1 /*
2 * Copyright (C) 2015 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #include <linux/arm-smccc.h>
19 #include <linux/types.h>
20 #include <linux/jump_label.h>
21 #include <uapi/linux/psci.h>
22
23 #include <kvm/arm_psci.h>
24
25 #include <asm/cpufeature.h>
26 #include <asm/kvm_asm.h>
27 #include <asm/kvm_emulate.h>
28 #include <asm/kvm_host.h>
29 #include <asm/kvm_hyp.h>
30 #include <asm/kvm_mmu.h>
31 #include <asm/fpsimd.h>
32 #include <asm/debug-monitors.h>
33 #include <asm/processor.h>
34 #include <asm/thread_info.h>
35
36 /* Check whether the FP regs were dirtied while in the host-side run loop: */
update_fp_enabled(struct kvm_vcpu * vcpu)37 static bool __hyp_text update_fp_enabled(struct kvm_vcpu *vcpu)
38 {
39 if (vcpu->arch.host_thread_info->flags & _TIF_FOREIGN_FPSTATE)
40 vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED |
41 KVM_ARM64_FP_HOST);
42
43 return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED);
44 }
45
46 /* Save the 32-bit only FPSIMD system register state */
__fpsimd_save_fpexc32(struct kvm_vcpu * vcpu)47 static void __hyp_text __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
48 {
49 if (!vcpu_el1_is_32bit(vcpu))
50 return;
51
52 vcpu->arch.ctxt.sys_regs[FPEXC32_EL2] = read_sysreg(fpexc32_el2);
53 }
54
__activate_traps_fpsimd32(struct kvm_vcpu * vcpu)55 static void __hyp_text __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
56 {
57 /*
58 * We are about to set CPTR_EL2.TFP to trap all floating point
59 * register accesses to EL2, however, the ARM ARM clearly states that
60 * traps are only taken to EL2 if the operation would not otherwise
61 * trap to EL1. Therefore, always make sure that for 32-bit guests,
62 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
63 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
64 * it will cause an exception.
65 */
66 if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
67 write_sysreg(1 << 30, fpexc32_el2);
68 isb();
69 }
70 }
71
__activate_traps_common(struct kvm_vcpu * vcpu)72 static void __hyp_text __activate_traps_common(struct kvm_vcpu *vcpu)
73 {
74 /* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
75 write_sysreg(1 << 15, hstr_el2);
76
77 /*
78 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
79 * PMSELR_EL0 to make sure it never contains the cycle
80 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
81 * EL1 instead of being trapped to EL2.
82 */
83 write_sysreg(0, pmselr_el0);
84 write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
85 write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
86 }
87
__deactivate_traps_common(void)88 static void __hyp_text __deactivate_traps_common(void)
89 {
90 write_sysreg(0, hstr_el2);
91 write_sysreg(0, pmuserenr_el0);
92 }
93
activate_traps_vhe(struct kvm_vcpu * vcpu)94 static void activate_traps_vhe(struct kvm_vcpu *vcpu)
95 {
96 u64 val;
97
98 val = read_sysreg(cpacr_el1);
99 val |= CPACR_EL1_TTA;
100 val &= ~CPACR_EL1_ZEN;
101 if (!update_fp_enabled(vcpu)) {
102 val &= ~CPACR_EL1_FPEN;
103 __activate_traps_fpsimd32(vcpu);
104 }
105
106 write_sysreg(val, cpacr_el1);
107
108 write_sysreg(kvm_get_hyp_vector(), vbar_el1);
109 }
110
__activate_traps_nvhe(struct kvm_vcpu * vcpu)111 static void __hyp_text __activate_traps_nvhe(struct kvm_vcpu *vcpu)
112 {
113 u64 val;
114
115 __activate_traps_common(vcpu);
116
117 val = CPTR_EL2_DEFAULT;
118 val |= CPTR_EL2_TTA | CPTR_EL2_TZ;
119 if (!update_fp_enabled(vcpu)) {
120 val |= CPTR_EL2_TFP;
121 __activate_traps_fpsimd32(vcpu);
122 }
123
124 write_sysreg(val, cptr_el2);
125 }
126
__activate_traps(struct kvm_vcpu * vcpu)127 static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
128 {
129 u64 hcr = vcpu->arch.hcr_el2;
130
131 write_sysreg(hcr, hcr_el2);
132
133 if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
134 write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
135
136 if (has_vhe())
137 activate_traps_vhe(vcpu);
138 else
139 __activate_traps_nvhe(vcpu);
140 }
141
deactivate_traps_vhe(void)142 static void deactivate_traps_vhe(void)
143 {
144 extern char vectors[]; /* kernel exception vectors */
145 write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
146 write_sysreg(CPACR_EL1_DEFAULT, cpacr_el1);
147 write_sysreg(vectors, vbar_el1);
148 }
149
__deactivate_traps_nvhe(void)150 static void __hyp_text __deactivate_traps_nvhe(void)
151 {
152 u64 mdcr_el2 = read_sysreg(mdcr_el2);
153
154 __deactivate_traps_common();
155
156 mdcr_el2 &= MDCR_EL2_HPMN_MASK;
157 mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;
158
159 write_sysreg(mdcr_el2, mdcr_el2);
160 write_sysreg(HCR_RW, hcr_el2);
161 write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
162 }
163
__deactivate_traps(struct kvm_vcpu * vcpu)164 static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
165 {
166 /*
167 * If we pended a virtual abort, preserve it until it gets
168 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
169 * the crucial bit is "On taking a vSError interrupt,
170 * HCR_EL2.VSE is cleared to 0."
