1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Driver for Cadence QSPI Controller
4 //
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/firmware/xlnx-zynqmp.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/jiffies.h>
21 #include <linux/kernel.h>
22 #include <linux/log2.h>
23 #include <linux/module.h>
24 #include <linux/of_device.h>
25 #include <linux/of.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/reset.h>
29 #include <linux/sched.h>
30 #include <linux/spi/spi.h>
31 #include <linux/spi/spi-mem.h>
32 #include <linux/timer.h>
33
34 #define CQSPI_NAME "cadence-qspi"
35 #define CQSPI_MAX_CHIPSELECT 16
36
37 /* Quirks */
38 #define CQSPI_NEEDS_WR_DELAY BIT(0)
39 #define CQSPI_DISABLE_DAC_MODE BIT(1)
40 #define CQSPI_SUPPORT_EXTERNAL_DMA BIT(2)
41 #define CQSPI_NO_SUPPORT_WR_COMPLETION BIT(3)
42 #define CQSPI_SLOW_SRAM BIT(4)
43
44 /* Capabilities */
45 #define CQSPI_SUPPORTS_OCTAL BIT(0)
46
47 #define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
48
49 struct cqspi_st;
50
51 struct cqspi_flash_pdata {
52 struct cqspi_st *cqspi;
53 u32 clk_rate;
54 u32 read_delay;
55 u32 tshsl_ns;
56 u32 tsd2d_ns;
57 u32 tchsh_ns;
58 u32 tslch_ns;
59 u8 cs;
60 };
61
62 struct cqspi_st {
63 struct platform_device *pdev;
64 struct spi_master *master;
65 struct clk *clk;
66 unsigned int sclk;
67
68 void __iomem *iobase;
69 void __iomem *ahb_base;
70 resource_size_t ahb_size;
71 struct completion transfer_complete;
72
73 struct dma_chan *rx_chan;
74 struct completion rx_dma_complete;
75 dma_addr_t mmap_phys_base;
76
77 int current_cs;
78 unsigned long master_ref_clk_hz;
79 bool is_decoded_cs;
80 u32 fifo_depth;
81 u32 fifo_width;
82 u32 num_chipselect;
83 bool rclk_en;
84 u32 trigger_address;
85 u32 wr_delay;
86 bool use_direct_mode;
87 struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
88 bool use_dma_read;
89 u32 pd_dev_id;
90 bool wr_completion;
91 bool slow_sram;
92 };
93
94 struct cqspi_driver_platdata {
95 u32 hwcaps_mask;
96 u8 quirks;
97 int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
98 u_char *rxbuf, loff_t from_addr, size_t n_rx);
99 u32 (*get_dma_status)(struct cqspi_st *cqspi);
100 };
101
102 /* Operation timeout value */
103 #define CQSPI_TIMEOUT_MS 500
104 #define CQSPI_READ_TIMEOUT_MS 10
105
106 #define CQSPI_DUMMY_CLKS_PER_BYTE 8
107 #define CQSPI_DUMMY_BYTES_MAX 4
108 #define CQSPI_DUMMY_CLKS_MAX 31
109
110 #define CQSPI_STIG_DATA_LEN_MAX 8
111
112 /* Register map */
113 #define CQSPI_REG_CONFIG 0x00
114 #define CQSPI_REG_CONFIG_ENABLE_MASK BIT(0)
115 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL BIT(7)
116 #define CQSPI_REG_CONFIG_DECODE_MASK BIT(9)
117 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10
118 #define CQSPI_REG_CONFIG_DMA_MASK BIT(15)
119 #define CQSPI_REG_CONFIG_BAUD_LSB 19
120 #define CQSPI_REG_CONFIG_DTR_PROTO BIT(24)
121 #define CQSPI_REG_CONFIG_DUAL_OPCODE BIT(30)
122 #define CQSPI_REG_CONFIG_IDLE_LSB 31
123 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF
124 #define CQSPI_REG_CONFIG_BAUD_MASK 0xF
125
126 #define CQSPI_REG_RD_INSTR 0x04
127 #define CQSPI_REG_RD_INSTR_OPCODE_LSB 0
128 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8
129 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12
130 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16
131 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20
132 #define CQSPI_REG_RD_INSTR_DUMMY_LSB 24
133 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3
134 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3
135 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3
136 #define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F
137
138 #define CQSPI_REG_WR_INSTR 0x08
139 #define CQSPI_REG_WR_INSTR_OPCODE_LSB 0
140 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB 12
141 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB 16
142
143 #define CQSPI_REG_DELAY 0x0C
144 #define CQSPI_REG_DELAY_TSLCH_LSB 0
145 #define CQSPI_REG_DELAY_TCHSH_LSB 8
146 #define CQSPI_REG_DELAY_TSD2D_LSB 16
147 #define CQSPI_REG_DELAY_TSHSL_LSB 24
148 #define CQSPI_REG_DELAY_TSLCH_MASK 0xFF
149 #define CQSPI_REG_DELAY_TCHSH_MASK 0xFF
150 #define CQSPI_REG_DELAY_TSD2D_MASK 0xFF
151 #define CQSPI_REG_DELAY_TSHSL_MASK 0xFF
152
153 #define CQSPI_REG_READCAPTURE 0x10
154 #define CQSPI_REG_READCAPTURE_BYPASS_LSB 0
155 #define CQSPI_REG_READCAPTURE_DELAY_LSB 1
156 #define CQSPI_REG_READCAPTURE_DELAY_MASK 0xF
157
158 #define CQSPI_REG_SIZE 0x14
159 #define CQSPI_REG_SIZE_ADDRESS_LSB 0
160 #define CQSPI_REG_SIZE_PAGE_LSB 4
161 #define CQSPI_REG_SIZE_BLOCK_LSB 16
162 #define CQSPI_REG_SIZE_ADDRESS_MASK 0xF
163 #define CQSPI_REG_SIZE_PAGE_MASK 0xFFF
164 #define CQSPI_REG_SIZE_BLOCK_MASK 0x3F
165
166 #define CQSPI_REG_SRAMPARTITION 0x18
167 #define CQSPI_REG_INDIRECTTRIGGER 0x1C
168
169 #define CQSPI_REG_DMA 0x20
170 #define CQSPI_REG_DMA_SINGLE_LSB 0
171 #define CQSPI_REG_DMA_BURST_LSB 8
172 #define CQSPI_REG_DMA_SINGLE_MASK 0xFF
173 #define CQSPI_REG_DMA_BURST_MASK 0xFF
174
175 #define CQSPI_REG_REMAP 0x24
176 #define CQSPI_REG_MODE_BIT 0x28
177
178 #define CQSPI_REG_SDRAMLEVEL 0x2C
179 #define CQSPI_REG_SDRAMLEVEL_RD_LSB 0
180 #define CQSPI_REG_SDRAMLEVEL_WR_LSB 16
181 #define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF
182 #define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF
183
184 #define CQSPI_REG_WR_COMPLETION_CTRL 0x38
185 #define CQSPI_REG_WR_DISABLE_AUTO_POLL BIT(14)
186
187 #define CQSPI_REG_IRQSTATUS 0x40
188 #define CQSPI_REG_IRQMASK 0x44
189
190 #define CQSPI_REG_INDIRECTRD 0x60
191 #define CQSPI_REG_INDIRECTRD_START_MASK BIT(0)
192 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK BIT(1)
193 #define CQSPI_REG_INDIRECTRD_DONE_MASK BIT(5)
194
195 #define CQSPI_REG_INDIRECTRDWATERMARK 0x64
196 #define CQSPI_REG_INDIRECTRDSTARTADDR 0x68
197 #define CQSPI_REG_INDIRECTRDBYTES 0x6C
198
199 #define CQSPI_REG_CMDCTRL 0x90
200 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0)
201 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1)
202 #define CQSPI_REG_CMDCTRL_DUMMY_LSB 7
203 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12
204 #define CQSPI_REG_CMDCTRL_WR_EN_LSB 15
