1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
41 #include <linux/fs.h>
42 #include <linux/mm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/sched/mm.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94
95 #include <asm/pgtable.h>
96 #include <asm/pgalloc.h>
97 #include <linux/uaccess.h>
98 #include <asm/mmu_context.h>
99 #include <asm/cacheflush.h>
100 #include <asm/tlbflush.h>
101
102 #include <trace/events/sched.h>
103
104 #define CREATE_TRACE_POINTS
105 #include <trace/events/task.h>
106
107 /*
108 * Minimum number of threads to boot the kernel
109 */
110 #define MIN_THREADS 20
111
112 /*
113 * Maximum number of threads
114 */
115 #define MAX_THREADS FUTEX_TID_MASK
116
117 /*
118 * Protected counters by write_lock_irq(&tasklist_lock)
119 */
120 unsigned long total_forks; /* Handle normal Linux uptimes. */
121 int nr_threads; /* The idle threads do not count.. */
122
123 int max_threads; /* tunable limit on nr_threads */
124
125 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
126
127 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
128
129 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)130 int lockdep_tasklist_lock_is_held(void)
131 {
132 return lockdep_is_held(&tasklist_lock);
133 }
134 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
135 #endif /* #ifdef CONFIG_PROVE_RCU */
136
nr_processes(void)137 int nr_processes(void)
138 {
139 int cpu;
140 int total = 0;
141
142 for_each_possible_cpu(cpu)
143 total += per_cpu(process_counts, cpu);
144
145 return total;
146 }
147
arch_release_task_struct(struct task_struct * tsk)148 void __weak arch_release_task_struct(struct task_struct *tsk)
149 {
150 }
151
152 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
153 static struct kmem_cache *task_struct_cachep;
154
alloc_task_struct_node(int node)155 static inline struct task_struct *alloc_task_struct_node(int node)
156 {
157 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
158 }
159
free_task_struct(struct task_struct * tsk)160 static inline void free_task_struct(struct task_struct *tsk)
161 {
162 kmem_cache_free(task_struct_cachep, tsk);
163 }
164 #endif
165
arch_release_thread_stack(unsigned long * stack)166 void __weak arch_release_thread_stack(unsigned long *stack)
167 {
168 }
169
170 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
171
172 /*
173 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
174 * kmemcache based allocator.
175 */
176 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
177
178 #ifdef CONFIG_VMAP_STACK
179 /*
180 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
181 * flush. Try to minimize the number of calls by caching stacks.
182 */
183 #define NR_CACHED_STACKS 2
184 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
185
free_vm_stack_cache(unsigned int cpu)186 static int free_vm_stack_cache(unsigned int cpu)
187 {
188 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
189 int i;
190
191 for (i = 0; i < NR_CACHED_STACKS; i++) {
192 struct vm_struct *vm_stack = cached_vm_stacks[i];
193
194 if (!vm_stack)
195 continue;
196
197 vfree(vm_stack->addr);
198 cached_vm_stacks[i] = NULL;
199 }
200
201 return 0;
202 }
203 #endif
204
alloc_thread_stack_node(struct task_struct * tsk,int node)205 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
206 {
207 #ifdef CONFIG_VMAP_STACK
208 void *stack;
209 int i;
210
211 for (i = 0; i < NR_CACHED_STACKS; i++) {
212 struct vm_struct *s;
213
214 s = this_cpu_xchg(cached_stacks[i], NULL);
215
216 if (!s)
217 continue;
218
219 /* Clear stale pointers from reused stack. */
220 memset(s->addr, 0, THREAD_SIZE);
221
222 tsk->stack_vm_area = s;
223 return s->addr;
224 }
225
226 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
227 VMALLOC_START, VMALLOC_END,
228 THREADINFO_GFP,
229 PAGE_KERNEL,
230 0, node, __builtin_return_address(0));
231
232 /*
233 * We can't call find_vm_area() in interrupt context, and
234 * free_thread_stack() can be called in interrupt context,
235 * so cache the vm_struct.
236 */
237 if (stack)
238 tsk->stack_vm_area = find_vm_area(stack);
239 return stack;
240 #else
241 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
242 THREAD_SIZE_ORDER);
243
244 return page ? page_address(page) : NULL;
245 #endif
246 }
247
free_thread_stack(struct task_struct * tsk)248 static inline void free_thread_stack(struct task_struct *tsk)
249 {
250 #ifdef CONFIG_VMAP_STACK
251 if (task_stack_vm_area(tsk)) {
252 int i;
253
254 for (i = 0; i < NR_CACHED_STACKS; i++) {
255 if (this_cpu_cmpxchg(cached_stacks[i],
256 NULL, tsk->stack_vm_area) != NULL)
257 continue;
258
259 return;
260 }
261
262 vfree_atomic(tsk->stack);
263 return;
264 }
265 #endif
266
267 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
268 }
269 # else
270 static struct kmem_cache *thread_stack_cache;
271
alloc_thread_stack_node(struct task_struct * tsk,int node)272 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
273 int node)
274 {
275 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
276 }
277
free_thread_stack(struct task_struct * tsk)278 static void free_thread_stack(struct task_struct *tsk)
279 {
280 kmem_cache_free(thread_stack_cache, tsk->stack);
281 }
282
thread_stack_cache_init(void)283 void thread_stack_cache_init(void)
284 {
285 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
286 THREAD_SIZE, THREAD_SIZE, 0, 0,
287 THREAD_SIZE, NULL);
288 BUG_ON(thread_stack_cache == NULL);
289 }
290 # endif
291 #endif
292
293 /* SLAB cache for signal_struct structures (tsk->signal) */
294 static struct kmem_cache *signal_cachep;
295
296 /* SLAB cache for sighand_struct structures (tsk->sighand) */
297 struct kmem_cache *sighand_cachep;
298
299 /* SLAB cache for files_struct structures (tsk->files) */
300 struct kmem_cache *files_cachep;
301
302 /* SLAB cache for fs_struct structures (tsk->fs) */
303 struct kmem_cache *fs_cachep;
304
305 /* SLAB cache for vm_area_struct structures */
306 static struct kmem_cache *vm_area_cachep;
307
308 /* SLAB cache for mm_struct structures (tsk->mm) */
309 static struct kmem_cache *mm_cachep;
310
vm_area_alloc(struct mm_struct * mm)311 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
312 {
313 struct vm_area_struct *vma;
314
315 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
316 if (vma)
317 vma_init(vma, mm);
318 return vma;
319 }
320
vm_area_dup(struct vm_area_struct * orig)321 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
322 {
323 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
324
325 if (new) {
326 *new = *orig;
327 INIT_LIST_HEAD(&new->anon_vma_chain);
328 }
329 return new;
330 }
331
vm_area_free(struct vm_area_struct * vma)332 void vm_area_free(struct vm_area_struct *vma)
333 {
334 kmem_cache_free(vm_area_cachep, vma);
335 }
336
account_kernel_stack(struct task_struct * tsk,int account)337 static void account_kernel_stack(struct task_struct *tsk, int account)
338 {
339 void *stack = task_stack_page(tsk);
340 struct vm_struct *vm = task_stack_vm_area(tsk);
341
342 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
343
344 if (vm) {
345 int i;
346
347 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
348
349 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
350 mod_zone_page_state(page_zone(vm->pages[i]),
351 NR_KERNEL_STACK_KB,
352 PAGE_SIZE / 1024 * account);
353 }
354
355 /* All stack pages belong to the same memcg. */
356 mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
357 account * (THREAD_SIZE / 1024));
358 } else {
359 /*
360 * All stack pages are in the same zone and belong to the
361 * same memcg.
362 */
363 struct page *first_page = virt_to_page(stack);
364
365 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
366 THREAD_SIZE / 1024 * account);
367
368 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
369 account * (THREAD_SIZE / 1024));
370 }
371 }
372
release_task_stack(struct task_struct * tsk)373 static void release_task_stack(struct task_struct *tsk)
374 {
375 if (WARN_ON(tsk->state != TASK_DEAD))
376 return; /* Better to leak the stack than to free prematurely */
377
378 account_kernel_stack(tsk, -1);
379 arch_release_thread_stack(tsk->stack);
380 free_thread_stack(tsk);
381 tsk->stack = NULL;
382 #ifdef CONFIG_VMAP_STACK
383 tsk->stack_vm_area = NULL;
384 #endif
385 }
386
387 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)388 void put_task_stack(struct task_struct *tsk)
389 {
390 if (atomic_dec_and_test(&tsk->stack_refcount))
391 release_task_stack(tsk);
392 }
393 #endif
394
free_task(struct task_struct * tsk)395 void free_task(struct task_struct *tsk)
396 {
397 #ifndef CONFIG_THREAD_INFO_IN_TASK
398 /*
399 * The task is finally done with both the stack and thread_info,
400 * so free both.
401 */
402 release_task_stack(tsk);
403 #else
404 /*
405 * If the task had a separate stack allocation, it should be gone
406 * by now.
