1 /*
2  * Copyright (C) 2015 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #include <linux/arm-smccc.h>
19 #include <linux/types.h>
20 #include <linux/jump_label.h>
21 #include <uapi/linux/psci.h>
22 
23 #include <kvm/arm_psci.h>
24 
25 #include <asm/cpufeature.h>
26 #include <asm/kvm_asm.h>
27 #include <asm/kvm_emulate.h>
28 #include <asm/kvm_host.h>
29 #include <asm/kvm_hyp.h>
30 #include <asm/kvm_mmu.h>
31 #include <asm/fpsimd.h>
32 #include <asm/debug-monitors.h>
33 #include <asm/processor.h>
34 #include <asm/thread_info.h>
35 
36 /* Check whether the FP regs were dirtied while in the host-side run loop: */
update_fp_enabled(struct kvm_vcpu * vcpu)37 static bool __hyp_text update_fp_enabled(struct kvm_vcpu *vcpu)
38 {
39 	if (vcpu->arch.host_thread_info->flags & _TIF_FOREIGN_FPSTATE)
40 		vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED |
41 				      KVM_ARM64_FP_HOST);
42 
43 	return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED);
44 }
45 
46 /* Save the 32-bit only FPSIMD system register state */
__fpsimd_save_fpexc32(struct kvm_vcpu * vcpu)47 static void __hyp_text __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
48 {
49 	if (!vcpu_el1_is_32bit(vcpu))
50 		return;
51 
52 	vcpu->arch.ctxt.sys_regs[FPEXC32_EL2] = read_sysreg(fpexc32_el2);
53 }
54 
__activate_traps_fpsimd32(struct kvm_vcpu * vcpu)55 static void __hyp_text __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
56 {
57 	/*
58 	 * We are about to set CPTR_EL2.TFP to trap all floating point
59 	 * register accesses to EL2, however, the ARM ARM clearly states that
60 	 * traps are only taken to EL2 if the operation would not otherwise
61 	 * trap to EL1.  Therefore, always make sure that for 32-bit guests,
62 	 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
63 	 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
64 	 * it will cause an exception.
65 	 */
66 	if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
67 		write_sysreg(1 << 30, fpexc32_el2);
68 		isb();
69 	}
70 }
71 
__activate_traps_common(struct kvm_vcpu * vcpu)72 static void __hyp_text __activate_traps_common(struct kvm_vcpu *vcpu)
73 {
74 	/* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
75 	write_sysreg(1 << 15, hstr_el2);
76 
77 	/*
78 	 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
79 	 * PMSELR_EL0 to make sure it never contains the cycle
80 	 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
81 	 * EL1 instead of being trapped to EL2.
82 	 */
83 	write_sysreg(0, pmselr_el0);
84 	write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
85 	write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
86 }
87 
__deactivate_traps_common(void)88 static void __hyp_text __deactivate_traps_common(void)
89 {
90 	write_sysreg(0, hstr_el2);
91 	write_sysreg(0, pmuserenr_el0);
92 }
93 
activate_traps_vhe(struct kvm_vcpu * vcpu)94 static void activate_traps_vhe(struct kvm_vcpu *vcpu)
95 {
96 	u64 val;
97 
98 	val = read_sysreg(cpacr_el1);
99 	val |= CPACR_EL1_TTA;
100 	val &= ~CPACR_EL1_ZEN;
101 	if (!update_fp_enabled(vcpu)) {
102 		val &= ~CPACR_EL1_FPEN;
103 		__activate_traps_fpsimd32(vcpu);
104 	}
105 
106 	write_sysreg(val, cpacr_el1);
107 
108 	write_sysreg(kvm_get_hyp_vector(), vbar_el1);
109 }
110 
__activate_traps_nvhe(struct kvm_vcpu * vcpu)111 static void __hyp_text __activate_traps_nvhe(struct kvm_vcpu *vcpu)
112 {
113 	u64 val;
114 
115 	__activate_traps_common(vcpu);
116 
117 	val = CPTR_EL2_DEFAULT;
118 	val |= CPTR_EL2_TTA | CPTR_EL2_TZ;
119 	if (!update_fp_enabled(vcpu)) {
120 		val |= CPTR_EL2_TFP;
121 		__activate_traps_fpsimd32(vcpu);
122 	}
123 
124 	write_sysreg(val, cptr_el2);
125 }
126 
