1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *  Bluetooth Software UART Qualcomm protocol
4   *
5   *  HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management
6   *  protocol extension to H4.
7   *
8   *  Copyright (C) 2007 Texas Instruments, Inc.
9   *  Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved.
10   *
11   *  Acknowledgements:
12   *  This file is based on hci_ll.c, which was...
13   *  Written by Ohad Ben-Cohen <ohad@bencohen.org>
14   *  which was in turn based on hci_h4.c, which was written
15   *  by Maxim Krasnyansky and Marcel Holtmann.
16   */
17  
18  #include <linux/kernel.h>
19  #include <linux/clk.h>
20  #include <linux/completion.h>
21  #include <linux/debugfs.h>
22  #include <linux/delay.h>
23  #include <linux/devcoredump.h>
24  #include <linux/device.h>
25  #include <linux/gpio/consumer.h>
26  #include <linux/mod_devicetable.h>
27  #include <linux/module.h>
28  #include <linux/of_device.h>
29  #include <linux/acpi.h>
30  #include <linux/platform_device.h>
31  #include <linux/regulator/consumer.h>
32  #include <linux/serdev.h>
33  #include <linux/mutex.h>
34  #include <asm/unaligned.h>
35  
36  #include <net/bluetooth/bluetooth.h>
37  #include <net/bluetooth/hci_core.h>
38  
39  #include "hci_uart.h"
40  #include "btqca.h"
41  
42  /* HCI_IBS protocol messages */
43  #define HCI_IBS_SLEEP_IND	0xFE
44  #define HCI_IBS_WAKE_IND	0xFD
45  #define HCI_IBS_WAKE_ACK	0xFC
46  #define HCI_MAX_IBS_SIZE	10
47  
48  #define IBS_WAKE_RETRANS_TIMEOUT_MS	100
49  #define IBS_BTSOC_TX_IDLE_TIMEOUT_MS	200
50  #define IBS_HOST_TX_IDLE_TIMEOUT_MS	2000
51  #define CMD_TRANS_TIMEOUT_MS		100
52  #define MEMDUMP_TIMEOUT_MS		8000
53  
54  /* susclk rate */
55  #define SUSCLK_RATE_32KHZ	32768
56  
57  /* Controller debug log header */
58  #define QCA_DEBUG_HANDLE	0x2EDC
59  
60  /* max retry count when init fails */
61  #define MAX_INIT_RETRIES 3
62  
63  /* Controller dump header */
64  #define QCA_SSR_DUMP_HANDLE		0x0108
65  #define QCA_DUMP_PACKET_SIZE		255
66  #define QCA_LAST_SEQUENCE_NUM		0xFFFF
67  #define QCA_CRASHBYTE_PACKET_LEN	1096
68  #define QCA_MEMDUMP_BYTE		0xFB
69  
70  enum qca_flags {
71  	QCA_IBS_ENABLED,
72  	QCA_DROP_VENDOR_EVENT,
73  	QCA_SUSPENDING,
74  	QCA_MEMDUMP_COLLECTION,
75  	QCA_HW_ERROR_EVENT,
76  	QCA_SSR_TRIGGERED
77  };
78  
79  enum qca_capabilities {
80  	QCA_CAP_WIDEBAND_SPEECH = BIT(0),
81  };
82  
83  /* HCI_IBS transmit side sleep protocol states */
84  enum tx_ibs_states {
85  	HCI_IBS_TX_ASLEEP,
86  	HCI_IBS_TX_WAKING,
87  	HCI_IBS_TX_AWAKE,
88  };
89  
90  /* HCI_IBS receive side sleep protocol states */
91  enum rx_states {
92  	HCI_IBS_RX_ASLEEP,
93  	HCI_IBS_RX_AWAKE,
94  };
95  
96  /* HCI_IBS transmit and receive side clock state vote */
97  enum hci_ibs_clock_state_vote {
98  	HCI_IBS_VOTE_STATS_UPDATE,
99  	HCI_IBS_TX_VOTE_CLOCK_ON,
100  	HCI_IBS_TX_VOTE_CLOCK_OFF,
101  	HCI_IBS_RX_VOTE_CLOCK_ON,
102  	HCI_IBS_RX_VOTE_CLOCK_OFF,
103  };
104  
105  /* Controller memory dump states */
106  enum qca_memdump_states {
107  	QCA_MEMDUMP_IDLE,
108  	QCA_MEMDUMP_COLLECTING,
109  	QCA_MEMDUMP_COLLECTED,
110  	QCA_MEMDUMP_TIMEOUT,
111  };
112  
113  struct qca_memdump_data {
114  	char *memdump_buf_head;
115  	char *memdump_buf_tail;
116  	u32 current_seq_no;
117  	u32 received_dump;
118  	u32 ram_dump_size;
119  };
120  
121  struct qca_memdump_event_hdr {
122  	__u8    evt;
123  	__u8    plen;
124  	__u16   opcode;
125  	__u16   seq_no;
126  	__u8    reserved;
127  } __packed;
128  
129  
130  struct qca_dump_size {
131  	u32 dump_size;
132  } __packed;
133  
134  struct qca_data {
135  	struct hci_uart *hu;
136  	struct sk_buff *rx_skb;
137  	struct sk_buff_head txq;
138  	struct sk_buff_head tx_wait_q;	/* HCI_IBS wait queue	*/
139  	struct sk_buff_head rx_memdump_q;	/* Memdump wait queue	*/
140  	spinlock_t hci_ibs_lock;	/* HCI_IBS state lock	*/
141  	u8 tx_ibs_state;	/* HCI_IBS transmit side power state*/
142  	u8 rx_ibs_state;	/* HCI_IBS receive side power state */
143  	bool tx_vote;		/* Clock must be on for TX */
144  	bool rx_vote;		/* Clock must be on for RX */
145  	struct timer_list tx_idle_timer;
146  	u32 tx_idle_delay;
147  	struct timer_list wake_retrans_timer;
148  	u32 wake_retrans;
149  	struct workqueue_struct *workqueue;
150  	struct work_struct ws_awake_rx;
151  	struct work_struct ws_awake_device;
152  	struct work_struct ws_rx_vote_off;
153  	struct work_struct ws_tx_vote_off;
154  	struct work_struct ctrl_memdump_evt;
155  	struct delayed_work ctrl_memdump_timeout;
156  	struct qca_memdump_data *qca_memdump;
157  	unsigned long flags;
158  	struct completion drop_ev_comp;
159  	wait_queue_head_t suspend_wait_q;
160  	enum qca_memdump_states memdump_state;
161  	struct mutex hci_memdump_lock;
162  
163  	/* For debugging purpose */
164  	u64 ibs_sent_wacks;
165  	u64 ibs_sent_slps;
166  	u64 ibs_sent_wakes;
167  	u64 ibs_recv_wacks;
168  	u64 ibs_recv_slps;
169  	u64 ibs_recv_wakes;
170  	u64 vote_last_jif;
171  	u32 vote_on_ms;
172  	u32 vote_off_ms;
173  	u64 tx_votes_on;
174  	u64 rx_votes_on;
175  	u64 tx_votes_off;
176  	u64 rx_votes_off;
177  	u64 votes_on;
178  	u64 votes_off;
179  };
180  
181  enum qca_speed_type {
182  	QCA_INIT_SPEED = 1,
183  	QCA_OPER_SPEED
184  };
185  
186  /*
187   * Voltage regulator information required for configuring the
188   * QCA Bluetooth chipset
189   */
190  struct qca_vreg {
191  	const char *name;
192  	unsigned int load_uA;
193  };
194  
195  struct qca_device_data {
196  	enum qca_btsoc_type soc_type;
197  	struct qca_vreg *vregs;
198  	size_t num_vregs;
199  	uint32_t capabilities;
200  };
201  
202  /*
203   * Platform data for the QCA Bluetooth power driver.