205 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16
206 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19
207 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20
208 #define CQSPI_REG_CMDCTRL_RD_EN_LSB 23
209 #define CQSPI_REG_CMDCTRL_OPCODE_LSB 24
210 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7
211 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3
212 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7
213 #define CQSPI_REG_CMDCTRL_DUMMY_MASK 0x1F
214
215 #define CQSPI_REG_INDIRECTWR 0x70
216 #define CQSPI_REG_INDIRECTWR_START_MASK BIT(0)
217 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK BIT(1)
218 #define CQSPI_REG_INDIRECTWR_DONE_MASK BIT(5)
219
220 #define CQSPI_REG_INDIRECTWRWATERMARK 0x74
221 #define CQSPI_REG_INDIRECTWRSTARTADDR 0x78
222 #define CQSPI_REG_INDIRECTWRBYTES 0x7C
223
224 #define CQSPI_REG_INDTRIG_ADDRRANGE 0x80
225
226 #define CQSPI_REG_CMDADDRESS 0x94
227 #define CQSPI_REG_CMDREADDATALOWER 0xA0
228 #define CQSPI_REG_CMDREADDATAUPPER 0xA4
229 #define CQSPI_REG_CMDWRITEDATALOWER 0xA8
230 #define CQSPI_REG_CMDWRITEDATAUPPER 0xAC
231
232 #define CQSPI_REG_POLLING_STATUS 0xB0
233 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB 16
234
235 #define CQSPI_REG_OP_EXT_LOWER 0xE0
236 #define CQSPI_REG_OP_EXT_READ_LSB 24
237 #define CQSPI_REG_OP_EXT_WRITE_LSB 16
238 #define CQSPI_REG_OP_EXT_STIG_LSB 0
239
240 #define CQSPI_REG_VERSAL_DMA_SRC_ADDR 0x1000
241
242 #define CQSPI_REG_VERSAL_DMA_DST_ADDR 0x1800
243 #define CQSPI_REG_VERSAL_DMA_DST_SIZE 0x1804
244
245 #define CQSPI_REG_VERSAL_DMA_DST_CTRL 0x180C
246
247 #define CQSPI_REG_VERSAL_DMA_DST_I_STS 0x1814
248 #define CQSPI_REG_VERSAL_DMA_DST_I_EN 0x1818
249 #define CQSPI_REG_VERSAL_DMA_DST_I_DIS 0x181C
250 #define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK BIT(1)
251
252 #define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB 0x1828
253
254 #define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL 0xF43FFA00
255 #define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL 0x6
256
257 /* Interrupt status bits */
258 #define CQSPI_REG_IRQ_MODE_ERR BIT(0)
259 #define CQSPI_REG_IRQ_UNDERFLOW BIT(1)
260 #define CQSPI_REG_IRQ_IND_COMP BIT(2)
261 #define CQSPI_REG_IRQ_IND_RD_REJECT BIT(3)
262 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR BIT(4)
263 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR BIT(5)
264 #define CQSPI_REG_IRQ_WATERMARK BIT(6)
265 #define CQSPI_REG_IRQ_IND_SRAM_FULL BIT(12)
266
267 #define CQSPI_IRQ_MASK_RD (CQSPI_REG_IRQ_WATERMARK | \
268 CQSPI_REG_IRQ_IND_SRAM_FULL | \
269 CQSPI_REG_IRQ_IND_COMP)
270
271 #define CQSPI_IRQ_MASK_WR (CQSPI_REG_IRQ_IND_COMP | \
272 CQSPI_REG_IRQ_WATERMARK | \
273 CQSPI_REG_IRQ_UNDERFLOW)
274
275 #define CQSPI_IRQ_STATUS_MASK 0x1FFFF
276 #define CQSPI_DMA_UNALIGN 0x3
277
278 #define CQSPI_REG_VERSAL_DMA_VAL 0x602
279
cqspi_wait_for_bit(void __iomem * reg,const u32 mask,bool clr)280 static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
281 {
282 u32 val;
283
284 return readl_relaxed_poll_timeout(reg, val,
285 (((clr ? ~val : val) & mask) == mask),
286 10, CQSPI_TIMEOUT_MS * 1000);
287 }
288
cqspi_is_idle(struct cqspi_st * cqspi)289 static bool cqspi_is_idle(struct cqspi_st *cqspi)
290 {
291 u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
292
293 return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
294 }
295
cqspi_get_rd_sram_level(struct cqspi_st * cqspi)296 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
297 {
298 u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
299
300 reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
301 return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
302 }
303
cqspi_get_versal_dma_status(struct cqspi_st * cqspi)304 static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
305 {
306 u32 dma_status;
307
308 dma_status = readl(cqspi->iobase +
309 CQSPI_REG_VERSAL_DMA_DST_I_STS);
310 writel(dma_status, cqspi->iobase +
311 CQSPI_REG_VERSAL_DMA_DST_I_STS);
312
313 return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
314 }
315
cqspi_irq_handler(int this_irq,void * dev)316 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
317 {
318 struct cqspi_st *cqspi = dev;
319 unsigned int irq_status;
320 struct device *device = &cqspi->pdev->dev;
321 const struct cqspi_driver_platdata *ddata;
322
323 ddata = of_device_get_match_data(device);
324
325 /* Read interrupt status */
326 irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
327
328 /* Clear interrupt */
329 writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
330
331 if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
332 if (ddata->get_dma_status(cqspi)) {
333 complete(&cqspi->transfer_complete);
334 return IRQ_HANDLED;
335 }
336 }
337
338 else if (!cqspi->slow_sram)
339 irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
340 else
341 irq_status &= CQSPI_REG_IRQ_WATERMARK | CQSPI_IRQ_MASK_WR;
342
343 if (irq_status)
344 complete(&cqspi->transfer_complete);
345
346 return IRQ_HANDLED;
347 }
348
cqspi_calc_rdreg(const struct spi_mem_op * op)349 static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
350 {
351 u32 rdreg = 0;
352
353 rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
354 rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
355 rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
356
357 return rdreg;
358 }
359
cqspi_calc_dummy(const struct spi_mem_op * op)360 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
361 {
362 unsigned int dummy_clk;
363
364 if (!op->dummy.nbytes)
365 return 0;
366
367 dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
368 if (op->cmd.dtr)
369 dummy_clk /= 2;
370
371 return dummy_clk;
372 }
373
cqspi_wait_idle(struct cqspi_st * cqspi)374 static int cqspi_wait_idle(struct cqspi_st *cqspi)
375 {
376 const unsigned int poll_idle_retry = 3;
377 unsigned int count = 0;
378 unsigned long timeout;
379
380 timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
381 while (1) {
382 /*
383 * Read few times in succession to ensure the controller
384 * is indeed idle, that is, the bit does not transition
385 * low again.
