1 /*
2 * arch/arm/kernel/kprobes.c
3 *
4 * Kprobes on ARM
5 *
6 * Abhishek Sagar <sagar.abhishek@gmail.com>
7 * Copyright (C) 2006, 2007 Motorola Inc.
8 *
9 * Nicolas Pitre <nico@marvell.com>
10 * Copyright (C) 2007 Marvell Ltd.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/kprobes.h>
24 #include <linux/module.h>
25 #include <linux/slab.h>
26 #include <linux/stop_machine.h>
27 #include <linux/sched/debug.h>
28 #include <linux/stringify.h>
29 #include <asm/traps.h>
30 #include <asm/opcodes.h>
31 #include <asm/cacheflush.h>
32 #include <linux/percpu.h>
33 #include <linux/bug.h>
34 #include <asm/patch.h>
35 #include <asm/sections.h>
36
37 #include "../decode-arm.h"
38 #include "../decode-thumb.h"
39 #include "core.h"
40
41 #define MIN_STACK_SIZE(addr) \
42 min((unsigned long)MAX_STACK_SIZE, \
43 (unsigned long)current_thread_info() + THREAD_START_SP - (addr))
44
45 #define flush_insns(addr, size) \
46 flush_icache_range((unsigned long)(addr), \
47 (unsigned long)(addr) + \
48 (size))
49
50 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
51 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
52
53
arch_prepare_kprobe(struct kprobe * p)54 int __kprobes arch_prepare_kprobe(struct kprobe *p)
55 {
56 kprobe_opcode_t insn;
57 kprobe_opcode_t tmp_insn[MAX_INSN_SIZE];
58 unsigned long addr = (unsigned long)p->addr;
59 bool thumb;
60 kprobe_decode_insn_t *decode_insn;
61 const union decode_action *actions;
62 int is;
63 const struct decode_checker **checkers;
64
65 #ifdef CONFIG_THUMB2_KERNEL
66 thumb = true;
67 addr &= ~1; /* Bit 0 would normally be set to indicate Thumb code */
68 insn = __mem_to_opcode_thumb16(((u16 *)addr)[0]);
69 if (is_wide_instruction(insn)) {
70 u16 inst2 = __mem_to_opcode_thumb16(((u16 *)addr)[1]);
71 insn = __opcode_thumb32_compose(insn, inst2);
72 decode_insn = thumb32_probes_decode_insn;
73 actions = kprobes_t32_actions;
74 checkers = kprobes_t32_checkers;
75 } else {
76 decode_insn = thumb16_probes_decode_insn;
77 actions = kprobes_t16_actions;
78 checkers = kprobes_t16_checkers;
79 }
80 #else /* !CONFIG_THUMB2_KERNEL */
81 thumb = false;
82 if (addr & 0x3)
83 return -EINVAL;
84 insn = __mem_to_opcode_arm(*p->addr);
85 decode_insn = arm_probes_decode_insn;
86 actions = kprobes_arm_actions;
87 checkers = kprobes_arm_checkers;
88 #endif
89
90 p->opcode = insn;
91 p->ainsn.insn = tmp_insn;
92
93 switch ((*decode_insn)(insn, &p->ainsn, true, actions, checkers)) {
94 case INSN_REJECTED: /* not supported */
95 return -EINVAL;
96
97 case INSN_GOOD: /* instruction uses slot */
98 p->ainsn.insn = get_insn_slot();
99 if (!p->ainsn.insn)
100 return -ENOMEM;
101 for (is = 0; is < MAX_INSN_SIZE; ++is)
102 p->ainsn.insn[is] = tmp_insn[is];
103 flush_insns(p->ainsn.insn,
104 sizeof(p->ainsn.insn[0]) * MAX_INSN_SIZE);
105 p->ainsn.insn_fn = (probes_insn_fn_t *)
106 ((uintptr_t)p->ainsn.insn | thumb);
107 break;
108
109 case INSN_GOOD_NO_SLOT: /* instruction doesn't need insn slot */
110 p->ainsn.insn = NULL;
111 break;
112 }
113
114 /*
115 * Never instrument insn like 'str r0, [sp, +/-r1]'. Also, insn likes
116 * 'str r0, [sp, #-68]' should also be prohibited.
