1 /*
2 * OMAP4 SMP source file. It contains platform specific functions
3 * needed for the linux smp kernel.
4 *
5 * Copyright (C) 2009 Texas Instruments, Inc.
6 *
7 * Author:
8 * Santosh Shilimkar <santosh.shilimkar@ti.com>
9 *
10 * Platform file needed for the OMAP4 SMP. This file is based on arm
11 * realview smp platform.
12 * * Copyright (c) 2002 ARM Limited.
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 */
18 #include <linux/init.h>
19 #include <linux/device.h>
20 #include <linux/smp.h>
21 #include <linux/io.h>
22 #include <linux/irqchip/arm-gic.h>
23
24 #include <asm/sections.h>
25 #include <asm/smp_scu.h>
26 #include <asm/virt.h>
27
28 #include "omap-secure.h"
29 #include "omap-wakeupgen.h"
30 #include <asm/cputype.h>
31
32 #include "soc.h"
33 #include "iomap.h"
34 #include "common.h"
35 #include "clockdomain.h"
36 #include "pm.h"
37
38 #define CPU_MASK 0xff0ffff0
39 #define CPU_CORTEX_A9 0x410FC090
40 #define CPU_CORTEX_A15 0x410FC0F0
41
42 #define OMAP5_CORE_COUNT 0x2
43
44 #define AUX_CORE_BOOT0_GP_RELEASE 0x020
45 #define AUX_CORE_BOOT0_HS_RELEASE 0x200
46
47 struct omap_smp_config {
48 unsigned long cpu1_rstctrl_pa;
49 void __iomem *cpu1_rstctrl_va;
50 void __iomem *scu_base;
51 void __iomem *wakeupgen_base;
52 void *startup_addr;
53 };
54
55 static struct omap_smp_config cfg;
56
57 static const struct omap_smp_config omap443x_cfg __initconst = {
58 .cpu1_rstctrl_pa = 0x4824380c,
59 .startup_addr = omap4_secondary_startup,
60 };
61
62 static const struct omap_smp_config omap446x_cfg __initconst = {
63 .cpu1_rstctrl_pa = 0x4824380c,
64 .startup_addr = omap4460_secondary_startup,
65 };
66
67 static const struct omap_smp_config omap5_cfg __initconst = {
68 .cpu1_rstctrl_pa = 0x48243810,
69 .startup_addr = omap5_secondary_startup,
70 };
71
72 static DEFINE_SPINLOCK(boot_lock);
73
omap4_get_scu_base(void)74 void __iomem *omap4_get_scu_base(void)
75 {
76 return cfg.scu_base;
77 }
78
79 #ifdef CONFIG_OMAP5_ERRATA_801819
omap5_erratum_workaround_801819(void)80 void omap5_erratum_workaround_801819(void)
81 {
82 u32 acr, revidr;
83 u32 acr_mask;
84
85 /* REVIDR[3] indicates erratum fix available on silicon */
86 asm volatile ("mrc p15, 0, %0, c0, c0, 6" : "=r" (revidr));
87 if (revidr & (0x1 << 3))
88 return;
89
90 asm volatile ("mrc p15, 0, %0, c1, c0, 1" : "=r" (acr));
91 /*
92 * BIT(27) - Disables streaming. All write-allocate lines allocate in
93 * the L1 or L2 cache.
94 * BIT(25) - Disables streaming. All write-allocate lines allocate in
95 * the L1 cache.
96 */
97 acr_mask = (0x3 << 25) | (0x3 << 27);
98 /* do we already have it done.. if yes, skip expensive smc */
99 if ((acr & acr_mask) == acr_mask)
100 return;
101
102 acr |= acr_mask;
103 omap_smc1(OMAP5_DRA7_MON_SET_ACR_INDEX, acr);
104
105 pr_debug("%s: ARM erratum workaround 801819 applied on CPU%d\n",
106 __func__, smp_processor_id());
107 }
108 #else
omap5_erratum_workaround_801819(void)109 static inline void omap5_erratum_workaround_801819(void) { }
110 #endif
111
112 #ifdef CONFIG_HARDEN_BRANCH_PREDICTOR
113 /*
114 * Configure ACR and enable ACTLR[0] (Enable invalidates of BTB with
115 * ICIALLU) to activate the workaround for secondary Core.
116 * NOTE: it is assumed that the primary core's configuration is done
117 * by the boot loader (kernel will detect a misconfiguration and complain
118 * if this is not done).