407 */
408 WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
409 #endif
410 rt_mutex_debug_task_free(tsk);
411 ftrace_graph_exit_task(tsk);
412 put_seccomp_filter(tsk);
413 arch_release_task_struct(tsk);
414 if (tsk->flags & PF_KTHREAD)
415 free_kthread_struct(tsk);
416 free_task_struct(tsk);
417 }
418 EXPORT_SYMBOL(free_task);
419
420 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)421 static __latent_entropy int dup_mmap(struct mm_struct *mm,
422 struct mm_struct *oldmm)
423 {
424 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
425 struct rb_node **rb_link, *rb_parent;
426 int retval;
427 unsigned long charge;
428 LIST_HEAD(uf);
429
430 uprobe_start_dup_mmap();
431 if (down_write_killable(&oldmm->mmap_sem)) {
432 retval = -EINTR;
433 goto fail_uprobe_end;
434 }
435 flush_cache_dup_mm(oldmm);
436 uprobe_dup_mmap(oldmm, mm);
437 /*
438 * Not linked in yet - no deadlock potential:
439 */
440 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
441
442 /* No ordering required: file already has been exposed. */
443 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
444
445 mm->total_vm = oldmm->total_vm;
446 mm->data_vm = oldmm->data_vm;
447 mm->exec_vm = oldmm->exec_vm;
448 mm->stack_vm = oldmm->stack_vm;
449
450 rb_link = &mm->mm_rb.rb_node;
451 rb_parent = NULL;
452 pprev = &mm->mmap;
453 retval = ksm_fork(mm, oldmm);
454 if (retval)
455 goto out;
456 retval = khugepaged_fork(mm, oldmm);
457 if (retval)
458 goto out;
459
460 prev = NULL;
461 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
462 struct file *file;
463
464 if (mpnt->vm_flags & VM_DONTCOPY) {
465 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
466 continue;
467 }
468 charge = 0;
469 /*
470 * Don't duplicate many vmas if we've been oom-killed (for
471 * example)
472 */
473 if (fatal_signal_pending(current)) {
474 retval = -EINTR;
475 goto out;
476 }
477 if (mpnt->vm_flags & VM_ACCOUNT) {
478 unsigned long len = vma_pages(mpnt);
479
480 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
481 goto fail_nomem;
482 charge = len;
483 }
484 tmp = vm_area_dup(mpnt);
485 if (!tmp)
486 goto fail_nomem;
487 retval = vma_dup_policy(mpnt, tmp);
488 if (retval)
489 goto fail_nomem_policy;
490 tmp->vm_mm = mm;
491 retval = dup_userfaultfd(tmp, &uf);
492 if (retval)
493 goto fail_nomem_anon_vma_fork;
494 if (tmp->vm_flags & VM_WIPEONFORK) {
495 /* VM_WIPEONFORK gets a clean slate in the child. */
496 tmp->anon_vma = NULL;
497 if (anon_vma_prepare(tmp))
498 goto fail_nomem_anon_vma_fork;
499 } else if (anon_vma_fork(tmp, mpnt))
500 goto fail_nomem_anon_vma_fork;
501 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
502 tmp->vm_next = tmp->vm_prev = NULL;
503 file = tmp->vm_file;
504 if (file) {
505 struct inode *inode = file_inode(file);
506 struct address_space *mapping = file->f_mapping;
507
508 get_file(file);
509 if (tmp->vm_flags & VM_DENYWRITE)
510 atomic_dec(&inode->i_writecount);
511 i_mmap_lock_write(mapping);
512 if (tmp->vm_flags & VM_SHARED)
513 atomic_inc(&mapping->i_mmap_writable);
514 flush_dcache_mmap_lock(mapping);
515 /* insert tmp into the share list, just after mpnt */
516 vma_interval_tree_insert_after(tmp, mpnt,
517 &mapping->i_mmap);
518 flush_dcache_mmap_unlock(mapping);
519 i_mmap_unlock_write(mapping);
520 }
521
522 /*
523 * Clear hugetlb-related page reserves for children. This only
524 * affects MAP_PRIVATE mappings. Faults generated by the child
525 * are not guaranteed to succeed, even if read-only
526 */
527 if (is_vm_hugetlb_page(tmp))
528 reset_vma_resv_huge_pages(tmp);
529
530 /*
531 * Link in the new vma and copy the page table entries.
532 */
533 *pprev = tmp;
534 pprev = &tmp->vm_next;
535 tmp->vm_prev = prev;
536 prev = tmp;
537
538 __vma_link_rb(mm, tmp, rb_link, rb_parent);
539 rb_link = &tmp->vm_rb.rb_right;
540 rb_parent = &tmp->vm_rb;
541
542 mm->map_count++;
543 if (!(tmp->vm_flags & VM_WIPEONFORK))
544 retval = copy_page_range(mm, oldmm, mpnt);
545
546 if (tmp->vm_ops && tmp->vm_ops->open)
547 tmp->vm_ops->open(tmp);
548
549 if (retval)
550 goto out;
551 }
552 /* a new mm has just been created */
553 retval = arch_dup_mmap(oldmm, mm);
554 out:
555 up_write(&mm->mmap_sem);
556 flush_tlb_mm(oldmm);
557 up_write(&oldmm->mmap_sem);
558 dup_userfaultfd_complete(&uf);
559 fail_uprobe_end:
560 uprobe_end_dup_mmap();
561 return retval;
562 fail_nomem_anon_vma_fork:
563 mpol_put(vma_policy(tmp));
564 fail_nomem_policy:
565 vm_area_free(tmp);
566 fail_nomem:
567 retval = -ENOMEM;
568 vm_unacct_memory(charge);
569 goto out;
570 }
571
mm_alloc_pgd(struct mm_struct * mm)572 static inline int mm_alloc_pgd(struct mm_struct *mm)
573 {
574 mm->pgd = pgd_alloc(mm);
575 if (unlikely(!mm->pgd))
576 return -ENOMEM;
577 return 0;
578 }
579
mm_free_pgd(struct mm_struct * mm)580 static inline void mm_free_pgd(struct mm_struct *mm)
581 {
582 pgd_free(mm, mm->pgd);
583 }
584 #else
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)585 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
586 {
587 down_write(&oldmm->mmap_sem);
588 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
589 up_write(&oldmm->mmap_sem);
590 return 0;
591 }
592 #define mm_alloc_pgd(mm) (0)
593 #define mm_free_pgd(mm)
594 #endif /* CONFIG_MMU */
595
check_mm(struct mm_struct * mm)596 static void check_mm(struct mm_struct *mm)
597 {
598 int i;
599
600 for (i = 0; i < NR_MM_COUNTERS; i++) {
601 long x = atomic_long_read(&mm->rss_stat.count[i]);
602
603 if (unlikely(x))
604 printk(KERN_ALERT "BUG: Bad rss-counter state "
605 "mm:%p idx:%d val:%ld\n", mm, i, x);
606 }
607
608 if (mm_pgtables_bytes(mm))
609 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
610 mm_pgtables_bytes(mm));
611
612 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
613 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
614 #endif
615 }
616
617 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
618 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
619
620 /*
621 * Called when the last reference to the mm
622 * is dropped: either by a lazy thread or by
623 * mmput. Free the page directory and the mm.
624 */
__mmdrop(struct mm_struct * mm)625 void __mmdrop(struct mm_struct *mm)
626 {
627 BUG_ON(mm == &init_mm);
628 WARN_ON_ONCE(mm == current->mm);
629 WARN_ON_ONCE(mm == current->active_mm);
630 mm_free_pgd(mm);
631 destroy_context(mm);
632 hmm_mm_destroy(mm);
633 mmu_notifier_mm_destroy(mm);
634 check_mm(mm);
635 put_user_ns(mm->user_ns);
636 free_mm(mm);
637 }
638 EXPORT_SYMBOL_GPL(__mmdrop);
639
mmdrop_async_fn(struct work_struct * work)640 static void mmdrop_async_fn(struct work_struct *work)
641 {
642 struct mm_struct *mm;
643
644 mm = container_of(work, struct mm_struct, async_put_work);
645 __mmdrop(mm);
646 }
647
mmdrop_async(struct mm_struct * mm)648 static void mmdrop_async(struct mm_struct *mm)
649 {
650 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
651 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
652 schedule_work(&mm->async_put_work);
653 }
654 }
655
free_signal_struct(struct signal_struct * sig)656 static inline void free_signal_struct(struct signal_struct *sig)
657 {
658 taskstats_tgid_free(sig);
659 sched_autogroup_exit(sig);
660 /*
661 * __mmdrop is not safe to call from softirq context on x86 due to
662 * pgd_dtor so postpone it to the async context
663 */
664 if (sig->oom_mm)
665 mmdrop_async(sig->oom_mm);
666 kmem_cache_free(signal_cachep, sig);
667 }
668
put_signal_struct(struct signal_struct * sig)669 static inline void put_signal_struct(struct signal_struct *sig)
670 {
671 if (atomic_dec_and_test(&sig->sigcnt))
672 free_signal_struct(sig);
673 }
674
__put_task_struct(struct task_struct * tsk)675 void __put_task_struct(struct task_struct *tsk)
676 {
677 WARN_ON(!tsk->exit_state);
678 WARN_ON(atomic_read(&tsk->usage));
679 WARN_ON(tsk == current);
680
681 cgroup_free(tsk);
682 task_numa_free(tsk);
683 security_task_free(tsk);
684 exit_creds(tsk);
685 delayacct_tsk_free(tsk);
686 put_signal_struct(tsk->signal);
687
688 if (!profile_handoff_task(tsk))
689 free_task(tsk);
690 }
691 EXPORT_SYMBOL_GPL(__put_task_struct);
692
arch_task_cache_init(void)693 void __init __weak arch_task_cache_init(void) { }
694
695 /*
696 * set_max_threads
697 */
set_max_threads(unsigned int max_threads_suggested)698 static void set_max_threads(unsigned int max_threads_suggested)
699 {
700 u64 threads;
701
702 /*
703 * The number of threads shall be limited such that the thread
704 * structures may only consume a small part of the available memory.
705 */
706 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
707 threads = MAX_THREADS;
708 else
709 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
710 (u64) THREAD_SIZE * 8UL);
711
712 if (threads > max_threads_suggested)
713 threads = max_threads_suggested;
714
715 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
716 }
717
718 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
719 /* Initialized by the architecture: */
720 int arch_task_struct_size __read_mostly;
721 #endif
722
task_struct_whitelist(unsigned long * offset,unsigned long * size)723 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
724 {
725 /* Fetch thread_struct whitelist for the architecture. */
726 arch_thread_struct_whitelist(offset, size);
727
728 /*
729 * Handle zero-sized whitelist or empty thread_struct, otherwise
730 * adjust offset to position of thread_struct in task_struct.