171 */
172 if (vcpu->arch.hcr_el2 & HCR_VSE)
173 vcpu->arch.hcr_el2 = read_sysreg(hcr_el2);
174
175 if (has_vhe())
176 deactivate_traps_vhe();
177 else
178 __deactivate_traps_nvhe();
179 }
180
activate_traps_vhe_load(struct kvm_vcpu * vcpu)181 void activate_traps_vhe_load(struct kvm_vcpu *vcpu)
182 {
183 __activate_traps_common(vcpu);
184 }
185
deactivate_traps_vhe_put(void)186 void deactivate_traps_vhe_put(void)
187 {
188 u64 mdcr_el2 = read_sysreg(mdcr_el2);
189
190 mdcr_el2 &= MDCR_EL2_HPMN_MASK |
191 MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT |
192 MDCR_EL2_TPMS;
193
194 write_sysreg(mdcr_el2, mdcr_el2);
195
196 __deactivate_traps_common();
197 }
198
__activate_vm(struct kvm * kvm)199 static void __hyp_text __activate_vm(struct kvm *kvm)
200 {
201 write_sysreg(kvm->arch.vttbr, vttbr_el2);
202 }
203
__deactivate_vm(struct kvm_vcpu * vcpu)204 static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
205 {
206 write_sysreg(0, vttbr_el2);
207 }
208
209 /* Save VGICv3 state on non-VHE systems */
__hyp_vgic_save_state(struct kvm_vcpu * vcpu)210 static void __hyp_text __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
211 {
212 if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
213 __vgic_v3_save_state(vcpu);
214 __vgic_v3_deactivate_traps(vcpu);
215 }
216 }
217
218 /* Restore VGICv3 state on non_VEH systems */
__hyp_vgic_restore_state(struct kvm_vcpu * vcpu)219 static void __hyp_text __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
220 {
221 if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
222 __vgic_v3_activate_traps(vcpu);
223 __vgic_v3_restore_state(vcpu);
224 }
225 }
226
__true_value(void)227 static bool __hyp_text __true_value(void)
228 {
229 return true;
230 }
231
__false_value(void)232 static bool __hyp_text __false_value(void)
233 {
234 return false;
235 }
236
237 static hyp_alternate_select(__check_arm_834220,
238 __false_value, __true_value,
239 ARM64_WORKAROUND_834220);
240
__translate_far_to_hpfar(u64 far,u64 * hpfar)241 static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
242 {
243 u64 par, tmp;
244
245 /*
246 * Resolve the IPA the hard way using the guest VA.
247 *
248 * Stage-1 translation already validated the memory access
249 * rights. As such, we can use the EL1 translation regime, and
250 * don't have to distinguish between EL0 and EL1 access.
251 *
252 * We do need to save/restore PAR_EL1 though, as we haven't
253 * saved the guest context yet, and we may return early...
254 */
255 par = read_sysreg(par_el1);
256 asm volatile("at s1e1r, %0" : : "r" (far));
257 isb();
258
259 tmp = read_sysreg(par_el1);
260 write_sysreg(par, par_el1);
261
262 if (unlikely(tmp & 1))
263 return false; /* Translation failed, back to guest */
264
265 /* Convert PAR to HPFAR format */
266 *hpfar = ((tmp >> 12) & ((1UL << 36) - 1)) << 4;
267 return true;
268 }
269
__populate_fault_info(struct kvm_vcpu * vcpu)270 static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
271 {
272 u8 ec;
273 u64 esr;
274 u64 hpfar, far;
275
276 esr = vcpu->arch.fault.esr_el2;
277 ec = ESR_ELx_EC(esr);
278
279 if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
280 return true;
281
282 far = read_sysreg_el2(far);
283
284 /*
285 * The HPFAR can be invalid if the stage 2 fault did not
286 * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
287 * bit is clear) and one of the two following cases are true:
288 * 1. The fault was due to a permission fault
289 * 2. The processor carries errata 834220
290 *
291 * Therefore, for all non S1PTW faults where we either have a
292 * permission fault or the errata workaround is enabled, we
293 * resolve the IPA using the AT instruction.
