1Intel Integrated Sensor Hub (ISH) 2=============================== 3 4A sensor hub enables the ability to offload sensor polling and algorithm 5processing to a dedicated low power co-processor. This allows the core 6processor to go into low power modes more often, resulting in the increased 7battery life. 8 9There are many vendors providing external sensor hubs confirming to HID 10Sensor usage tables, and used in several tablets, 2 in 1 convertible laptops 11and embedded products. Linux had this support since Linux 3.9. 12 13Intel® introduced integrated sensor hubs as a part of the SoC starting from 14Cherry Trail and now supported on multiple generations of CPU packages. There 15are many commercial devices already shipped with Integrated Sensor Hubs (ISH). 16These ISH also comply to HID sensor specification, but the difference is the 17transport protocol used for communication. The current external sensor hubs 18mainly use HID over i2C or USB. But ISH doesn't use either i2c or USB. 19 201. Overview 21 22Using a analogy with a usbhid implementation, the ISH follows a similar model 23for a very high speed communication: 24 25 ----------------- ---------------------- 26 | USB HID | --> | ISH HID | 27 ----------------- ---------------------- 28 ----------------- ---------------------- 29 | USB protocol | --> | ISH Transport | 30 ----------------- ---------------------- 31 ----------------- ---------------------- 32 | EHCI/XHCI | --> | ISH IPC | 33 ----------------- ---------------------- 34 PCI PCI 35 ----------------- ---------------------- 36 |Host controller| --> | ISH processor | 37 ----------------- ---------------------- 38 USB Link 39 ----------------- ---------------------- 40 | USB End points| --> | ISH Clients | 41 ----------------- ---------------------- 42 43Like USB protocol provides a method for device enumeration, link management 44and user data encapsulation, the ISH also provides similar services. But it is 45very light weight tailored to manage and communicate with ISH client 46applications implemented in the firmware. 47 48The ISH allows multiple sensor management applications executing in the 49firmware. Like USB endpoints the messaging can be to/from a client. As part of 50enumeration process, these clients are identified. These clients can be simple 51HID sensor applications, sensor calibration application or senor firmware 52update application. 53 54The implementation model is similar, like USB bus, ISH transport is also 55implemented as a bus. Each client application executing in the ISH processor 56is registered as a device on this bus. The driver, which binds each device 57(ISH HID driver) identifies the device type and registers with the hid core. 58 592. ISH Implementation: Block Diagram 60 61 --------------------------- 62 | User Space Applications | 63 --------------------------- 64 65----------------IIO ABI---------------- 66 -------------------------- 67 | IIO Sensor Drivers | 68 -------------------------- 69 -------------------------- 70 | IIO core | 71 -------------------------- 72 -------------------------- 73 | HID Sensor Hub MFD | 74 -------------------------- 75 -------------------------- 76 | HID Core | 77 -------------------------- 78 -------------------------- 79 | HID over ISH Client | 80 -------------------------- 81 -------------------------- 82 | ISH Transport (ISHTP) | 83 -------------------------- 84 -------------------------- 85 | IPC Drivers | 86 -------------------------- 87OS 88---------------- PCI ----------------- 89Hardware + Firmware 90 ---------------------------- 91 | ISH Hardware/Firmware(FW) | 92 ---------------------------- 93 943. High level processing in above blocks 95 963.1 Hardware Interface 97 98The ISH is exposed as "Non-VGA unclassified PCI device" to the host. The PCI 99product and vendor IDs are changed from different generations of processors. So 100the source code which enumerate drivers needs to update from generation to 101generation. 