119 *
120 * In General Purpose(GP) devices, ACR bit settings can only be done
121 * by ROM code in "secure world" using the smc call and there is no
122 * option to update the "firmware" on such devices. This also works for
123 * High security(HS) devices, as a backup option in case the
124 * "update" is not done in the "security firmware".
125 */
omap5_secondary_harden_predictor(void)126 static void omap5_secondary_harden_predictor(void)
127 {
128 u32 acr, acr_mask;
129
130 asm volatile ("mrc p15, 0, %0, c1, c0, 1" : "=r" (acr));
131
132 /*
133 * ACTLR[0] (Enable invalidates of BTB with ICIALLU)
134 */
135 acr_mask = BIT(0);
136
137 /* Do we already have it done.. if yes, skip expensive smc */
138 if ((acr & acr_mask) == acr_mask)
139 return;
140
141 acr |= acr_mask;
142 omap_smc1(OMAP5_DRA7_MON_SET_ACR_INDEX, acr);
143
144 pr_debug("%s: ARM ACR setup for CVE_2017_5715 applied on CPU%d\n",
145 __func__, smp_processor_id());
146 }
147 #else
omap5_secondary_harden_predictor(void)148 static inline void omap5_secondary_harden_predictor(void) { }
149 #endif
150
omap4_secondary_init(unsigned int cpu)151 static void omap4_secondary_init(unsigned int cpu)
152 {
153 /*
154 * Configure ACTRL and enable NS SMP bit access on CPU1 on HS device.
155 * OMAP44XX EMU/HS devices - CPU0 SMP bit access is enabled in PPA
156 * init and for CPU1, a secure PPA API provided. CPU0 must be ON
157 * while executing NS_SMP API on CPU1 and PPA version must be 1.4.0+.
158 * OMAP443X GP devices- SMP bit isn't accessible.
159 * OMAP446X GP devices - SMP bit access is enabled on both CPUs.
160 */
161 if (soc_is_omap443x() && (omap_type() != OMAP2_DEVICE_TYPE_GP))
162 omap_secure_dispatcher(OMAP4_PPA_CPU_ACTRL_SMP_INDEX,
163 4, 0, 0, 0, 0, 0);
164
165 if (soc_is_omap54xx() || soc_is_dra7xx()) {
166 /*
167 * Configure the CNTFRQ register for the secondary cpu's which
168 * indicates the frequency of the cpu local timers.
169 */
170 set_cntfreq();
171 /* Configure ACR to disable streaming WA for 801819 */
172 omap5_erratum_workaround_801819();
173 /* Enable ACR to allow for ICUALLU workaround */
174 omap5_secondary_harden_predictor();
175 }
176
177 /*
178 * Synchronise with the boot thread.
179 */
180 spin_lock(&boot_lock);
181 spin_unlock(&boot_lock);
182 }
183
omap4_boot_secondary(unsigned int cpu,struct task_struct * idle)184 static int omap4_boot_secondary(unsigned int cpu, struct task_struct *idle)
185 {
186 static struct clockdomain *cpu1_clkdm;
187 static bool booted;
188 static struct powerdomain *cpu1_pwrdm;
189
190 /*
191 * Set synchronisation state between this boot processor
192 * and the secondary one
193 */
194 spin_lock(&boot_lock);
195
196 /*
197 * Update the AuxCoreBoot0 with boot state for secondary core.
198 * omap4_secondary_startup() routine will hold the secondary core till
199 * the AuxCoreBoot1 register is updated with cpu state
200 * A barrier is added to ensure that write buffer is drained
201 */
202 if (omap_secure_apis_support())
203 omap_modify_auxcoreboot0(AUX_CORE_BOOT0_HS_RELEASE,
204 0xfffffdff);
205 else
206 writel_relaxed(AUX_CORE_BOOT0_GP_RELEASE,
207 cfg.wakeupgen_base + OMAP_AUX_CORE_BOOT_0);
208
209 if (!cpu1_clkdm && !cpu1_pwrdm) {
210 cpu1_clkdm = clkdm_lookup("mpu1_clkdm");
211 cpu1_pwrdm = pwrdm_lookup("cpu1_pwrdm");
212 }
213
214 /*
215 * The SGI(Software Generated Interrupts) are not wakeup capable
216 * from low power states. This is known limitation on OMAP4 and
217 * needs to be worked around by using software forced clockdomain
218 * wake-up. To wakeup CPU1, CPU0 forces the CPU1 clockdomain to
219 * software force wakeup. The clockdomain is then put back to
220 * hardware supervised mode.