386 */
387 if (cqspi_is_idle(cqspi))
388 count++;
389 else
390 count = 0;
391
392 if (count >= poll_idle_retry)
393 return 0;
394
395 if (time_after(jiffies, timeout)) {
396 /* Timeout, in busy mode. */
397 dev_err(&cqspi->pdev->dev,
398 "QSPI is still busy after %dms timeout.\n",
399 CQSPI_TIMEOUT_MS);
400 return -ETIMEDOUT;
401 }
402
403 cpu_relax();
404 }
405 }
406
cqspi_exec_flash_cmd(struct cqspi_st * cqspi,unsigned int reg)407 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
408 {
409 void __iomem *reg_base = cqspi->iobase;
410 int ret;
411
412 /* Write the CMDCTRL without start execution. */
413 writel(reg, reg_base + CQSPI_REG_CMDCTRL);
414 /* Start execute */
415 reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
416 writel(reg, reg_base + CQSPI_REG_CMDCTRL);
417
418 /* Polling for completion. */
419 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
420 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
421 if (ret) {
422 dev_err(&cqspi->pdev->dev,
423 "Flash command execution timed out.\n");
424 return ret;
425 }
426
427 /* Polling QSPI idle status. */
428 return cqspi_wait_idle(cqspi);
429 }
430
cqspi_setup_opcode_ext(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op,unsigned int shift)431 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
432 const struct spi_mem_op *op,
433 unsigned int shift)
434 {
435 struct cqspi_st *cqspi = f_pdata->cqspi;
436 void __iomem *reg_base = cqspi->iobase;
437 unsigned int reg;
438 u8 ext;
439
440 if (op->cmd.nbytes != 2)
441 return -EINVAL;
442
443 /* Opcode extension is the LSB. */
444 ext = op->cmd.opcode & 0xff;
445
446 reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
447 reg &= ~(0xff << shift);
448 reg |= ext << shift;
449 writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
450
451 return 0;
452 }
453
cqspi_enable_dtr(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op,unsigned int shift)454 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
455 const struct spi_mem_op *op, unsigned int shift)
456 {
457 struct cqspi_st *cqspi = f_pdata->cqspi;
458 void __iomem *reg_base = cqspi->iobase;
459 unsigned int reg;
460 int ret;
461
462 reg = readl(reg_base + CQSPI_REG_CONFIG);
463
464 /*
465 * We enable dual byte opcode here. The callers have to set up the
466 * extension opcode based on which type of operation it is.
467 */
468 if (op->cmd.dtr) {
469 reg |= CQSPI_REG_CONFIG_DTR_PROTO;
470 reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
471
472 /* Set up command opcode extension. */
473 ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
474 if (ret)
475 return ret;
476 } else {
477 reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
478 reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
479 }
480
481 writel(reg, reg_base + CQSPI_REG_CONFIG);
482
483 return cqspi_wait_idle(cqspi);
484 }
485
cqspi_command_read(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)486 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
487 const struct spi_mem_op *op)
488 {
489 struct cqspi_st *cqspi = f_pdata->cqspi;
490 void __iomem *reg_base = cqspi->iobase;
491 u8 *rxbuf = op->data.buf.in;
492 u8 opcode;
493 size_t n_rx = op->data.nbytes;
494 unsigned int rdreg;
495 unsigned int reg;
496 unsigned int dummy_clk;
497 size_t read_len;
498 int status;
499
500 status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
501 if (status)
502 return status;
503
504 if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
505 dev_err(&cqspi->pdev->dev,
506 "Invalid input argument, len %zu rxbuf 0x%p\n",
507 n_rx, rxbuf);
508 return -EINVAL;
509 }
510
511 if (op->cmd.dtr)
512 opcode = op->cmd.opcode >> 8;
513 else
514 opcode = op->cmd.opcode;
515
516 reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
517
518 rdreg = cqspi_calc_rdreg(op);
519 writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
520
521 dummy_clk = cqspi_calc_dummy(op);
522 if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
523 return -EOPNOTSUPP;
524
525 if (dummy_clk)
526 reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
527 << CQSPI_REG_CMDCTRL_DUMMY_LSB;
528
529 reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
530
531 /* 0 means 1 byte. */
532 reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
533 << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
534 status = cqspi_exec_flash_cmd(cqspi, reg);
535 if (status)
536 return status;
537
538 reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
539
540 /* Put the read value into rx_buf */
541 read_len = (n_rx > 4) ? 4 : n_rx;
542 memcpy(rxbuf, ®, read_len);
543 rxbuf += read_len;
544
545 if (n_rx > 4) {
546 reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
547
548 read_len = n_rx - read_len;
549 memcpy(rxbuf, ®, read_len);
550 }
551
552 return 0;
553 }
554
cqspi_command_write(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)555 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
556 const struct spi_mem_op *op)
557 {
558 struct cqspi_st *cqspi = f_pdata->cqspi;
559 void __iomem *reg_base = cqspi->iobase;
560 u8 opcode;
561 const u8 *txbuf = op->data.buf.out;
562 size_t n_tx = op->data.nbytes;
563 unsigned int reg;
564 unsigned int data;
565 size_t write_len;
566 int ret;
567
568 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
569 if (ret)
570 return ret;
571
572 if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
573 dev_err(&cqspi->pdev->dev,
574 "Invalid input argument, cmdlen %zu txbuf 0x%p\n",
575 n_tx, txbuf);
576 return -EINVAL;
577 }
578
579 reg = cqspi_calc_rdreg(op);
580 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
581
582 if (op->cmd.dtr)
583 opcode = op->cmd.opcode >> 8;
584 else
585 opcode = op->cmd.opcode;
586
587 reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
588
589 if (op->addr.nbytes) {
590 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
591 reg |= ((op->addr.nbytes - 1) &
592 CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
593 << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
594
595 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
596 }
597
598 if (n_tx) {
599 reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
600 reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
601 << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
602 data = 0;
603 write_len = (n_tx > 4) ? 4 : n_tx;
604 memcpy(&data, txbuf, write_len);
605 txbuf += write_len;
606 writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
607
608 if (n_tx > 4) {
609 data = 0;
610 write_len = n_tx - 4;
611 memcpy(&data, txbuf, write_len);
612 writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
613 }
614 }
615
616 return cqspi_exec_flash_cmd(cqspi, reg);
617 }
618
cqspi_read_setup(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)619 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
620 const struct spi_mem_op *op)
621 {
622 struct cqspi_st *cqspi = f_pdata->cqspi;
623 void __iomem *reg_base = cqspi->iobase;
624 unsigned int dummy_clk = 0;
625 unsigned int reg;
626 int ret;
627 u8 opcode;
628
629 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
630 if (ret)
631 return ret;
632
633 if (op->cmd.dtr)
634 opcode = op->cmd.opcode >> 8;
635 else
636 opcode = op->cmd.opcode;
637
638 reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
639 reg |= cqspi_calc_rdreg(op);
640
641 /* Setup dummy clock cycles */
642 dummy_clk = cqspi_calc_dummy(op);
643
644 if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
645 return -EOPNOTSUPP;
646
647 if (dummy_clk)
648 reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
649 << CQSPI_REG_RD_INSTR_DUMMY_LSB;
650
651 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
652
653 /* Set address width */
654 reg = readl(reg_base + CQSPI_REG_SIZE);
655 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
656 reg |= (op->addr.nbytes - 1);
657 writel(reg, reg_base + CQSPI_REG_SIZE);
658 return 0;
659 }
660
cqspi_indirect_read_execute(struct cqspi_flash_pdata * f_pdata,u8 * rxbuf,loff_t from_addr,const size_t n_rx)661 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
662 u8 *rxbuf, loff_t from_addr,
663 const size_t n_rx)
664 {
665 struct cqspi_st *cqspi = f_pdata->cqspi;
666 struct device *dev = &cqspi->pdev->dev;
667 void __iomem *reg_base = cqspi->iobase;
668 void __iomem *ahb_base = cqspi->ahb_base;
669 unsigned int remaining = n_rx;
670 unsigned int mod_bytes = n_rx % 4;
671 unsigned int bytes_to_read = 0;
672 u8 *rxbuf_end = rxbuf + n_rx;
673 int ret = 0;
674
675 writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
676 writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
677
678 /* Clear all interrupts. */
679 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
680
681 /*
682 * On SoCFPGA platform reading the SRAM is slow due to
683 * hardware limitation and causing read interrupt storm to CPU,
684 * so enabling only watermark interrupt to disable all read
685 * interrupts later as we want to run "bytes to read" loop with
686 * all the read interrupts disabled for max performance.