204   */
205  struct qca_power {
206  	struct device *dev;
207  	struct regulator_bulk_data *vreg_bulk;
208  	int num_vregs;
209  	bool vregs_on;
210  };
211  
212  struct qca_serdev {
213  	struct hci_uart	 serdev_hu;
214  	struct gpio_desc *bt_en;
215  	struct clk	 *susclk;
216  	enum qca_btsoc_type btsoc_type;
217  	struct qca_power *bt_power;
218  	u32 init_speed;
219  	u32 oper_speed;
220  	const char *firmware_name;
221  };
222  
223  static int qca_regulator_enable(struct qca_serdev *qcadev);
224  static void qca_regulator_disable(struct qca_serdev *qcadev);
225  static void qca_power_shutdown(struct hci_uart *hu);
226  static int qca_power_off(struct hci_dev *hdev);
227  static void qca_controller_memdump(struct work_struct *work);
228  
qca_soc_type(struct hci_uart * hu)229  static enum qca_btsoc_type qca_soc_type(struct hci_uart *hu)
230  {
231  	enum qca_btsoc_type soc_type;
232  
233  	if (hu->serdev) {
234  		struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
235  
236  		soc_type = qsd->btsoc_type;
237  	} else {
238  		soc_type = QCA_ROME;
239  	}
240  
241  	return soc_type;
242  }
243  
qca_get_firmware_name(struct hci_uart * hu)244  static const char *qca_get_firmware_name(struct hci_uart *hu)
245  {
246  	if (hu->serdev) {
247  		struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
248  
249  		return qsd->firmware_name;
250  	} else {
251  		return NULL;
252  	}
253  }
254  
__serial_clock_on(struct tty_struct * tty)255  static void __serial_clock_on(struct tty_struct *tty)
256  {
257  	/* TODO: Some chipset requires to enable UART clock on client
258  	 * side to save power consumption or manual work is required.
259  	 * Please put your code to control UART clock here if needed
260  	 */
261  }
262  
__serial_clock_off(struct tty_struct * tty)263  static void __serial_clock_off(struct tty_struct *tty)
264  {
265  	/* TODO: Some chipset requires to disable UART clock on client
266  	 * side to save power consumption or manual work is required.
267  	 * Please put your code to control UART clock off here if needed
268  	 */
269  }
270  
271  /* serial_clock_vote needs to be called with the ibs lock held */
serial_clock_vote(unsigned long vote,struct hci_uart * hu)272  static void serial_clock_vote(unsigned long vote, struct hci_uart *hu)
273  {
274  	struct qca_data *qca = hu->priv;
275  	unsigned int diff;
276  
277  	bool old_vote = (qca->tx_vote | qca->rx_vote);
278  	bool new_vote;
279  
280  	switch (vote) {
281  	case HCI_IBS_VOTE_STATS_UPDATE:
282  		diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
283  
284  		if (old_vote)
285  			qca->vote_off_ms += diff;
286  		else
287  			qca->vote_on_ms += diff;
288  		return;
289  
290  	case HCI_IBS_TX_VOTE_CLOCK_ON:
291  		qca->tx_vote = true;
292  		qca->tx_votes_on++;
293  		break;
294  
295  	case HCI_IBS_RX_VOTE_CLOCK_ON:
296  		qca->rx_vote = true;
297  		qca->rx_votes_on++;
298  		break;
299  
300  	case HCI_IBS_TX_VOTE_CLOCK_OFF:
301  		qca->tx_vote = false;
302  		qca->tx_votes_off++;
303  		break;
304  
305  	case HCI_IBS_RX_VOTE_CLOCK_OFF:
306  		qca->rx_vote = false;
307  		qca->rx_votes_off++;
308  		break;
309  
310  	default:
311  		BT_ERR("Voting irregularity");
312  		return;
313  	}
314  
315  	new_vote = qca->rx_vote | qca->tx_vote;
316  
317  	if (new_vote != old_vote) {
318  		if (new_vote)
319  			__serial_clock_on(hu->tty);
320  		else
321  			__serial_clock_off(hu->tty);
322  
323  		BT_DBG("Vote serial clock %s(%s)", new_vote ? "true" : "false",
324  		       vote ? "true" : "false");
325  
326  		diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
327  
328  		if (new_vote) {
329  			qca->votes_on++;
330  			qca->vote_off_ms += diff;
331  		} else {
332  			qca->votes_off++;
333  			qca->vote_on_ms += diff;
334  		}
335  		qca->vote_last_jif = jiffies;
336  	}
337  }
338  
339  /* Builds and sends an HCI_IBS command packet.
340   * These are very simple packets with only 1 cmd byte.
