS field = 1 */
2510 op->ea = dsform_ea(instr, regs);
2511 op->reg = rd + 32;
2512 op->type = MKOP(STORE_VSX, 0, 4);
2513 op->element_size = 8;
2514 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2515 break;
2516
2517 case 5: /* stxv */
2518 op->ea = dqform_ea(instr, regs);
2519 if (instr & 8)
2520 op->reg = rd + 32;
2521 op->type = MKOP(STORE_VSX, 0, 16);
2522 op->element_size = 16;
2523 op->vsx_flags = VSX_CHECK_VEC;
2524 break;
2525 }
2526 break;
2527 #endif /* CONFIG_VSX */
2528
2529 #ifdef __powerpc64__
2530 case 62: /* std[u] */
2531 op->ea = dsform_ea(instr, regs);
2532 switch (instr & 3) {
2533 case 0: /* std */
2534 op->type = MKOP(STORE, 0, 8);
2535 break;
2536 case 1: /* stdu */
2537 op->type = MKOP(STORE, UPDATE, 8);
2538 break;
2539 case 2: /* stq */
2540 if (!(rd & 1))
2541 op->type = MKOP(STORE, 0, 16);
2542 break;
2543 }
2544 break;
2545 #endif /* __powerpc64__ */
2546
2547 }
2548
2549 #ifdef CONFIG_VSX
2550 if ((GETTYPE(op->type) == LOAD_VSX ||
2551 GETTYPE(op->type) == STORE_VSX) &&
2552 !cpu_has_feature(CPU_FTR_VSX)) {
2553 return -1;
2554 }
2555 #endif /* CONFIG_VSX */
2556
2557 return 0;
2558
2559 logical_done:
2560 if (instr & 1)
2561 set_cr0(regs, op);
2562 logical_done_nocc:
2563 op->reg = ra;
2564 op->type |= SETREG;
2565 return 1;
2566
2567 arith_done:
2568 if (instr & 1)
2569 set_cr0(regs, op);
2570 compute_done:
2571 op->reg = rd;
2572 op->type |= SETREG;
2573 return 1;
2574
2575 priv:
2576 op->type = INTERRUPT | 0x700;
2577 op->val = SRR1_PROGPRIV;
2578 return 0;
2579
2580 trap:
2581 op->type = INTERRUPT | 0x700;
2582 op->val = SRR1_PROGTRAP;
2583 return 0;
2584 }
2585 EXPORT_SYMBOL_GPL(analyse_instr);
2586 NOKPROBE_SYMBOL(analyse_instr);
2587
2588 /*
2589 * For PPC32 we always use stwu with r1 to change the stack pointer.
2590 * So this emulated store may corrupt the exception frame, now we
2591 * have to provide the exception frame trampoline, which is pushed
2592 * below the kprobed function stack. So we only update gpr[1] but
2593 * don't emulate the real store operation. We will do real store
2594 * operation safely in exception return code by checking this flag.
2595 */
handle_stack_update(unsigned long ea,struct pt_regs * regs)2596 static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
2597 {
2598 #ifdef CONFIG_PPC32
2599 /*
2600 * Check if we will touch kernel stack overflow
2601 */
2602 if (ea - STACK_INT_FRAME_SIZE <= current->thread.ksp_limit) {
2603 printk(KERN_CRIT "Can't kprobe this since kernel stack would overflow.\n");
2604 return -EINVAL;
2605 }
2606 #endif /* CONFIG_PPC32 */
2607 /*
2608 * Check if we already set since that means we'll
2609 * lose the previous value.