687 */
688
689 if (!cqspi->slow_sram)
690 writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
691 else
692 writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
693
694 reinit_completion(&cqspi->transfer_complete);
695 writel(CQSPI_REG_INDIRECTRD_START_MASK,
696 reg_base + CQSPI_REG_INDIRECTRD);
697
698 while (remaining > 0) {
699 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
700 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
701 ret = -ETIMEDOUT;
702
703 /*
704 * Disable all read interrupts until
705 * we are out of "bytes to read"
706 */
707 if (cqspi->slow_sram)
708 writel(0x0, reg_base + CQSPI_REG_IRQMASK);
709
710 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
711
712 if (ret && bytes_to_read == 0) {
713 dev_err(dev, "Indirect read timeout, no bytes\n");
714 goto failrd;
715 }
716
717 while (bytes_to_read != 0) {
718 unsigned int word_remain = round_down(remaining, 4);
719
720 bytes_to_read *= cqspi->fifo_width;
721 bytes_to_read = bytes_to_read > remaining ?
722 remaining : bytes_to_read;
723 bytes_to_read = round_down(bytes_to_read, 4);
724 /* Read 4 byte word chunks then single bytes */
725 if (bytes_to_read) {
726 ioread32_rep(ahb_base, rxbuf,
727 (bytes_to_read / 4));
728 } else if (!word_remain && mod_bytes) {
729 unsigned int temp = ioread32(ahb_base);
730
731 bytes_to_read = mod_bytes;
732 memcpy(rxbuf, &temp, min((unsigned int)
733 (rxbuf_end - rxbuf),
734 bytes_to_read));
735 }
736 rxbuf += bytes_to_read;
737 remaining -= bytes_to_read;
738 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
739 }
740
741 if (remaining > 0) {
742 reinit_completion(&cqspi->transfer_complete);
743 if (cqspi->slow_sram)
744 writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
745 }
746 }
747
748 /* Check indirect done status */
749 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
750 CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
751 if (ret) {
752 dev_err(dev, "Indirect read completion error (%i)\n", ret);
753 goto failrd;
754 }
755
756 /* Disable interrupt */
757 writel(0, reg_base + CQSPI_REG_IRQMASK);
758
759 /* Clear indirect completion status */
760 writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
761
762 return 0;
763
764 failrd:
765 /* Disable interrupt */
766 writel(0, reg_base + CQSPI_REG_IRQMASK);
767
768 /* Cancel the indirect read */
769 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
770 reg_base + CQSPI_REG_INDIRECTRD);
771 return ret;
772 }
773
cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata * f_pdata,u_char * rxbuf,loff_t from_addr,size_t n_rx)774 static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
775 u_char *rxbuf, loff_t from_addr,
776 size_t n_rx)
777 {
778 struct cqspi_st *cqspi = f_pdata->cqspi;
779 struct device *dev = &cqspi->pdev->dev;
780 void __iomem *reg_base = cqspi->iobase;
781 u32 reg, bytes_to_dma;
782 loff_t addr = from_addr;
783 void *buf = rxbuf;
784 dma_addr_t dma_addr;
785 u8 bytes_rem;
786 int ret = 0;
787
788 bytes_rem = n_rx % 4;
789 bytes_to_dma = (n_rx - bytes_rem);
790
791 if (!bytes_to_dma)
792 goto nondmard;
793
794 ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
795 if (ret)
796 return ret;
797
798 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
799 reg |= CQSPI_REG_CONFIG_DMA_MASK;
800 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
801
802 dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
803 if (dma_mapping_error(dev, dma_addr)) {
804 dev_err(dev, "dma mapping failed\n");
805 return -ENOMEM;
806 }
807
808 writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
809 writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
810 writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
811 reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
812
813 /* Clear all interrupts. */
814 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
815
816 /* Enable DMA done interrupt */
817 writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
818 reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
819
820 /* Default DMA periph configuration */
821 writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
822
823 /* Configure DMA Dst address */
824 writel(lower_32_bits(dma_addr),
825 reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
826 writel(upper_32_bits(dma_addr),
827 reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
828
829 /* Configure DMA Src address */
830 writel(cqspi->trigger_address, reg_base +
831 CQSPI_REG_VERSAL_DMA_SRC_ADDR);
832
833 /* Set DMA destination size */
834 writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
835
836 /* Set DMA destination control */
837 writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
838 reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
839
840 writel(CQSPI_REG_INDIRECTRD_START_MASK,
841 reg_base + CQSPI_REG_INDIRECTRD);
842
843 reinit_completion(&cqspi->transfer_complete);
844
845 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
846 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS))) {
847 ret = -ETIMEDOUT;
848 goto failrd;
849 }
850
851 /* Disable DMA interrupt */
852 writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
853
854 /* Clear indirect completion status */
855 writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
856 cqspi->iobase + CQSPI_REG_INDIRECTRD);
857 dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
858
859 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
860 reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
861 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
862
863 ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
864 PM_OSPI_MUX_SEL_LINEAR);
865 if (ret)
866 return ret;
867
868 nondmard:
869 if (bytes_rem) {
870 addr += bytes_to_dma;
871 buf += bytes_to_dma;
872 ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
873 bytes_rem);
874 if (ret)
875 return ret;
876 }
877
878 return 0;
879
880 failrd:
881 /* Disable DMA interrupt */
882 writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
883
884 /* Cancel the indirect read */
885 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
886 reg_base + CQSPI_REG_INDIRECTRD);
887
888 dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
889
890 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
891 reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
892 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
893
894 zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
895
896 return ret;
897 }
898
cqspi_write_setup(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)899 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
900 const struct spi_mem_op *op)
901 {
902 unsigned int reg;
903 int ret;
904 struct cqspi_st *cqspi = f_pdata->cqspi;
905 void __iomem *reg_base = cqspi->iobase;
906 u8 opcode;
907
908 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
909 if (ret)
910 return ret;
911
912 if (op->cmd.dtr)
913 opcode = op->cmd.opcode >> 8;
914 else
915 opcode = op->cmd.opcode;
916
917 /* Set opcode. */
918 reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
919 reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
920 reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
921 writel(reg, reg_base + CQSPI_REG_WR_INSTR);
922 reg = cqspi_calc_rdreg(op);
923 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
924
925 /*
926 * SPI NAND flashes require the address of the status register to be
927 * passed in the Read SR command. Also, some SPI NOR flashes like the
928 * cypress Semper flash expect a 4-byte dummy address in the Read SR
929 * command in DTR mode.
930 *
931 * But this controller does not support address phase in the Read SR
932 * command when doing auto-HW polling. So, disable write completion
933 * polling on the controller's side. spinand and spi-nor will take
934 * care of polling the status register.