731 */
732 if (unlikely(*size == 0))
733 *offset = 0;
734 else
735 *offset += offsetof(struct task_struct, thread);
736 }
737
fork_init(void)738 void __init fork_init(void)
739 {
740 int i;
741 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
742 #ifndef ARCH_MIN_TASKALIGN
743 #define ARCH_MIN_TASKALIGN 0
744 #endif
745 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
746 unsigned long useroffset, usersize;
747
748 /* create a slab on which task_structs can be allocated */
749 task_struct_whitelist(&useroffset, &usersize);
750 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
751 arch_task_struct_size, align,
752 SLAB_PANIC|SLAB_ACCOUNT,
753 useroffset, usersize, NULL);
754 #endif
755
756 /* do the arch specific task caches init */
757 arch_task_cache_init();
758
759 set_max_threads(MAX_THREADS);
760
761 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
762 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
763 init_task.signal->rlim[RLIMIT_SIGPENDING] =
764 init_task.signal->rlim[RLIMIT_NPROC];
765
766 for (i = 0; i < UCOUNT_COUNTS; i++) {
767 init_user_ns.ucount_max[i] = max_threads/2;
768 }
769
770 #ifdef CONFIG_VMAP_STACK
771 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
772 NULL, free_vm_stack_cache);
773 #endif
774
775 lockdep_init_task(&init_task);
776 }
777
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)778 int __weak arch_dup_task_struct(struct task_struct *dst,
779 struct task_struct *src)
780 {
781 *dst = *src;
782 return 0;
783 }
784
set_task_stack_end_magic(struct task_struct * tsk)785 void set_task_stack_end_magic(struct task_struct *tsk)
786 {
787 unsigned long *stackend;
788
789 stackend = end_of_stack(tsk);
790 *stackend = STACK_END_MAGIC; /* for overflow detection */
791 }
792
dup_task_struct(struct task_struct * orig,int node)793 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
794 {
795 struct task_struct *tsk;
796 unsigned long *stack;
797 struct vm_struct *stack_vm_area;
798 int err;
799
800 if (node == NUMA_NO_NODE)
801 node = tsk_fork_get_node(orig);
802 tsk = alloc_task_struct_node(node);
803 if (!tsk)
804 return NULL;
805
806 stack = alloc_thread_stack_node(tsk, node);
807 if (!stack)
808 goto free_tsk;
809
810 stack_vm_area = task_stack_vm_area(tsk);
811
812 err = arch_dup_task_struct(tsk, orig);
813
814 /*
815 * arch_dup_task_struct() clobbers the stack-related fields. Make
816 * sure they're properly initialized before using any stack-related
817 * functions again.
818 */
819 tsk->stack = stack;
820 #ifdef CONFIG_VMAP_STACK
821 tsk->stack_vm_area = stack_vm_area;
822 #endif
823 #ifdef CONFIG_THREAD_INFO_IN_TASK
824 atomic_set(&tsk->stack_refcount, 1);
825 #endif
826
827 if (err)
828 goto free_stack;
829
830 #ifdef CONFIG_SECCOMP
831 /*
832 * We must handle setting up seccomp filters once we're under
833 * the sighand lock in case orig has changed between now and
834 * then. Until then, filter must be NULL to avoid messing up
835 * the usage counts on the error path calling free_task.
836 */
837 tsk->seccomp.filter = NULL;
838 #endif
839
840 setup_thread_stack(tsk, orig);
841 clear_user_return_notifier(tsk);
842 clear_tsk_need_resched(tsk);
843 set_task_stack_end_magic(tsk);
844
845 #ifdef CONFIG_STACKPROTECTOR
846 tsk->stack_canary = get_random_canary();
847 #endif
848
849 /*
850 * One for us, one for whoever does the "release_task()" (usually
851 * parent)
852 */
853 atomic_set(&tsk->usage, 2);
854 #ifdef CONFIG_BLK_DEV_IO_TRACE
855 tsk->btrace_seq = 0;
856 #endif
857 tsk->splice_pipe = NULL;
858 tsk->task_frag.page = NULL;
859 tsk->wake_q.next = NULL;
860
861 account_kernel_stack(tsk, 1);
862
863 kcov_task_init(tsk);
864
865 #ifdef CONFIG_FAULT_INJECTION
866 tsk->fail_nth = 0;
867 #endif
868
869 #ifdef CONFIG_BLK_CGROUP
870 tsk->throttle_queue = NULL;
871 tsk->use_memdelay = 0;
872 #endif
873
874 #ifdef CONFIG_MEMCG
875 tsk->active_memcg = NULL;
876 #endif
877 return tsk;
878
879 free_stack:
880 free_thread_stack(tsk);
881 free_tsk:
882 free_task_struct(tsk);
883 return NULL;
884 }
885
886 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
887
888 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
889
coredump_filter_setup(char * s)890 static int __init coredump_filter_setup(char *s)
891 {
892 default_dump_filter =
893 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
894 MMF_DUMP_FILTER_MASK;
895 return 1;
896 }
897
898 __setup("coredump_filter=", coredump_filter_setup);
899
900 #include <linux/init_task.h>
901
mm_init_aio(struct mm_struct * mm)902 static void mm_init_aio(struct mm_struct *mm)
903 {
904 #ifdef CONFIG_AIO
905 spin_lock_init(&mm->ioctx_lock);
906 mm->ioctx_table = NULL;
907 #endif
908 }
909
mm_init_owner(struct mm_struct * mm,struct task_struct * p)910 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
911 {
912 #ifdef CONFIG_MEMCG
913 mm->owner = p;
914 #endif
915 }
916
mm_init_uprobes_state(struct mm_struct * mm)917 static void mm_init_uprobes_state(struct mm_struct *mm)
918 {
919 #ifdef CONFIG_UPROBES
920 mm->uprobes_state.xol_area = NULL;
921 #endif
922 }
923
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)924 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
925 struct user_namespace *user_ns)
926 {
927 mm->mmap = NULL;
928 mm->mm_rb = RB_ROOT;
929 mm->vmacache_seqnum = 0;
930 atomic_set(&mm->mm_users, 1);
931 atomic_set(&mm->mm_count, 1);
932 init_rwsem(&mm->mmap_sem);
933 INIT_LIST_HEAD(&mm->mmlist);
934 mm->core_state = NULL;
935 mm_pgtables_bytes_init(mm);
936 mm->map_count = 0;
937 mm->locked_vm = 0;
938 mm->pinned_vm = 0;
939 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
940 spin_lock_init(&mm->page_table_lock);
941 spin_lock_init(&mm->arg_lock);
942 mm_init_cpumask(mm);
943 mm_init_aio(mm);
944 mm_init_owner(mm, p);
945 RCU_INIT_POINTER(mm->exe_file, NULL);
946 mmu_notifier_mm_init(mm);
947 hmm_mm_init(mm);
948 init_tlb_flush_pending(mm);
949 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
950 mm->pmd_huge_pte = NULL;
951 #endif
952 mm_init_uprobes_state(mm);
953
954 if (current->mm) {
955 mm->flags = current->mm->flags & MMF_INIT_MASK;
956 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
957 } else {
958 mm->flags = default_dump_filter;
959 mm->def_flags = 0;
960 }
961
962 if (mm_alloc_pgd(mm))
963 goto fail_nopgd;
964
965 if (init_new_context(p, mm))
966 goto fail_nocontext;
967
968 mm->user_ns = get_user_ns(user_ns);
969 return mm;
970
971 fail_nocontext:
972 mm_free_pgd(mm);
973 fail_nopgd:
974 free_mm(mm);
975 return NULL;
976 }
977
978 /*
979 * Allocate and initialize an mm_struct.
980 */
mm_alloc(void)981 struct mm_struct *mm_alloc(void)
982 {
983 struct mm_struct *mm;
984
985 mm = allocate_mm();
986 if (!mm)
987 return NULL;
988
989 memset(mm, 0, sizeof(*mm));
990 return mm_init(mm, current, current_user_ns());
991 }
992
__mmput(struct mm_struct * mm)993 static inline void __mmput(struct mm_struct *mm)
994 {
995 VM_BUG_ON(atomic_read(&mm->mm_users));
996
997 uprobe_clear_state(mm);
998 exit_aio(mm);
999 ksm_exit(mm);
1000 khugepaged_exit(mm); /* must run before exit_mmap */
1001 exit_mmap(mm);
1002 mm_put_huge_zero_page(mm);
1003 set_mm_exe_file(mm, NULL);
1004 if (!list_empty(&mm->mmlist)) {
1005 spin_lock(&mmlist_lock);
1006 list_del(&mm->mmlist);
1007 spin_unlock(&mmlist_lock);
1008 }
1009 if (mm->binfmt)
1010 module_put(mm->binfmt->module);
1011 mmdrop(mm);
1012 }
1013
1014 /*
1015 * Decrement the use count and release all resources for an mm.
1016 */
mmput(struct mm_struct * mm)1017 void mmput(struct mm_struct *mm)
1018 {
1019 might_sleep();
1020
1021 if (atomic_dec_and_test(&mm->mm_users))
1022 __mmput(mm);
1023 }
1024 EXPORT_SYMBOL_GPL(mmput);
1025
1026 #ifdef CONFIG_MMU
mmput_async_fn(struct work_struct * work)1027 static void mmput_async_fn(struct work_struct *work)
1028 {
1029 struct mm_struct *mm = container_of(work, struct mm_struct,
1030 async_put_work);
1031
1032 __mmput(mm);
1033 }
1034
mmput_async(struct mm_struct * mm)1035 void mmput_async(struct mm_struct *mm)
1036 {
1037 if (atomic_dec_and_test(&mm->mm_users)) {
1038 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1039 schedule_work(&mm->async_put_work);
1040 }
1041 }
1042 #endif
1043
1044 /**
1045 * set_mm_exe_file - change a reference to the mm's executable file
1046 *
1047 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1048 *
1049 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1050 * invocations: in mmput() nobody alive left, in execve task is single
1051 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1052 * mm->exe_file, but does so without using set_mm_exe_file() in order
1053 * to do avoid the need for any locks.
1054 */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1055 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1056 {
1057 struct file *old_exe_file;
1058
1059 /*
1060 * It is safe to dereference the exe_file without RCU as
1061 * this function is only called if nobody else can access
1062 * this mm -- see comment above for justification.