294 */
295 if (!(esr & ESR_ELx_S1PTW) &&
296 (__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
297 if (!__translate_far_to_hpfar(far, &hpfar))
298 return false;
299 } else {
300 hpfar = read_sysreg(hpfar_el2);
301 }
302
303 vcpu->arch.fault.far_el2 = far;
304 vcpu->arch.fault.hpfar_el2 = hpfar;
305 return true;
306 }
307
308 /* Skip an instruction which has been emulated. Returns true if
309 * execution can continue or false if we need to exit hyp mode because
310 * single-step was in effect.
311 */
__skip_instr(struct kvm_vcpu * vcpu)312 static bool __hyp_text __skip_instr(struct kvm_vcpu *vcpu)
313 {
314 *vcpu_pc(vcpu) = read_sysreg_el2(elr);
315
316 if (vcpu_mode_is_32bit(vcpu)) {
317 vcpu->arch.ctxt.gp_regs.regs.pstate = read_sysreg_el2(spsr);
318 kvm_skip_instr32(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
319 write_sysreg_el2(vcpu->arch.ctxt.gp_regs.regs.pstate, spsr);
320 } else {
321 *vcpu_pc(vcpu) += 4;
322 }
323
324 write_sysreg_el2(*vcpu_pc(vcpu), elr);
325
326 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
327 vcpu->arch.fault.esr_el2 =
328 (ESR_ELx_EC_SOFTSTP_LOW << ESR_ELx_EC_SHIFT) | 0x22;
329 return false;
330 } else {
331 return true;
332 }
333 }
334
__hyp_switch_fpsimd(struct kvm_vcpu * vcpu)335 static bool __hyp_text __hyp_switch_fpsimd(struct kvm_vcpu *vcpu)
336 {
337 struct user_fpsimd_state *host_fpsimd = vcpu->arch.host_fpsimd_state;
338
339 if (has_vhe())
340 write_sysreg(read_sysreg(cpacr_el1) | CPACR_EL1_FPEN,
341 cpacr_el1);
342 else
343 write_sysreg(read_sysreg(cptr_el2) & ~(u64)CPTR_EL2_TFP,
344 cptr_el2);
345
346 isb();
347
348 if (vcpu->arch.flags & KVM_ARM64_FP_HOST) {
349 /*
350 * In the SVE case, VHE is assumed: it is enforced by
351 * Kconfig and kvm_arch_init().
352 */
353 if (system_supports_sve() &&
354 (vcpu->arch.flags & KVM_ARM64_HOST_SVE_IN_USE)) {
355 struct thread_struct *thread = container_of(
356 host_fpsimd,
357 struct thread_struct, uw.fpsimd_state);
358
359 sve_save_state(sve_pffr(thread), &host_fpsimd->fpsr);
360 } else {
361 __fpsimd_save_state(host_fpsimd);
362 }
363
364 vcpu->arch.flags &= ~KVM_ARM64_FP_HOST;
365 }
366
367 __fpsimd_restore_state(&vcpu->arch.ctxt.gp_regs.fp_regs);
368
369 /* Skip restoring fpexc32 for AArch64 guests */
370 if (!(read_sysreg(hcr_el2) & HCR_RW))
371 write_sysreg(vcpu->arch.ctxt.sys_regs[FPEXC32_EL2],
372 fpexc32_el2);
373
374 vcpu->arch.flags |= KVM_ARM64_FP_ENABLED;
375
376 return true;
377 }
378
379 /*
380 * Return true when we were able to fixup the guest exit and should return to
381 * the guest, false when we should restore the host state and return to the
382 * main run loop.
383 */
fixup_guest_exit(struct kvm_vcpu * vcpu,u64 * exit_code)384 static bool __hyp_text fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
385 {
386 if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
387 vcpu->arch.fault.esr_el2 = read_sysreg_el2(esr);
388
389 /*
390 * We're using the raw exception code in order to only process
391 * the trap if no SError is pending. We will come back to the
392 * same PC once the SError has been injected, and replay the
393 * trapping instruction.