221 * More details can be found in OMAP4430 TRM - Version J
222 * Section :
223 * 4.3.4.2 Power States of CPU0 and CPU1
224 */
225 if (booted && cpu1_pwrdm && cpu1_clkdm) {
226 /*
227 * GIC distributor control register has changed between
228 * CortexA9 r1pX and r2pX. The Control Register secure
229 * banked version is now composed of 2 bits:
230 * bit 0 == Secure Enable
231 * bit 1 == Non-Secure Enable
232 * The Non-Secure banked register has not changed
233 * Because the ROM Code is based on the r1pX GIC, the CPU1
234 * GIC restoration will cause a problem to CPU0 Non-Secure SW.
235 * The workaround must be:
236 * 1) Before doing the CPU1 wakeup, CPU0 must disable
237 * the GIC distributor
238 * 2) CPU1 must re-enable the GIC distributor on
239 * it's wakeup path.
240 */
241 if (IS_PM44XX_ERRATUM(PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD)) {
242 local_irq_disable();
243 gic_dist_disable();
244 }
245
246 /*
247 * Ensure that CPU power state is set to ON to avoid CPU
248 * powerdomain transition on wfi
249 */
250 clkdm_deny_idle_nolock(cpu1_clkdm);
251 pwrdm_set_next_pwrst(cpu1_pwrdm, PWRDM_POWER_ON);
252 clkdm_allow_idle_nolock(cpu1_clkdm);
253
254 if (IS_PM44XX_ERRATUM(PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD)) {
255 while (gic_dist_disabled()) {
256 udelay(1);
257 cpu_relax();
258 }
259 gic_timer_retrigger();
260 local_irq_enable();
261 }
262 } else {
263 dsb_sev();
264 booted = true;
265 }
266
267 arch_send_wakeup_ipi_mask(cpumask_of(cpu));
268
269 /*
270 * Now the secondary core is starting up let it run its
271 * calibrations, then wait for it to finish
272 */
273 spin_unlock(&boot_lock);
274
275 return 0;
276 }
277
278 /*
279 * Initialise the CPU possible map early - this describes the CPUs
280 * which may be present or become present in the system.
281 */
omap4_smp_init_cpus(void)282 static void __init omap4_smp_init_cpus(void)
283 {
284 unsigned int i = 0, ncores = 1, cpu_id;
285
286 /* Use ARM cpuid check here, as SoC detection will not work so early */
287 cpu_id = read_cpuid_id() & CPU_MASK;
288 if (cpu_id == CPU_CORTEX_A9) {
289 /*
290 * Currently we can't call ioremap here because
291 * SoC detection won't work until after init_early.
292 */
293 cfg.scu_base = OMAP2_L4_IO_ADDRESS(scu_a9_get_base());
294 BUG_ON(!cfg.scu_base);
295 ncores = scu_get_core_count(cfg.scu_base);
296 } else if (cpu_id == CPU_CORTEX_A15) {
297 ncores = OMAP5_CORE_COUNT;
298 }
299
300 /* sanity check */
301 if (ncores > nr_cpu_ids) {
302 pr_warn("SMP: %u cores greater than maximum (%u), clipping\n",
303 ncores, nr_cpu_ids);
304 ncores = nr_cpu_ids;
305 }
306
307 for (i = 0; i < ncores; i++)
308 set_cpu_possible(i, true);
309 }
310
311 /*
312 * For now, just make sure the start-up address is not within the booting
313 * kernel space as that means we just overwrote whatever secondary_startup()
314 * code there was.
315 */
omap4_smp_cpu1_startup_valid(unsigned long addr)316 static bool __init omap4_smp_cpu1_startup_valid(unsigned long addr)
317 {
318 if ((addr >= __pa(PAGE_OFFSET)) && (addr <= __pa(__bss_start)))
319 return false;
320
321 return true;
322 }
323
324 /*
325 * We may need to reset CPU1 before configuring, otherwise kexec boot can end
326 * up trying to use old kernel startup address or suspend-resume will
327 * occasionally fail to bring up CPU1 on 4430 if CPU1 fails to enter deeper
328 * idle states.