1063 */
1064 old_exe_file = rcu_dereference_raw(mm->exe_file);
1065
1066 if (new_exe_file)
1067 get_file(new_exe_file);
1068 rcu_assign_pointer(mm->exe_file, new_exe_file);
1069 if (old_exe_file)
1070 fput(old_exe_file);
1071 }
1072
1073 /**
1074 * get_mm_exe_file - acquire a reference to the mm's executable file
1075 *
1076 * Returns %NULL if mm has no associated executable file.
1077 * User must release file via fput().
1078 */
get_mm_exe_file(struct mm_struct * mm)1079 struct file *get_mm_exe_file(struct mm_struct *mm)
1080 {
1081 struct file *exe_file;
1082
1083 rcu_read_lock();
1084 exe_file = rcu_dereference(mm->exe_file);
1085 if (exe_file && !get_file_rcu(exe_file))
1086 exe_file = NULL;
1087 rcu_read_unlock();
1088 return exe_file;
1089 }
1090 EXPORT_SYMBOL(get_mm_exe_file);
1091
1092 /**
1093 * get_task_exe_file - acquire a reference to the task's executable file
1094 *
1095 * Returns %NULL if task's mm (if any) has no associated executable file or
1096 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1097 * User must release file via fput().
1098 */
get_task_exe_file(struct task_struct * task)1099 struct file *get_task_exe_file(struct task_struct *task)
1100 {
1101 struct file *exe_file = NULL;
1102 struct mm_struct *mm;
1103
1104 task_lock(task);
1105 mm = task->mm;
1106 if (mm) {
1107 if (!(task->flags & PF_KTHREAD))
1108 exe_file = get_mm_exe_file(mm);
1109 }
1110 task_unlock(task);
1111 return exe_file;
1112 }
1113 EXPORT_SYMBOL(get_task_exe_file);
1114
1115 /**
1116 * get_task_mm - acquire a reference to the task's mm
1117 *
1118 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1119 * this kernel workthread has transiently adopted a user mm with use_mm,
1120 * to do its AIO) is not set and if so returns a reference to it, after
1121 * bumping up the use count. User must release the mm via mmput()
1122 * after use. Typically used by /proc and ptrace.
1123 */
get_task_mm(struct task_struct * task)1124 struct mm_struct *get_task_mm(struct task_struct *task)
1125 {
1126 struct mm_struct *mm;
1127
1128 task_lock(task);
1129 mm = task->mm;
1130 if (mm) {
1131 if (task->flags & PF_KTHREAD)
1132 mm = NULL;
1133 else
1134 mmget(mm);
1135 }
1136 task_unlock(task);
1137 return mm;
1138 }
1139 EXPORT_SYMBOL_GPL(get_task_mm);
1140
mm_access(struct task_struct * task,unsigned int mode)1141 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1142 {
1143 struct mm_struct *mm;
1144 int err;
1145
1146 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1147 if (err)
1148 return ERR_PTR(err);
1149
1150 mm = get_task_mm(task);
1151 if (mm && mm != current->mm &&
1152 !ptrace_may_access(task, mode)) {
1153 mmput(mm);
1154 mm = ERR_PTR(-EACCES);
1155 }
1156 mutex_unlock(&task->signal->cred_guard_mutex);
1157
1158 return mm;
1159 }
1160
complete_vfork_done(struct task_struct * tsk)1161 static void complete_vfork_done(struct task_struct *tsk)
1162 {
1163 struct completion *vfork;
1164
1165 task_lock(tsk);
1166 vfork = tsk->vfork_done;
1167 if (likely(vfork)) {
1168 tsk->vfork_done = NULL;
1169 complete(vfork);
1170 }
1171 task_unlock(tsk);
1172 }
1173
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1174 static int wait_for_vfork_done(struct task_struct *child,
1175 struct completion *vfork)
1176 {
1177 int killed;
1178
1179 freezer_do_not_count();
1180 killed = wait_for_completion_killable(vfork);
1181 freezer_count();
1182
1183 if (killed) {
1184 task_lock(child);
1185 child->vfork_done = NULL;
1186 task_unlock(child);
1187 }
1188
1189 put_task_struct(child);
1190 return killed;
1191 }
1192
1193 /* Please note the differences between mmput and mm_release.
1194 * mmput is called whenever we stop holding onto a mm_struct,
1195 * error success whatever.
1196 *
1197 * mm_release is called after a mm_struct has been removed
1198 * from the current process.
1199 *
1200 * This difference is important for error handling, when we
1201 * only half set up a mm_struct for a new process and need to restore
1202 * the old one. Because we mmput the new mm_struct before
1203 * restoring the old one. . .
1204 * Eric Biederman 10 January 1998
1205 */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1206 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1207 {
1208 /* Get rid of any futexes when releasing the mm */
1209 #ifdef CONFIG_FUTEX
1210 if (unlikely(tsk->robust_list)) {
1211 exit_robust_list(tsk);
1212 tsk->robust_list = NULL;
1213 }
1214 #ifdef CONFIG_COMPAT
1215 if (unlikely(tsk->compat_robust_list)) {
1216 compat_exit_robust_list(tsk);
1217 tsk->compat_robust_list = NULL;
1218 }
1219 #endif
1220 if (unlikely(!list_empty(&tsk->pi_state_list)))
1221 exit_pi_state_list(tsk);
1222 #endif
1223
1224 uprobe_free_utask(tsk);
1225
1226 /* Get rid of any cached register state */
1227 deactivate_mm(tsk, mm);
1228
1229 /*
1230 * Signal userspace if we're not exiting with a core dump
1231 * because we want to leave the value intact for debugging
1232 * purposes.
1233 */
1234 if (tsk->clear_child_tid) {
1235 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1236 atomic_read(&mm->mm_users) > 1) {
1237 /*
1238 * We don't check the error code - if userspace has
1239 * not set up a proper pointer then tough luck.
1240 */
1241 put_user(0, tsk->clear_child_tid);
1242 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1243 1, NULL, NULL, 0, 0);
1244 }
1245 tsk->clear_child_tid = NULL;
1246 }
1247
1248 /*
1249 * All done, finally we can wake up parent and return this mm to him.
1250 * Also kthread_stop() uses this completion for synchronization.
1251 */
1252 if (tsk->vfork_done)
1253 complete_vfork_done(tsk);
1254 }
1255
1256 /*
1257 * Allocate a new mm structure and copy contents from the
1258 * mm structure of the passed in task structure.
1259 */
dup_mm(struct task_struct * tsk)1260 static struct mm_struct *dup_mm(struct task_struct *tsk)
1261 {
1262 struct mm_struct *mm, *oldmm = current->mm;
1263 int err;
1264
1265 mm = allocate_mm();
1266 if (!mm)
1267 goto fail_nomem;
1268
1269 memcpy(mm, oldmm, sizeof(*mm));
1270
1271 if (!mm_init(mm, tsk, mm->user_ns))
1272 goto fail_nomem;
1273
1274 err = dup_mmap(mm, oldmm);
1275 if (err)
1276 goto free_pt;
1277
1278 mm->hiwater_rss = get_mm_rss(mm);
1279 mm->hiwater_vm = mm->total_vm;
1280
1281 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1282 goto free_pt;
1283
1284 return mm;
1285
1286 free_pt:
1287 /* don't put binfmt in mmput, we haven't got module yet */
1288 mm->binfmt = NULL;
1289 mmput(mm);
1290
1291 fail_nomem:
1292 return NULL;
1293 }
1294
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1295 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1296 {
1297 struct mm_struct *mm, *oldmm;
1298 int retval;
1299
1300 tsk->min_flt = tsk->maj_flt = 0;
1301 tsk->nvcsw = tsk->nivcsw = 0;
1302 #ifdef CONFIG_DETECT_HUNG_TASK
1303 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1304 tsk->last_switch_time = 0;
1305 #endif
1306
1307 tsk->mm = NULL;
1308 tsk->active_mm = NULL;
1309
1310 /*
1311 * Are we cloning a kernel thread?
1312 *
1313 * We need to steal a active VM for that..
1314 */
1315 oldmm = current->mm;
1316 if (!oldmm)
1317 return 0;
1318
1319 /* initialize the new vmacache entries */
1320 vmacache_flush(tsk);
1321
1322 if (clone_flags & CLONE_VM) {
1323 mmget(oldmm);
1324 mm = oldmm;
1325 goto good_mm;
1326 }
1327
1328 retval = -ENOMEM;
1329 mm = dup_mm(tsk);
1330 if (!mm)
1331 goto fail_nomem;
1332
1333 good_mm:
1334 tsk->mm = mm;
1335 tsk->active_mm = mm;
1336 return 0;
1337
1338 fail_nomem:
1339 return retval;
1340 }
1341
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1342 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1343 {
1344 struct fs_struct *fs = current->fs;
1345 if (clone_flags & CLONE_FS) {
1346 /* tsk->fs is already what we want */
1347 spin_lock(&fs->lock);
1348 if (fs->in_exec) {
1349 spin_unlock(&fs->lock);
1350 return -EAGAIN;
1351 }
1352 fs->users++;
1353 spin_unlock(&fs->lock);
1354 return 0;
1355 }
1356 tsk->fs = copy_fs_struct(fs);
1357 if (!tsk->fs)
1358 return -ENOMEM;
1359 return 0;
1360 }
1361
copy_files(unsigned long clone_flags,struct task_struct * tsk)1362 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1363 {
1364 struct files_struct *oldf, *newf;
1365 int error = 0;
1366
1367 /*
1368 * A background process may not have any files ...