394 */
395 if (*exit_code != ARM_EXCEPTION_TRAP)
396 goto exit;
397
398 /*
399 * We trap the first access to the FP/SIMD to save the host context
400 * and restore the guest context lazily.
401 * If FP/SIMD is not implemented, handle the trap and inject an
402 * undefined instruction exception to the guest.
403 */
404 if (system_supports_fpsimd() &&
405 kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_FP_ASIMD)
406 return __hyp_switch_fpsimd(vcpu);
407
408 if (!__populate_fault_info(vcpu))
409 return true;
410
411 if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
412 bool valid;
413
414 valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
415 kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
416 kvm_vcpu_dabt_isvalid(vcpu) &&
417 !kvm_vcpu_dabt_isextabt(vcpu) &&
418 !kvm_vcpu_dabt_iss1tw(vcpu);
419
420 if (valid) {
421 int ret = __vgic_v2_perform_cpuif_access(vcpu);
422
423 if (ret == 1 && __skip_instr(vcpu))
424 return true;
425
426 if (ret == -1) {
427 /* Promote an illegal access to an
428 * SError. If we would be returning
429 * due to single-step clear the SS
430 * bit so handle_exit knows what to
431 * do after dealing with the error.
432 */
433 if (!__skip_instr(vcpu))
434 *vcpu_cpsr(vcpu) &= ~DBG_SPSR_SS;
435 *exit_code = ARM_EXCEPTION_EL1_SERROR;
436 }
437
438 goto exit;
439 }
440 }
441
442 if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
443 (kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
444 kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
445 int ret = __vgic_v3_perform_cpuif_access(vcpu);
446
447 if (ret == 1 && __skip_instr(vcpu))
448 return true;
449 }
450
451 exit:
452 /* Return to the host kernel and handle the exit */
453 return false;
454 }
455
__needs_ssbd_off(struct kvm_vcpu * vcpu)456 static inline bool __hyp_text __needs_ssbd_off(struct kvm_vcpu *vcpu)
457 {
458 if (!cpus_have_const_cap(ARM64_SSBD))
459 return false;
460
461 return !(vcpu->arch.workaround_flags & VCPU_WORKAROUND_2_FLAG);
462 }
463
__set_guest_arch_workaround_state(struct kvm_vcpu * vcpu)464 static void __hyp_text __set_guest_arch_workaround_state(struct kvm_vcpu *vcpu)
465 {
466 #ifdef CONFIG_ARM64_SSBD
467 /*
468 * The host runs with the workaround always present. If the
469 * guest wants it disabled, so be it...
470 */
471 if (__needs_ssbd_off(vcpu) &&
472 __hyp_this_cpu_read(arm64_ssbd_callback_required))
473 arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 0, NULL);
474 #endif
475 }
476
__set_host_arch_workaround_state(struct kvm_vcpu * vcpu)477 static void __hyp_text __set_host_arch_workaround_state(struct kvm_vcpu *vcpu)
478 {
479 #ifdef CONFIG_ARM64_SSBD
480 /*
481 * If the guest has disabled the workaround, bring it back on.
482 */
483 if (__needs_ssbd_off(vcpu) &&
484 __hyp_this_cpu_read(arm64_ssbd_callback_required))
485 arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 1, NULL);
486 #endif
487 }
488
489 /* Switch to the guest for VHE systems running in EL2 */
kvm_vcpu_run_vhe(struct kvm_vcpu * vcpu)490 int kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
491 {
492 struct kvm_cpu_context *host_ctxt;
493 struct kvm_cpu_context *guest_ctxt;
494 u64 exit_code;
495
496 host_ctxt = vcpu->arch.host_cpu_context;
497 host_ctxt->__hyp_running_vcpu = vcpu;
498 guest_ctxt = &vcpu->arch.ctxt;
499
500 sysreg_save_host_state_vhe(host_ctxt);
501
502 __activate_traps(vcpu);
503 __activate_vm(vcpu->kvm);
504
505 sysreg_restore_guest_state_vhe(guest_ctxt);
506 __debug_switch_to_guest(vcpu);
507
508 __set_guest_arch_workaround_state(vcpu);
509
510 do {
511 /* Jump in the fire! */
512 exit_code = __guest_enter(vcpu, host_ctxt);
513
514 /* And we're baaack! */
515 } while (fixup_guest_exit(vcpu, &exit_code));
516
517 __set_host_arch_workaround_state(vcpu);
518
519 sysreg_save_guest_state_vhe(guest_ctxt);