329 */
omap4_smp_maybe_reset_cpu1(struct omap_smp_config * c)330 static void __init omap4_smp_maybe_reset_cpu1(struct omap_smp_config *c)
331 {
332 unsigned long cpu1_startup_pa, cpu1_ns_pa_addr;
333 bool needs_reset = false;
334 u32 released;
335
336 if (omap_secure_apis_support())
337 released = omap_read_auxcoreboot0() & AUX_CORE_BOOT0_HS_RELEASE;
338 else
339 released = readl_relaxed(cfg.wakeupgen_base +
340 OMAP_AUX_CORE_BOOT_0) &
341 AUX_CORE_BOOT0_GP_RELEASE;
342 if (released) {
343 pr_warn("smp: CPU1 not parked?\n");
344
345 return;
346 }
347
348 cpu1_startup_pa = readl_relaxed(cfg.wakeupgen_base +
349 OMAP_AUX_CORE_BOOT_1);
350
351 /* Did the configured secondary_startup() get overwritten? */
352 if (!omap4_smp_cpu1_startup_valid(cpu1_startup_pa))
353 needs_reset = true;
354
355 /*
356 * If omap4 or 5 has NS_PA_ADDR configured, CPU1 may be in a
357 * deeper idle state in WFI and will wake to an invalid address.
358 */
359 if ((soc_is_omap44xx() || soc_is_omap54xx())) {
360 cpu1_ns_pa_addr = omap4_get_cpu1_ns_pa_addr();
361 if (!omap4_smp_cpu1_startup_valid(cpu1_ns_pa_addr))
362 needs_reset = true;
363 } else {
364 cpu1_ns_pa_addr = 0;
365 }
366
367 if (!needs_reset || !c->cpu1_rstctrl_va)
368 return;
369
370 pr_info("smp: CPU1 parked within kernel, needs reset (0x%lx 0x%lx)\n",
371 cpu1_startup_pa, cpu1_ns_pa_addr);
372
373 writel_relaxed(1, c->cpu1_rstctrl_va);
374 readl_relaxed(c->cpu1_rstctrl_va);
375 writel_relaxed(0, c->cpu1_rstctrl_va);
376 }
377
omap4_smp_prepare_cpus(unsigned int max_cpus)378 static void __init omap4_smp_prepare_cpus(unsigned int max_cpus)
379 {
380 const struct omap_smp_config *c = NULL;
381
382 if (soc_is_omap443x())
383 c = &omap443x_cfg;
384 else if (soc_is_omap446x())
385 c = &omap446x_cfg;
386 else if (soc_is_dra74x() || soc_is_omap54xx() || soc_is_dra76x())
387 c = &omap5_cfg;
388
389 if (!c) {
390 pr_err("%s Unknown SMP SoC?\n", __func__);
391 return;
392 }
393
394 /* Must preserve cfg.scu_base set earlier */
395 cfg.cpu1_rstctrl_pa = c->cpu1_rstctrl_pa;
396 cfg.startup_addr = c->startup_addr;
397 cfg.wakeupgen_base = omap_get_wakeupgen_base();
398
399 if (soc_is_dra74x() || soc_is_omap54xx() || soc_is_dra76x()) {
400 if ((__boot_cpu_mode & MODE_MASK) == HYP_MODE)
401 cfg.startup_addr = omap5_secondary_hyp_startup;
402 omap5_erratum_workaround_801819();
403 }
404
405 cfg.cpu1_rstctrl_va = ioremap(cfg.cpu1_rstctrl_pa, 4);
406 if (!cfg.cpu1_rstctrl_va)
407 return;
408
409 /*
410 * Initialise the SCU and wake up the secondary core using
411 * wakeup_secondary().
412 */
413 if (cfg.scu_base)
414 scu_enable(cfg.scu_base);
415
416 omap4_smp_maybe_reset_cpu1(&cfg);
417
418 /*
419 * Write the address of secondary startup routine into the
420 * AuxCoreBoot1 where ROM code will jump and start executing
421 * on secondary core once out of WFE
422 * A barrier is added to ensure that write buffer is drained
423 */
424 if (omap_secure_apis_support())
425 omap_auxcoreboot_addr(__pa_symbol(cfg.startup_addr));
426 else
427 writel_relaxed(__pa_symbol(cfg.startup_addr),
428 cfg.wakeupgen_base + OMAP_AUX_CORE_BOOT_1);
429 }
430
431 const struct smp_operations omap4_smp_ops __initconst = {
432 .smp_init_cpus = omap4_smp_init_cpus,
433 .smp_prepare_cpus = omap4_smp_prepare_cpus,
434 .smp_secondary_init = omap4_secondary_init,
435 .smp_boot_secondary = omap4_boot_secondary,
436 #ifdef CONFIG_HOTPLUG_CPU
437 .cpu_die = omap4_cpu_die,
438 .cpu_kill = omap4_cpu_kill,
439 #endif
440 };
441