2610 */
2611 WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
2612 set_thread_flag(TIF_EMULATE_STACK_STORE);
2613 return 0;
2614 }
2615
do_signext(unsigned long * valp,int size)2616 static nokprobe_inline void do_signext(unsigned long *valp, int size)
2617 {
2618 switch (size) {
2619 case 2:
2620 *valp = (signed short) *valp;
2621 break;
2622 case 4:
2623 *valp = (signed int) *valp;
2624 break;
2625 }
2626 }
2627
do_byterev(unsigned long * valp,int size)2628 static nokprobe_inline void do_byterev(unsigned long *valp, int size)
2629 {
2630 switch (size) {
2631 case 2:
2632 *valp = byterev_2(*valp);
2633 break;
2634 case 4:
2635 *valp = byterev_4(*valp);
2636 break;
2637 #ifdef __powerpc64__
2638 case 8:
2639 *valp = byterev_8(*valp);
2640 break;
2641 #endif
2642 }
2643 }
2644
2645 /*
2646 * Emulate an instruction that can be executed just by updating
2647 * fields in *regs.
2648 */
emulate_update_regs(struct pt_regs * regs,struct instruction_op * op)2649 void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
2650 {
2651 unsigned long next_pc;
2652
2653 next_pc = truncate_if_32bit(regs->msr, regs->nip + 4);
2654 switch (GETTYPE(op->type)) {
2655 case COMPUTE:
2656 if (op->type & SETREG)
2657 regs->gpr[op->reg] = op->val;
2658 if (op->type & SETCC)
2659 regs->ccr = op->ccval;
2660 if (op->type & SETXER)
2661 regs->xer = op->xerval;
2662 break;
2663
2664 case BRANCH:
2665 if (op->type & SETLK)
2666 regs->link = next_pc;
2667 if (op->type & BRTAKEN)
2668 next_pc = op->val;
2669 if (op->type & DECCTR)
2670 --regs->ctr;
2671 break;
2672
2673 case BARRIER:
2674 switch (op->type & BARRIER_MASK) {
2675 case BARRIER_SYNC:
2676 mb();
2677 break;
2678 case BARRIER_ISYNC:
2679 isync();
2680 break;
2681 case BARRIER_EIEIO:
2682 eieio();
2683 break;
2684 case BARRIER_LWSYNC:
2685 asm volatile("lwsync" : : : "memory");
2686 break;
2687 case BARRIER_PTESYNC:
2688 asm volatile("ptesync" : : : "memory");
2689 break;
2690 }
2691 break;
2692
2693 case MFSPR:
2694 switch (op->spr) {
2695 case SPRN_XER:
2696 regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
2697 break;
2698 case SPRN_LR:
2699 regs->gpr[op->reg] = regs->link;
2700 break;
2701 case SPRN_CTR:
2702 regs->gpr[op->reg] = regs->ctr;
2703 break;
2704 default:
2705 WARN_ON_ONCE(1);
2706 }
2707 break;
2708
2709 case MTSPR:
2710 switch (op->spr) {
2711 case SPRN_XER:
2712 regs->xer = op->val & 0xffffffffUL;
2713 break;
2714 case SPRN_LR:
2715 regs->link = op->val;
2716 break;
2717 case SPRN_CTR:
2718 regs->ctr = op->val;
2719 break;
2720 default:
2721 WARN_ON_ONCE(1);
2722 }
2723 break;
2724
2725 default:
2726 WARN_ON_ONCE(1);
2727 }
2728 regs->nip = next_pc;
2729 }
2730 NOKPROBE_SYMBOL(emulate_update_regs);
2731
2732 /*
2733 * Emulate a previously-analysed load or store instruction.