__activate_traps(struct kvm_vcpu * vcpu)127 static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
128 {
129 	u64 hcr = vcpu->arch.hcr_el2;
130 
131 	write_sysreg(hcr, hcr_el2);
132 
133 	if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
134 		write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
135 
136 	if (has_vhe())
137 		activate_traps_vhe(vcpu);
138 	else
139 		__activate_traps_nvhe(vcpu);
140 }
141 
deactivate_traps_vhe(void)142 static void deactivate_traps_vhe(void)
143 {
144 	extern char vectors[];	/* kernel exception vectors */
145 	write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
146 	write_sysreg(CPACR_EL1_DEFAULT, cpacr_el1);
147 	write_sysreg(vectors, vbar_el1);
148 }
149 
__deactivate_traps_nvhe(void)150 static void __hyp_text __deactivate_traps_nvhe(void)
151 {
152 	u64 mdcr_el2 = read_sysreg(mdcr_el2);
153 
154 	__deactivate_traps_common();
155 
156 	mdcr_el2 &= MDCR_EL2_HPMN_MASK;
157 	mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;
158 
159 	write_sysreg(mdcr_el2, mdcr_el2);
160 	write_sysreg(HCR_RW, hcr_el2);
161 	write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
162 }
163 
__deactivate_traps(struct kvm_vcpu * vcpu)164 static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
165 {
166 	/*
167 	 * If we pended a virtual abort, preserve it until it gets
168 	 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
169 	 * the crucial bit is "On taking a vSError interrupt,
170 	 * HCR_EL2.VSE is cleared to 0."
171 	 */
172 	if (vcpu->arch.hcr_el2 & HCR_VSE)
173 		vcpu->arch.hcr_el2 = read_sysreg(hcr_el2);
174 
175 	if (has_vhe())
176 		deactivate_traps_vhe();
177 	else
178 		__deactivate_traps_nvhe();
179 }
180 
activate_traps_vhe_load(struct kvm_vcpu * vcpu)181 void activate_traps_vhe_load(struct kvm_vcpu *vcpu)
182 {
183 	__activate_traps_common(vcpu);
184 }
185 
deactivate_traps_vhe_put(void)186 void deactivate_traps_vhe_put(void)
187 {
188 	u64 mdcr_el2 = read_sysreg(mdcr_el2);
189 
190 	mdcr_el2 &= MDCR_EL2_HPMN_MASK |
191 		    MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT |
192 		    MDCR_EL2_TPMS;
193 
194 	write_sysreg(mdcr_el2, mdcr_el2);
195 
196 	__deactivate_traps_common();
197 }
198 
__activate_vm(struct kvm * kvm)199 static void __hyp_text __activate_vm(struct kvm *kvm)
200 {
201 	write_sysreg(kvm->arch.vttbr, vttbr_el2);
202 }
203 
__deactivate_vm(struct kvm_vcpu * vcpu)204 static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
205 {
206 	write_sysreg(0, vttbr_el2);
207 }
208 
209 /* Save VGICv3 state on non-VHE systems */
__hyp_vgic_save_state(struct kvm_vcpu * vcpu)210 static void __hyp_text __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
211 {
212 	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
213 		__vgic_v3_save_state(vcpu);
214 		__vgic_v3_deactivate_traps(vcpu);
215 	}
216 }
217 
218 /* Restore VGICv3 state on non_VEH systems */
__hyp_vgic_restore_state(struct kvm_vcpu * vcpu)219 static void __hyp_text __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
220 {
221 	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
222 		__vgic_v3_activate_traps(vcpu);
223 		__vgic_v3_restore_state(vcpu);
224 	}
225 }
226 
__true_value(void)227 static bool __hyp_text __true_value(void)
228 {
229 	return true;
230 }
231 
__false_value(void)232 static bool __hyp_text __false_value(void)
233 {
234 	return false;
235 }
236 
237 static hyp_alternate_select(__check_arm_834220,
238 			    __false_value, __true_value,
239 			    ARM64_WORKAROUND_834220);
240 
__translate_far_to_hpfar(u64 far,u64 * hpfar)241 static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
242 {
243 	u64 par, tmp;
244 
245 	/*
246 	 * Resolve the IPA the hard way using the guest VA.