341   */
send_hci_ibs_cmd(u8 cmd,struct hci_uart * hu)342  static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu)
343  {
344  	int err = 0;
345  	struct sk_buff *skb = NULL;
346  	struct qca_data *qca = hu->priv;
347  
348  	BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd);
349  
350  	skb = bt_skb_alloc(1, GFP_ATOMIC);
351  	if (!skb) {
352  		BT_ERR("Failed to allocate memory for HCI_IBS packet");
353  		return -ENOMEM;
354  	}
355  
356  	/* Assign HCI_IBS type */
357  	skb_put_u8(skb, cmd);
358  
359  	skb_queue_tail(&qca->txq, skb);
360  
361  	return err;
362  }
363  
qca_wq_awake_device(struct work_struct * work)364  static void qca_wq_awake_device(struct work_struct *work)
365  {
366  	struct qca_data *qca = container_of(work, struct qca_data,
367  					    ws_awake_device);
368  	struct hci_uart *hu = qca->hu;
369  	unsigned long retrans_delay;
370  	unsigned long flags;
371  
372  	BT_DBG("hu %p wq awake device", hu);
373  
374  	/* Vote for serial clock */
375  	serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu);
376  
377  	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
378  
379  	/* Send wake indication to device */
380  	if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0)
381  		BT_ERR("Failed to send WAKE to device");
382  
383  	qca->ibs_sent_wakes++;
384  
385  	/* Start retransmit timer */
386  	retrans_delay = msecs_to_jiffies(qca->wake_retrans);
387  	mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
388  
389  	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
390  
391  	/* Actually send the packets */
392  	hci_uart_tx_wakeup(hu);
393  }
394  
qca_wq_awake_rx(struct work_struct * work)395  static void qca_wq_awake_rx(struct work_struct *work)
396  {
397  	struct qca_data *qca = container_of(work, struct qca_data,
398  					    ws_awake_rx);
399  	struct hci_uart *hu = qca->hu;
400  	unsigned long flags;
401  
402  	BT_DBG("hu %p wq awake rx", hu);
403  
404  	serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu);
405  
406  	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
407  	qca->rx_ibs_state = HCI_IBS_RX_AWAKE;
408  
409  	/* Always acknowledge device wake up,
410  	 * sending IBS message doesn't count as TX ON.
411  	 */
412  	if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0)
413  		BT_ERR("Failed to acknowledge device wake up");
414  
415  	qca->ibs_sent_wacks++;
416  
417  	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
418  
419  	/* Actually send the packets */
420  	hci_uart_tx_wakeup(hu);
421  }
422  
qca_wq_serial_rx_clock_vote_off(struct work_struct * work)423  static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work)
424  {
425  	struct qca_data *qca = container_of(work, struct qca_data,
426  					    ws_rx_vote_off);
427  	struct hci_uart *hu = qca->hu;
428  
429  	BT_DBG("hu %p rx clock vote off", hu);
430  
431  	serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu);
432  }
433  
qca_wq_serial_tx_clock_vote_off(struct work_struct * work)434  static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work)
435  {
436  	struct qca_data *qca = container_of(work, struct qca_data,
437  					    ws_tx_vote_off);
438  	struct hci_uart *hu = qca->hu;
439  
440  	BT_DBG("hu %p tx clock vote off", hu);
441  
442  	/* Run HCI tx handling unlocked */
443  	hci_uart_tx_wakeup(hu);
444  
445  	/* Now that message queued to tty driver, vote for tty clocks off.
446  	 * It is up to the tty driver to pend the clocks off until tx done.
447  	 */
448  	serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
449  }
450  
hci_ibs_tx_idle_timeout(struct timer_list * t)451  static void hci_ibs_tx_idle_timeout(struct timer_list *t)
452  {
453  	struct qca_data *qca = from_timer(qca, t, tx_idle_timer);
454  	struct hci_uart *hu = qca->hu;
455  	unsigned long flags;
456  
457  	BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state);
458  
459  	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
460  				 flags, SINGLE_DEPTH_NESTING);
461  
462  	switch (qca->tx_ibs_state) {
463  	case HCI_IBS_TX_AWAKE:
464  		/* TX_IDLE, go to SLEEP */
465  		if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) {
466  			BT_ERR("Failed to send SLEEP to device");
467  			break;
468  		}
469  		qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
470  		qca->ibs_sent_slps++;
471  		queue_work(qca->workqueue, &qca->ws_tx_vote_off);
472  		break;
473  
474  	case HCI_IBS_TX_ASLEEP:
475  	case HCI_IBS_TX_WAKING:
476  	default:
477  		BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
478  		break;
479  	}
480  
481  	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
482  }
483  
hci_ibs_wake_retrans_timeout(struct timer_list * t)484  static void hci_ibs_wake_retrans_timeout(struct timer_list *t)
485  {
486  	struct qca_data *qca = from_timer(qca, t, wake_retrans_timer);
487  	struct hci_uart *hu = qca->hu;
488  	unsigned long flags, retrans_delay;
489  	bool retransmit = false;
490  
491  	BT_DBG("hu %p wake retransmit timeout in %d state",
492  		hu, qca->tx_ibs_state);
493  
494  	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
495  				 flags, SINGLE_DEPTH_NESTING);
496  
497  	/* Don't retransmit the HCI_IBS_WAKE_IND when suspending. */
498  	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
499  		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
500  		return;
501  	}
502  
503  	switch (qca->tx_ibs_state) {
504  	case HCI_IBS_TX_WAKING:
505  		/* No WAKE_ACK, retransmit WAKE */
506  		retransmit = true;
507  		if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) {
508  			BT_ERR("Failed to acknowledge device wake up");
509  			break;
510  		}
511  		qca->ibs_sent_wakes++;
512  		retrans_delay = msecs_to_jiffies(qca->wake_retrans);
513  		mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
514  		break;
515  
516  	case HCI_IBS_TX_ASLEEP:
517  	case HCI_IBS_TX_AWAKE:
518  	default:
519  		BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
520  		break;
521  	}
522  
523  	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
524  
525  	if (retransmit)
526  		hci_uart_tx_wakeup(hu);
527  }
528  
529  
qca_controller_memdump_timeout(struct work_struct * work)530  static void qca_controller_memdump_timeout(struct work_struct *work)
531  {
532  	struct qca_data *qca = container_of(work, struct qca_data,
533  					ctrl_memdump_timeout.work);
534  	struct hci_uart *hu = qca->hu;
535  
536  	mutex_lock(&qca->hci_memdump_lock);
537  	if (test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) {
538  		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
539  		if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
540  			/* Inject hw error event to reset the device
541  			 * and driver.