117 * See __und_svc.
118 */
119 if ((p->ainsn.stack_space < 0) ||
120 (p->ainsn.stack_space > MAX_STACK_SIZE))
121 return -EINVAL;
122
123 return 0;
124 }
125
arch_arm_kprobe(struct kprobe * p)126 void __kprobes arch_arm_kprobe(struct kprobe *p)
127 {
128 unsigned int brkp;
129 void *addr;
130
131 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
132 /* Remove any Thumb flag */
133 addr = (void *)((uintptr_t)p->addr & ~1);
134
135 if (is_wide_instruction(p->opcode))
136 brkp = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION;
137 else
138 brkp = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION;
139 } else {
140 kprobe_opcode_t insn = p->opcode;
141
142 addr = p->addr;
143 brkp = KPROBE_ARM_BREAKPOINT_INSTRUCTION;
144
145 if (insn >= 0xe0000000)
146 brkp |= 0xe0000000; /* Unconditional instruction */
147 else
148 brkp |= insn & 0xf0000000; /* Copy condition from insn */
149 }
150
151 patch_text(addr, brkp);
152 }
153
154 /*
155 * The actual disarming is done here on each CPU and synchronized using
156 * stop_machine. This synchronization is necessary on SMP to avoid removing
157 * a probe between the moment the 'Undefined Instruction' exception is raised
158 * and the moment the exception handler reads the faulting instruction from
159 * memory. It is also needed to atomically set the two half-words of a 32-bit
160 * Thumb breakpoint.
161 */
162 struct patch {
163 void *addr;
164 unsigned int insn;
165 };
166
__kprobes_remove_breakpoint(void * data)167 static int __kprobes_remove_breakpoint(void *data)
168 {
169 struct patch *p = data;
170 __patch_text(p->addr, p->insn);
171 return 0;
172 }
173
kprobes_remove_breakpoint(void * addr,unsigned int insn)174 void __kprobes kprobes_remove_breakpoint(void *addr, unsigned int insn)
175 {
176 struct patch p = {
177 .addr = addr,
178 .insn = insn,
179 };
180 stop_machine_cpuslocked(__kprobes_remove_breakpoint, &p,
181 cpu_online_mask);
182 }
183
arch_disarm_kprobe(struct kprobe * p)184 void __kprobes arch_disarm_kprobe(struct kprobe *p)
185 {
186 kprobes_remove_breakpoint((void *)((uintptr_t)p->addr & ~1),
187 p->opcode);
188 }
189
arch_remove_kprobe(struct kprobe * p)190 void __kprobes arch_remove_kprobe(struct kprobe *p)
191 {
192 if (p->ainsn.insn) {
193 free_insn_slot(p->ainsn.insn, 0);
194 p->ainsn.insn = NULL;
195 }
196 }
197
save_previous_kprobe(struct kprobe_ctlblk * kcb)198 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
199 {
200 kcb->prev_kprobe.kp = kprobe_running();
201 kcb->prev_kprobe.status = kcb->kprobe_status;
202 }
203
restore_previous_kprobe(struct kprobe_ctlblk * kcb)204 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
205 {
206 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
207 kcb->kprobe_status = kcb->prev_kprobe.status;
208 }
209
set_current_kprobe(struct kprobe * p)210 static void __kprobes set_current_kprobe(struct kprobe *p)
211 {
212 __this_cpu_write(current_kprobe, p);
213 }
214
215 static void __kprobes
singlestep_skip(struct kprobe * p,struct pt_regs * regs)216 singlestep_skip(struct kprobe *p, struct pt_regs *regs)
217 {
218 #ifdef CONFIG_THUMB2_KERNEL
219 regs->ARM_cpsr = it_advance(regs->ARM_cpsr);
220 if (is_wide_instruction(p->opcode))
221 regs->ARM_pc += 4;
222 else
223 regs->ARM_pc += 2;
224 #else
225 regs->ARM_pc += 4;
226 #endif
227 }
228
229 static inline void __kprobes
singlestep(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)230 singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb)
231 {
232 p->ainsn.insn_singlestep(p->opcode, &p->ainsn, regs);
233 }
234
235 /*
236 * Called with IRQs disabled. IRQs must remain disabled from that point
237 * all the way until processing this kprobe is complete. The current
238 * kprobes implementation cannot process more than one nested level of
239 * kprobe, and that level is reserved for user kprobe handlers, so we can't
240 * risk encountering a new kprobe in an interrupt handler.
