/Linux-v5.4/drivers/gpu/drm/nouveau/nvkm/subdev/fb/ |
D | gddr5.c | 24 #include "ram.h" 35 nvkm_gddr5_calc(struct nvkm_ram *ram, bool nuts) in nvkm_gddr5_calc() argument 39 int rq = ram->freq < 1000000; /* XXX */ in nvkm_gddr5_calc() 41 xd = !ram->next->bios.ramcfg_DLLoff; in nvkm_gddr5_calc() 43 switch (ram->next->bios.ramcfg_ver) { in nvkm_gddr5_calc() 45 pd = ram->next->bios.ramcfg_11_01_80; in nvkm_gddr5_calc() 46 lf = ram->next->bios.ramcfg_11_01_40; in nvkm_gddr5_calc() 47 vh = ram->next->bios.ramcfg_11_02_10; in nvkm_gddr5_calc() 48 vr = ram->next->bios.ramcfg_11_02_04; in nvkm_gddr5_calc() 49 vo = ram->next->bios.ramcfg_11_06; in nvkm_gddr5_calc() [all …]
|
D | ramgk104.c | 25 #include "ram.h" 143 struct gk104_ram *ram = container_of(fuc, typeof(*ram), fuc); in gk104_ram_train() local 149 for (i = 0; (data & 0x80000000) && i < ram->parts; addr += 0x1000, i++) { in gk104_ram_train() 150 if (ram->pmask & (1 << i)) in gk104_ram_train() 159 struct gk104_ram *ram = container_of(fuc, typeof(*ram), fuc); in r1373f4_init() local 160 const u32 mcoef = ((--ram->P2 << 28) | (ram->N2 << 8) | ram->M2); in r1373f4_init() 161 const u32 rcoef = (( ram->P1 << 16) | (ram->N1 << 8) | ram->M1); in r1373f4_init() 162 const u32 runk0 = ram->fN1 << 16; in r1373f4_init() 163 const u32 runk1 = ram->fN1; in r1373f4_init() 165 if (ram->from == 2) { in r1373f4_init() [all …]
|
D | ram.c | 25 #include "ram.h" 32 struct nvkm_ram *ram; member 84 mutex_lock(&vram->ram->fb->subdev.mutex); in nvkm_vram_dtor() 87 nvkm_mm_free(&vram->ram->vram, &node); in nvkm_vram_dtor() 89 mutex_unlock(&vram->ram->fb->subdev.mutex); in nvkm_vram_dtor() 107 struct nvkm_ram *ram; in nvkm_ram_get() local 117 if (!device->fb || !(ram = device->fb->ram)) in nvkm_ram_get() 119 ram = device->fb->ram; in nvkm_ram_get() 120 mm = &ram->vram; in nvkm_ram_get() 125 vram->ram = ram; in nvkm_ram_get() [all …]
|
D | ramfuc.h | 59 ramfuc_init(struct ramfuc *ram, struct nvkm_fb *fb) in ramfuc_init() argument 61 int ret = nvkm_memx_init(fb->subdev.device->pmu, &ram->memx); in ramfuc_init() 65 ram->sequence++; in ramfuc_init() 66 ram->fb = fb; in ramfuc_init() 71 ramfuc_exec(struct ramfuc *ram, bool exec) in ramfuc_exec() argument 74 if (ram->fb) { in ramfuc_exec() 75 ret = nvkm_memx_fini(&ram->memx, exec); in ramfuc_exec() 76 ram->fb = NULL; in ramfuc_exec() 82 ramfuc_rd32(struct ramfuc *ram, struct ramfuc_reg *reg) in ramfuc_rd32() argument 84 struct nvkm_device *device = ram->fb->subdev.device; in ramfuc_rd32() [all …]
|
D | ramnv50.c | 25 #include "ram.h" 73 nv50_ram_timing_calc(struct nv50_ram *ram, u32 *timing) in nv50_ram_timing_calc() argument 75 struct nvbios_ramcfg *cfg = &ram->base.target.bios; in nv50_ram_timing_calc() 76 struct nvkm_subdev *subdev = &ram->base.fb->subdev; in nv50_ram_timing_calc() 86 switch ((!T(CWL)) * ram->base.type) { in nv50_ram_timing_calc() 97 unkt3b = 0x19 + ram->base.next->bios.rammap_00_16_40; in nv50_ram_timing_calc() 99 ram->base.next->bios.rammap_00_16_40) << 16 | in nv50_ram_timing_calc() 133 if (ram->base.type == NVKM_RAM_TYPE_DDR2) { in nv50_ram_timing_calc() 137 if (ram->base.type == NVKM_RAM_TYPE_GDDR3) { in nv50_ram_timing_calc() 151 nv50_ram_timing_read(struct nv50_ram *ram, u32 *timing) in nv50_ram_timing_read() argument [all …]