102 1033.2 Inter Processor Communication (IPC) driver 104Location: drivers/hid/intel-ish-hid/ipc 105 106The IPC message used memory mapped I/O. The registers are defined in 107hw-ish-regs.h. 108 1093.2.1 IPC/FW message types 110 111There are two types of messages, one for management of link and other messages 112are to and from transport layers. 113 114TX and RX of Transport messages 115 116A set of memory mapped register offers support of multi byte messages TX and 117RX (E.g.IPC_REG_ISH2HOST_MSG, IPC_REG_HOST2ISH_MSG). The IPC layer maintains 118internal queues to sequence messages and send them in order to the FW. 119Optionally the caller can register handler to get notification of completion. 120A door bell mechanism is used in messaging to trigger processing in host and 121client firmware side. When ISH interrupt handler is called, the ISH2HOST 122doorbell register is used by host drivers to determine that the interrupt 123is for ISH. 124 125Each side has 32 32-bit message registers and a 32-bit doorbell. Doorbell 126register has the following format: 127Bits 0..6: fragment length (7 bits are used) 128Bits 10..13: encapsulated protocol 129Bits 16..19: management command (for IPC management protocol) 130Bit 31: doorbell trigger (signal H/W interrupt to the other side) 131Other bits are reserved, should be 0. 132 1333.2.2 Transport layer interface 134 135To abstract HW level IPC communication, a set of callbacks are registered. 136The transport layer uses them to send and receive messages. 137Refer to struct ishtp_hw_ops for callbacks. 138 1393.3 ISH Transport layer 140Location: drivers/hid/intel-ish-hid/ishtp/ 141 1423.3.1 A Generic Transport Layer 143 144The transport layer is a bi-directional protocol, which defines: 145- Set of commands to start, stop, connect, disconnect and flow control 146(ishtp/hbm.h) for details 147- A flow control mechanism to avoid buffer overflows 148 149This protocol resembles bus messages described in the following document: 150http://www.intel.com/content/dam/www/public/us/en/documents/technical-\ 151specifications/dcmi-hi-1-0-spec.pdf "Chapter 7: Bus Message Layer" 152 1533.3.2 Connection and Flow Control Mechanism 154 155Each FW client and a protocol is identified by an UUID. In order to communicate 156to a FW client, a connection must be established using connect request and 157response bus messages. If successful, a pair (host_client_id and fw_client_id) 158will identify the connection. 159 160Once connection is established, peers send each other flow control bus messages 161independently. Every peer may send a message only if it has received a 162flow-control credit before. Once it sent a message, it may not send another one 163before receiving the next flow control credit. 164Either side can send disconnect request bus message to end communication. Also 165the link will be dropped if major FW reset occurs. 