935 */
936 if (cqspi->wr_completion) {
937 reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
938 reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
939 writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
940 }
941
942 reg = readl(reg_base + CQSPI_REG_SIZE);
943 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
944 reg |= (op->addr.nbytes - 1);
945 writel(reg, reg_base + CQSPI_REG_SIZE);
946 return 0;
947 }
948
cqspi_indirect_write_execute(struct cqspi_flash_pdata * f_pdata,loff_t to_addr,const u8 * txbuf,const size_t n_tx)949 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
950 loff_t to_addr, const u8 *txbuf,
951 const size_t n_tx)
952 {
953 struct cqspi_st *cqspi = f_pdata->cqspi;
954 struct device *dev = &cqspi->pdev->dev;
955 void __iomem *reg_base = cqspi->iobase;
956 unsigned int remaining = n_tx;
957 unsigned int write_bytes;
958 int ret;
959
960 writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
961 writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
962
963 /* Clear all interrupts. */
964 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
965
966 writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
967
968 reinit_completion(&cqspi->transfer_complete);
969 writel(CQSPI_REG_INDIRECTWR_START_MASK,
970 reg_base + CQSPI_REG_INDIRECTWR);
971 /*
972 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
973 * Controller programming sequence, couple of cycles of
974 * QSPI_REF_CLK delay is required for the above bit to
975 * be internally synchronized by the QSPI module. Provide 5
976 * cycles of delay.
977 */
978 if (cqspi->wr_delay)
979 ndelay(cqspi->wr_delay);
980
981 while (remaining > 0) {
982 size_t write_words, mod_bytes;
983
984 write_bytes = remaining;
985 write_words = write_bytes / 4;
986 mod_bytes = write_bytes % 4;
987 /* Write 4 bytes at a time then single bytes. */
988 if (write_words) {
989 iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
990 txbuf += (write_words * 4);
991 }
992 if (mod_bytes) {
993 unsigned int temp = 0xFFFFFFFF;
994
995 memcpy(&temp, txbuf, mod_bytes);
996 iowrite32(temp, cqspi->ahb_base);
997 txbuf += mod_bytes;
998 }
999
1000 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
1001 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1002 dev_err(dev, "Indirect write timeout\n");
1003 ret = -ETIMEDOUT;
1004 goto failwr;
1005 }
1006
1007 remaining -= write_bytes;
1008
1009 if (remaining > 0)
1010 reinit_completion(&cqspi->transfer_complete);
1011 }
1012
1013 /* Check indirect done status */
1014 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
1015 CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
1016 if (ret) {
1017 dev_err(dev, "Indirect write completion error (%i)\n", ret);
1018 goto failwr;
1019 }
1020
1021 /* Disable interrupt. */
1022 writel(0, reg_base + CQSPI_REG_IRQMASK);
1023
1024 /* Clear indirect completion status */
1025 writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1026
1027 cqspi_wait_idle(cqspi);
1028
1029 return 0;
1030
1031 failwr:
1032 /* Disable interrupt. */
1033 writel(0, reg_base + CQSPI_REG_IRQMASK);
1034
1035 /* Cancel the indirect write */
1036 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1037 reg_base + CQSPI_REG_INDIRECTWR);
1038 return ret;
1039 }
1040
cqspi_chipselect(struct cqspi_flash_pdata * f_pdata)1041 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1042 {
1043 struct cqspi_st *cqspi = f_pdata->cqspi;
1044 void __iomem *reg_base = cqspi->iobase;
1045 unsigned int chip_select = f_pdata->cs;
1046 unsigned int reg;
1047
1048 reg = readl(reg_base + CQSPI_REG_CONFIG);
1049 if (cqspi->is_decoded_cs) {
1050 reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1051 } else {
1052 reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1053
1054 /* Convert CS if without decoder.
1055 * CS0 to 4b'1110
1056 * CS1 to 4b'1101
1057 * CS2 to 4b'1011
1058 * CS3 to 4b'0111
1059 */
1060 chip_select = 0xF & ~(1 << chip_select);
1061 }
1062
1063 reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1064 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1065 reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1066 << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1067 writel(reg, reg_base + CQSPI_REG_CONFIG);
1068 }
1069
calculate_ticks_for_ns(const unsigned int ref_clk_hz,const unsigned int ns_val)1070 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1071 const unsigned int ns_val)
1072 {
1073 unsigned int ticks;
1074
1075 ticks = ref_clk_hz / 1000; /* kHz */
1076 ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1077
1078 return ticks;
1079 }
1080
cqspi_delay(struct cqspi_flash_pdata * f_pdata)1081 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1082 {
1083 struct cqspi_st *cqspi = f_pdata->cqspi;
1084 void __iomem *iobase = cqspi->iobase;
1085 const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1086 unsigned int tshsl, tchsh, tslch, tsd2d;
1087 unsigned int reg;
1088 unsigned int tsclk;
1089
1090 /* calculate the number of ref ticks for one sclk tick */
1091 tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1092
1093 tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1094 /* this particular value must be at least one sclk */
1095 if (tshsl < tsclk)
1096 tshsl = tsclk;
1097
1098 tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1099 tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1100 tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1101
1102 reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1103 << CQSPI_REG_DELAY_TSHSL_LSB;
1104 reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1105 << CQSPI_REG_DELAY_TCHSH_LSB;
1106 reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1107 << CQSPI_REG_DELAY_TSLCH_LSB;
1108 reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1109 << CQSPI_REG_DELAY_TSD2D_LSB;
1110 writel(reg, iobase + CQSPI_REG_DELAY);
1111 }
1112
cqspi_config_baudrate_div(struct cqspi_st * cqspi)1113 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1114 {
1115 const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1116 void __iomem *reg_base = cqspi->iobase;
1117 u32 reg, div;
1118
1119 /* Recalculate the baudrate divisor based on QSPI specification. */
1120 div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1121
1122 reg = readl(reg_base + CQSPI_REG_CONFIG);
1123 reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1124 reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1125 writel(reg, reg_base + CQSPI_REG_CONFIG);
1126 }
1127
cqspi_readdata_capture(struct cqspi_st * cqspi,const bool bypass,const unsigned int delay)1128 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1129 const bool bypass,
1130 const unsigned int delay)
1131 {
1132 void __iomem *reg_base = cqspi->iobase;
1133 unsigned int reg;
1134
1135 reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1136
1137 if (bypass)
1138 reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1139 else
1140 reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1141
1142 reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1143 << CQSPI_REG_READCAPTURE_DELAY_LSB);
1144
1145 reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1146 << CQSPI_REG_READCAPTURE_DELAY_LSB;
1147
1148 writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1149 }
1150
cqspi_controller_enable(struct cqspi_st * cqspi,bool enable)1151 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
1152 {
1153 void __iomem *reg_base = cqspi->iobase;
1154 unsigned int reg;
1155
1156 reg = readl(reg_base + CQSPI_REG_CONFIG);
1157
1158 if (enable)
1159 reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
1160 else
1161 reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
1162
1163 writel(reg, reg_base + CQSPI_REG_CONFIG);
1164 }
1165
cqspi_configure(struct cqspi_flash_pdata * f_pdata,unsigned long sclk)1166 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1167 unsigned long sclk)
1168 {
1169 struct cqspi_st *cqspi = f_pdata->cqspi;
1170 int switch_cs = (cqspi->current_cs != f_pdata->cs);
1171 int switch_ck = (cqspi->sclk != sclk);
1172
1173 if (switch_cs || switch_ck)
1174 cqspi_controller_enable(cqspi, 0);
1175
1176 /* Switch chip select. */
1177 if (switch_cs) {
1178 cqspi->current_cs = f_pdata->cs;
1179 cqspi_chipselect(f_pdata);
1180 }
1181
1182 /* Setup baudrate divisor and delays */
1183 if (switch_ck) {
1184 cqspi->sclk = sclk;
1185 cqspi_config_baudrate_div(cqspi);
1186 cqspi_delay(f_pdata);
1187 cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1188 f_pdata->read_delay);
1189 }
1190
1191 if (switch_cs || switch_ck)
1192 cqspi_controller_enable(cqspi, 1);
1193 }
1194
cqspi_write(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)1195 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1196 const struct spi_mem_op *op)
1197 {
1198 struct cqspi_st *cqspi = f_pdata->cqspi;
1199 loff_t to = op->addr.val;
1200 size_t len = op->data.nbytes;
1201 const u_char *buf = op->data.buf.out;
1202 int ret;
1203
1204 ret = cqspi_write_setup(f_pdata, op);
1205 if (ret)
1206 return ret;
1207
1208 /*
1209 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1210 * address (all 0s) with the read status register command in DTR mode.