247 	 *
248 	 * Stage-1 translation already validated the memory access
249 	 * rights. As such, we can use the EL1 translation regime, and
250 	 * don't have to distinguish between EL0 and EL1 access.
251 	 *
252 	 * We do need to save/restore PAR_EL1 though, as we haven't
253 	 * saved the guest context yet, and we may return early...
254 	 */
255 	par = read_sysreg(par_el1);
256 	asm volatile("at s1e1r, %0" : : "r" (far));
257 	isb();
258 
259 	tmp = read_sysreg(par_el1);
260 	write_sysreg(par, par_el1);
261 
262 	if (unlikely(tmp & 1))
263 		return false; /* Translation failed, back to guest */
264 
265 	/* Convert PAR to HPFAR format */
266 	*hpfar = ((tmp >> 12) & ((1UL << 36) - 1)) << 4;
267 	return true;
268 }
269 
__populate_fault_info(struct kvm_vcpu * vcpu)270 static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
271 {
272 	u8 ec;
273 	u64 esr;
274 	u64 hpfar, far;
275 
276 	esr = vcpu->arch.fault.esr_el2;
277 	ec = ESR_ELx_EC(esr);
278 
279 	if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
280 		return true;
281 
282 	far = read_sysreg_el2(far);
283 
284 	/*
285 	 * The HPFAR can be invalid if the stage 2 fault did not
286 	 * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
287 	 * bit is clear) and one of the two following cases are true:
288 	 *   1. The fault was due to a permission fault
289 	 *   2. The processor carries errata 834220
290 	 *
291 	 * Therefore, for all non S1PTW faults where we either have a
292 	 * permission fault or the errata workaround is enabled, we
293 	 * resolve the IPA using the AT instruction.
294 	 */
295 	if (!(esr & ESR_ELx_S1PTW) &&
296 	    (__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
297 		if (!__translate_far_to_hpfar(far, &hpfar))
298 			return false;
299 	} else {
300 		hpfar = read_sysreg(hpfar_el2);
301 	}
302 
303 	vcpu->arch.fault.far_el2 = far;
304 	vcpu->arch.fault.hpfar_el2 = hpfar;
305 	return true;
306 }
307 
308 /* Skip an instruction which has been emulated. Returns true if
309  * execution can continue or false if we need to exit hyp mode because
310  * single-step was in effect.
311  */
__skip_instr(struct kvm_vcpu * vcpu)312 static bool __hyp_text __skip_instr(struct kvm_vcpu *vcpu)
313 {
314 	*vcpu_pc(vcpu) = read_sysreg_el2(elr);
315 
316 	if (vcpu_mode_is_32bit(vcpu)) {
317 		vcpu->arch.ctxt.gp_regs.regs.pstate = read_sysreg_el2(spsr);
318 		kvm_skip_instr32(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
319 		write_sysreg_el2(vcpu->arch.ctxt.gp_regs.regs.pstate, spsr);
320 	} else {
321 		*vcpu_pc(vcpu) += 4;
322 	}
323 
324 	write_sysreg_el2(*vcpu_pc(vcpu), elr);
325 
326 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
327 		vcpu->arch.fault.esr_el2 =
328 			(ESR_ELx_EC_SOFTSTP_LOW << ESR_ELx_EC_SHIFT) | 0x22;
329 		return false;
330 	} else {
331 		return true;
332 	}
333 }
334 
__hyp_switch_fpsimd(struct kvm_vcpu * vcpu)335 static bool __hyp_text __hyp_switch_fpsimd(struct kvm_vcpu *vcpu)
336 {
337 	struct user_fpsimd_state *host_fpsimd = vcpu->arch.host_fpsimd_state;
338 
339 	if (has_vhe())
340 		write_sysreg(read_sysreg(cpacr_el1) | CPACR_EL1_FPEN,
341 			     cpacr_el1);
342 	else
343 		write_sysreg(read_sysreg(cptr_el2) & ~(u64)CPTR_EL2_TFP,
344 			     cptr_el2);
345 
346 	isb();
347 
348 	if (vcpu->arch.flags & KVM_ARM64_FP_HOST) {
349 		/*
350 		 * In the SVE case, VHE is assumed: it is enforced by
351 		 * Kconfig and kvm_arch_init().