166 1673.3.3 Peer to Peer data transfer 168 169Peer to Peer data transfer can happen with or without using DMA. Depending on 170the sensor bandwidth requirement DMA can be enabled by using module parameter 171ishtp_use_dma under intel_ishtp. 172 173Each side (host and FW) manages its DMA transfer memory independently. When an 174ISHTP client from either host or FW side wants to send something, it decides 175whether to send over IPC or over DMA; for each transfer the decision is 176independent. The sending side sends DMA_XFER message when the message is in 177the respective host buffer (TX when host client sends, RX when FW client 178sends). The recipient of DMA message responds with DMA_XFER_ACK, indicating 179the sender that the memory region for that message may be reused. 180 181DMA initialization is started with host sending DMA_ALLOC_NOTIFY bus message 182(that includes RX buffer) and FW responds with DMA_ALLOC_NOTIFY_ACK. 183Additionally to DMA address communication, this sequence checks capabilities: 184if thw host doesn't support DMA, then it won't send DMA allocation, so FW can't 185send DMA; if FW doesn't support DMA then it won't respond with 186DMA_ALLOC_NOTIFY_ACK, in which case host will not use DMA transfers. 187Here ISH acts as busmaster DMA controller. Hence when host sends DMA_XFER, 188it's request to do host->ISH DMA transfer; when FW sends DMA_XFER, it means 189that it already did DMA and the message resides at host. Thus, DMA_XFER 190and DMA_XFER_ACK act as ownership indicators. 191 192At initial state all outgoing memory belongs to the sender (TX to host, RX to 193FW), DMA_XFER transfers ownership on the region that contains ISHTP message to 194the receiving side, DMA_XFER_ACK returns ownership to the sender. A sender 195needs not wait for previous DMA_XFER to be ack'ed, and may send another message 196as long as remaining continuous memory in its ownership is enough. 197In principle, multiple DMA_XFER and DMA_XFER_ACK messages may be sent at once 198(up to IPC MTU), thus allowing for interrupt throttling. 199Currently, ISH FW decides to send over DMA if ISHTP message is more than 3 IPC 200fragments and via IPC otherwise. 201 2023.3.4 Ring Buffers 203 204When a client initiate a connection, a ring or RX and TX buffers are allocated. 205The size of ring can be specified by the client. HID client set 16 and 32 for 206TX and RX buffers respectively. On send request from client, the data to be 207sent is copied to one of the send ring buffer and scheduled to be sent using 208bus message protocol. These buffers are required because the FW may have not 209have processed the last message and may not have enough flow control credits 210to send. Same thing holds true on receive side and flow control is required. 211 2123.3.5 Host Enumeration 213 214The host enumeration bus command allow discovery of clients present in the FW. 215There can be multiple sensor clients and clients for calibration function. 216 217To ease in implantation and allow independent driver handle each client 218this transport layer takes advantage of Linux Bus driver model. Each 219client is registered as device on the the transport bus (ishtp bus). 