1369 */
1370 oldf = current->files;
1371 if (!oldf)
1372 goto out;
1373
1374 if (clone_flags & CLONE_FILES) {
1375 atomic_inc(&oldf->count);
1376 goto out;
1377 }
1378
1379 newf = dup_fd(oldf, &error);
1380 if (!newf)
1381 goto out;
1382
1383 tsk->files = newf;
1384 error = 0;
1385 out:
1386 return error;
1387 }
1388
copy_io(unsigned long clone_flags,struct task_struct * tsk)1389 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1390 {
1391 #ifdef CONFIG_BLOCK
1392 struct io_context *ioc = current->io_context;
1393 struct io_context *new_ioc;
1394
1395 if (!ioc)
1396 return 0;
1397 /*
1398 * Share io context with parent, if CLONE_IO is set
1399 */
1400 if (clone_flags & CLONE_IO) {
1401 ioc_task_link(ioc);
1402 tsk->io_context = ioc;
1403 } else if (ioprio_valid(ioc->ioprio)) {
1404 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1405 if (unlikely(!new_ioc))
1406 return -ENOMEM;
1407
1408 new_ioc->ioprio = ioc->ioprio;
1409 put_io_context(new_ioc);
1410 }
1411 #endif
1412 return 0;
1413 }
1414
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1415 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1416 {
1417 struct sighand_struct *sig;
1418
1419 if (clone_flags & CLONE_SIGHAND) {
1420 atomic_inc(¤t->sighand->count);
1421 return 0;
1422 }
1423 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1424 rcu_assign_pointer(tsk->sighand, sig);
1425 if (!sig)
1426 return -ENOMEM;
1427
1428 atomic_set(&sig->count, 1);
1429 spin_lock_irq(¤t->sighand->siglock);
1430 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1431 spin_unlock_irq(¤t->sighand->siglock);
1432 return 0;
1433 }
1434
__cleanup_sighand(struct sighand_struct * sighand)1435 void __cleanup_sighand(struct sighand_struct *sighand)
1436 {
1437 if (atomic_dec_and_test(&sighand->count)) {
1438 signalfd_cleanup(sighand);
1439 /*
1440 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1441 * without an RCU grace period, see __lock_task_sighand().
1442 */
1443 kmem_cache_free(sighand_cachep, sighand);
1444 }
1445 }
1446
1447 #ifdef CONFIG_POSIX_TIMERS
1448 /*
1449 * Initialize POSIX timer handling for a thread group.
1450 */
posix_cpu_timers_init_group(struct signal_struct * sig)1451 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1452 {
1453 unsigned long cpu_limit;
1454
1455 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1456 if (cpu_limit != RLIM_INFINITY) {
1457 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1458 sig->cputimer.running = true;
1459 }
1460
1461 /* The timer lists. */
1462 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1463 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1464 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1465 }
1466 #else
posix_cpu_timers_init_group(struct signal_struct * sig)1467 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1468 #endif
1469
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1470 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1471 {
1472 struct signal_struct *sig;
1473
1474 if (clone_flags & CLONE_THREAD)
1475 return 0;
1476
1477 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1478 tsk->signal = sig;
1479 if (!sig)
1480 return -ENOMEM;
1481
1482 sig->nr_threads = 1;
1483 atomic_set(&sig->live, 1);
1484 atomic_set(&sig->sigcnt, 1);
1485
1486 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1487 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1488 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1489
1490 init_waitqueue_head(&sig->wait_chldexit);
1491 sig->curr_target = tsk;
1492 init_sigpending(&sig->shared_pending);
1493 INIT_HLIST_HEAD(&sig->multiprocess);
1494 seqlock_init(&sig->stats_lock);
1495 prev_cputime_init(&sig->prev_cputime);
1496
1497 #ifdef CONFIG_POSIX_TIMERS
1498 INIT_LIST_HEAD(&sig->posix_timers);
1499 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1500 sig->real_timer.function = it_real_fn;
1501 #endif
1502
1503 task_lock(current->group_leader);
1504 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1505 task_unlock(current->group_leader);
1506
1507 posix_cpu_timers_init_group(sig);
1508
1509 tty_audit_fork(sig);
1510 sched_autogroup_fork(sig);
1511
1512 sig->oom_score_adj = current->signal->oom_score_adj;
1513 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1514
1515 mutex_init(&sig->cred_guard_mutex);
1516
1517 return 0;
1518 }
1519
copy_seccomp(struct task_struct * p)1520 static void copy_seccomp(struct task_struct *p)
1521 {
1522 #ifdef CONFIG_SECCOMP
1523 /*
1524 * Must be called with sighand->lock held, which is common to
1525 * all threads in the group. Holding cred_guard_mutex is not
1526 * needed because this new task is not yet running and cannot
1527 * be racing exec.
1528 */
1529 assert_spin_locked(¤t->sighand->siglock);
1530
1531 /* Ref-count the new filter user, and assign it. */
1532 get_seccomp_filter(current);
1533 p->seccomp = current->seccomp;
1534
1535 /*
1536 * Explicitly enable no_new_privs here in case it got set
1537 * between the task_struct being duplicated and holding the
1538 * sighand lock. The seccomp state and nnp must be in sync.
1539 */
1540 if (task_no_new_privs(current))
1541 task_set_no_new_privs(p);
1542
1543 /*
1544 * If the parent gained a seccomp mode after copying thread
1545 * flags and between before we held the sighand lock, we have
1546 * to manually enable the seccomp thread flag here.
1547 */
1548 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1549 set_tsk_thread_flag(p, TIF_SECCOMP);
1550 #endif
1551 }
1552
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1553 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1554 {
1555 current->clear_child_tid = tidptr;
1556
1557 return task_pid_vnr(current);
1558 }
1559
rt_mutex_init_task(struct task_struct * p)1560 static void rt_mutex_init_task(struct task_struct *p)
1561 {
1562 raw_spin_lock_init(&p->pi_lock);
1563 #ifdef CONFIG_RT_MUTEXES
1564 p->pi_waiters = RB_ROOT_CACHED;
1565 p->pi_top_task = NULL;
1566 p->pi_blocked_on = NULL;
1567 #endif
1568 }
1569
1570 #ifdef CONFIG_POSIX_TIMERS
1571 /*
1572 * Initialize POSIX timer handling for a single task.
1573 */
posix_cpu_timers_init(struct task_struct * tsk)1574 static void posix_cpu_timers_init(struct task_struct *tsk)
1575 {
1576 tsk->cputime_expires.prof_exp = 0;
1577 tsk->cputime_expires.virt_exp = 0;
1578 tsk->cputime_expires.sched_exp = 0;
1579 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1580 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1581 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1582 }
1583 #else
posix_cpu_timers_init(struct task_struct * tsk)1584 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1585 #endif
1586
init_task_pid_links(struct task_struct * task)1587 static inline void init_task_pid_links(struct task_struct *task)
1588 {
1589 enum pid_type type;
1590
1591 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1592 INIT_HLIST_NODE(&task->pid_links[type]);
1593 }
1594 }
1595
1596 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1597 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1598 {
1599 if (type == PIDTYPE_PID)
1600 task->thread_pid = pid;
1601 else
1602 task->signal->pids[type] = pid;
1603 }
1604
rcu_copy_process(struct task_struct * p)1605 static inline void rcu_copy_process(struct task_struct *p)
1606 {
1607 #ifdef CONFIG_PREEMPT_RCU
1608 p->rcu_read_lock_nesting = 0;
1609 p->rcu_read_unlock_special.s = 0;
1610 p->rcu_blocked_node = NULL;
1611 INIT_LIST_HEAD(&p->rcu_node_entry);
1612 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1613 #ifdef CONFIG_TASKS_RCU
1614 p->rcu_tasks_holdout = false;
1615 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1616 p->rcu_tasks_idle_cpu = -1;
1617 #endif /* #ifdef CONFIG_TASKS_RCU */
1618 }
1619
1620 /*
1621 * This creates a new process as a copy of the old one,
1622 * but does not actually start it yet.
1623 *
1624 * It copies the registers, and all the appropriate
1625 * parts of the process environment (as per the clone
1626 * flags). The actual kick-off is left to the caller.
1627 */
copy_process(unsigned long clone_flags,unsigned long stack_start,unsigned long stack_size,int __user * child_tidptr,struct pid * pid,int trace,unsigned long tls,int node)1628 static __latent_entropy struct task_struct *copy_process(
1629 unsigned long clone_flags,
1630 unsigned long stack_start,
1631 unsigned long stack_size,
1632 int __user *child_tidptr,
1633 struct pid *pid,
1634 int trace,
1635 unsigned long tls,
1636 int node)
1637 {
1638 int retval;
1639 struct task_struct *p;
1640 struct multiprocess_signals delayed;
1641
1642 /*
1643 * Don't allow sharing the root directory with processes in a different
1644 * namespace
1645 */
1646 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1647 return ERR_PTR(-EINVAL);
1648
1649 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1650 return ERR_PTR(-EINVAL);
1651
1652 /*
1653 * Thread groups must share signals as well, and detached threads
1654 * can only be started up within the thread group.
1655 */
1656 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1657 return ERR_PTR(-EINVAL);
1658
1659 /*
1660 * Shared signal handlers imply shared VM. By way of the above,
1661 * thread groups also imply shared VM. Blocking this case allows
1662 * for various simplifications in other code.
1663 */
1664 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1665 return ERR_PTR(-EINVAL);
1666
1667 /*
1668 * Siblings of global init remain as zombies on exit since they are
1669 * not reaped by their parent (swapper). To solve this and to avoid
1670 * multi-rooted process trees, prevent global and container-inits
1671 * from creating siblings.
1672 */
1673 if ((clone_flags & CLONE_PARENT) &&
1674 current->signal->flags & SIGNAL_UNKILLABLE)
1675 return ERR_PTR(-EINVAL);
1676
1677 /*
1678 * If the new process will be in a different pid or user namespace
1679 * do not allow it to share a thread group with the forking task.
1680 */
1681 if (clone_flags & CLONE_THREAD) {
1682 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1683 (task_active_pid_ns(current) !=
1684 current->nsproxy->pid_ns_for_children))
1685 return ERR_PTR(-EINVAL);
1686 }
1687
1688 /*
1689 * Force any signals received before this point to be delivered
1690 * before the fork happens. Collect up signals sent to multiple
1691 * processes that happen during the fork and delay them so that
1692 * they appear to happen after the fork.