542  			 */
543  			hci_reset_dev(hu->hdev);
544  		}
545  	}
546  
547  	mutex_unlock(&qca->hci_memdump_lock);
548  }
549  
550  
551  /* Initialize protocol */
qca_open(struct hci_uart * hu)552  static int qca_open(struct hci_uart *hu)
553  {
554  	struct qca_serdev *qcadev;
555  	struct qca_data *qca;
556  
557  	BT_DBG("hu %p qca_open", hu);
558  
559  	if (!hci_uart_has_flow_control(hu))
560  		return -EOPNOTSUPP;
561  
562  	qca = kzalloc(sizeof(struct qca_data), GFP_KERNEL);
563  	if (!qca)
564  		return -ENOMEM;
565  
566  	skb_queue_head_init(&qca->txq);
567  	skb_queue_head_init(&qca->tx_wait_q);
568  	skb_queue_head_init(&qca->rx_memdump_q);
569  	spin_lock_init(&qca->hci_ibs_lock);
570  	mutex_init(&qca->hci_memdump_lock);
571  	qca->workqueue = alloc_ordered_workqueue("qca_wq", 0);
572  	if (!qca->workqueue) {
573  		BT_ERR("QCA Workqueue not initialized properly");
574  		kfree(qca);
575  		return -ENOMEM;
576  	}
577  
578  	INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx);
579  	INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device);
580  	INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off);
581  	INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off);
582  	INIT_WORK(&qca->ctrl_memdump_evt, qca_controller_memdump);
583  	INIT_DELAYED_WORK(&qca->ctrl_memdump_timeout,
584  			  qca_controller_memdump_timeout);
585  	init_waitqueue_head(&qca->suspend_wait_q);
586  
587  	qca->hu = hu;
588  	init_completion(&qca->drop_ev_comp);
589  
590  	/* Assume we start with both sides asleep -- extra wakes OK */
591  	qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
592  	qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
593  
594  	qca->vote_last_jif = jiffies;
595  
596  	hu->priv = qca;
597  
598  	if (hu->serdev) {
599  		qcadev = serdev_device_get_drvdata(hu->serdev);
600  
601  		if (qca_is_wcn399x(qcadev->btsoc_type))
602  			hu->init_speed = qcadev->init_speed;
603  
604  		if (qcadev->oper_speed)
605  			hu->oper_speed = qcadev->oper_speed;
606  	}
607  
608  	timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0);
609  	qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS;
610  
611  	timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0);
612  	qca->tx_idle_delay = IBS_HOST_TX_IDLE_TIMEOUT_MS;
613  
614  	BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u",
615  	       qca->tx_idle_delay, qca->wake_retrans);
616  
617  	return 0;
618  }
619  
qca_debugfs_init(struct hci_dev * hdev)620  static void qca_debugfs_init(struct hci_dev *hdev)
621  {
622  	struct hci_uart *hu = hci_get_drvdata(hdev);
623  	struct qca_data *qca = hu->priv;
624  	struct dentry *ibs_dir;
625  	umode_t mode;
626  
627  	if (!hdev->debugfs)
628  		return;
629  
630  	ibs_dir = debugfs_create_dir("ibs", hdev->debugfs);
631  
632  	/* read only */
633  	mode = S_IRUGO;
634  	debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state);
635  	debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state);
636  	debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir,
637  			   &qca->ibs_sent_slps);
638  	debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir,
639  			   &qca->ibs_sent_wakes);
640  	debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir,
641  			   &qca->ibs_sent_wacks);
642  	debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir,
643  			   &qca->ibs_recv_slps);
644  	debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir,
645  			   &qca->ibs_recv_wakes);
646  	debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir,
647  			   &qca->ibs_recv_wacks);
648  	debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote);
649  	debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on);
650  	debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off);
651  	debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote);
652  	debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on);
653  	debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off);
654  	debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on);
655  	debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off);
656  	debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms);
657  	debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms);
658  
659  	/* read/write */
660  	mode = S_IRUGO | S_IWUSR;
661  	debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans);
662  	debugfs_create_u32("tx_idle_delay", mode, ibs_dir,
663  			   &qca->tx_idle_delay);
664  }
665  
666  /* Flush protocol data */
qca_flush(struct hci_uart * hu)667  static int qca_flush(struct hci_uart *hu)
668  {
669  	struct qca_data *qca = hu->priv;
670  
671  	BT_DBG("hu %p qca flush", hu);
672  
673  	skb_queue_purge(&qca->tx_wait_q);
674  	skb_queue_purge(&qca->txq);
675  
676  	return 0;
677  }
678  
679  /* Close protocol */
qca_close(struct hci_uart * hu)680  static int qca_close(struct hci_uart *hu)
681  {
682  	struct qca_data *qca = hu->priv;
683  
684  	BT_DBG("hu %p qca close", hu);
685  
686  	serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu);
687  
688  	skb_queue_purge(&qca->tx_wait_q);
689  	skb_queue_purge(&qca->txq);
690  	skb_queue_purge(&qca->rx_memdump_q);
691  	del_timer(&qca->tx_idle_timer);
692  	del_timer(&qca->wake_retrans_timer);
693  	destroy_workqueue(qca->workqueue);
694  	qca->hu = NULL;
695  
696  	kfree_skb(qca->rx_skb);
697  
698  	hu->priv = NULL;
699  
700  	kfree(qca);
701  
702  	return 0;
703  }
704  
705  /* Called upon a wake-up-indication from the device.
706   */
device_want_to_wakeup(struct hci_uart * hu)707  static void device_want_to_wakeup(struct hci_uart *hu)
708  {
709  	unsigned long flags;
710  	struct qca_data *qca = hu->priv;
711  
712  	BT_DBG("hu %p want to wake up", hu);
713  
714  	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
715  
716  	qca->ibs_recv_wakes++;
717  
718  	/* Don't wake the rx up when suspending. */
719  	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
720  		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
721  		return;
722  	}
723  
724  	switch (qca->rx_ibs_state) {
725  	case HCI_IBS_RX_ASLEEP:
726  		/* Make sure clock is on - we may have turned clock off since
727  		 * receiving the wake up indicator awake rx clock.
728  		 */
729  		queue_work(qca->workqueue, &qca->ws_awake_rx);
730  		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
731  		return;
732  
733  	case HCI_IBS_RX_AWAKE:
734  		/* Always acknowledge device wake up,
735  		 * sending IBS message doesn't count as TX ON.
736  		 */
737  		if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) {
738  			BT_ERR("Failed to acknowledge device wake up");
739  			break;
740  		}
741  		qca->ibs_sent_wacks++;
742  		break;
743  
744  	default:
745  		/* Any other state is illegal */
746  		BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d",
747  		       qca->rx_ibs_state);
748  		break;
749  	}
750  
751  	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
752  
753  	/* Actually send the packets */
754  	hci_uart_tx_wakeup(hu);
755  }
756  
757  /* Called upon a sleep-indication from the device.