220 221Enumeration sequence of messages: 222- Host sends HOST_START_REQ_CMD, indicating that host ISHTP layer is up. 223- FW responds with HOST_START_RES_CMD 224- Host sends HOST_ENUM_REQ_CMD (enumerate FW clients) 225- FW responds with HOST_ENUM_RES_CMD that includes bitmap of available FW 226client IDs 227- For each FW ID found in that bitmap host sends 228HOST_CLIENT_PROPERTIES_REQ_CMD 229- FW responds with HOST_CLIENT_PROPERTIES_RES_CMD. Properties include UUID, 230max ISHTP message size, etc. 231- Once host received properties for that last discovered client, it considers 232ISHTP device fully functional (and allocates DMA buffers) 233 2343.4 HID over ISH Client 235Location: drivers/hid/intel-ish-hid 236 237The ISHTP client driver is responsible for: 238- enumerate HID devices under FW ISH client 239- Get Report descriptor 240- Register with HID core as a LL driver 241- Process Get/Set feature request 242- Get input reports 243 2443.5 HID Sensor Hub MFD and IIO sensor drivers 245 246The functionality in these drivers is the same as an external sensor hub. 247Refer to 248Documentation/hid/hid-sensor.txt for HID sensor 249Documentation/ABI/testing/sysfs-bus-iio for IIO ABIs to user space 250 2513.6 End to End HID transport Sequence Diagram 252 253HID-ISH-CLN ISHTP IPC HW 254 | | | | 255 | | |-----WAKE UP------------------>| 256 | | | | 257 | | |-----HOST READY--------------->| 258 | | | | 259 | | |<----MNG_RESET_NOTIFY_ACK----- | 260 | | | | 261 | |<----ISHTP_START------ | | 262 | | | | 263 | |<-----------------HOST_START_RES_CMD-------------------| 264 | | | | 265 | |------------------QUERY_SUBSCRIBER-------------------->| 266 | | | | 267 | |------------------HOST_ENUM_REQ_CMD------------------->| 268 | | | | 269 | |<-----------------HOST_ENUM_RES_CMD--------------------| 270 | | | | 271 | |------------------HOST_CLIENT_PROPERTIES_REQ_CMD------>| 272 | | | | 273 | |<-----------------HOST_CLIENT_PROPERTIES_RES_CMD-------| 274 | Create new device on in ishtp bus | | 275 | | | | 276 | |------------------HOST_CLIENT_PROPERTIES_REQ_CMD------>| 277 | | | | 278 | |<-----------------HOST_CLIENT_PROPERTIES_RES_CMD-------| 279 | Create new device on in ishtp bus | | 280 | | | | 281 | |--Repeat HOST_CLIENT_PROPERTIES_REQ_CMD-till last one--| 282 | | | | 283 probed() 284 |----ishtp_cl_connect-->|----------------- CLIENT_CONNECT_REQ_CMD-------------->| 285 | | | | 286 | |<----------------CLIENT_CONNECT_RES_CMD----------------| 287 | | | | 288 |register event callback| | | 289 | | | | 290 |ishtp_cl_send( 291 HOSTIF_DM_ENUM_DEVICES) |----------fill ishtp_msg_hdr struct write to HW----- >| 292 | | | | 293 | | |<-----IRQ(IPC_PROTOCOL_ISHTP---| 294 | | | | 295 |<--ENUM_DEVICE RSP-----| | | 296 | | | | 297for each enumerated device 298 |ishtp_cl_send( 299 HOSTIF_GET_HID_DESCRIPTOR |----------fill ishtp_msg_hdr struct write to HW--- >| 300 | | | | 301 ...Response 302 | | | | 303for each enumerated device 304 |ishtp_cl_send( 305 HOSTIF_GET_REPORT_DESCRIPTOR |----------fill ishtp_msg_hdr struct write to HW- >| 306 | | | | 307 | | | | 308 hid_allocate_device 309 | | | | 310 hid_add_device | | | 311 | | | | 312 313 3143.7 ISH Debugging 315 316To debug ISH, event tracing mechanism is used. To enable debug logs 317echo 1 > /sys/kernel/debug/tracing/events/intel_ish/enable 318cat sys/kernel/debug/tracing/trace 319 3203.8 ISH IIO sysfs Example on Lenovo thinkpad Yoga 260 321 322root@otcpl-ThinkPad-Yoga-260:~# tree -l /sys/bus/iio/devices/ 323/sys/bus/iio/devices/ 324├── iio:device0 -> ../../../devices/0044:8086:22D8.0001/HID-SENSOR-200073.9.auto/iio:device0 325│ ├── buffer 326│ │ ├── enable 327│ │ ├── length 328│ │ └── watermark 329... 