241 */
kprobe_handler(struct pt_regs * regs)242 void __kprobes kprobe_handler(struct pt_regs *regs)
243 {
244 struct kprobe *p, *cur;
245 struct kprobe_ctlblk *kcb;
246
247 kcb = get_kprobe_ctlblk();
248 cur = kprobe_running();
249
250 #ifdef CONFIG_THUMB2_KERNEL
251 /*
252 * First look for a probe which was registered using an address with
253 * bit 0 set, this is the usual situation for pointers to Thumb code.
254 * If not found, fallback to looking for one with bit 0 clear.
255 */
256 p = get_kprobe((kprobe_opcode_t *)(regs->ARM_pc | 1));
257 if (!p)
258 p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
259
260 #else /* ! CONFIG_THUMB2_KERNEL */
261 p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
262 #endif
263
264 if (p) {
265 if (!p->ainsn.insn_check_cc(regs->ARM_cpsr)) {
266 /*
267 * Probe hit but conditional execution check failed,
268 * so just skip the instruction and continue as if
269 * nothing had happened.
270 * In this case, we can skip recursing check too.
271 */
272 singlestep_skip(p, regs);
273 } else if (cur) {
274 /* Kprobe is pending, so we're recursing. */
275 switch (kcb->kprobe_status) {
276 case KPROBE_HIT_ACTIVE:
277 case KPROBE_HIT_SSDONE:
278 case KPROBE_HIT_SS:
279 /* A pre- or post-handler probe got us here. */
280 kprobes_inc_nmissed_count(p);
281 save_previous_kprobe(kcb);
282 set_current_kprobe(p);
283 kcb->kprobe_status = KPROBE_REENTER;
284 singlestep(p, regs, kcb);
285 restore_previous_kprobe(kcb);
286 break;
287 case KPROBE_REENTER:
288 /* A nested probe was hit in FIQ, it is a BUG */
289 pr_warn("Unrecoverable kprobe detected.\n");
290 dump_kprobe(p);
291 /* fall through */
292 default:
293 /* impossible cases */
294 BUG();
295 }
296 } else {
297 /* Probe hit and conditional execution check ok. */
298 set_current_kprobe(p);
299 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
300
301 /*
302 * If we have no pre-handler or it returned 0, we
303 * continue with normal processing. If we have a
304 * pre-handler and it returned non-zero, it will
305 * modify the execution path and no need to single
306 * stepping. Let's just reset current kprobe and exit.
307 */
308 if (!p->pre_handler || !p->pre_handler(p, regs)) {
309 kcb->kprobe_status = KPROBE_HIT_SS;
310 singlestep(p, regs, kcb);
311 if (p->post_handler) {
312 kcb->kprobe_status = KPROBE_HIT_SSDONE;
313 p->post_handler(p, regs, 0);
314 }
315 }
316 reset_current_kprobe();
317 }
318 } else {
319 /*
320 * The probe was removed and a race is in progress.
321 * There is nothing we can do about it. Let's restart
322 * the instruction. By the time we can restart, the
323 * real instruction will be there.