|
D | gddr3.c | 25 #include "ram.h" 71 nvkm_gddr3_calc(struct nvkm_ram *ram) in nvkm_gddr3_calc() argument 75 switch (ram->next->bios.timing_ver) { in nvkm_gddr3_calc() 77 CWL = ram->next->bios.timing_10_CWL; in nvkm_gddr3_calc() 78 CL = ram->next->bios.timing_10_CL; in nvkm_gddr3_calc() 79 WR = ram->next->bios.timing_10_WR; in nvkm_gddr3_calc() 80 DLL = !ram->next->bios.ramcfg_DLLoff; in nvkm_gddr3_calc() 81 ODT = ram->next->bios.timing_10_ODT; in nvkm_gddr3_calc() 82 RON = ram->next->bios.ramcfg_RON; in nvkm_gddr3_calc() 85 CWL = (ram->next->bios.timing[1] & 0x00000f80) >> 7; in nvkm_gddr3_calc() [all …]
|
D | ramgt215.c | 26 #include "ram.h" 154 gt215_link_train(struct gt215_ram *ram) in gt215_link_train() argument 156 struct gt215_ltrain *train = &ram->ltrain; in gt215_link_train() 157 struct gt215_ramfuc *fuc = &ram->fuc; in gt215_link_train() 158 struct nvkm_subdev *subdev = &ram->base.fb->subdev; in gt215_link_train() 194 ret = ram->base.func->calc(&ram->base, (u32) M0205T.freq * 1000); in gt215_link_train() 237 ram->base.func->calc(&ram->base, clk_current); in gt215_link_train() 246 ram_train_result(ram->base.fb, result, 64); in gt215_link_train() 272 gt215_link_train_init(struct gt215_ram *ram) in gt215_link_train_init() argument 280 struct gt215_ltrain *train = &ram->ltrain; in gt215_link_train_init() [all …]
|
D | ramgf100.c | 25 #include "ram.h" 109 struct gf100_ram *ram = container_of(fuc, typeof(*ram), fuc); in gf100_ram_train() local 110 struct nvkm_fb *fb = ram->base.fb; in gf100_ram_train() 129 struct gf100_ram *ram = gf100_ram(base); in gf100_ram_calc() local 130 struct gf100_ramfuc *fuc = &ram->fuc; in gf100_ram_calc() 131 struct nvkm_subdev *subdev = &ram->base.fb->subdev; in gf100_ram_calc() 180 ret = ram_init(fuc, ram->base.fb); in gf100_ram_calc() 215 ret = gt215_pll_calc(subdev, &ram->refpll, ram->mempll.refclk, in gf100_ram_calc() 230 ret = gt215_pll_calc(subdev, &ram->mempll, freq, in gf100_ram_calc() 409 struct gf100_ram *ram = gf100_ram(base); in gf100_ram_prog() local [all …]
|
D | sddr3.c | 26 #include "ram.h" 70 nvkm_sddr3_calc(struct nvkm_ram *ram) in nvkm_sddr3_calc() argument 74 DLL = !ram->next->bios.ramcfg_DLLoff; in nvkm_sddr3_calc() 76 switch (ram->next->bios.timing_ver) { in nvkm_sddr3_calc() 78 if (ram->next->bios.timing_hdr < 0x17) { in nvkm_sddr3_calc() 82 CWL = ram->next->bios.timing_10_CWL; in nvkm_sddr3_calc() 83 CL = ram->next->bios.timing_10_CL; in nvkm_sddr3_calc() 84 WR = ram->next->bios.timing_10_WR; in nvkm_sddr3_calc() 85 ODT = ram->next->bios.timing_10_ODT; in nvkm_sddr3_calc() 88 CWL = (ram->next->bios.timing[1] & 0x00000f80) >> 7; in nvkm_sddr3_calc() [all …]
|
D | sddr2.c | 26 #include "ram.h" 61 nvkm_sddr2_calc(struct nvkm_ram *ram) in nvkm_sddr2_calc() argument 65 switch (ram->next->bios.timing_ver) { in nvkm_sddr2_calc() 67 CL = ram->next->bios.timing_10_CL; in nvkm_sddr2_calc() 68 WR = ram->next->bios.timing_10_WR; in nvkm_sddr2_calc() 69 DLL = !ram->next->bios.ramcfg_DLLoff; in nvkm_sddr2_calc() 70 ODT = ram->next->bios.timing_10_ODT & 3; in nvkm_sddr2_calc() 73 CL = (ram->next->bios.timing[1] & 0x0000001f); in nvkm_sddr2_calc() 74 WR = (ram->next->bios.timing[2] & 0x007f0000) >> 16; in nvkm_sddr2_calc() 80 if (ram->next->bios.timing_ver == 0x20 || in nvkm_sddr2_calc() [all …]
