1 /*
2 * Kernel Probes (KProbes)
3 * arch/mips/kernel/kprobes.c
4 *
5 * Copyright 2006 Sony Corp.
6 * Copyright 2010 Cavium Networks
7 *
8 * Some portions copied from the powerpc version.
9 *
10 * Copyright (C) IBM Corporation, 2002, 2004
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; version 2 of the License.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 */
25
26 #include <linux/kprobes.h>
27 #include <linux/preempt.h>
28 #include <linux/uaccess.h>
29 #include <linux/kdebug.h>
30 #include <linux/slab.h>
31
32 #include <asm/ptrace.h>
33 #include <asm/branch.h>
34 #include <asm/break.h>
35
36 #include "probes-common.h"
37
38 static const union mips_instruction breakpoint_insn = {
39 .b_format = {
40 .opcode = spec_op,
41 .code = BRK_KPROBE_BP,
42 .func = break_op
43 }
44 };
45
46 static const union mips_instruction breakpoint2_insn = {
47 .b_format = {
48 .opcode = spec_op,
49 .code = BRK_KPROBE_SSTEPBP,
50 .func = break_op
51 }
52 };
53
54 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
55 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
56
insn_has_delayslot(union mips_instruction insn)57 static int __kprobes insn_has_delayslot(union mips_instruction insn)
58 {
59 return __insn_has_delay_slot(insn);
60 }
61
62 /*
63 * insn_has_ll_or_sc function checks whether instruction is ll or sc
64 * one; putting breakpoint on top of atomic ll/sc pair is bad idea;
65 * so we need to prevent it and refuse kprobes insertion for such
66 * instructions; cannot do much about breakpoint in the middle of
67 * ll/sc pair; it is upto user to avoid those places
68 */
insn_has_ll_or_sc(union mips_instruction insn)69 static int __kprobes insn_has_ll_or_sc(union mips_instruction insn)
70 {
71 int ret = 0;
72
73 switch (insn.i_format.opcode) {
74 case ll_op:
75 case lld_op:
76 case sc_op:
77 case scd_op:
78 ret = 1;
79 break;
80 default:
81 break;
82 }
83 return ret;
84 }
85
arch_prepare_kprobe(struct kprobe * p)86 int __kprobes arch_prepare_kprobe(struct kprobe *p)
87 {
88 union mips_instruction insn;
89 union mips_instruction prev_insn;
90 int ret = 0;
91
92 insn = p->addr[0];
93
94 if (insn_has_ll_or_sc(insn)) {
95 pr_notice("Kprobes for ll and sc instructions are not"
96 "supported\n");
97 ret = -EINVAL;
98 goto out;
99 }
100
101 if ((probe_kernel_read(&prev_insn, p->addr - 1,
102 sizeof(mips_instruction)) == 0) &&
103 insn_has_delayslot(prev_insn)) {
104 pr_notice("Kprobes for branch delayslot are not supported\n");
105 ret = -EINVAL;
106 goto out;
107 }
108
109 if (__insn_is_compact_branch(insn)) {
110 pr_notice("Kprobes for compact branches are not supported\n");
111 ret = -EINVAL;
112 goto out;
113 }
114
115 /* insn: must be on special executable page on mips. */
116 p->ainsn.insn = get_insn_slot();
117 if (!p->ainsn.insn) {
118 ret = -ENOMEM;
119 goto out;
120 }
121
122 /*
123 * In the kprobe->ainsn.insn[] array we store the original
124 * instruction at index zero and a break trap instruction at
125 * index one.
126 *
127 * On MIPS arch if the instruction at probed address is a
128 * branch instruction, we need to execute the instruction at
129 * Branch Delayslot (BD) at the time of probe hit. As MIPS also
130 * doesn't have single stepping support, the BD instruction can
131 * not be executed in-line and it would be executed on SSOL slot
132 * using a normal breakpoint instruction in the next slot.
133 * So, read the instruction and save it for later execution.