352 		 */
353 		if (system_supports_sve() &&
354 		    (vcpu->arch.flags & KVM_ARM64_HOST_SVE_IN_USE)) {
355 			struct thread_struct *thread = container_of(
356 				host_fpsimd,
357 				struct thread_struct, uw.fpsimd_state);
358 
359 			sve_save_state(sve_pffr(thread), &host_fpsimd->fpsr);
360 		} else {
361 			__fpsimd_save_state(host_fpsimd);
362 		}
363 
364 		vcpu->arch.flags &= ~KVM_ARM64_FP_HOST;
365 	}
366 
367 	__fpsimd_restore_state(&vcpu->arch.ctxt.gp_regs.fp_regs);
368 
369 	/* Skip restoring fpexc32 for AArch64 guests */
370 	if (!(read_sysreg(hcr_el2) & HCR_RW))
371 		write_sysreg(vcpu->arch.ctxt.sys_regs[FPEXC32_EL2],
372 			     fpexc32_el2);
373 
374 	vcpu->arch.flags |= KVM_ARM64_FP_ENABLED;
375 
376 	return true;
377 }
378 
379 /*
380  * Return true when we were able to fixup the guest exit and should return to
381  * the guest, false when we should restore the host state and return to the
382  * main run loop.
383  */
fixup_guest_exit(struct kvm_vcpu * vcpu,u64 * exit_code)384 static bool __hyp_text fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
385 {
386 	if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
387 		vcpu->arch.fault.esr_el2 = read_sysreg_el2(esr);
388 
389 	/*
390 	 * We're using the raw exception code in order to only process
391 	 * the trap if no SError is pending. We will come back to the
392 	 * same PC once the SError has been injected, and replay the
393 	 * trapping instruction.
394 	 */
395 	if (*exit_code != ARM_EXCEPTION_TRAP)
396 		goto exit;
397 
398 	/*
399 	 * We trap the first access to the FP/SIMD to save the host context
400 	 * and restore the guest context lazily.
401 	 * If FP/SIMD is not implemented, handle the trap and inject an
402 	 * undefined instruction exception to the guest.
403 	 */
404 	if (system_supports_fpsimd() &&
405 	    kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_FP_ASIMD)
406 		return __hyp_switch_fpsimd(vcpu);
407 
408 	if (!__populate_fault_info(vcpu))
409 		return true;
410 
411 	if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
412 		bool valid;
413 
414 		valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
415 			kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
416 			kvm_vcpu_dabt_isvalid(vcpu) &&
417 			!kvm_vcpu_dabt_isextabt(vcpu) &&
418 			!kvm_vcpu_dabt_iss1tw(vcpu);
419 
420 		if (valid) {
421 			int ret = __vgic_v2_perform_cpuif_access(vcpu);
422 
423 			if (ret ==  1 && __skip_instr(vcpu))
424 				return true;
425 
426 			if (ret == -1) {
427 				/* Promote an illegal access to an
428 				 * SError. If we would be returning
429 				 * due to single-step clear the SS
430 				 * bit so handle_exit knows what to
431 				 * do after dealing with the error.