2734 * Return values are:
2735 * 0 = instruction emulated successfully
2736 * -EFAULT = address out of range or access faulted (regs->dar
2737 * contains the faulting address)
2738 * -EACCES = misaligned access, instruction requires alignment
2739 * -EINVAL = unknown operation in *op
2740 */
emulate_loadstore(struct pt_regs * regs,struct instruction_op * op)2741 int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
2742 {
2743 int err, size, type;
2744 int i, rd, nb;
2745 unsigned int cr;
2746 unsigned long val;
2747 unsigned long ea;
2748 bool cross_endian;
2749
2750 err = 0;
2751 size = GETSIZE(op->type);
2752 type = GETTYPE(op->type);
2753 cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
2754 ea = truncate_if_32bit(regs->msr, op->ea);
2755
2756 switch (type) {
2757 case LARX:
2758 if (ea & (size - 1))
2759 return -EACCES; /* can't handle misaligned */
2760 if (!address_ok(regs, ea, size))
2761 return -EFAULT;
2762 err = 0;
2763 val = 0;
2764 switch (size) {
2765 #ifdef __powerpc64__
2766 case 1:
2767 __get_user_asmx(val, ea, err, "lbarx");
2768 break;
2769 case 2:
2770 __get_user_asmx(val, ea, err, "lharx");
2771 break;
2772 #endif
2773 case 4:
2774 __get_user_asmx(val, ea, err, "lwarx");
2775 break;
2776 #ifdef __powerpc64__
2777 case 8:
2778 __get_user_asmx(val, ea, err, "ldarx");
2779 break;
2780 case 16:
2781 err = do_lqarx(ea, ®s->gpr[op->reg]);
2782 break;
2783 #endif
2784 default:
2785 return -EINVAL;
2786 }
2787 if (err) {
2788 regs->dar = ea;
2789 break;
2790 }
2791 if (size < 16)
2792 regs->gpr[op->reg] = val;
2793 break;
2794
2795 case STCX:
2796 if (ea & (size - 1))
2797 return -EACCES; /* can't handle misaligned */
2798 if (!address_ok(regs, ea, size))
2799 return -EFAULT;
2800 err = 0;
2801 switch (size) {
2802 #ifdef __powerpc64__
2803 case 1:
2804 __put_user_asmx(op->val, ea, err, "stbcx.", cr);
2805 break;
2806 case 2:
2807 __put_user_asmx(op->val, ea, err, "stbcx.", cr);
2808 break;
2809 #endif
2810 case 4:
2811 __put_user_asmx(op->val, ea, err, "stwcx.", cr);
2812 break;
2813 #ifdef __powerpc64__
2814 case 8:
2815 __put_user_asmx(op->val, ea, err, "stdcx.", cr);
2816 break;
2817 case 16:
2818 err = do_stqcx(ea, regs->gpr[op->reg],
2819 regs->gpr[op->reg + 1], &cr);
2820 break;
2821 #endif
2822 default:
2823 return -EINVAL;
2824 }
2825 if (!err)
2826 regs->ccr = (regs->ccr & 0x0fffffff) |
2827 (cr & 0xe0000000) |
2828 ((regs->xer >> 3) & 0x10000000);
2829 else
2830 regs->dar = ea;
2831 break;
2832
2833 case LOAD:
2834 #ifdef __powerpc64__
2835 if (size == 16) {
2836 err = emulate_lq(regs, ea, op->reg, cross_endian);
2837 break;
2838 }
2839 #endif
2840 err = read_mem(®s->gpr[op->reg], ea, size, regs);
2841 if (!err) {
2842 if (op->type & SIGNEXT)
2843 do_signext(®s->gpr[op->reg], size);
2844 if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
2845 do_byterev(®s->gpr[op->reg], size);
2846 }
2847 break;
2848
2849 #ifdef CONFIG_PPC_FPU
2850 case LOAD_FP:
2851 /*
2852 * If the instruction is in userspace, we can emulate it even
2853 * if the VMX state is not live, because we have the state
2854 * stored in the thread_struct. If the instruction is in
2855 * the kernel, we must not touch the state in the thread_struct.
2856 */
2857 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
2858 return 0;
2859 err = do_fp_load(op, ea, regs, cross_endian);
2860 break;
2861 #endif
2862 #ifdef CONFIG_ALTIVEC
2863 case LOAD_VMX:
2864 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
2865 return 0;
2866 err = do_vec_load(op->reg, ea, size, regs, cross_endian);
2867 break;
2868 #endif
2869 #ifdef CONFIG_VSX
2870 case LOAD_VSX: {
2871 unsigned long msrbit = MSR_VSX;
2872
2873 /*
2874 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
2875 * when the target of the instruction is a vector register.