758   */
device_want_to_sleep(struct hci_uart * hu)759  static void device_want_to_sleep(struct hci_uart *hu)
760  {
761  	unsigned long flags;
762  	struct qca_data *qca = hu->priv;
763  
764  	BT_DBG("hu %p want to sleep in %d state", hu, qca->rx_ibs_state);
765  
766  	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
767  
768  	qca->ibs_recv_slps++;
769  
770  	switch (qca->rx_ibs_state) {
771  	case HCI_IBS_RX_AWAKE:
772  		/* Update state */
773  		qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
774  		/* Vote off rx clock under workqueue */
775  		queue_work(qca->workqueue, &qca->ws_rx_vote_off);
776  		break;
777  
778  	case HCI_IBS_RX_ASLEEP:
779  		break;
780  
781  	default:
782  		/* Any other state is illegal */
783  		BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d",
784  		       qca->rx_ibs_state);
785  		break;
786  	}
787  
788  	wake_up_interruptible(&qca->suspend_wait_q);
789  
790  	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
791  }
792  
793  /* Called upon wake-up-acknowledgement from the device
794   */
device_woke_up(struct hci_uart * hu)795  static void device_woke_up(struct hci_uart *hu)
796  {
797  	unsigned long flags, idle_delay;
798  	struct qca_data *qca = hu->priv;
799  	struct sk_buff *skb = NULL;
800  
801  	BT_DBG("hu %p woke up", hu);
802  
803  	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
804  
805  	qca->ibs_recv_wacks++;
806  
807  	/* Don't react to the wake-up-acknowledgment when suspending. */
808  	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
809  		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
810  		return;
811  	}
812  
813  	switch (qca->tx_ibs_state) {
814  	case HCI_IBS_TX_AWAKE:
815  		/* Expect one if we send 2 WAKEs */
816  		BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d",
817  		       qca->tx_ibs_state);
818  		break;
819  
820  	case HCI_IBS_TX_WAKING:
821  		/* Send pending packets */
822  		while ((skb = skb_dequeue(&qca->tx_wait_q)))
823  			skb_queue_tail(&qca->txq, skb);
824  
825  		/* Switch timers and change state to HCI_IBS_TX_AWAKE */
826  		del_timer(&qca->wake_retrans_timer);
827  		idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
828  		mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
829  		qca->tx_ibs_state = HCI_IBS_TX_AWAKE;
830  		break;
831  
832  	case HCI_IBS_TX_ASLEEP:
833  	default:
834  		BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d",
835  		       qca->tx_ibs_state);
836  		break;
837  	}
838  
839  	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
840  
841  	/* Actually send the packets */
842  	hci_uart_tx_wakeup(hu);
843  }
844  
845  /* Enqueue frame for transmittion (padding, crc, etc) may be called from
846   * two simultaneous tasklets.
847   */
qca_enqueue(struct hci_uart * hu,struct sk_buff * skb)848  static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb)
849  {
850  	unsigned long flags = 0, idle_delay;
851  	struct qca_data *qca = hu->priv;
852  
853  	BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb,
854  	       qca->tx_ibs_state);
855  
856  	if (test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
857  		/* As SSR is in progress, ignore the packets */
858  		bt_dev_dbg(hu->hdev, "SSR is in progress");
859  		kfree_skb(skb);
860  		return 0;
861  	}
862  
863  	/* Prepend skb with frame type */
864  	memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
865  
866  	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
867  
868  	/* Don't go to sleep in middle of patch download or
869  	 * Out-Of-Band(GPIOs control) sleep is selected.
870  	 * Don't wake the device up when suspending.
871  	 */
872  	if (!test_bit(QCA_IBS_ENABLED, &qca->flags) ||
873  	    test_bit(QCA_SUSPENDING, &qca->flags)) {
874  		skb_queue_tail(&qca->txq, skb);
875  		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
876  		return 0;
877  	}
878  
879  	/* Act according to current state */
880  	switch (qca->tx_ibs_state) {
881  	case HCI_IBS_TX_AWAKE:
882  		BT_DBG("Device awake, sending normally");
883  		skb_queue_tail(&qca->txq, skb);
884  		idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
885  		mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
886  		break;
887  
888  	case HCI_IBS_TX_ASLEEP:
889  		BT_DBG("Device asleep, waking up and queueing packet");
890  		/* Save packet for later */
891  		skb_queue_tail(&qca->tx_wait_q, skb);
892  
893  		qca->tx_ibs_state = HCI_IBS_TX_WAKING;
894  		/* Schedule a work queue to wake up device */
895  		queue_work(qca->workqueue, &qca->ws_awake_device);
896  		break;
897  
898  	case HCI_IBS_TX_WAKING:
899  		BT_DBG("Device waking up, queueing packet");
900  		/* Transient state; just keep packet for later */
901  		skb_queue_tail(&qca->tx_wait_q, skb);
902  		break;
903  
904  	default:
905  		BT_ERR("Illegal tx state: %d (losing packet)",
906  		       qca->tx_ibs_state);
907  		kfree_skb(skb);
908  		break;
909  	}
910  
911  	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
912  
913  	return 0;
914  }
915  
qca_ibs_sleep_ind(struct hci_dev * hdev,struct sk_buff * skb)916  static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb)
917  {
918  	struct hci_uart *hu = hci_get_drvdata(hdev);
919  
920  	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND);
921  
922  	device_want_to_sleep(hu);
923  
924  	kfree_skb(skb);
925  	return 0;
926  }
927  
qca_ibs_wake_ind(struct hci_dev * hdev,struct sk_buff * skb)928  static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb)
929  {
930  	struct hci_uart *hu = hci_get_drvdata(hdev);
931  
932  	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND);
933  
934  	device_want_to_wakeup(hu);
935  
936  	kfree_skb(skb);
937  	return 0;
938  }
939  
qca_ibs_wake_ack(struct hci_dev * hdev,struct sk_buff * skb)940  static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb)
941  {
942  	struct hci_uart *hu = hci_get_drvdata(hdev);
943  
944  	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK);
945  
946  	device_woke_up(hu);
947  
948  	kfree_skb(skb);
949  	return 0;
950  }
951  
qca_recv_acl_data(struct hci_dev * hdev,struct sk_buff * skb)952  static int qca_recv_acl_data(struct hci_dev *hdev, struct sk_buff *skb)
953  {
954  	/* We receive debug logs from chip as an ACL packets.
955  	 * Instead of sending the data to ACL to decode the
956  	 * received data, we are pushing them to the above layers
957  	 * as a diagnostic packet.
958  	 */
959  	if (get_unaligned_le16(skb->data) == QCA_DEBUG_HANDLE)
960  		return hci_recv_diag(hdev, skb);
961  
962  	return hci_recv_frame(hdev, skb);
963  }
964  
qca_controller_memdump(struct work_struct * work)965  static void qca_controller_memdump(struct work_struct *work)
966  {
967  	struct qca_data *qca = container_of(work, struct qca_data,
968  					    ctrl_memdump_evt);
969  	struct hci_uart *hu = qca->hu;
970  	struct sk_buff *skb;
971  	struct qca_memdump_event_hdr *cmd_hdr;
972  	struct qca_memdump_data *qca_memdump = qca->qca_memdump;
973  	struct qca_dump_size *dump;
974  	char *memdump_buf;
975  	char nullBuff[QCA_DUMP_PACKET_SIZE] = { 0 };
976  	u16 seq_no;
977  	u32 dump_size;
978  	u32 rx_size;
979  	enum qca_btsoc_type soc_type = qca_soc_type(hu);
980  
981  	while ((skb = skb_dequeue(&qca->rx_memdump_q))) {
982  
983  		mutex_lock(&qca->hci_memdump_lock);
984  		/* Skip processing the received packets if timeout detected
985  		 * or memdump collection completed.