1211 * But this controller does not support sending dummy address bytes to
1212 * the flash when it is polling the write completion register in DTR
1213 * mode. So, we can not use direct mode when in DTR mode for writing
1214 * data.
1215 */
1216 if (!op->cmd.dtr && cqspi->use_direct_mode &&
1217 ((to + len) <= cqspi->ahb_size)) {
1218 memcpy_toio(cqspi->ahb_base + to, buf, len);
1219 return cqspi_wait_idle(cqspi);
1220 }
1221
1222 return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1223 }
1224
cqspi_rx_dma_callback(void * param)1225 static void cqspi_rx_dma_callback(void *param)
1226 {
1227 struct cqspi_st *cqspi = param;
1228
1229 complete(&cqspi->rx_dma_complete);
1230 }
1231
cqspi_direct_read_execute(struct cqspi_flash_pdata * f_pdata,u_char * buf,loff_t from,size_t len)1232 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1233 u_char *buf, loff_t from, size_t len)
1234 {
1235 struct cqspi_st *cqspi = f_pdata->cqspi;
1236 struct device *dev = &cqspi->pdev->dev;
1237 enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1238 dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1239 int ret = 0;
1240 struct dma_async_tx_descriptor *tx;
1241 dma_cookie_t cookie;
1242 dma_addr_t dma_dst;
1243 struct device *ddev;
1244
1245 if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1246 memcpy_fromio(buf, cqspi->ahb_base + from, len);
1247 return 0;
1248 }
1249
1250 ddev = cqspi->rx_chan->device->dev;
1251 dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1252 if (dma_mapping_error(ddev, dma_dst)) {
1253 dev_err(dev, "dma mapping failed\n");
1254 return -ENOMEM;
1255 }
1256 tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1257 len, flags);
1258 if (!tx) {
1259 dev_err(dev, "device_prep_dma_memcpy error\n");
1260 ret = -EIO;
1261 goto err_unmap;
1262 }
1263
1264 tx->callback = cqspi_rx_dma_callback;
1265 tx->callback_param = cqspi;
1266 cookie = tx->tx_submit(tx);
1267 reinit_completion(&cqspi->rx_dma_complete);
1268
1269 ret = dma_submit_error(cookie);
1270 if (ret) {
1271 dev_err(dev, "dma_submit_error %d\n", cookie);
1272 ret = -EIO;
1273 goto err_unmap;
1274 }
1275
1276 dma_async_issue_pending(cqspi->rx_chan);
1277 if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1278 msecs_to_jiffies(max_t(size_t, len, 500)))) {
1279 dmaengine_terminate_sync(cqspi->rx_chan);
1280 dev_err(dev, "DMA wait_for_completion_timeout\n");
1281 ret = -ETIMEDOUT;
1282 goto err_unmap;
1283 }
1284
1285 err_unmap:
1286 dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1287
1288 return ret;
1289 }
1290
cqspi_read(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)1291 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1292 const struct spi_mem_op *op)
1293 {
1294 struct cqspi_st *cqspi = f_pdata->cqspi;
1295 struct device *dev = &cqspi->pdev->dev;
1296 const struct cqspi_driver_platdata *ddata;
1297 loff_t from = op->addr.val;
1298 size_t len = op->data.nbytes;
1299 u_char *buf = op->data.buf.in;
1300 u64 dma_align = (u64)(uintptr_t)buf;
1301 int ret;
1302
1303 ddata = of_device_get_match_data(dev);
1304
1305 ret = cqspi_read_setup(f_pdata, op);
1306 if (ret)
1307 return ret;
1308
1309 if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1310 return cqspi_direct_read_execute(f_pdata, buf, from, len);
1311
1312 if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1313 virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1314 return ddata->indirect_read_dma(f_pdata, buf, from, len);
1315
1316 return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1317 }
1318
cqspi_mem_process(struct spi_mem * mem,const struct spi_mem_op * op)1319 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1320 {
1321 struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1322 struct cqspi_flash_pdata *f_pdata;
1323
1324 f_pdata = &cqspi->f_pdata[mem->spi->chip_select];
1325 cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1326
1327 if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1328 if (!op->addr.nbytes)
1329 return cqspi_command_read(f_pdata, op);
1330
1331 return cqspi_read(f_pdata, op);
1332 }
1333
1334 if (!op->addr.nbytes || !op->data.buf.out)
1335 return cqspi_command_write(f_pdata, op);
1336
1337 return cqspi_write(f_pdata, op);
1338 }
1339
cqspi_exec_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)1340 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1341 {
1342 int ret;
1343
1344 ret = cqspi_mem_process(mem, op);
1345 if (ret)
1346 dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1347
1348 return ret;
1349 }
1350
cqspi_supports_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)1351 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1352 const struct spi_mem_op *op)
1353 {
1354 bool all_true, all_false;
1355
1356 /*
1357 * op->dummy.dtr is required for converting nbytes into ncycles.
1358 * Also, don't check the dtr field of the op phase having zero nbytes.