1693 */
1694 sigemptyset(&delayed.signal);
1695 INIT_HLIST_NODE(&delayed.node);
1696
1697 spin_lock_irq(¤t->sighand->siglock);
1698 if (!(clone_flags & CLONE_THREAD))
1699 hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
1700 recalc_sigpending();
1701 spin_unlock_irq(¤t->sighand->siglock);
1702 retval = -ERESTARTNOINTR;
1703 if (signal_pending(current))
1704 goto fork_out;
1705
1706 retval = -ENOMEM;
1707 p = dup_task_struct(current, node);
1708 if (!p)
1709 goto fork_out;
1710
1711 /*
1712 * This _must_ happen before we call free_task(), i.e. before we jump
1713 * to any of the bad_fork_* labels. This is to avoid freeing
1714 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1715 * kernel threads (PF_KTHREAD).
1716 */
1717 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1718 /*
1719 * Clear TID on mm_release()?
1720 */
1721 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1722
1723 ftrace_graph_init_task(p);
1724
1725 rt_mutex_init_task(p);
1726
1727 #ifdef CONFIG_PROVE_LOCKING
1728 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1729 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1730 #endif
1731 retval = -EAGAIN;
1732 if (atomic_read(&p->real_cred->user->processes) >=
1733 task_rlimit(p, RLIMIT_NPROC)) {
1734 if (p->real_cred->user != INIT_USER &&
1735 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1736 goto bad_fork_free;
1737 }
1738 current->flags &= ~PF_NPROC_EXCEEDED;
1739
1740 retval = copy_creds(p, clone_flags);
1741 if (retval < 0)
1742 goto bad_fork_free;
1743
1744 /*
1745 * If multiple threads are within copy_process(), then this check
1746 * triggers too late. This doesn't hurt, the check is only there
1747 * to stop root fork bombs.
1748 */
1749 retval = -EAGAIN;
1750 if (nr_threads >= max_threads)
1751 goto bad_fork_cleanup_count;
1752
1753 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1754 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1755 p->flags |= PF_FORKNOEXEC;
1756 INIT_LIST_HEAD(&p->children);
1757 INIT_LIST_HEAD(&p->sibling);
1758 rcu_copy_process(p);
1759 p->vfork_done = NULL;
1760 spin_lock_init(&p->alloc_lock);
1761
1762 init_sigpending(&p->pending);
1763
1764 p->utime = p->stime = p->gtime = 0;
1765 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1766 p->utimescaled = p->stimescaled = 0;
1767 #endif
1768 prev_cputime_init(&p->prev_cputime);
1769
1770 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1771 seqcount_init(&p->vtime.seqcount);
1772 p->vtime.starttime = 0;
1773 p->vtime.state = VTIME_INACTIVE;
1774 #endif
1775
1776 #if defined(SPLIT_RSS_COUNTING)
1777 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1778 #endif
1779
1780 p->default_timer_slack_ns = current->timer_slack_ns;
1781
1782 task_io_accounting_init(&p->ioac);
1783 acct_clear_integrals(p);
1784
1785 posix_cpu_timers_init(p);
1786
1787 p->start_time = ktime_get_ns();
1788 p->real_start_time = ktime_get_boot_ns();
1789 p->io_context = NULL;
1790 audit_set_context(p, NULL);
1791 cgroup_fork(p);
1792 #ifdef CONFIG_NUMA
1793 p->mempolicy = mpol_dup(p->mempolicy);
1794 if (IS_ERR(p->mempolicy)) {
1795 retval = PTR_ERR(p->mempolicy);
1796 p->mempolicy = NULL;
1797 goto bad_fork_cleanup_threadgroup_lock;
1798 }
1799 #endif
1800 #ifdef CONFIG_CPUSETS
1801 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1802 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1803 seqcount_init(&p->mems_allowed_seq);
1804 #endif
1805 #ifdef CONFIG_TRACE_IRQFLAGS
1806 p->irq_events = 0;
1807 p->hardirqs_enabled = 0;
1808 p->hardirq_enable_ip = 0;
1809 p->hardirq_enable_event = 0;
1810 p->hardirq_disable_ip = _THIS_IP_;
1811 p->hardirq_disable_event = 0;
1812 p->softirqs_enabled = 1;
1813 p->softirq_enable_ip = _THIS_IP_;
1814 p->softirq_enable_event = 0;
1815 p->softirq_disable_ip = 0;
1816 p->softirq_disable_event = 0;
1817 p->hardirq_context = 0;
1818 p->softirq_context = 0;
1819 #endif
1820
1821 p->pagefault_disabled = 0;
1822
1823 #ifdef CONFIG_LOCKDEP
1824 p->lockdep_depth = 0; /* no locks held yet */
1825 p->curr_chain_key = 0;
1826 p->lockdep_recursion = 0;
1827 lockdep_init_task(p);
1828 #endif
1829
1830 #ifdef CONFIG_DEBUG_MUTEXES
1831 p->blocked_on = NULL; /* not blocked yet */
1832 #endif
1833 #ifdef CONFIG_BCACHE
1834 p->sequential_io = 0;
1835 p->sequential_io_avg = 0;
1836 #endif
1837
1838 /* Perform scheduler related setup. Assign this task to a CPU. */
1839 retval = sched_fork(clone_flags, p);
1840 if (retval)
1841 goto bad_fork_cleanup_policy;
1842
1843 retval = perf_event_init_task(p);
1844 if (retval)
1845 goto bad_fork_cleanup_policy;
1846 retval = audit_alloc(p);
1847 if (retval)
1848 goto bad_fork_cleanup_perf;
1849 /* copy all the process information */
1850 shm_init_task(p);
1851 retval = security_task_alloc(p, clone_flags);
1852 if (retval)
1853 goto bad_fork_cleanup_audit;
1854 retval = copy_semundo(clone_flags, p);
1855 if (retval)
1856 goto bad_fork_cleanup_security;
1857 retval = copy_files(clone_flags, p);
1858 if (retval)
1859 goto bad_fork_cleanup_semundo;
1860 retval = copy_fs(clone_flags, p);
1861 if (retval)
1862 goto bad_fork_cleanup_files;
1863 retval = copy_sighand(clone_flags, p);
1864 if (retval)
1865 goto bad_fork_cleanup_fs;
1866 retval = copy_signal(clone_flags, p);
1867 if (retval)
1868 goto bad_fork_cleanup_sighand;
1869 retval = copy_mm(clone_flags, p);
1870 if (retval)
1871 goto bad_fork_cleanup_signal;
1872 retval = copy_namespaces(clone_flags, p);
1873 if (retval)
1874 goto bad_fork_cleanup_mm;
1875 retval = copy_io(clone_flags, p);
1876 if (retval)
1877 goto bad_fork_cleanup_namespaces;
1878 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1879 if (retval)
1880 goto bad_fork_cleanup_io;
1881
1882 if (pid != &init_struct_pid) {
1883 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1884 if (IS_ERR(pid)) {
1885 retval = PTR_ERR(pid);
1886 goto bad_fork_cleanup_thread;
1887 }
1888 }
1889
1890 #ifdef CONFIG_BLOCK
1891 p->plug = NULL;
1892 #endif
1893 #ifdef CONFIG_FUTEX
1894 p->robust_list = NULL;
1895 #ifdef CONFIG_COMPAT
1896 p->compat_robust_list = NULL;
1897 #endif
1898 INIT_LIST_HEAD(&p->pi_state_list);
1899 p->pi_state_cache = NULL;
1900 #endif
1901 /*
1902 * sigaltstack should be cleared when sharing the same VM
1903 */
1904 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1905 sas_ss_reset(p);
1906
1907 /*
1908 * Syscall tracing and stepping should be turned off in the
1909 * child regardless of CLONE_PTRACE.
1910 */
1911 user_disable_single_step(p);
1912 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1913 #ifdef TIF_SYSCALL_EMU
1914 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1915 #endif
1916 clear_all_latency_tracing(p);
1917
1918 /* ok, now we should be set up.. */
1919 p->pid = pid_nr(pid);
1920 if (clone_flags & CLONE_THREAD) {
1921 p->exit_signal = -1;
1922 p->group_leader = current->group_leader;
1923 p->tgid = current->tgid;
1924 } else {
1925 if (clone_flags & CLONE_PARENT)
1926 p->exit_signal = current->group_leader->exit_signal;
1927 else
1928 p->exit_signal = (clone_flags & CSIGNAL);
1929 p->group_leader = p;
1930 p->tgid = p->pid;
1931 }
1932
1933 p->nr_dirtied = 0;
1934 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1935 p->dirty_paused_when = 0;
1936
1937 p->pdeath_signal = 0;
1938 INIT_LIST_HEAD(&p->thread_group);
1939 p->task_works = NULL;
1940
1941 cgroup_threadgroup_change_begin(current);
1942 /*
1943 * Ensure that the cgroup subsystem policies allow the new process to be
1944 * forked. It should be noted the the new process's css_set can be changed
1945 * between here and cgroup_post_fork() if an organisation operation is in
1946 * progress.
1947 */
1948 retval = cgroup_can_fork(p);
1949 if (retval)
1950 goto bad_fork_free_pid;
1951
1952 /*
1953 * Make it visible to the rest of the system, but dont wake it up yet.
1954 * Need tasklist lock for parent etc handling!
1955 */
1956 write_lock_irq(&tasklist_lock);
1957
1958 /* CLONE_PARENT re-uses the old parent */
1959 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1960 p->real_parent = current->real_parent;
1961 p->parent_exec_id = current->parent_exec_id;
1962 } else {
1963 p->real_parent = current;
1964 p->parent_exec_id = current->self_exec_id;
1965 }
1966
1967 klp_copy_process(p);
1968
1969 spin_lock(¤t->sighand->siglock);
1970
1971 /*
1972 * Copy seccomp details explicitly here, in case they were changed
1973 * before holding sighand lock.