986  		 */
987  		if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
988  		    qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
989  			mutex_unlock(&qca->hci_memdump_lock);
990  			return;
991  		}
992  
993  		if (!qca_memdump) {
994  			qca_memdump = kzalloc(sizeof(struct qca_memdump_data),
995  					      GFP_ATOMIC);
996  			if (!qca_memdump) {
997  				mutex_unlock(&qca->hci_memdump_lock);
998  				return;
999  			}
1000  
1001  			qca->qca_memdump = qca_memdump;
1002  		}
1003  
1004  		qca->memdump_state = QCA_MEMDUMP_COLLECTING;
1005  		cmd_hdr = (void *) skb->data;
1006  		seq_no = __le16_to_cpu(cmd_hdr->seq_no);
1007  		skb_pull(skb, sizeof(struct qca_memdump_event_hdr));
1008  
1009  		if (!seq_no) {
1010  
1011  			/* This is the first frame of memdump packet from
1012  			 * the controller, Disable IBS to recevie dump
1013  			 * with out any interruption, ideally time required for
1014  			 * the controller to send the dump is 8 seconds. let us
1015  			 * start timer to handle this asynchronous activity.
1016  			 */
1017  			clear_bit(QCA_IBS_ENABLED, &qca->flags);
1018  			set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1019  			dump = (void *) skb->data;
1020  			dump_size = __le32_to_cpu(dump->dump_size);
1021  			if (!(dump_size)) {
1022  				bt_dev_err(hu->hdev, "Rx invalid memdump size");
1023  				kfree_skb(skb);
1024  				mutex_unlock(&qca->hci_memdump_lock);
1025  				return;
1026  			}
1027  
1028  			bt_dev_info(hu->hdev, "QCA collecting dump of size:%u",
1029  				    dump_size);
1030  			queue_delayed_work(qca->workqueue,
1031  					   &qca->ctrl_memdump_timeout,
1032  					   msecs_to_jiffies(MEMDUMP_TIMEOUT_MS)
1033  					  );
1034  
1035  			skb_pull(skb, sizeof(dump_size));
1036  			memdump_buf = vmalloc(dump_size);
1037  			qca_memdump->ram_dump_size = dump_size;
1038  			qca_memdump->memdump_buf_head = memdump_buf;
1039  			qca_memdump->memdump_buf_tail = memdump_buf;
1040  		}
1041  
1042  		memdump_buf = qca_memdump->memdump_buf_tail;
1043  
1044  		/* If sequence no 0 is missed then there is no point in
1045  		 * accepting the other sequences.
1046  		 */
1047  		if (!memdump_buf) {
1048  			bt_dev_err(hu->hdev, "QCA: Discarding other packets");
1049  			kfree(qca_memdump);
1050  			kfree_skb(skb);
1051  			qca->qca_memdump = NULL;
1052  			mutex_unlock(&qca->hci_memdump_lock);
1053  			return;
1054  		}
1055  
1056  		/* There could be chance of missing some packets from
1057  		 * the controller. In such cases let us store the dummy
1058  		 * packets in the buffer.
1059  		 */
1060  		/* For QCA6390, controller does not lost packets but
1061  		 * sequence number field of packat sometimes has error
1062  		 * bits, so skip this checking for missing packet.
1063  		 */
1064  		while ((seq_no > qca_memdump->current_seq_no + 1) &&
1065  		       (soc_type != QCA_QCA6390) &&
1066  		       seq_no != QCA_LAST_SEQUENCE_NUM) {
1067  			bt_dev_err(hu->hdev, "QCA controller missed packet:%d",
1068  				   qca_memdump->current_seq_no);
1069  			rx_size = qca_memdump->received_dump;
1070  			rx_size += QCA_DUMP_PACKET_SIZE;
1071  			if (rx_size > qca_memdump->ram_dump_size) {
1072  				bt_dev_err(hu->hdev,
1073  					   "QCA memdump received %d, no space for missed packet",
1074  					   qca_memdump->received_dump);
1075  				break;
1076  			}
1077  			memcpy(memdump_buf, nullBuff, QCA_DUMP_PACKET_SIZE);
1078  			memdump_buf = memdump_buf + QCA_DUMP_PACKET_SIZE;
1079  			qca_memdump->received_dump += QCA_DUMP_PACKET_SIZE;
1080  			qca_memdump->current_seq_no++;
1081  		}
1082  
1083  		rx_size = qca_memdump->received_dump + skb->len;
1084  		if (rx_size <= qca_memdump->ram_dump_size) {
1085  			if ((seq_no != QCA_LAST_SEQUENCE_NUM) &&
1086  			    (seq_no != qca_memdump->current_seq_no))
1087  				bt_dev_err(hu->hdev,
1088  					   "QCA memdump unexpected packet %d",
1089  					   seq_no);
1090  			bt_dev_dbg(hu->hdev,
1091  				   "QCA memdump packet %d with length %d",
1092  				   seq_no, skb->len);
1093  			memcpy(memdump_buf, (unsigned char *)skb->data,
1094  			       skb->len);
1095  			memdump_buf = memdump_buf + skb->len;
1096  			qca_memdump->memdump_buf_tail = memdump_buf;
1097  			qca_memdump->current_seq_no = seq_no + 1;
1098  			qca_memdump->received_dump += skb->len;
1099  		} else {
1100  			bt_dev_err(hu->hdev,
1101  				   "QCA memdump received %d, no space for packet %d",
1102  				   qca_memdump->received_dump, seq_no);
1103  		}
1104  		qca->qca_memdump = qca_memdump;
1105  		kfree_skb(skb);
1106  		if (seq_no == QCA_LAST_SEQUENCE_NUM) {
1107  			bt_dev_info(hu->hdev,
1108  				    "QCA memdump Done, received %d, total %d",
1109  				    qca_memdump->received_dump,
1110  				    qca_memdump->ram_dump_size);
1111  			memdump_buf = qca_memdump->memdump_buf_head;
1112  			dev_coredumpv(&hu->serdev->dev, memdump_buf,
1113  				      qca_memdump->received_dump, GFP_KERNEL);
1114  			cancel_delayed_work(&qca->ctrl_memdump_timeout);
1115  			kfree(qca->qca_memdump);
1116  			qca->qca_memdump = NULL;
1117  			qca->memdump_state = QCA_MEMDUMP_COLLECTED;
1118  			clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1119  		}
1120  
1121  		mutex_unlock(&qca->hci_memdump_lock);
1122  	}
1123  
1124  }
1125  
qca_controller_memdump_event(struct hci_dev * hdev,struct sk_buff * skb)1126  static int qca_controller_memdump_event(struct hci_dev *hdev,
1127  					struct sk_buff *skb)
1128  {
1129  	struct hci_uart *hu = hci_get_drvdata(hdev);
1130  	struct qca_data *qca = hu->priv;
1131  
1132  	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1133  	skb_queue_tail(&qca->rx_memdump_q, skb);
1134  	queue_work(qca->workqueue, &qca->ctrl_memdump_evt);
1135  
1136  	return 0;
1137  }
1138  
qca_recv_event(struct hci_dev * hdev,struct sk_buff * skb)1139  static int qca_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
1140  {
1141  	struct hci_uart *hu = hci_get_drvdata(hdev);
1142  	struct qca_data *qca = hu->priv;
1143  
1144  	if (test_bit(QCA_DROP_VENDOR_EVENT, &qca->flags)) {
1145  		struct hci_event_hdr *hdr = (void *)skb->data;
1146  
1147  		/* For the WCN3990 the vendor command for a baudrate change
1148  		 * isn't sent as synchronous HCI command, because the
1149  		 * controller sends the corresponding vendor event with the
1150  		 * new baudrate. The event is received and properly decoded
1151  		 * after changing the baudrate of the host port. It needs to
1152  		 * be dropped, otherwise it can be misinterpreted as
1153  		 * response to a later firmware download command (also a
1154  		 * vendor command).