|
D | rammcp77.c | 25 #include "ram.h" 35 struct mcp77_ram *ram = mcp77_ram(base); in mcp77_ram_init() local 36 struct nvkm_device *device = ram->base.fb->subdev.device; in mcp77_ram_init() 37 u32 dniso = ((ram->base.size - (ram->poller_base + 0x00)) >> 5) - 1; in mcp77_ram_init() 38 u32 hostnb = ((ram->base.size - (ram->poller_base + 0x20)) >> 5) - 1; in mcp77_ram_init() 39 u32 flush = ((ram->base.size - (ram->poller_base + 0x40)) >> 5) - 1; in mcp77_ram_init() 66 struct mcp77_ram *ram; in mcp77_ram_new() local 69 if (!(ram = kzalloc(sizeof(*ram), GFP_KERNEL))) in mcp77_ram_new() 71 *pram = &ram->base; in mcp77_ram_new() 74 size, &ram->base); in mcp77_ram_new() [all …]
|
D | ramnv40.c | 36 struct nv40_ram *ram = nv40_ram(base); in nv40_ram_calc() local 37 struct nvkm_subdev *subdev = &ram->base.fb->subdev; in nv40_ram_calc() 53 ram->ctrl = 0x80000000 | (log2P << 16); in nv40_ram_calc() 54 ram->ctrl |= min(pll.bias_p + log2P, (int)pll.max_p) << 20; in nv40_ram_calc() 56 ram->ctrl |= 0x00000100; in nv40_ram_calc() 57 ram->coef = (N1 << 8) | M1; in nv40_ram_calc() 59 ram->ctrl |= 0x40000000; in nv40_ram_calc() 60 ram->coef = (N2 << 24) | (M2 << 16) | (N1 << 8) | M1; in nv40_ram_calc() 69 struct nv40_ram *ram = nv40_ram(base); in nv40_ram_prog() local 70 struct nvkm_subdev *subdev = &ram->base.fb->subdev; in nv40_ram_prog() [all …]
|
/Linux-v5.4/drivers/zorro/ |
D | zorro.ids | 18 0000 Golem RAM Box 2MB [RAM Expansion] 22 1300 Warp Engine [Accelerator, SCSI Host Adapter and RAM Expansion] 24 0200 Megamix 2000 [RAM Expansion] 36 0a00 A590/A2052/A2058/A2091 [RAM Expansion] 37 2000 A560 [RAM Expansion] 40 5000 A2620 68020 [Accelerator and RAM Expansion] 41 5100 A2630 68030 [Accelerator and RAM Expansion] 51 0200 EXP8000 [RAM Expansion] 64 0100 AX2000 [RAM Expansion] 68 0000 StarBoard II [RAM Expansion] [all …]
|
/Linux-v5.4/drivers/gpu/drm/nouveau/nvkm/subdev/bus/ |
D | hwsq.h | 61 hwsq_init(struct hwsq *ram, struct nvkm_subdev *subdev) in hwsq_init() argument 65 ret = nvkm_hwsq_init(subdev, &ram->hwsq); in hwsq_init() 69 ram->sequence++; in hwsq_init() 70 ram->subdev = subdev; in hwsq_init() 75 hwsq_exec(struct hwsq *ram, bool exec) in hwsq_exec() argument 78 if (ram->subdev) { in hwsq_exec() 79 ret = nvkm_hwsq_fini(&ram->hwsq, exec); in hwsq_exec() 80 ram->subdev = NULL; in hwsq_exec() 86 hwsq_rd32(struct hwsq *ram, struct hwsq_reg *reg) in hwsq_rd32() argument 88 struct nvkm_device *device = ram->subdev->device; in hwsq_rd32() [all …]
|
/Linux-v5.4/Documentation/admin-guide/blockdev/ |
D | ramdisk.rst | 2 Using the RAM disk block device with Linux 10 4) An Example of Creating a Compressed RAM Disk 16 The RAM disk driver is a way to use main system memory as a block device. It 22 The RAM disk dynamically grows as more space is required. It does this by using 23 RAM from the buffer cache. The driver marks the buffers it is using as dirty 26 The RAM disk supports up to 16 RAM disks by default, and can be reconfigured 27 to support an unlimited number of RAM disks (at your own risk). Just change 31 To use RAM disk support with your system, run './MAKEDEV ram' from the /dev 32 directory. RAM disks are all major number 1, and start with minor number 0 35 The new RAM disk also has the ability to load compressed RAM disk images, [all …]