2876 */
2877 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
2878 msrbit = MSR_VEC;
2879 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
2880 return 0;
2881 err = do_vsx_load(op, ea, regs, cross_endian);
2882 break;
2883 }
2884 #endif
2885 case LOAD_MULTI:
2886 if (!address_ok(regs, ea, size))
2887 return -EFAULT;
2888 rd = op->reg;
2889 for (i = 0; i < size; i += 4) {
2890 unsigned int v32 = 0;
2891
2892 nb = size - i;
2893 if (nb > 4)
2894 nb = 4;
2895 err = copy_mem_in((u8 *) &v32, ea, nb, regs);
2896 if (err)
2897 break;
2898 if (unlikely(cross_endian))
2899 v32 = byterev_4(v32);
2900 regs->gpr[rd] = v32;
2901 ea += 4;
2902 /* reg number wraps from 31 to 0 for lsw[ix] */
2903 rd = (rd + 1) & 0x1f;
2904 }
2905 break;
2906
2907 case STORE:
2908 #ifdef __powerpc64__
2909 if (size == 16) {
2910 err = emulate_stq(regs, ea, op->reg, cross_endian);
2911 break;
2912 }
2913 #endif
2914 if ((op->type & UPDATE) && size == sizeof(long) &&
2915 op->reg == 1 && op->update_reg == 1 &&
2916 !(regs->msr & MSR_PR) &&
2917 ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
2918 err = handle_stack_update(ea, regs);
2919 break;
2920 }
2921 if (unlikely(cross_endian))
2922 do_byterev(&op->val, size);
2923 err = write_mem(op->val, ea, size, regs);
2924 break;
2925
2926 #ifdef CONFIG_PPC_FPU
2927 case STORE_FP:
2928 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
2929 return 0;
2930 err = do_fp_store(op, ea, regs, cross_endian);
2931 break;
2932 #endif
2933 #ifdef CONFIG_ALTIVEC
2934 case STORE_VMX:
2935 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
2936 return 0;
2937 err = do_vec_store(op->reg, ea, size, regs, cross_endian);
2938 break;
2939 #endif
2940 #ifdef CONFIG_VSX
2941 case STORE_VSX: {
2942 unsigned long msrbit = MSR_VSX;
2943
2944 /*
2945 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
2946 * when the target of the instruction is a vector register.
2947 */
2948 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
2949 msrbit = MSR_VEC;
2950 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
2951 return 0;
2952 err = do_vsx_store(op, ea, regs, cross_endian);
2953 break;
2954 }
2955 #endif
2956 case STORE_MULTI:
2957 if (!address_ok(regs, ea, size))
2958 return -EFAULT;
2959 rd = op->reg;
2960 for (i = 0; i < size; i += 4) {
2961 unsigned int v32 = regs->gpr[rd];
2962
2963 nb = size - i;
2964 if (nb > 4)
2965 nb = 4;
2966 if (unlikely(cross_endian))
2967 v32 = byterev_4(v32);
2968 err = copy_mem_out((u8 *) &v32, ea, nb, regs);
2969 if (err)
2970 break;
2971 ea += 4;
2972 /* reg number wraps from 31 to 0 for stsw[ix] */
2973 rd = (rd + 1) & 0x1f;
2974 }
2975 break;
2976
2977 default:
2978 return -EINVAL;
2979 }
2980
2981 if (err)
2982 return err;
2983
2984 if (op->type & UPDATE)
2985 regs->gpr[op->update_reg] = op->ea;
2986
2987 return 0;
2988 }
2989 NOKPROBE_SYMBOL(emulate_loadstore);
2990
2991 /*
2992 * Emulate instructions that cause a transfer of control,
2993 * loads and stores, and a few other instructions.