134 */
135 if (insn_has_delayslot(insn))
136 memcpy(&p->ainsn.insn[0], p->addr + 1, sizeof(kprobe_opcode_t));
137 else
138 memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
139
140 p->ainsn.insn[1] = breakpoint2_insn;
141 p->opcode = *p->addr;
142
143 out:
144 return ret;
145 }
146
arch_arm_kprobe(struct kprobe * p)147 void __kprobes arch_arm_kprobe(struct kprobe *p)
148 {
149 *p->addr = breakpoint_insn;
150 flush_insn_slot(p);
151 }
152
arch_disarm_kprobe(struct kprobe * p)153 void __kprobes arch_disarm_kprobe(struct kprobe *p)
154 {
155 *p->addr = p->opcode;
156 flush_insn_slot(p);
157 }
158
arch_remove_kprobe(struct kprobe * p)159 void __kprobes arch_remove_kprobe(struct kprobe *p)
160 {
161 if (p->ainsn.insn) {
162 free_insn_slot(p->ainsn.insn, 0);
163 p->ainsn.insn = NULL;
164 }
165 }
166
save_previous_kprobe(struct kprobe_ctlblk * kcb)167 static void save_previous_kprobe(struct kprobe_ctlblk *kcb)
168 {
169 kcb->prev_kprobe.kp = kprobe_running();
170 kcb->prev_kprobe.status = kcb->kprobe_status;
171 kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR;
172 kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR;
173 kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc;
174 }
175
restore_previous_kprobe(struct kprobe_ctlblk * kcb)176 static void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
177 {
178 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
179 kcb->kprobe_status = kcb->prev_kprobe.status;
180 kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR;
181 kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR;
182 kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc;
183 }
184
set_current_kprobe(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)185 static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
186 struct kprobe_ctlblk *kcb)
187 {
188 __this_cpu_write(current_kprobe, p);
189 kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE);
190 kcb->kprobe_saved_epc = regs->cp0_epc;
191 }
192
193 /**
194 * evaluate_branch_instrucion -
195 *
196 * Evaluate the branch instruction at probed address during probe hit. The
197 * result of evaluation would be the updated epc. The insturction in delayslot
198 * would actually be single stepped using a normal breakpoint) on SSOL slot.
199 *
200 * The result is also saved in the kprobe control block for later use,
201 * in case we need to execute the delayslot instruction. The latter will be
202 * false for NOP instruction in dealyslot and the branch-likely instructions
203 * when the branch is taken. And for those cases we set a flag as
204 * SKIP_DELAYSLOT in the kprobe control block
205 */
evaluate_branch_instruction(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)206 static int evaluate_branch_instruction(struct kprobe *p, struct pt_regs *regs,
207 struct kprobe_ctlblk *kcb)
208 {
209 union mips_instruction insn = p->opcode;
210 long epc;
211 int ret = 0;
212
213 epc = regs->cp0_epc;
214 if (epc & 3)
215 goto unaligned;
216
217 if (p->ainsn.insn->word == 0)
218 kcb->flags |= SKIP_DELAYSLOT;
219 else
220 kcb->flags &= ~SKIP_DELAYSLOT;
221
222 ret = __compute_return_epc_for_insn(regs, insn);
223 if (ret < 0)
224 return ret;
225
226 if (ret == BRANCH_LIKELY_TAKEN)
227 kcb->flags |= SKIP_DELAYSLOT;
228
229 kcb->target_epc = regs->cp0_epc;
230
231 return 0;
232
233 unaligned:
234 pr_notice("%s: unaligned epc - sending SIGBUS.\n", current->comm);
235 force_sig(SIGBUS, current);
236 return -EFAULT;
237
238 }
239
prepare_singlestep(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)240 static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
241 struct kprobe_ctlblk *kcb)
242 {
243 int ret = 0;
244
245 regs->cp0_status &= ~ST0_IE;
246
247 /* single step inline if the instruction is a break */
248 if (p->opcode.word == breakpoint_insn.word ||
249 p->opcode.word == breakpoint2_insn.word)
250 regs->cp0_epc = (unsigned long)p->addr;
251 else if (insn_has_delayslot(p->opcode)) {
252 ret = evaluate_branch_instruction(p, regs, kcb);
253 if (ret < 0) {
254 pr_notice("Kprobes: Error in evaluating branch\n");
255 return;
256 }
257 }
258 regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
259 }
260
261 /*
262 * Called after single-stepping. p->addr is the address of the
263 * instruction whose first byte has been replaced by the "break 0"
264 * instruction. To avoid the SMP problems that can occur when we
265 * temporarily put back the original opcode to single-step, we
266 * single-stepped a copy of the instruction. The address of this
267 * copy is p->ainsn.insn.
268 *
269 * This function prepares to return from the post-single-step
270 * breakpoint trap. In case of branch instructions, the target
271 * epc to be restored.