1359 */
1360 all_true = op->cmd.dtr &&
1361 (!op->addr.nbytes || op->addr.dtr) &&
1362 (!op->dummy.nbytes || op->dummy.dtr) &&
1363 (!op->data.nbytes || op->data.dtr);
1364
1365 all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1366 !op->data.dtr;
1367
1368 if (all_true) {
1369 /* Right now we only support 8-8-8 DTR mode. */
1370 if (op->cmd.nbytes && op->cmd.buswidth != 8)
1371 return false;
1372 if (op->addr.nbytes && op->addr.buswidth != 8)
1373 return false;
1374 if (op->data.nbytes && op->data.buswidth != 8)
1375 return false;
1376 } else if (!all_false) {
1377 /* Mixed DTR modes are not supported. */
1378 return false;
1379 }
1380
1381 return spi_mem_default_supports_op(mem, op);
1382 }
1383
cqspi_of_get_flash_pdata(struct platform_device * pdev,struct cqspi_flash_pdata * f_pdata,struct device_node * np)1384 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1385 struct cqspi_flash_pdata *f_pdata,
1386 struct device_node *np)
1387 {
1388 if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1389 dev_err(&pdev->dev, "couldn't determine read-delay\n");
1390 return -ENXIO;
1391 }
1392
1393 if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1394 dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1395 return -ENXIO;
1396 }
1397
1398 if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1399 dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1400 return -ENXIO;
1401 }
1402
1403 if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1404 dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1405 return -ENXIO;
1406 }
1407
1408 if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1409 dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1410 return -ENXIO;
1411 }
1412
1413 if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1414 dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1415 return -ENXIO;
1416 }
1417
1418 return 0;
1419 }
1420
cqspi_of_get_pdata(struct cqspi_st * cqspi)1421 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1422 {
1423 struct device *dev = &cqspi->pdev->dev;
1424 struct device_node *np = dev->of_node;
1425 u32 id[2];
1426
1427 cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1428
1429 if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1430 dev_err(dev, "couldn't determine fifo-depth\n");
1431 return -ENXIO;
1432 }
1433
1434 if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1435 dev_err(dev, "couldn't determine fifo-width\n");
1436 return -ENXIO;
1437 }
1438
1439 if (of_property_read_u32(np, "cdns,trigger-address",
1440 &cqspi->trigger_address)) {
1441 dev_err(dev, "couldn't determine trigger-address\n");
1442 return -ENXIO;
1443 }
1444
1445 if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1446 cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1447
1448 cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1449
1450 if (!of_property_read_u32_array(np, "power-domains", id,
1451 ARRAY_SIZE(id)))
1452 cqspi->pd_dev_id = id[1];
1453
1454 return 0;
1455 }
1456
cqspi_controller_init(struct cqspi_st * cqspi)1457 static void cqspi_controller_init(struct cqspi_st *cqspi)
1458 {
1459 u32 reg;
1460
1461 cqspi_controller_enable(cqspi, 0);
1462
1463 /* Configure the remap address register, no remap */
1464 writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1465
1466 /* Disable all interrupts. */
1467 writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1468
1469 /* Configure the SRAM split to 1:1 . */
1470 writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1471
1472 /* Load indirect trigger address. */
1473 writel(cqspi->trigger_address,
1474 cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1475
1476 /* Program read watermark -- 1/2 of the FIFO. */
1477 writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1478 cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1479 /* Program write watermark -- 1/8 of the FIFO. */
1480 writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1481 cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1482
1483 /* Disable direct access controller */
1484 if (!cqspi->use_direct_mode) {
1485 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1486 reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1487 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1488 }
1489
1490 /* Enable DMA interface */
1491 if (cqspi->use_dma_read) {
1492 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1493 reg |= CQSPI_REG_CONFIG_DMA_MASK;
1494 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1495 }
1496
1497 cqspi_controller_enable(cqspi, 1);
1498 }
1499
cqspi_request_mmap_dma(struct cqspi_st * cqspi)1500 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1501 {
1502 dma_cap_mask_t mask;
1503
1504 dma_cap_zero(mask);
1505 dma_cap_set(DMA_MEMCPY, mask);
1506
1507 cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1508 if (IS_ERR(cqspi->rx_chan)) {
1509 int ret = PTR_ERR(cqspi->rx_chan);
1510
1511 cqspi->rx_chan = NULL;
1512 return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1513 }
1514 init_completion(&cqspi->rx_dma_complete);
1515
1516 return 0;
1517 }
1518
cqspi_get_name(struct spi_mem * mem)1519 static const char *cqspi_get_name(struct spi_mem *mem)
1520 {
1521 struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1522 struct device *dev = &cqspi->pdev->dev;
1523
1524 return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select);
1525 }
1526
1527 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1528 .exec_op = cqspi_exec_mem_op,
1529 .get_name = cqspi_get_name,
1530 .supports_op = cqspi_supports_mem_op,
1531 };
1532
1533 static const struct spi_controller_mem_caps cqspi_mem_caps = {
1534 .dtr = true,
1535 };
1536
cqspi_setup_flash(struct cqspi_st * cqspi)1537 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1538 {
1539 struct platform_device *pdev = cqspi->pdev;
1540 struct device *dev = &pdev->dev;
1541 struct device_node *np = dev->of_node;
1542 struct cqspi_flash_pdata *f_pdata;
1543 unsigned int cs;
1544 int ret;
1545
1546 /* Get flash device data */
1547 for_each_available_child_of_node(dev->of_node, np) {
1548 ret = of_property_read_u32(np, "reg", &cs);
1549 if (ret) {
1550 dev_err(dev, "Couldn't determine chip select.\n");
1551 of_node_put(np);
1552 return ret;
1553 }
1554
1555 if (cs >= CQSPI_MAX_CHIPSELECT) {
1556 dev_err(dev, "Chip select %d out of range.\n", cs);
1557 of_node_put(np);
1558 return -EINVAL;
1559 }
1560
1561 f_pdata = &cqspi->f_pdata[cs];
1562 f_pdata->cqspi = cqspi;
1563 f_pdata->cs = cs;
1564
1565 ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1566 if (ret) {
1567 of_node_put(np);
1568 return ret;
1569 }
1570 }
1571
1572 return 0;
1573 }
1574
cqspi_probe(struct platform_device * pdev)1575 static int cqspi_probe(struct platform_device *pdev)
1576 {
1577 const struct cqspi_driver_platdata *ddata;
1578 struct reset_control *rstc, *rstc_ocp;
1579 struct device *dev = &pdev->dev;
1580 struct spi_master *master;
1581 struct resource *res_ahb;
1582 struct cqspi_st *cqspi;
1583 struct resource *res;
1584 int ret;
1585 int irq;
1586
1587 master = devm_spi_alloc_master(&pdev->dev, sizeof(*cqspi));
1588 if (!master) {
1589 dev_err(&pdev->dev, "spi_alloc_master failed\n");
1590 return -ENOMEM;
1591 }
1592 master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1593 master->mem_ops = &cqspi_mem_ops;
1594 master->mem_caps = &cqspi_mem_caps;
1595 master->dev.of_node = pdev->dev.of_node;
1596
1597 cqspi = spi_master_get_devdata(master);
1598
1599 cqspi->pdev = pdev;
1600 cqspi->master = master;
1601 platform_set_drvdata(pdev, cqspi);
1602
1603 /* Obtain configuration from OF. */
1604 ret = cqspi_of_get_pdata(cqspi);
1605 if (ret) {
1606 dev_err(dev, "Cannot get mandatory OF data.\n");
1607 return -ENODEV;
1608 }
1609