1974 */
1975 copy_seccomp(p);
1976
1977 rseq_fork(p, clone_flags);
1978
1979 /* Don't start children in a dying pid namespace */
1980 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
1981 retval = -ENOMEM;
1982 goto bad_fork_cancel_cgroup;
1983 }
1984
1985 /* Let kill terminate clone/fork in the middle */
1986 if (fatal_signal_pending(current)) {
1987 retval = -EINTR;
1988 goto bad_fork_cancel_cgroup;
1989 }
1990
1991
1992 init_task_pid_links(p);
1993 if (likely(p->pid)) {
1994 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1995
1996 init_task_pid(p, PIDTYPE_PID, pid);
1997 if (thread_group_leader(p)) {
1998 init_task_pid(p, PIDTYPE_TGID, pid);
1999 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2000 init_task_pid(p, PIDTYPE_SID, task_session(current));
2001
2002 if (is_child_reaper(pid)) {
2003 ns_of_pid(pid)->child_reaper = p;
2004 p->signal->flags |= SIGNAL_UNKILLABLE;
2005 }
2006 p->signal->shared_pending.signal = delayed.signal;
2007 p->signal->tty = tty_kref_get(current->signal->tty);
2008 /*
2009 * Inherit has_child_subreaper flag under the same
2010 * tasklist_lock with adding child to the process tree
2011 * for propagate_has_child_subreaper optimization.
2012 */
2013 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2014 p->real_parent->signal->is_child_subreaper;
2015 list_add_tail(&p->sibling, &p->real_parent->children);
2016 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2017 attach_pid(p, PIDTYPE_TGID);
2018 attach_pid(p, PIDTYPE_PGID);
2019 attach_pid(p, PIDTYPE_SID);
2020 __this_cpu_inc(process_counts);
2021 } else {
2022 current->signal->nr_threads++;
2023 atomic_inc(¤t->signal->live);
2024 atomic_inc(¤t->signal->sigcnt);
2025 task_join_group_stop(p);
2026 list_add_tail_rcu(&p->thread_group,
2027 &p->group_leader->thread_group);
2028 list_add_tail_rcu(&p->thread_node,
2029 &p->signal->thread_head);
2030 }
2031 attach_pid(p, PIDTYPE_PID);
2032 nr_threads++;
2033 }
2034 total_forks++;
2035 hlist_del_init(&delayed.node);
2036 spin_unlock(¤t->sighand->siglock);
2037 syscall_tracepoint_update(p);
2038 write_unlock_irq(&tasklist_lock);
2039
2040 proc_fork_connector(p);
2041 cgroup_post_fork(p);
2042 cgroup_threadgroup_change_end(current);
2043 perf_event_fork(p);
2044
2045 trace_task_newtask(p, clone_flags);
2046 uprobe_copy_process(p, clone_flags);
2047
2048 return p;
2049
2050 bad_fork_cancel_cgroup:
2051 spin_unlock(¤t->sighand->siglock);
2052 write_unlock_irq(&tasklist_lock);
2053 cgroup_cancel_fork(p);
2054 bad_fork_free_pid:
2055 cgroup_threadgroup_change_end(current);
2056 if (pid != &init_struct_pid)
2057 free_pid(pid);
2058 bad_fork_cleanup_thread:
2059 exit_thread(p);
2060 bad_fork_cleanup_io:
2061 if (p->io_context)
2062 exit_io_context(p);
2063 bad_fork_cleanup_namespaces:
2064 exit_task_namespaces(p);
2065 bad_fork_cleanup_mm:
2066 if (p->mm)
2067 mmput(p->mm);
2068 bad_fork_cleanup_signal:
2069 if (!(clone_flags & CLONE_THREAD))
2070 free_signal_struct(p->signal);
2071 bad_fork_cleanup_sighand:
2072 __cleanup_sighand(p->sighand);
2073 bad_fork_cleanup_fs:
2074 exit_fs(p); /* blocking */
2075 bad_fork_cleanup_files:
2076 exit_files(p); /* blocking */
2077 bad_fork_cleanup_semundo:
2078 exit_sem(p);
2079 bad_fork_cleanup_security:
2080 security_task_free(p);
2081 bad_fork_cleanup_audit:
2082 audit_free(p);
2083 bad_fork_cleanup_perf:
2084 perf_event_free_task(p);
2085 bad_fork_cleanup_policy:
2086 lockdep_free_task(p);
2087 #ifdef CONFIG_NUMA
2088 mpol_put(p->mempolicy);
2089 bad_fork_cleanup_threadgroup_lock:
2090 #endif
2091 delayacct_tsk_free(p);
2092 bad_fork_cleanup_count:
2093 atomic_dec(&p->cred->user->processes);
2094 exit_creds(p);
2095 bad_fork_free:
2096 p->state = TASK_DEAD;
2097 put_task_stack(p);
2098 free_task(p);
2099 fork_out:
2100 spin_lock_irq(¤t->sighand->siglock);
2101 hlist_del_init(&delayed.node);
2102 spin_unlock_irq(¤t->sighand->siglock);
2103 return ERR_PTR(retval);
2104 }
2105
init_idle_pids(struct task_struct * idle)2106 static inline void init_idle_pids(struct task_struct *idle)
2107 {
2108 enum pid_type type;
2109
2110 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2111 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2112 init_task_pid(idle, type, &init_struct_pid);
2113 }
2114 }
2115
fork_idle(int cpu)2116 struct task_struct *fork_idle(int cpu)
2117 {
2118 struct task_struct *task;
2119 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2120 cpu_to_node(cpu));
2121 if (!IS_ERR(task)) {
2122 init_idle_pids(task);
2123 init_idle(task, cpu);
2124 }
2125
2126 return task;
2127 }
2128
2129 /*
2130 * Ok, this is the main fork-routine.
2131 *
2132 * It copies the process, and if successful kick-starts
2133 * it and waits for it to finish using the VM if required.
2134 */
_do_fork(unsigned long clone_flags,unsigned long stack_start,unsigned long stack_size,int __user * parent_tidptr,int __user * child_tidptr,unsigned long tls)2135 long _do_fork(unsigned long clone_flags,
2136 unsigned long stack_start,
2137 unsigned long stack_size,
2138 int __user *parent_tidptr,
2139 int __user *child_tidptr,
2140 unsigned long tls)
2141 {
2142 struct completion vfork;
2143 struct pid *pid;
2144 struct task_struct *p;
2145 int trace = 0;
2146 long nr;
2147
2148 /*
2149 * Determine whether and which event to report to ptracer. When
2150 * called from kernel_thread or CLONE_UNTRACED is explicitly
2151 * requested, no event is reported; otherwise, report if the event
2152 * for the type of forking is enabled.
2153 */
2154 if (!(clone_flags & CLONE_UNTRACED)) {
2155 if (clone_flags & CLONE_VFORK)
2156 trace = PTRACE_EVENT_VFORK;
2157 else if ((clone_flags & CSIGNAL) != SIGCHLD)
2158 trace = PTRACE_EVENT_CLONE;
2159 else
2160 trace = PTRACE_EVENT_FORK;
2161
2162 if (likely(!ptrace_event_enabled(current, trace)))
2163 trace = 0;
2164 }
2165
2166 p = copy_process(clone_flags, stack_start, stack_size,
2167 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2168 add_latent_entropy();
2169
2170 if (IS_ERR(p))
2171 return PTR_ERR(p);
2172
2173 /*
2174 * Do this prior waking up the new thread - the thread pointer
2175 * might get invalid after that point, if the thread exits quickly.
2176 */
2177 trace_sched_process_fork(current, p);
2178
2179 pid = get_task_pid(p, PIDTYPE_PID);
2180 nr = pid_vnr(pid);
2181
2182 if (clone_flags & CLONE_PARENT_SETTID)
2183 put_user(nr, parent_tidptr);
2184
2185 if (clone_flags & CLONE_VFORK) {
2186 p->vfork_done = &vfork;
2187 init_completion(&vfork);
2188 get_task_struct(p);
2189 }
2190
2191 wake_up_new_task(p);
2192
2193 /* forking complete and child started to run, tell ptracer */
2194 if (unlikely(trace))
2195 ptrace_event_pid(trace, pid);
2196
2197 if (clone_flags & CLONE_VFORK) {
2198 if (!wait_for_vfork_done(p, &vfork))
2199 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2200 }
2201
2202 put_pid(pid);
2203 return nr;
2204 }
2205
2206 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2207 /* For compatibility with architectures that call do_fork directly rather than
2208 * using the syscall entry points below. */
do_fork(unsigned long clone_flags,unsigned long stack_start,unsigned long stack_size,int __user * parent_tidptr,int __user * child_tidptr)2209 long do_fork(unsigned long clone_flags,
2210 unsigned long stack_start,
2211 unsigned long stack_size,
2212 int __user *parent_tidptr,
2213 int __user *child_tidptr)
2214 {
2215 return _do_fork(clone_flags, stack_start, stack_size,
2216 parent_tidptr, child_tidptr, 0);
2217 }
2218 #endif
2219
2220 /*
2221 * Create a kernel thread.