1155  		 */
1156  
1157  		if (hdr->evt == HCI_EV_VENDOR)
1158  			complete(&qca->drop_ev_comp);
1159  
1160  		kfree_skb(skb);
1161  
1162  		return 0;
1163  	}
1164  	/* We receive chip memory dump as an event packet, With a dedicated
1165  	 * handler followed by a hardware error event. When this event is
1166  	 * received we store dump into a file before closing hci. This
1167  	 * dump will help in triaging the issues.
1168  	 */
1169  	if ((skb->data[0] == HCI_VENDOR_PKT) &&
1170  	    (get_unaligned_be16(skb->data + 2) == QCA_SSR_DUMP_HANDLE))
1171  		return qca_controller_memdump_event(hdev, skb);
1172  
1173  	return hci_recv_frame(hdev, skb);
1174  }
1175  
1176  #define QCA_IBS_SLEEP_IND_EVENT \
1177  	.type = HCI_IBS_SLEEP_IND, \
1178  	.hlen = 0, \
1179  	.loff = 0, \
1180  	.lsize = 0, \
1181  	.maxlen = HCI_MAX_IBS_SIZE
1182  
1183  #define QCA_IBS_WAKE_IND_EVENT \
1184  	.type = HCI_IBS_WAKE_IND, \
1185  	.hlen = 0, \
1186  	.loff = 0, \
1187  	.lsize = 0, \
1188  	.maxlen = HCI_MAX_IBS_SIZE
1189  
1190  #define QCA_IBS_WAKE_ACK_EVENT \
1191  	.type = HCI_IBS_WAKE_ACK, \
1192  	.hlen = 0, \
1193  	.loff = 0, \
1194  	.lsize = 0, \
1195  	.maxlen = HCI_MAX_IBS_SIZE
1196  
1197  static const struct h4_recv_pkt qca_recv_pkts[] = {
1198  	{ H4_RECV_ACL,             .recv = qca_recv_acl_data },
1199  	{ H4_RECV_SCO,             .recv = hci_recv_frame    },
1200  	{ H4_RECV_EVENT,           .recv = qca_recv_event    },
1201  	{ QCA_IBS_WAKE_IND_EVENT,  .recv = qca_ibs_wake_ind  },
1202  	{ QCA_IBS_WAKE_ACK_EVENT,  .recv = qca_ibs_wake_ack  },
1203  	{ QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind },
1204  };
1205  
qca_recv(struct hci_uart * hu,const void * data,int count)1206  static int qca_recv(struct hci_uart *hu, const void *data, int count)
1207  {
1208  	struct qca_data *qca = hu->priv;
1209  
1210  	if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1211  		return -EUNATCH;
1212  
1213  	qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count,
1214  				  qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts));
1215  	if (IS_ERR(qca->rx_skb)) {
1216  		int err = PTR_ERR(qca->rx_skb);
1217  		bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1218  		qca->rx_skb = NULL;
1219  		return err;
1220  	}
1221  
1222  	return count;
1223  }
1224  
qca_dequeue(struct hci_uart * hu)1225  static struct sk_buff *qca_dequeue(struct hci_uart *hu)
1226  {
1227  	struct qca_data *qca = hu->priv;
1228  
1229  	return skb_dequeue(&qca->txq);
1230  }
1231  
qca_get_baudrate_value(int speed)1232  static uint8_t qca_get_baudrate_value(int speed)
1233  {
1234  	switch (speed) {
1235  	case 9600:
1236  		return QCA_BAUDRATE_9600;
1237  	case 19200:
1238  		return QCA_BAUDRATE_19200;
1239  	case 38400:
1240  		return QCA_BAUDRATE_38400;
1241  	case 57600:
1242  		return QCA_BAUDRATE_57600;
1243  	case 115200:
1244  		return QCA_BAUDRATE_115200;
1245  	case 230400:
1246  		return QCA_BAUDRATE_230400;
1247  	case 460800:
1248  		return QCA_BAUDRATE_460800;
1249  	case 500000:
1250  		return QCA_BAUDRATE_500000;
1251  	case 921600:
1252  		return QCA_BAUDRATE_921600;
1253  	case 1000000:
1254  		return QCA_BAUDRATE_1000000;
1255  	case 2000000:
1256  		return QCA_BAUDRATE_2000000;
1257  	case 3000000:
1258  		return QCA_BAUDRATE_3000000;
1259  	case 3200000:
1260  		return QCA_BAUDRATE_3200000;
1261  	case 3500000:
1262  		return QCA_BAUDRATE_3500000;
1263  	default:
1264  		return QCA_BAUDRATE_115200;
1265  	}
1266  }
1267  
qca_set_baudrate(struct hci_dev * hdev,uint8_t baudrate)1268  static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate)
1269  {
1270  	struct hci_uart *hu = hci_get_drvdata(hdev);
1271  	struct qca_data *qca = hu->priv;
1272  	struct sk_buff *skb;
1273  	u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 };
1274  
1275  	if (baudrate > QCA_BAUDRATE_3200000)
1276  		return -EINVAL;
1277  
1278  	cmd[4] = baudrate;
1279  
1280  	skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL);
1281  	if (!skb) {
1282  		bt_dev_err(hdev, "Failed to allocate baudrate packet");
1283  		return -ENOMEM;
1284  	}
1285  
1286  	/* Assign commands to change baudrate and packet type. */
1287  	skb_put_data(skb, cmd, sizeof(cmd));
1288  	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1289  
1290  	skb_queue_tail(&qca->txq, skb);
1291  	hci_uart_tx_wakeup(hu);
1292  
1293  	/* Wait for the baudrate change request to be sent */
1294  
1295  	while (!skb_queue_empty(&qca->txq))
1296  		usleep_range(100, 200);
1297  
1298  	if (hu->serdev)
1299  		serdev_device_wait_until_sent(hu->serdev,
1300  		      msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
1301  
1302  	/* Give the controller time to process the request */
1303  	if (qca_is_wcn399x(qca_soc_type(hu)))
1304  		msleep(10);
1305  	else
1306  		msleep(300);
1307  
1308  	return 0;
1309  }
1310  
host_set_baudrate(struct hci_uart * hu,unsigned int speed)1311  static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed)
1312  {
1313  	if (hu->serdev)
1314  		serdev_device_set_baudrate(hu->serdev, speed);
1315  	else
1316  		hci_uart_set_baudrate(hu, speed);
1317  }
1318  
qca_send_power_pulse(struct hci_uart * hu,bool on)1319  static int qca_send_power_pulse(struct hci_uart *hu, bool on)
1320  {
1321  	int ret;
1322  	int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
1323  	u8 cmd = on ? QCA_WCN3990_POWERON_PULSE : QCA_WCN3990_POWEROFF_PULSE;
1324  
1325  	/* These power pulses are single byte command which are sent
1326  	 * at required baudrate to wcn3990. On wcn3990, we have an external
1327  	 * circuit at Tx pin which decodes the pulse sent at specific baudrate.