|
/Linux-v5.4/include/linux/ |
D | hp_sdc.h | 187 #define HP_SDC_CMD_READ_RAM 0x00 /* Load from i8042 RAM (autoinc) */ 197 #define HP_SDC_CMD_READ_D0 0xf0 /* Load from i8042 RAM location 0x70 */ 198 #define HP_SDC_CMD_READ_D1 0xf1 /* Load from i8042 RAM location 0x71 */ 199 #define HP_SDC_CMD_READ_D2 0xf2 /* Load from i8042 RAM location 0x72 */ 200 #define HP_SDC_CMD_READ_D3 0xf3 /* Load from i8042 RAM location 0x73 */ 201 #define HP_SDC_CMD_READ_VT1 0xf4 /* Load from i8042 RAM location 0x74 */ 202 #define HP_SDC_CMD_READ_VT2 0xf5 /* Load from i8042 RAM location 0x75 */ 203 #define HP_SDC_CMD_READ_VT3 0xf6 /* Load from i8042 RAM location 0x76 */ 204 #define HP_SDC_CMD_READ_VT4 0xf7 /* Load from i8042 RAM location 0x77 */ 205 #define HP_SDC_CMD_READ_KBN 0xf8 /* Load from i8042 RAM location 0x78 */ [all …]
|
/Linux-v5.4/arch/m68k/atari/ |
D | stram.c | 2 * Functions for ST-RAM allocations 36 * The ST-RAM allocator allocates memory from a pool of reserved ST-RAM of 37 * configurable size, set aside on ST-RAM init. 38 * As long as this pool is not exhausted, allocation of real ST-RAM can be 42 /* set if kernel is in ST-RAM */ 46 .name = "ST-RAM Pool" 74 * determine whether kernel code resides in ST-RAM in atari_stram_init() 75 * (then ST-RAM is the first memory block at virtual 0x0) in atari_stram_init() 85 /* Should never come here! (There is always ST-Ram!) */ in atari_stram_init() 86 panic("atari_stram_init: no ST-RAM found!"); in atari_stram_init() [all …]
|
/Linux-v5.4/Documentation/translations/zh_CN/arm/ |
D | Booting | 40 1、设置和初始化 RAM。 47 1、设置和初始化 RAM 53 引导装载程序应该找到并初始化系统中所有内核用于保持系统变量数据的 RAM。 55 RAM,或可能使用对这个设备已知的 RAM 信息,还可能使用任何引导装载程序 117 标签列表应该保存在系统的 RAM 中。 120 建议放在 RAM 的头 16KiB 中。 126 RAM 中,并用启动数据初始化它。dtb 格式在文档 132 dtb 必须置于内核自解压不会覆盖的内存区。建议将其放置于 RAM 的头 16KiB 146 zImage 也可以被放在系统 RAM(任意位置)中被调用。注意:内核使用映像 147 基地址的前 16KB RAM 空间来保存页表。建议将映像置于 RAM 的 32KB 处。 [all …]
|
/Linux-v5.4/Documentation/devicetree/bindings/net/ |
D | davinci_emac.txt | 12 - ti,davinci-ctrl-ram-offset: offset to control module ram 13 - ti,davinci-ctrl-ram-size: size of control module ram 24 - ti,davinci-no-bd-ram: boolean, does EMAC have BD RAM? 35 ti,davinci-ctrl-ram-offset = <0>; 36 ti,davinci-ctrl-ram-size = <0x2000>;
|
/Linux-v5.4/drivers/net/ethernet/intel/ice/ |
D | ice_nvm.c | 45 * ice_check_sr_access_params - verify params for Shadow RAM R/W operations. 79 * ice_read_sr_aq - Read Shadow RAM. 83 * @data: buffer for words reads from Shadow RAM 86 * Reads 16-bit word buffers from the Shadow RAM using the admin command. 108 * ice_read_sr_word_aq - Reads Shadow RAM via AQ 110 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) 111 * @data: word read from the Shadow RAM 113 * Reads one 16 bit word from the Shadow RAM using the ice_read_sr_aq method. 128 * ice_read_sr_buf_aq - Reads Shadow RAM buf via AQ 130 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) [all …]
|
/Linux-v5.4/Documentation/devicetree/bindings/net/can/ |