432 				 */
433 				if (!__skip_instr(vcpu))
434 					*vcpu_cpsr(vcpu) &= ~DBG_SPSR_SS;
435 				*exit_code = ARM_EXCEPTION_EL1_SERROR;
436 			}
437 
438 			goto exit;
439 		}
440 	}
441 
442 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
443 	    (kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
444 	     kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
445 		int ret = __vgic_v3_perform_cpuif_access(vcpu);
446 
447 		if (ret == 1 && __skip_instr(vcpu))
448 			return true;
449 	}
450 
451 exit:
452 	/* Return to the host kernel and handle the exit */
453 	return false;
454 }
455 
__needs_ssbd_off(struct kvm_vcpu * vcpu)456 static inline bool __hyp_text __needs_ssbd_off(struct kvm_vcpu *vcpu)
457 {
458 	if (!cpus_have_const_cap(ARM64_SSBD))
459 		return false;
460 
461 	return !(vcpu->arch.workaround_flags & VCPU_WORKAROUND_2_FLAG);
462 }
463 
__set_guest_arch_workaround_state(struct kvm_vcpu * vcpu)464 static void __hyp_text __set_guest_arch_workaround_state(struct kvm_vcpu *vcpu)
465 {
466 #ifdef CONFIG_ARM64_SSBD
467 	/*
468 	 * The host runs with the workaround always present. If the
469 	 * guest wants it disabled, so be it...
470 	 */
471 	if (__needs_ssbd_off(vcpu) &&
472 	    __hyp_this_cpu_read(arm64_ssbd_callback_required))
473 		arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 0, NULL);
474 #endif
475 }
476 
__set_host_arch_workaround_state(struct kvm_vcpu * vcpu)477 static void __hyp_text __set_host_arch_workaround_state(struct kvm_vcpu *vcpu)
478 {
479 #ifdef CONFIG_ARM64_SSBD
480 	/*
481 	 * If the guest has disabled the workaround, bring it back on.
482 	 */
483 	if (__needs_ssbd_off(vcpu) &&
484 	    __hyp_this_cpu_read(arm64_ssbd_callback_required))
485 		arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 1, NULL);
486 #endif
487 }
488 
489 /* Switch to the guest for VHE systems running in EL2 */
kvm_vcpu_run_vhe(struct kvm_vcpu * vcpu)490 int kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
491 {
492 	struct kvm_cpu_context *host_ctxt;
493 	struct kvm_cpu_context *guest_ctxt;
494 	u64 exit_code;
495 
496 	host_ctxt = vcpu->arch.host_cpu_context;
497 	host_ctxt->__hyp_running_vcpu = vcpu;
498 	guest_ctxt = &vcpu->arch.ctxt;
499 
500 	sysreg_save_host_state_vhe(host_ctxt);
501 
502 	__activate_traps(vcpu);
503 	__activate_vm(vcpu->kvm);
504 
505 	sysreg_restore_guest_state_vhe(guest_ctxt);
506 	__debug_switch_to_guest(vcpu);
507 
508 	__set_guest_arch_workaround_state(vcpu);
509 
510 	do {
511 		/* Jump in the fire! */
512 		exit_code = __guest_enter(vcpu, host_ctxt);
513 
514 		/* And we're baaack! */
515 	} while (fixup_guest_exit(vcpu, &exit_code));
516 
517 	__set_host_arch_workaround_state(vcpu);
518 
519 	sysreg_save_guest_state_vhe(guest_ctxt);
520 
521 	__deactivate_traps(vcpu);
522 
523 	sysreg_restore_host_state_vhe(host_ctxt);
524 
525 	if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
526 		__fpsimd_save_fpexc32(vcpu);
527 
528 	__debug_switch_to_host(vcpu);
529 
530 	return exit_code;
531 }
532 
533 /* Switch to the guest for legacy non-VHE systems */
__kvm_vcpu_run_nvhe(struct kvm_vcpu * vcpu)534 int __hyp_text __kvm_vcpu_run_nvhe(struct kvm_vcpu *vcpu)
535 {
536 	struct kvm_cpu_context *host_ctxt;
537 	struct kvm_cpu_context *guest_ctxt;
538 	u64 exit_code;
539 
540 	vcpu = kern_hyp_va(vcpu);
541 
542 	host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