1610 /* Obtain QSPI clock. */
1611 cqspi->clk = devm_clk_get(dev, NULL);
1612 if (IS_ERR(cqspi->clk)) {
1613 dev_err(dev, "Cannot claim QSPI clock.\n");
1614 ret = PTR_ERR(cqspi->clk);
1615 return ret;
1616 }
1617
1618 /* Obtain and remap controller address. */
1619 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1620 cqspi->iobase = devm_ioremap_resource(dev, res);
1621 if (IS_ERR(cqspi->iobase)) {
1622 dev_err(dev, "Cannot remap controller address.\n");
1623 ret = PTR_ERR(cqspi->iobase);
1624 return ret;
1625 }
1626
1627 /* Obtain and remap AHB address. */
1628 res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1629 cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
1630 if (IS_ERR(cqspi->ahb_base)) {
1631 dev_err(dev, "Cannot remap AHB address.\n");
1632 ret = PTR_ERR(cqspi->ahb_base);
1633 return ret;
1634 }
1635 cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1636 cqspi->ahb_size = resource_size(res_ahb);
1637
1638 init_completion(&cqspi->transfer_complete);
1639
1640 /* Obtain IRQ line. */
1641 irq = platform_get_irq(pdev, 0);
1642 if (irq < 0)
1643 return -ENXIO;
1644
1645 pm_runtime_enable(dev);
1646 ret = pm_runtime_resume_and_get(dev);
1647 if (ret < 0)
1648 goto probe_pm_failed;
1649
1650 ret = clk_prepare_enable(cqspi->clk);
1651 if (ret) {
1652 dev_err(dev, "Cannot enable QSPI clock.\n");
1653 goto probe_clk_failed;
1654 }
1655
1656 /* Obtain QSPI reset control */
1657 rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1658 if (IS_ERR(rstc)) {
1659 ret = PTR_ERR(rstc);
1660 dev_err(dev, "Cannot get QSPI reset.\n");
1661 goto probe_reset_failed;
1662 }
1663
1664 rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1665 if (IS_ERR(rstc_ocp)) {
1666 ret = PTR_ERR(rstc_ocp);
1667 dev_err(dev, "Cannot get QSPI OCP reset.\n");
1668 goto probe_reset_failed;
1669 }
1670
1671 reset_control_assert(rstc);
1672 reset_control_deassert(rstc);
1673
1674 reset_control_assert(rstc_ocp);
1675 reset_control_deassert(rstc_ocp);
1676
1677 cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1678 master->max_speed_hz = cqspi->master_ref_clk_hz;
1679
1680 /* write completion is supported by default */
1681 cqspi->wr_completion = true;
1682
1683 ddata = of_device_get_match_data(dev);
1684 if (ddata) {
1685 if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1686 cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1687 cqspi->master_ref_clk_hz);
1688 if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1689 master->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1690 if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE))
1691 cqspi->use_direct_mode = true;
1692 if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1693 cqspi->use_dma_read = true;
1694 if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1695 cqspi->wr_completion = false;
1696 if (ddata->quirks & CQSPI_SLOW_SRAM)
1697 cqspi->slow_sram = true;
1698
1699 if (of_device_is_compatible(pdev->dev.of_node,
1700 "xlnx,versal-ospi-1.0"))
1701 dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1702 }
1703
1704 ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1705 pdev->name, cqspi);
1706 if (ret) {
1707 dev_err(dev, "Cannot request IRQ.\n");
1708 goto probe_reset_failed;
1709 }
1710
1711 cqspi_wait_idle(cqspi);
1712 cqspi_controller_init(cqspi);
1713 cqspi->current_cs = -1;
1714 cqspi->sclk = 0;
1715
1716 master->num_chipselect = cqspi->num_chipselect;
1717
1718 ret = cqspi_setup_flash(cqspi);
1719 if (ret) {
1720 dev_err(dev, "failed to setup flash parameters %d\n", ret);
1721 goto probe_setup_failed;
1722 }
1723
1724 if (cqspi->use_direct_mode) {
1725 ret = cqspi_request_mmap_dma(cqspi);
1726 if (ret == -EPROBE_DEFER)
1727 goto probe_setup_failed;
1728 }
1729
1730 ret = spi_register_master(master);
1731 if (ret) {
1732 dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1733 goto probe_setup_failed;
1734 }
1735
1736 return 0;
1737 probe_setup_failed:
1738 cqspi_controller_enable(cqspi, 0);
1739 probe_reset_failed:
1740 clk_disable_unprepare(cqspi->clk);
1741 probe_clk_failed:
1742 pm_runtime_put_sync(dev);
1743 probe_pm_failed:
1744 pm_runtime_disable(dev);
1745 return ret;
1746 }
1747
cqspi_remove(struct platform_device * pdev)1748 static int cqspi_remove(struct platform_device *pdev)
1749 {
1750 struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1751
1752 spi_unregister_master(cqspi->master);
1753 cqspi_controller_enable(cqspi, 0);
1754
1755 if (cqspi->rx_chan)
1756 dma_release_channel(cqspi->rx_chan);
1757
1758 clk_disable_unprepare(cqspi->clk);
1759
1760 pm_runtime_put_sync(&pdev->dev);
1761 pm_runtime_disable(&pdev->dev);
1762
1763 return 0;
1764 }
1765
1766 #ifdef CONFIG_PM_SLEEP
cqspi_suspend(struct device * dev)1767 static int cqspi_suspend(struct device *dev)
1768 {
1769 struct cqspi_st *cqspi = dev_get_drvdata(dev);
1770
1771 cqspi_controller_enable(cqspi, 0);
1772 return 0;
1773 }
1774
cqspi_resume(struct device * dev)1775 static int cqspi_resume(struct device *dev)
1776 {
1777 struct cqspi_st *cqspi = dev_get_drvdata(dev);
1778
1779 cqspi_controller_enable(cqspi, 1);
1780 return 0;
1781 }
1782
1783 static const struct dev_pm_ops cqspi__dev_pm_ops = {
1784 .suspend = cqspi_suspend,
1785 .resume = cqspi_resume,
1786 };
1787
1788 #define CQSPI_DEV_PM_OPS (&cqspi__dev_pm_ops)
1789 #else
1790 #define CQSPI_DEV_PM_OPS NULL
1791 #endif
1792
1793 static const struct cqspi_driver_platdata cdns_qspi = {
1794 .quirks = CQSPI_DISABLE_DAC_MODE,
1795 };
1796
1797 static const struct cqspi_driver_platdata k2g_qspi = {
1798 .quirks = CQSPI_NEEDS_WR_DELAY,
1799 };
1800
1801 static const struct cqspi_driver_platdata am654_ospi = {
1802 .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1803 .quirks = CQSPI_NEEDS_WR_DELAY,
1804 };
1805
1806 static const struct cqspi_driver_platdata intel_lgm_qspi = {
1807 .quirks = CQSPI_DISABLE_DAC_MODE,
1808 };
1809
1810 static const struct cqspi_driver_platdata socfpga_qspi = {
1811 .quirks = CQSPI_DISABLE_DAC_MODE
1812 | CQSPI_NO_SUPPORT_WR_COMPLETION
1813 | CQSPI_SLOW_SRAM,
1814 };
1815
1816 static const struct cqspi_driver_platdata versal_ospi = {
1817 .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1818 .quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA,
1819 .indirect_read_dma = cqspi_versal_indirect_read_dma,
1820 .get_dma_status = cqspi_get_versal_dma_status,
1821 };
1822
1823 static const struct of_device_id cqspi_dt_ids[] = {
1824 {
1825 .compatible = "cdns,qspi-nor",
1826 .data = &cdns_qspi,
1827 },
1828 {
1829 .compatible = "ti,k2g-qspi",
1830 .data = &k2g_qspi,
1831 },
1832 {
1833 .compatible = "ti,am654-ospi",
1834 .data = &am654_ospi,
1835 },
1836 {
1837 .compatible = "intel,lgm-qspi",
1838 .data = &intel_lgm_qspi,
1839 },
1840 {
1841 .compatible = "xlnx,versal-ospi-1.0",
1842 .data = &versal_ospi,
1843 },
1844 {
1845 .compatible = "intel,socfpga-qspi",
1846 .data = &socfpga_qspi,
1847 },
1848 { /* end of table */ }
1849 };
1850
1851 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
1852
1853 static struct platform_driver cqspi_platform_driver = {
1854 .probe = cqspi_probe,
1855 .remove = cqspi_remove,
1856 .driver = {
1857 .name = CQSPI_NAME,
1858 .pm = CQSPI_DEV_PM_OPS,
1859 .of_match_table = cqspi_dt_ids,
1860 },
1861 };
1862
1863 module_platform_driver(cqspi_platform_driver);
1864
1865 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
1866 MODULE_LICENSE("GPL v2");
1867 MODULE_ALIAS("platform:" CQSPI_NAME);
1868 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
1869 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
1870 MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
1871 MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
1872 MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");
1873