D | m_can.txt | 7 registers map and Message RAM 18 - bosch,mram-cfg : Message RAM configuration data. 20 RAM and each element(e.g Rx FIFO or Tx Buffer and etc) 21 number in Message RAM is also configurable, 23 private Message RAM are used by this M_CAN controller. 28 The 'offset' is an address offset of the Message RAM 31 RAM. The remain cells are used to specify how many 43 Please refer to 2.4.1 Message RAM Configuration in
|
/Linux-v5.4/Documentation/vm/ |
D | frontswap.rst | 9 swapped pages are saved in RAM (or a RAM-like device) instead of a swap disk. 21 a synchronous concurrency-safe page-oriented "pseudo-RAM device" conforming 23 in-kernel compressed memory, aka "zcache", or future RAM-like devices); 24 this pseudo-RAM device is not directly accessible or addressable by the 88 useful for write-balancing for some RAM-like devices). Swap pages (and 89 evicted page-cache pages) are a great use for this kind of slower-than-RAM- 90 but-much-faster-than-disk "pseudo-RAM device" and the frontswap (and 95 provides a huge amount of flexibility for more dynamic, flexible RAM 100 that can be safely kept in RAM. Zcache essentially trades off CPU 108 as in zcache, but then "remotified" to another system's RAM. This [all …]
|
/Linux-v5.4/drivers/edac/ |
D | qcom_edac.c | 66 /* Tag RAM, Data RAM interrupt register offsets */ 135 * Configure interrupt enable registers such that Tag, Data RAM related in qcom_llcc_core_setup() 206 /* Dump Syndrome registers data for Tag RAM, Data RAM bit errors*/ 265 "LLCC Data RAM correctable Error"); in dump_syn_reg() 269 "LLCC Data RAM uncorrectable Error"); in dump_syn_reg() 273 "LLCC Tag RAM correctable Error"); in dump_syn_reg() 277 "LLCC Tag RAM uncorrectable Error"); in dump_syn_reg() 297 /* Iterate over the banks and look for Tag RAM or Data RAM errors */ in llcc_ecc_irq_handler() 305 "Single Bit Error detected in Data RAM\n"); in llcc_ecc_irq_handler() 309 "Double Bit Error detected in Data RAM\n"); in llcc_ecc_irq_handler() [all …]
|
/Linux-v5.4/include/soc/fsl/qe/ |
D | immap_qe.h | 21 /* QE I-RAM */ 23 __be32 iadd; /* I-RAM Address Register */ 24 __be32 idata; /* I-RAM Data Register */ 26 __be32 iready; /* I-RAM Ready Register */ 68 __be16 cercr; /* QE RAM control register */ 165 __be16 sirsr1_h; /* SI1 RAM shadow address register high */ 166 u8 sitarc1; /* SI1 RAM counter Tx TDMA */ 167 u8 sitbrc1; /* SI1 RAM counter Tx TDMB */ 168 u8 sitcrc1; /* SI1 RAM counter Tx TDMC */ 169 u8 sitdrc1; /* SI1 RAM counter Tx TDMD */ [all …]
|
/Linux-v5.4/Documentation/arm/ |
D | booting.rst | 19 1. Setup and initialise the RAM. 27 1. Setup and initialise RAM 35 The boot loader is expected to find and initialise all RAM that the 38 to automatically locate and size all RAM, or it may use knowledge of 39 the RAM in the machine, or any other method the boot loader designer 120 The tagged list should be stored in system RAM. 124 it. The recommended placement is in the first 16KiB of RAM. 129 The boot loader must load a device tree image (dtb) into system ram 142 A safe location is just above the 128MiB boundary from start of RAM. 158 be loaded just above the 128MiB boundary from the start of RAM as [all …]
|