272 */
resume_execution(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)273 static void __kprobes resume_execution(struct kprobe *p,
274 struct pt_regs *regs,
275 struct kprobe_ctlblk *kcb)
276 {
277 if (insn_has_delayslot(p->opcode))
278 regs->cp0_epc = kcb->target_epc;
279 else {
280 unsigned long orig_epc = kcb->kprobe_saved_epc;
281 regs->cp0_epc = orig_epc + 4;
282 }
283 }
284
kprobe_handler(struct pt_regs * regs)285 static int __kprobes kprobe_handler(struct pt_regs *regs)
286 {
287 struct kprobe *p;
288 int ret = 0;
289 kprobe_opcode_t *addr;
290 struct kprobe_ctlblk *kcb;
291
292 addr = (kprobe_opcode_t *) regs->cp0_epc;
293
294 /*
295 * We don't want to be preempted for the entire
296 * duration of kprobe processing
297 */
298 preempt_disable();
299 kcb = get_kprobe_ctlblk();
300
301 /* Check we're not actually recursing */
302 if (kprobe_running()) {
303 p = get_kprobe(addr);
304 if (p) {
305 if (kcb->kprobe_status == KPROBE_HIT_SS &&
306 p->ainsn.insn->word == breakpoint_insn.word) {
307 regs->cp0_status &= ~ST0_IE;
308 regs->cp0_status |= kcb->kprobe_saved_SR;
309 goto no_kprobe;
310 }
311 /*
312 * We have reentered the kprobe_handler(), since
313 * another probe was hit while within the handler.
314 * We here save the original kprobes variables and
315 * just single step on the instruction of the new probe
316 * without calling any user handlers.
317 */
318 save_previous_kprobe(kcb);
319 set_current_kprobe(p, regs, kcb);
320 kprobes_inc_nmissed_count(p);
321 prepare_singlestep(p, regs, kcb);
322 kcb->kprobe_status = KPROBE_REENTER;
323 if (kcb->flags & SKIP_DELAYSLOT) {
324 resume_execution(p, regs, kcb);
325 restore_previous_kprobe(kcb);
326 preempt_enable_no_resched();
327 }
328 return 1;
329 } else if (addr->word != breakpoint_insn.word) {
330 /*
331 * The breakpoint instruction was removed by
332 * another cpu right after we hit, no further
333 * handling of this interrupt is appropriate
334 */
335 ret = 1;
336 }
337 goto no_kprobe;
338 }
339
340 p = get_kprobe(addr);
341 if (!p) {
342 if (addr->word != breakpoint_insn.word) {
343 /*
344 * The breakpoint instruction was removed right
345 * after we hit it. Another cpu has removed
346 * either a probepoint or a debugger breakpoint
347 * at this address. In either case, no further
348 * handling of this interrupt is appropriate.
349 */
350 ret = 1;
351 }
352 /* Not one of ours: let kernel handle it */
353 goto no_kprobe;
354 }
355
356 set_current_kprobe(p, regs, kcb);
357 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
358
359 if (p->pre_handler && p->pre_handler(p, regs)) {
360 /* handler has already set things up, so skip ss setup */
361 reset_current_kprobe();
362 preempt_enable_no_resched();
363 return 1;
364 }
365
366 prepare_singlestep(p, regs, kcb);
367 if (kcb->flags & SKIP_DELAYSLOT) {
368 kcb->kprobe_status = KPROBE_HIT_SSDONE;
369 if (p->post_handler)
370 p->post_handler(p, regs, 0);
371 resume_execution(p, regs, kcb);
372 preempt_enable_no_resched();
373 } else
374 kcb->kprobe_status = KPROBE_HIT_SS;
375
376 return 1;
377
378 no_kprobe:
379 preempt_enable_no_resched();
380 return ret;
381
382 }
383
post_kprobe_handler(struct pt_regs * regs)384 static inline int post_kprobe_handler(struct pt_regs *regs)
385 {
386 struct kprobe *cur = kprobe_running();
387 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
388
389 if (!cur)
390 return 0;
391
392 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
393 kcb->kprobe_status = KPROBE_HIT_SSDONE;
394 cur->post_handler(cur, regs, 0);
395 }
396
397 resume_execution(cur, regs, kcb);
398
399 regs->cp0_status |= kcb->kprobe_saved_SR;
400
401 /* Restore back the original saved kprobes variables and continue. */
402 if (kcb->kprobe_status == KPROBE_REENTER) {
403 restore_previous_kprobe(kcb);
404 goto out;
405 }
406 reset_current_kprobe();
407 out:
408 preempt_enable_no_resched();
409
410 return 1;
411 }
412
kprobe_fault_handler(struct pt_regs * regs,int trapnr)413 static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
414 {
415 struct kprobe *cur = kprobe_running();
416 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
417
418 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
419 return 1;
420
421 if (kcb->kprobe_status & KPROBE_HIT_SS) {
422 resume_execution(cur, regs, kcb);
423 regs->cp0_status |= kcb->kprobe_old_SR;
424
425 reset_current_kprobe();
426 preempt_enable_no_resched();
427 }
428 return 0;
429 }
430
431 /*
432 * Wrapper routine for handling exceptions.