2994 * Returns 1 if the step was emulated, 0 if not,
2995 * or -1 if the instruction is one that should not be stepped,
2996 * such as an rfid, or a mtmsrd that would clear MSR_RI.
2997 */
emulate_step(struct pt_regs * regs,unsigned int instr)2998 int emulate_step(struct pt_regs *regs, unsigned int instr)
2999 {
3000 struct instruction_op op;
3001 int r, err, type;
3002 unsigned long val;
3003 unsigned long ea;
3004
3005 r = analyse_instr(&op, regs, instr);
3006 if (r < 0)
3007 return r;
3008 if (r > 0) {
3009 emulate_update_regs(regs, &op);
3010 return 1;
3011 }
3012
3013 err = 0;
3014 type = GETTYPE(op.type);
3015
3016 if (OP_IS_LOAD_STORE(type)) {
3017 err = emulate_loadstore(regs, &op);
3018 if (err)
3019 return 0;
3020 goto instr_done;
3021 }
3022
3023 switch (type) {
3024 case CACHEOP:
3025 ea = truncate_if_32bit(regs->msr, op.ea);
3026 if (!address_ok(regs, ea, 8))
3027 return 0;
3028 switch (op.type & CACHEOP_MASK) {
3029 case DCBST:
3030 __cacheop_user_asmx(ea, err, "dcbst");
3031 break;
3032 case DCBF:
3033 __cacheop_user_asmx(ea, err, "dcbf");
3034 break;
3035 case DCBTST:
3036 if (op.reg == 0)
3037 prefetchw((void *) ea);
3038 break;
3039 case DCBT:
3040 if (op.reg == 0)
3041 prefetch((void *) ea);
3042 break;
3043 case ICBI:
3044 __cacheop_user_asmx(ea, err, "icbi");
3045 break;
3046 case DCBZ:
3047 err = emulate_dcbz(ea, regs);
3048 break;
3049 }
3050 if (err) {
3051 regs->dar = ea;
3052 return 0;
3053 }
3054 goto instr_done;
3055
3056 case MFMSR:
3057 regs->gpr[op.reg] = regs->msr & MSR_MASK;
3058 goto instr_done;
3059
3060 case MTMSR:
3061 val = regs->gpr[op.reg];
3062 if ((val & MSR_RI) == 0)
3063 /* can't step mtmsr[d] that would clear MSR_RI */
3064 return -1;
3065 /* here op.val is the mask of bits to change */
3066 regs->msr = (regs->msr & ~op.val) | (val & op.val);
3067 goto instr_done;
3068
3069 #ifdef CONFIG_PPC64
3070 case SYSCALL: /* sc */
3071 /*
3072 * N.B. this uses knowledge about how the syscall
3073 * entry code works. If that is changed, this will
3074 * need to be changed also.
3075 */
3076 if (regs->gpr[0] == 0x1ebe &&
3077 cpu_has_feature(CPU_FTR_REAL_LE)) {
3078 regs->msr ^= MSR_LE;
3079 goto instr_done;
3080 }
3081 regs->gpr[9] = regs->gpr[13];
3082 regs->gpr[10] = MSR_KERNEL;
3083 regs->gpr[11] = regs->nip + 4;
3084 regs->gpr[12] = regs->msr & MSR_MASK;
3085 regs->gpr[13] = (unsigned long) get_paca();
3086 regs->nip = (unsigned long) &system_call_common;
3087 regs->msr = MSR_KERNEL;
3088 return 1;
3089
3090 case RFI:
3091 return -1;
3092 #endif
3093 }
3094 return 0;
3095
3096 instr_done:
3097 regs->nip = truncate_if_32bit(regs->msr, regs->nip + 4);
3098 return 1;
3099 }
3100 NOKPROBE_SYMBOL(emulate_step);
3101