2222 */
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)2223 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2224 {
2225 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2226 (unsigned long)arg, NULL, NULL, 0);
2227 }
2228
2229 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2230 SYSCALL_DEFINE0(fork)
2231 {
2232 #ifdef CONFIG_MMU
2233 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2234 #else
2235 /* can not support in nommu mode */
2236 return -EINVAL;
2237 #endif
2238 }
2239 #endif
2240
2241 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)2242 SYSCALL_DEFINE0(vfork)
2243 {
2244 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2245 0, NULL, NULL, 0);
2246 }
2247 #endif
2248
2249 #ifdef __ARCH_WANT_SYS_CLONE
2250 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)2251 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2252 int __user *, parent_tidptr,
2253 unsigned long, tls,
2254 int __user *, child_tidptr)
2255 #elif defined(CONFIG_CLONE_BACKWARDS2)
2256 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2257 int __user *, parent_tidptr,
2258 int __user *, child_tidptr,
2259 unsigned long, tls)
2260 #elif defined(CONFIG_CLONE_BACKWARDS3)
2261 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2262 int, stack_size,
2263 int __user *, parent_tidptr,
2264 int __user *, child_tidptr,
2265 unsigned long, tls)
2266 #else
2267 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2268 int __user *, parent_tidptr,
2269 int __user *, child_tidptr,
2270 unsigned long, tls)
2271 #endif
2272 {
2273 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2274 }
2275 #endif
2276
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)2277 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2278 {
2279 struct task_struct *leader, *parent, *child;
2280 int res;
2281
2282 read_lock(&tasklist_lock);
2283 leader = top = top->group_leader;
2284 down:
2285 for_each_thread(leader, parent) {
2286 list_for_each_entry(child, &parent->children, sibling) {
2287 res = visitor(child, data);
2288 if (res) {
2289 if (res < 0)
2290 goto out;
2291 leader = child;
2292 goto down;
2293 }
2294 up:
2295 ;
2296 }
2297 }
2298
2299 if (leader != top) {
2300 child = leader;
2301 parent = child->real_parent;
2302 leader = parent->group_leader;
2303 goto up;
2304 }
2305 out:
2306 read_unlock(&tasklist_lock);
2307 }
2308
2309 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2310 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2311 #endif
2312
sighand_ctor(void * data)2313 static void sighand_ctor(void *data)
2314 {
2315 struct sighand_struct *sighand = data;
2316
2317 spin_lock_init(&sighand->siglock);
2318 init_waitqueue_head(&sighand->signalfd_wqh);
2319 }
2320
proc_caches_init(void)2321 void __init proc_caches_init(void)
2322 {
2323 unsigned int mm_size;
2324
2325 sighand_cachep = kmem_cache_create("sighand_cache",
2326 sizeof(struct sighand_struct), 0,
2327 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2328 SLAB_ACCOUNT, sighand_ctor);
2329 signal_cachep = kmem_cache_create("signal_cache",
2330 sizeof(struct signal_struct), 0,
2331 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2332 NULL);
2333 files_cachep = kmem_cache_create("files_cache",
2334 sizeof(struct files_struct), 0,
2335 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2336 NULL);
2337 fs_cachep = kmem_cache_create("fs_cache",
2338 sizeof(struct fs_struct), 0,
2339 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2340 NULL);
2341
2342 /*
2343 * The mm_cpumask is located at the end of mm_struct, and is
2344 * dynamically sized based on the maximum CPU number this system
2345 * can have, taking hotplug into account (nr_cpu_ids).
2346 */
2347 mm_size = sizeof(struct mm_struct) + cpumask_size();
2348
2349 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2350 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2351 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2352 offsetof(struct mm_struct, saved_auxv),
2353 sizeof_field(struct mm_struct, saved_auxv),
2354 NULL);
2355 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2356 mmap_init();
2357 nsproxy_cache_init();
2358 }
2359
2360 /*
2361 * Check constraints on flags passed to the unshare system call.
2362 */
check_unshare_flags(unsigned long unshare_flags)2363 static int check_unshare_flags(unsigned long unshare_flags)
2364 {
2365 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2366 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2367 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2368 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2369 return -EINVAL;
2370 /*
2371 * Not implemented, but pretend it works if there is nothing
2372 * to unshare. Note that unsharing the address space or the
2373 * signal handlers also need to unshare the signal queues (aka
2374 * CLONE_THREAD).
2375 */
2376 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2377 if (!thread_group_empty(current))
2378 return -EINVAL;
2379 }
2380 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2381 if (atomic_read(¤t->sighand->count) > 1)
2382 return -EINVAL;
2383 }
2384 if (unshare_flags & CLONE_VM) {
2385 if (!current_is_single_threaded())
2386 return -EINVAL;
2387 }
2388
2389 return 0;
2390 }
2391
2392 /*
2393 * Unshare the filesystem structure if it is being shared
2394 */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)2395 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2396 {
2397 struct fs_struct *fs = current->fs;
2398
2399 if (!(unshare_flags & CLONE_FS) || !fs)
2400 return 0;
2401
2402 /* don't need lock here; in the worst case we'll do useless copy */
2403 if (fs->users == 1)
2404 return 0;
2405
2406 *new_fsp = copy_fs_struct(fs);
2407 if (!*new_fsp)
2408 return -ENOMEM;
2409
2410 return 0;
2411 }
2412
2413 /*
2414 * Unshare file descriptor table if it is being shared
2415 */
unshare_fd(unsigned long unshare_flags,struct files_struct ** new_fdp)2416 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2417 {
2418 struct files_struct *fd = current->files;
2419 int error = 0;
2420
2421 if ((unshare_flags & CLONE_FILES) &&
2422 (fd && atomic_read(&fd->count) > 1)) {
2423 *new_fdp = dup_fd(fd, &error);
2424 if (!*new_fdp)
2425 return error;
2426 }
2427
2428 return 0;
2429 }
2430
2431 /*
2432 * unshare allows a process to 'unshare' part of the process
2433 * context which was originally shared using clone. copy_*
2434 * functions used by do_fork() cannot be used here directly
2435 * because they modify an inactive task_struct that is being
2436 * constructed. Here we are modifying the current, active,
2437 * task_struct.
2438 */
ksys_unshare(unsigned long unshare_flags)2439 int ksys_unshare(unsigned long unshare_flags)
2440 {
2441 struct fs_struct *fs, *new_fs = NULL;
2442 struct files_struct *fd, *new_fd = NULL;
2443 struct cred *new_cred = NULL;
2444 struct nsproxy *new_nsproxy = NULL;
2445 int do_sysvsem = 0;
2446 int err;
2447
2448 /*
2449 * If unsharing a user namespace must also unshare the thread group
2450 * and unshare the filesystem root and working directories.
2451 */
2452 if (unshare_flags & CLONE_NEWUSER)
2453 unshare_flags |= CLONE_THREAD | CLONE_FS;
2454 /*
2455 * If unsharing vm, must also unshare signal handlers.
2456 */
2457 if (unshare_flags & CLONE_VM)
2458 unshare_flags |= CLONE_SIGHAND;
2459 /*
2460 * If unsharing a signal handlers, must also unshare the signal queues.
2461 */
2462 if (unshare_flags & CLONE_SIGHAND)
2463 unshare_flags |= CLONE_THREAD;
2464 /*
2465 * If unsharing namespace, must also unshare filesystem information.
2466 */
2467 if (unshare_flags & CLONE_NEWNS)
2468 unshare_flags |= CLONE_FS;
2469
2470 err = check_unshare_flags(unshare_flags);
2471 if (err)
2472 goto bad_unshare_out;
2473 /*
2474 * CLONE_NEWIPC must also detach from the undolist: after switching
2475 * to a new ipc namespace, the semaphore arrays from the old
2476 * namespace are unreachable.
2477 */
2478 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2479 do_sysvsem = 1;
2480 err = unshare_fs(unshare_flags, &new_fs);
2481 if (err)
2482 goto bad_unshare_out;
2483 err = unshare_fd(unshare_flags, &new_fd);
2484 if (err)
2485 goto bad_unshare_cleanup_fs;
2486 err = unshare_userns(unshare_flags, &new_cred);
2487 if (err)
2488 goto bad_unshare_cleanup_fd;
2489 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2490 new_cred, new_fs);
2491 if (err)
2492 goto bad_unshare_cleanup_cred;
2493
2494 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2495 if (do_sysvsem) {
2496 /*
2497 * CLONE_SYSVSEM is equivalent to sys_exit().
2498 */
2499 exit_sem(current);
2500 }
2501 if (unshare_flags & CLONE_NEWIPC) {
2502 /* Orphan segments in old ns (see sem above). */
2503 exit_shm(current);
2504 shm_init_task(current);
2505 }
2506
2507 if (new_nsproxy)
2508 switch_task_namespaces(current, new_nsproxy);
2509
2510 task_lock(current);
2511
2512 if (new_fs) {
2513 fs = current->fs;
2514 spin_lock(&fs->lock);
2515 current->fs = new_fs;
2516 if (--fs->users)
2517 new_fs = NULL;
2518 else
2519 new_fs = fs;
2520 spin_unlock(&fs->lock);
2521 }
2522
2523 if (new_fd) {
2524 fd = current->files;
2525 current->files = new_fd;
2526 new_fd = fd;
2527 }
2528
2529 task_unlock(current);
2530
2531 if (new_cred) {
2532 /* Install the new user namespace */
2533 commit_creds(new_cred);
2534 new_cred = NULL;
2535 }
2536 }
2537
2538 perf_event_namespaces(current);
2539
2540 bad_unshare_cleanup_cred:
2541 if (new_cred)
2542 put_cred(new_cred);
2543 bad_unshare_cleanup_fd:
2544 if (new_fd)
2545 put_files_struct(new_fd);
2546
2547 bad_unshare_cleanup_fs:
2548 if (new_fs)
2549 free_fs_struct(new_fs);
2550
2551 bad_unshare_out:
2552 return err;
2553 }
2554
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)2555 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2556 {
2557 return ksys_unshare(unshare_flags);
2558 }
2559
2560 /*
2561 * Helper to unshare the files of the current task.
2562 * We don't want to expose copy_files internals to
2563 * the exec layer of the kernel.
2564 */
2565
unshare_files(struct files_struct ** displaced)2566 int unshare_files(struct files_struct **displaced)
2567 {
2568 struct task_struct *task = current;
2569 struct files_struct *copy = NULL;
2570 int error;
2571
2572 error = unshare_fd(CLONE_FILES, ©);
2573 if (error || !copy) {
2574 *displaced = NULL;
2575 return error;
2576 }
2577 *displaced = task->files;
2578 task_lock(task);
2579 task->files = copy;
2580 task_unlock(task);
2581 return 0;
2582 }
2583
sysctl_max_threads(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2584 int sysctl_max_threads(struct ctl_table *table, int write,
2585 void __user *buffer, size_t *lenp, loff_t *ppos)
2586 {
2587 struct ctl_table t;
2588 int ret;
2589 int threads = max_threads;
2590 int min = MIN_THREADS;
2591 int max = MAX_THREADS;
2592
2593 t = *table;
2594 t.data = &threads;
2595 t.extra1 = &min;
2596 t.extra2 = &max;
2597
2598 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2599 if (ret || !write)
2600 return ret;
2601
2602 set_max_threads(threads);
2603
2604 return 0;
2605 }
2606