324 */
325 }
326 }
327
kprobe_trap_handler(struct pt_regs * regs,unsigned int instr)328 static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr)
329 {
330 unsigned long flags;
331 local_irq_save(flags);
332 kprobe_handler(regs);
333 local_irq_restore(flags);
334 return 0;
335 }
336
kprobe_fault_handler(struct pt_regs * regs,unsigned int fsr)337 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
338 {
339 struct kprobe *cur = kprobe_running();
340 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
341
342 switch (kcb->kprobe_status) {
343 case KPROBE_HIT_SS:
344 case KPROBE_REENTER:
345 /*
346 * We are here because the instruction being single
347 * stepped caused a page fault. We reset the current
348 * kprobe and the PC to point back to the probe address
349 * and allow the page fault handler to continue as a
350 * normal page fault.
351 */
352 regs->ARM_pc = (long)cur->addr;
353 if (kcb->kprobe_status == KPROBE_REENTER) {
354 restore_previous_kprobe(kcb);
355 } else {
356 reset_current_kprobe();
357 }
358 break;
359
360 case KPROBE_HIT_ACTIVE:
361 case KPROBE_HIT_SSDONE:
362 /*
363 * We increment the nmissed count for accounting,
364 * we can also use npre/npostfault count for accounting
365 * these specific fault cases.
366 */
367 kprobes_inc_nmissed_count(cur);
368
369 /*
370 * We come here because instructions in the pre/post
371 * handler caused the page_fault, this could happen
372 * if handler tries to access user space by
373 * copy_from_user(), get_user() etc. Let the
374 * user-specified handler try to fix it.
375 */
376 if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
377 return 1;
378 break;
379
380 default:
381 break;
382 }
383
384 return 0;
385 }
386
kprobe_exceptions_notify(struct notifier_block * self,unsigned long val,void * data)387 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
388 unsigned long val, void *data)
389 {
390 /*
391 * notify_die() is currently never called on ARM,
392 * so this callback is currently empty.
393 */
394 return NOTIFY_DONE;
395 }
396
397 /*
398 * When a retprobed function returns, trampoline_handler() is called,
399 * calling the kretprobe's handler. We construct a struct pt_regs to
400 * give a view of registers r0-r11 to the user return-handler. This is
401 * not a complete pt_regs structure, but that should be plenty sufficient
402 * for kretprobe handlers which should normally be interested in r0 only
403 * anyway.
404 */
kretprobe_trampoline(void)405 void __naked __kprobes kretprobe_trampoline(void)
406 {
407 __asm__ __volatile__ (
408 "stmdb sp!, {r0 - r11} \n\t"
409 "mov r0, sp \n\t"
410 "bl trampoline_handler \n\t"
411 "mov lr, r0 \n\t"
412 "ldmia sp!, {r0 - r11} \n\t"
413 #ifdef CONFIG_THUMB2_KERNEL
414 "bx lr \n\t"
415 #else
416 "mov pc, lr \n\t"
417 #endif
418 : : : "memory");
419 }
420
421 /* Called from kretprobe_trampoline */
trampoline_handler(struct pt_regs * regs)422 static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
423 {
424 struct kretprobe_instance *ri = NULL;
425 struct hlist_head *head, empty_rp;
426 struct hlist_node *tmp;
427 unsigned long flags, orig_ret_address = 0;
428 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
429 kprobe_opcode_t *correct_ret_addr = NULL;
430
431 INIT_HLIST_HEAD(&empty_rp);
432 kretprobe_hash_lock(current, &head, &flags);
433
434 /*
435 * It is possible to have multiple instances associated with a given
436 * task either because multiple functions in the call path have
437 * a return probe installed on them, and/or more than one return
438 * probe was registered for a target function.