520
521 __deactivate_traps(vcpu);
522
523 sysreg_restore_host_state_vhe(host_ctxt);
524
525 if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
526 __fpsimd_save_fpexc32(vcpu);
527
528 __debug_switch_to_host(vcpu);
529
530 return exit_code;
531 }
532
533 /* Switch to the guest for legacy non-VHE systems */
__kvm_vcpu_run_nvhe(struct kvm_vcpu * vcpu)534 int __hyp_text __kvm_vcpu_run_nvhe(struct kvm_vcpu *vcpu)
535 {
536 struct kvm_cpu_context *host_ctxt;
537 struct kvm_cpu_context *guest_ctxt;
538 u64 exit_code;
539
540 vcpu = kern_hyp_va(vcpu);
541
542 host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
543 host_ctxt->__hyp_running_vcpu = vcpu;
544 guest_ctxt = &vcpu->arch.ctxt;
545
546 __sysreg_save_state_nvhe(host_ctxt);
547
548 __activate_traps(vcpu);
549 __activate_vm(kern_hyp_va(vcpu->kvm));
550
551 __hyp_vgic_restore_state(vcpu);
552 __timer_enable_traps(vcpu);
553
554 /*
555 * We must restore the 32-bit state before the sysregs, thanks
556 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
557 */
558 __sysreg32_restore_state(vcpu);
559 __sysreg_restore_state_nvhe(guest_ctxt);
560 __debug_switch_to_guest(vcpu);
561
562 __set_guest_arch_workaround_state(vcpu);
563
564 do {
565 /* Jump in the fire! */
566 exit_code = __guest_enter(vcpu, host_ctxt);
567
568 /* And we're baaack! */
569 } while (fixup_guest_exit(vcpu, &exit_code));
570
571 __set_host_arch_workaround_state(vcpu);
572
573 __sysreg_save_state_nvhe(guest_ctxt);
574 __sysreg32_save_state(vcpu);
575 __timer_disable_traps(vcpu);
576 __hyp_vgic_save_state(vcpu);
577
578 __deactivate_traps(vcpu);
579 __deactivate_vm(vcpu);
580
581 __sysreg_restore_state_nvhe(host_ctxt);
582
583 if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
584 __fpsimd_save_fpexc32(vcpu);
585
586 /*
587 * This must come after restoring the host sysregs, since a non-VHE
588 * system may enable SPE here and make use of the TTBRs.
589 */
590 __debug_switch_to_host(vcpu);
591
592 return exit_code;
593 }
594
595 static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";
596
__hyp_call_panic_nvhe(u64 spsr,u64 elr,u64 par,struct kvm_cpu_context * __host_ctxt)597 static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par,
598 struct kvm_cpu_context *__host_ctxt)
599 {
600 struct kvm_vcpu *vcpu;
601 unsigned long str_va;
602
603 vcpu = __host_ctxt->__hyp_running_vcpu;
604
605 if (read_sysreg(vttbr_el2)) {
606 __timer_disable_traps(vcpu);
607 __deactivate_traps(vcpu);
608 __deactivate_vm(vcpu);
609 __sysreg_restore_state_nvhe(__host_ctxt);
610 }
611
612 /*
613 * Force the panic string to be loaded from the literal pool,
614 * making sure it is a kernel address and not a PC-relative
615 * reference.
616 */
617 asm volatile("ldr %0, =__hyp_panic_string" : "=r" (str_va));
618
619 __hyp_do_panic(str_va,
620 spsr, elr,
621 read_sysreg(esr_el2), read_sysreg_el2(far),
622 read_sysreg(hpfar_el2), par, vcpu);
623 }
624
__hyp_call_panic_vhe(u64 spsr,u64 elr,u64 par,struct kvm_cpu_context * host_ctxt)625 static void __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par,
626 struct kvm_cpu_context *host_ctxt)
627 {
628 struct kvm_vcpu *vcpu;
629 vcpu = host_ctxt->__hyp_running_vcpu;
630
631 __deactivate_traps(vcpu);
632 sysreg_restore_host_state_vhe(host_ctxt);
633
634 panic(__hyp_panic_string,
635 spsr, elr,
636 read_sysreg_el2(esr), read_sysreg_el2(far),
637 read_sysreg(hpfar_el2), par, vcpu);
638 }
639
hyp_panic(struct kvm_cpu_context * host_ctxt)640 void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt)
641 {
642 u64 spsr = read_sysreg_el2(spsr);
643 u64 elr = read_sysreg_el2(elr);
644 u64 par = read_sysreg(par_el1);
645
646 if (!has_vhe())
647 __hyp_call_panic_nvhe(spsr, elr, par, host_ctxt);
648 else
649 __hyp_call_panic_vhe(spsr, elr, par, host_ctxt);
650
651 unreachable();
652 }
653