330│ ├── in_accel_hysteresis 331│ ├── in_accel_offset 332│ ├── in_accel_sampling_frequency 333│ ├── in_accel_scale 334│ ├── in_accel_x_raw 335│ ├── in_accel_y_raw 336│ ├── in_accel_z_raw 337│ ├── name 338│ ├── scan_elements 339│ │ ├── in_accel_x_en 340│ │ ├── in_accel_x_index 341│ │ ├── in_accel_x_type 342│ │ ├── in_accel_y_en 343│ │ ├── in_accel_y_index 344│ │ ├── in_accel_y_type 345│ │ ├── in_accel_z_en 346│ │ ├── in_accel_z_index 347│ │ └── in_accel_z_type 348... 349│ │ ├── devices 350│ │ │ │ ├── buffer 351│ │ │ │ │ ├── enable 352│ │ │ │ │ ├── length 353│ │ │ │ │ └── watermark 354│ │ │ │ ├── dev 355│ │ │ │ ├── in_intensity_both_raw 356│ │ │ │ ├── in_intensity_hysteresis 357│ │ │ │ ├── in_intensity_offset 358│ │ │ │ ├── in_intensity_sampling_frequency 359│ │ │ │ ├── in_intensity_scale 360│ │ │ │ ├── name 361│ │ │ │ ├── scan_elements 362│ │ │ │ │ ├── in_intensity_both_en 363│ │ │ │ │ ├── in_intensity_both_index 364│ │ │ │ │ └── in_intensity_both_type 365│ │ │ │ ├── trigger 366│ │ │ │ │ └── current_trigger 367... 368│ │ │ │ ├── buffer 369│ │ │ │ │ ├── enable 370│ │ │ │ │ ├── length 371│ │ │ │ │ └── watermark 372│ │ │ │ ├── dev 373│ │ │ │ ├── in_magn_hysteresis 374│ │ │ │ ├── in_magn_offset 375│ │ │ │ ├── in_magn_sampling_frequency 376│ │ │ │ ├── in_magn_scale 377│ │ │ │ ├── in_magn_x_raw 378│ │ │ │ ├── in_magn_y_raw 379│ │ │ │ ├── in_magn_z_raw 380│ │ │ │ ├── in_rot_from_north_magnetic_tilt_comp_raw 381│ │ │ │ ├── in_rot_hysteresis 382│ │ │ │ ├── in_rot_offset 383│ │ │ │ ├── in_rot_sampling_frequency 384│ │ │ │ ├── in_rot_scale 385│ │ │ │ ├── name 386... 387│ │ │ │ ├── scan_elements 388│ │ │ │ │ ├── in_magn_x_en 389│ │ │ │ │ ├── in_magn_x_index 390│ │ │ │ │ ├── in_magn_x_type 391│ │ │ │ │ ├── in_magn_y_en 392│ │ │ │ │ ├── in_magn_y_index 393│ │ │ │ │ ├── in_magn_y_type 394│ │ │ │ │ ├── in_magn_z_en 395│ │ │ │ │ ├── in_magn_z_index 396│ │ │ │ │ ├── in_magn_z_type 397│ │ │ │ │ ├── in_rot_from_north_magnetic_tilt_comp_en 398│ │ │ │ │ ├── in_rot_from_north_magnetic_tilt_comp_index 399│ │ │ │ │ └── in_rot_from_north_magnetic_tilt_comp_type 400│ │ │ │ ├── trigger 401│ │ │ │ │ └── current_trigger 402... 403│ │ │ │ ├── buffer 404│ │ │ │ │ ├── enable 405│ │ │ │ │ ├── length 406│ │ │ │ │ └── watermark 407│ │ │ │ ├── dev 408│ │ │ │ ├── in_anglvel_hysteresis 409│ │ │ │ ├── in_anglvel_offset 410│ │ │ │ ├── in_anglvel_sampling_frequency 411│ │ │ │ ├── in_anglvel_scale 412│ │ │ │ ├── in_anglvel_x_raw 413│ │ │ │ ├── in_anglvel_y_raw 414│ │ │ │ ├── in_anglvel_z_raw 415│ │ │ │ ├── name 416│ │ │ │ ├── scan_elements 417│ │ │ │ │ ├── in_anglvel_x_en 418│ │ │ │ │ ├── in_anglvel_x_index 419│ │ │ │ │ ├── in_anglvel_x_type 420│ │ │ │ │ ├── in_anglvel_y_en 421│ │ │ │ │ ├── in_anglvel_y_index 422│ │ │ │ │ ├── in_anglvel_y_type 423│ │ │ │ │ ├── in_anglvel_z_en 424│ │ │ │ │ ├── in_anglvel_z_index 425│ │ │ │ │ └── in_anglvel_z_type 426│ │ │ │ ├── trigger 427│ │ │ │ │ └── current_trigger 428... 429│ │ │ │ ├── buffer 430│ │ │ │ │ ├── enable 431│ │ │ │ │ ├── length 432│ │ │ │ │ └── watermark 433│ │ │ │ ├── dev 434│ │ │ │ ├── in_anglvel_hysteresis 435│ │ │ │ ├── in_anglvel_offset 436│ │ │ │ ├── in_anglvel_sampling_frequency 437│ │ │ │ ├── in_anglvel_scale 438│ │ │ │ ├── in_anglvel_x_raw 439│ │ │ │ ├── in_anglvel_y_raw 440│ │ │ │ ├── in_anglvel_z_raw 441│ │ │ │ ├── name 442│ │ │ │ ├── scan_elements 443│ │ │ │ │ ├── in_anglvel_x_en 444│ │ │ │ │ ├── in_anglvel_x_index 445│ │ │ │ │ ├── in_anglvel_x_type 446│ │ │ │ │ ├── in_anglvel_y_en 447│ │ │ │ │ ├── in_anglvel_y_index 448│ │ │ │ │ ├── in_anglvel_y_type 449│ │ │ │ │ ├── in_anglvel_z_en 450│ │ │ │ │ ├── in_anglvel_z_index 451│ │ │ │ │ └── in_anglvel_z_type 452│ │ │ │ ├── trigger 453│ │ │ │ │ └── current_trigger 454... 455