543 	host_ctxt->__hyp_running_vcpu = vcpu;
544 	guest_ctxt = &vcpu->arch.ctxt;
545 
546 	__sysreg_save_state_nvhe(host_ctxt);
547 
548 	__activate_traps(vcpu);
549 	__activate_vm(kern_hyp_va(vcpu->kvm));
550 
551 	__hyp_vgic_restore_state(vcpu);
552 	__timer_enable_traps(vcpu);
553 
554 	/*
555 	 * We must restore the 32-bit state before the sysregs, thanks
556 	 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
557 	 */
558 	__sysreg32_restore_state(vcpu);
559 	__sysreg_restore_state_nvhe(guest_ctxt);
560 	__debug_switch_to_guest(vcpu);
561 
562 	__set_guest_arch_workaround_state(vcpu);
563 
564 	do {
565 		/* Jump in the fire! */
566 		exit_code = __guest_enter(vcpu, host_ctxt);
567 
568 		/* And we're baaack! */
569 	} while (fixup_guest_exit(vcpu, &exit_code));
570 
571 	__set_host_arch_workaround_state(vcpu);
572 
573 	__sysreg_save_state_nvhe(guest_ctxt);
574 	__sysreg32_save_state(vcpu);
575 	__timer_disable_traps(vcpu);
576 	__hyp_vgic_save_state(vcpu);
577 
578 	__deactivate_traps(vcpu);
579 	__deactivate_vm(vcpu);
580 
581 	__sysreg_restore_state_nvhe(host_ctxt);
582 
583 	if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
584 		__fpsimd_save_fpexc32(vcpu);
585 
586 	/*
587 	 * This must come after restoring the host sysregs, since a non-VHE
588 	 * system may enable SPE here and make use of the TTBRs.
589 	 */
590 	__debug_switch_to_host(vcpu);
591 
592 	return exit_code;
593 }
594 
595 static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";
596 
__hyp_call_panic_nvhe(u64 spsr,u64 elr,u64 par,struct kvm_cpu_context * __host_ctxt)597 static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par,
598 					     struct kvm_cpu_context *__host_ctxt)
599 {
600 	struct kvm_vcpu *vcpu;
601 	unsigned long str_va;
602 
603 	vcpu = __host_ctxt->__hyp_running_vcpu;
604 
605 	if (read_sysreg(vttbr_el2)) {
606 		__timer_disable_traps(vcpu);
607 		__deactivate_traps(vcpu);
608 		__deactivate_vm(vcpu);
609 		__sysreg_restore_state_nvhe(__host_ctxt);
610 	}
611 
612 	/*
613 	 * Force the panic string to be loaded from the literal pool,
614 	 * making sure it is a kernel address and not a PC-relative
615 	 * reference.
616 	 */
617 	asm volatile("ldr %0, =__hyp_panic_string" : "=r" (str_va));
618 
619 	__hyp_do_panic(str_va,
620 		       spsr,  elr,
621 		       read_sysreg(esr_el2),   read_sysreg_el2(far),
622 		       read_sysreg(hpfar_el2), par, vcpu);
623 }
624 
__hyp_call_panic_vhe(u64 spsr,u64 elr,u64 par,struct kvm_cpu_context * host_ctxt)625 static void __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par,
626 				 struct kvm_cpu_context *host_ctxt)
627 {
628 	struct kvm_vcpu *vcpu;
629 	vcpu = host_ctxt->__hyp_running_vcpu;
630 
631 	__deactivate_traps(vcpu);
632 	sysreg_restore_host_state_vhe(host_ctxt);
633 
634 	panic(__hyp_panic_string,
635 	      spsr,  elr,
636 	      read_sysreg_el2(esr),   read_sysreg_el2(far),
637 	      read_sysreg(hpfar_el2), par, vcpu);
638 }
639 
hyp_panic(struct kvm_cpu_context * host_ctxt)640 void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt)
641 {
642 	u64 spsr = read_sysreg_el2(spsr);
643 	u64 elr = read_sysreg_el2(elr);
644 	u64 par = read_sysreg(par_el1);
645 
646 	if (!has_vhe())
647 		__hyp_call_panic_nvhe(spsr, elr, par, host_ctxt);
648 	else
649 		__hyp_call_panic_vhe(spsr, elr, par, host_ctxt);
650 
651 	unreachable();
652 }
653