439 *
440 * We can handle this because:
441 * - instances are always inserted at the head of the list
442 * - when multiple return probes are registered for the same
443 * function, the first instance's ret_addr will point to the
444 * real return address, and all the rest will point to
445 * kretprobe_trampoline
446 */
447 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
448 if (ri->task != current)
449 /* another task is sharing our hash bucket */
450 continue;
451
452 orig_ret_address = (unsigned long)ri->ret_addr;
453
454 if (orig_ret_address != trampoline_address)
455 /*
456 * This is the real return address. Any other
457 * instances associated with this task are for
458 * other calls deeper on the call stack
459 */
460 break;
461 }
462
463 kretprobe_assert(ri, orig_ret_address, trampoline_address);
464
465 correct_ret_addr = ri->ret_addr;
466 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
467 if (ri->task != current)
468 /* another task is sharing our hash bucket */
469 continue;
470
471 orig_ret_address = (unsigned long)ri->ret_addr;
472 if (ri->rp && ri->rp->handler) {
473 __this_cpu_write(current_kprobe, &ri->rp->kp);
474 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
475 ri->ret_addr = correct_ret_addr;
476 ri->rp->handler(ri, regs);
477 __this_cpu_write(current_kprobe, NULL);
478 }
479
480 recycle_rp_inst(ri, &empty_rp);
481
482 if (orig_ret_address != trampoline_address)
483 /*
484 * This is the real return address. Any other
485 * instances associated with this task are for
486 * other calls deeper on the call stack
487 */
488 break;
489 }
490
491 kretprobe_hash_unlock(current, &flags);
492
493 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
494 hlist_del(&ri->hlist);
495 kfree(ri);
496 }
497
498 return (void *)orig_ret_address;
499 }
500
arch_prepare_kretprobe(struct kretprobe_instance * ri,struct pt_regs * regs)501 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
502 struct pt_regs *regs)
503 {
504 ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr;
505
506 /* Replace the return addr with trampoline addr. */
507 regs->ARM_lr = (unsigned long)&kretprobe_trampoline;
508 }
509
arch_trampoline_kprobe(struct kprobe * p)510 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
511 {
512 return 0;
513 }
514
515 #ifdef CONFIG_THUMB2_KERNEL
516
517 static struct undef_hook kprobes_thumb16_break_hook = {
518 .instr_mask = 0xffff,
519 .instr_val = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION,
520 .cpsr_mask = MODE_MASK,
521 .cpsr_val = SVC_MODE,
522 .fn = kprobe_trap_handler,
523 };
524
525 static struct undef_hook kprobes_thumb32_break_hook = {
526 .instr_mask = 0xffffffff,
527 .instr_val = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION,
528 .cpsr_mask = MODE_MASK,
529 .cpsr_val = SVC_MODE,
530 .fn = kprobe_trap_handler,
531 };
532
533 #else /* !CONFIG_THUMB2_KERNEL */
534
535 static struct undef_hook kprobes_arm_break_hook = {
536 .instr_mask = 0x0fffffff,
537 .instr_val = KPROBE_ARM_BREAKPOINT_INSTRUCTION,
538 .cpsr_mask = MODE_MASK,
539 .cpsr_val = SVC_MODE,
540 .fn = kprobe_trap_handler,
541 };
542
543 #endif /* !CONFIG_THUMB2_KERNEL */
544
arch_init_kprobes()545 int __init arch_init_kprobes()
546 {
547 arm_probes_decode_init();
548 #ifdef CONFIG_THUMB2_KERNEL
549 register_undef_hook(&kprobes_thumb16_break_hook);
550 register_undef_hook(&kprobes_thumb32_break_hook);
551 #else
552 register_undef_hook(&kprobes_arm_break_hook);
553 #endif
554 return 0;
555 }
556
arch_within_kprobe_blacklist(unsigned long addr)557 bool arch_within_kprobe_blacklist(unsigned long addr)
558 {
559 void *a = (void *)addr;
560
561 return __in_irqentry_text(addr) ||
562 in_entry_text(addr) ||
563 in_idmap_text(addr) ||
564 memory_contains(__kprobes_text_start, __kprobes_text_end, a, 1);
565 }
566