433 */
kprobe_exceptions_notify(struct notifier_block * self,unsigned long val,void * data)434 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
435 unsigned long val, void *data)
436 {
437
438 struct die_args *args = (struct die_args *)data;
439 int ret = NOTIFY_DONE;
440
441 switch (val) {
442 case DIE_BREAK:
443 if (kprobe_handler(args->regs))
444 ret = NOTIFY_STOP;
445 break;
446 case DIE_SSTEPBP:
447 if (post_kprobe_handler(args->regs))
448 ret = NOTIFY_STOP;
449 break;
450
451 case DIE_PAGE_FAULT:
452 /* kprobe_running() needs smp_processor_id() */
453 preempt_disable();
454
455 if (kprobe_running()
456 && kprobe_fault_handler(args->regs, args->trapnr))
457 ret = NOTIFY_STOP;
458 preempt_enable();
459 break;
460 default:
461 break;
462 }
463 return ret;
464 }
465
466 /*
467 * Function return probe trampoline:
468 * - init_kprobes() establishes a probepoint here
469 * - When the probed function returns, this probe causes the
470 * handlers to fire
471 */
kretprobe_trampoline_holder(void)472 static void __used kretprobe_trampoline_holder(void)
473 {
474 asm volatile(
475 ".set push\n\t"
476 /* Keep the assembler from reordering and placing JR here. */
477 ".set noreorder\n\t"
478 "nop\n\t"
479 ".global kretprobe_trampoline\n"
480 "kretprobe_trampoline:\n\t"
481 "nop\n\t"
482 ".set pop"
483 : : : "memory");
484 }
485
486 void kretprobe_trampoline(void);
487
arch_prepare_kretprobe(struct kretprobe_instance * ri,struct pt_regs * regs)488 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
489 struct pt_regs *regs)
490 {
491 ri->ret_addr = (kprobe_opcode_t *) regs->regs[31];
492
493 /* Replace the return addr with trampoline addr */
494 regs->regs[31] = (unsigned long)kretprobe_trampoline;
495 }
496
497 /*
498 * Called when the probe at kretprobe trampoline is hit
499 */
trampoline_probe_handler(struct kprobe * p,struct pt_regs * regs)500 static int __kprobes trampoline_probe_handler(struct kprobe *p,
501 struct pt_regs *regs)
502 {
503 struct kretprobe_instance *ri = NULL;
504 struct hlist_head *head, empty_rp;
505 struct hlist_node *tmp;
506 unsigned long flags, orig_ret_address = 0;
507 unsigned long trampoline_address = (unsigned long)kretprobe_trampoline;
508
509 INIT_HLIST_HEAD(&empty_rp);
510 kretprobe_hash_lock(current, &head, &flags);
511
512 /*
513 * It is possible to have multiple instances associated with a given
514 * task either because an multiple functions in the call path
515 * have a return probe installed on them, and/or more than one return
516 * return probe was registered for a target function.
517 *
518 * We can handle this because:
519 * - instances are always inserted at the head of the list
520 * - when multiple return probes are registered for the same
521 * function, the first instance's ret_addr will point to the
522 * real return address, and all the rest will point to
523 * kretprobe_trampoline
524 */
525 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
526 if (ri->task != current)
527 /* another task is sharing our hash bucket */
528 continue;
529
530 if (ri->rp && ri->rp->handler)
531 ri->rp->handler(ri, regs);
532
533 orig_ret_address = (unsigned long)ri->ret_addr;
534 recycle_rp_inst(ri, &empty_rp);
535
536 if (orig_ret_address != trampoline_address)
537 /*
538 * This is the real return address. Any other
539 * instances associated with this task are for
540 * other calls deeper on the call stack
541 */
542 break;
543 }
544
545 kretprobe_assert(ri, orig_ret_address, trampoline_address);
546 instruction_pointer(regs) = orig_ret_address;
547
548 kretprobe_hash_unlock(current, &flags);
549
550 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
551 hlist_del(&ri->hlist);
552 kfree(ri);
553 }
554 /*
555 * By returning a non-zero value, we are telling
556 * kprobe_handler() that we don't want the post_handler
557 * to run (and have re-enabled preemption)
558 */
559 return 1;
560 }
561
arch_trampoline_kprobe(struct kprobe * p)562 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
563 {
564 if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline)
565 return 1;
566
567 return 0;
568 }
569
570 static struct kprobe trampoline_p = {
571 .addr = (kprobe_opcode_t *)kretprobe_trampoline,
572 .pre_handler = trampoline_probe_handler
573 };
574
arch_init_kprobes(void)575 int __init arch_init_kprobes(void)
576 {
577 return register_kprobe(&trampoline_p);
578 }
579