1328  	 * For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT
1329  	 * and also we use the same power inputs to turn on and off for
1330  	 * Wi-Fi/BT. Powering up the power sources will not enable BT, until
1331  	 * we send a power on pulse at 115200 bps. This algorithm will help to
1332  	 * save power. Disabling hardware flow control is mandatory while
1333  	 * sending power pulses to SoC.
1334  	 */
1335  	bt_dev_dbg(hu->hdev, "sending power pulse %02x to controller", cmd);
1336  
1337  	serdev_device_write_flush(hu->serdev);
1338  	hci_uart_set_flow_control(hu, true);
1339  	ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
1340  	if (ret < 0) {
1341  		bt_dev_err(hu->hdev, "failed to send power pulse %02x", cmd);
1342  		return ret;
1343  	}
1344  
1345  	serdev_device_wait_until_sent(hu->serdev, timeout);
1346  	hci_uart_set_flow_control(hu, false);
1347  
1348  	/* Give to controller time to boot/shutdown */
1349  	if (on)
1350  		msleep(100);
1351  	else
1352  		msleep(10);
1353  
1354  	return 0;
1355  }
1356  
qca_get_speed(struct hci_uart * hu,enum qca_speed_type speed_type)1357  static unsigned int qca_get_speed(struct hci_uart *hu,
1358  				  enum qca_speed_type speed_type)
1359  {
1360  	unsigned int speed = 0;
1361  
1362  	if (speed_type == QCA_INIT_SPEED) {
1363  		if (hu->init_speed)
1364  			speed = hu->init_speed;
1365  		else if (hu->proto->init_speed)
1366  			speed = hu->proto->init_speed;
1367  	} else {
1368  		if (hu->oper_speed)
1369  			speed = hu->oper_speed;
1370  		else if (hu->proto->oper_speed)
1371  			speed = hu->proto->oper_speed;
1372  	}
1373  
1374  	return speed;
1375  }
1376  
qca_check_speeds(struct hci_uart * hu)1377  static int qca_check_speeds(struct hci_uart *hu)
1378  {
1379  	if (qca_is_wcn399x(qca_soc_type(hu))) {
1380  		if (!qca_get_speed(hu, QCA_INIT_SPEED) &&
1381  		    !qca_get_speed(hu, QCA_OPER_SPEED))
1382  			return -EINVAL;
1383  	} else {
1384  		if (!qca_get_speed(hu, QCA_INIT_SPEED) ||
1385  		    !qca_get_speed(hu, QCA_OPER_SPEED))
1386  			return -EINVAL;
1387  	}
1388  
1389  	return 0;
1390  }
1391  
qca_set_speed(struct hci_uart * hu,enum qca_speed_type speed_type)1392  static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type)
1393  {
1394  	unsigned int speed, qca_baudrate;
1395  	struct qca_data *qca = hu->priv;
1396  	int ret = 0;
1397  
1398  	if (speed_type == QCA_INIT_SPEED) {
1399  		speed = qca_get_speed(hu, QCA_INIT_SPEED);
1400  		if (speed)
1401  			host_set_baudrate(hu, speed);
1402  	} else {
1403  		enum qca_btsoc_type soc_type = qca_soc_type(hu);
1404  
1405  		speed = qca_get_speed(hu, QCA_OPER_SPEED);
1406  		if (!speed)
1407  			return 0;
1408  
1409  		/* Disable flow control for wcn3990 to deassert RTS while
1410  		 * changing the baudrate of chip and host.
1411  		 */
1412  		if (qca_is_wcn399x(soc_type))
1413  			hci_uart_set_flow_control(hu, true);
1414  
1415  		if (soc_type == QCA_WCN3990) {
1416  			reinit_completion(&qca->drop_ev_comp);
1417  			set_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1418  		}
1419  
1420  		qca_baudrate = qca_get_baudrate_value(speed);
1421  		bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed);
1422  		ret = qca_set_baudrate(hu->hdev, qca_baudrate);
1423  		if (ret)
1424  			goto error;
1425  
1426  		host_set_baudrate(hu, speed);
1427  
1428  error:
1429  		if (qca_is_wcn399x(soc_type))
1430  			hci_uart_set_flow_control(hu, false);
1431  
1432  		if (soc_type == QCA_WCN3990) {
1433  			/* Wait for the controller to send the vendor event
1434  			 * for the baudrate change command.
1435  			 */
1436  			if (!wait_for_completion_timeout(&qca->drop_ev_comp,
1437  						 msecs_to_jiffies(100))) {
1438  				bt_dev_err(hu->hdev,
1439  					   "Failed to change controller baudrate\n");
1440  				ret = -ETIMEDOUT;
1441  			}
1442  
1443  			clear_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1444  		}
1445  	}
1446  
1447  	return ret;
1448  }
1449  
qca_send_crashbuffer(struct hci_uart * hu)1450  static int qca_send_crashbuffer(struct hci_uart *hu)
1451  {
1452  	struct qca_data *qca = hu->priv;
1453  	struct sk_buff *skb;
1454  
1455  	skb = bt_skb_alloc(QCA_CRASHBYTE_PACKET_LEN, GFP_KERNEL);
1456  	if (!skb) {
1457  		bt_dev_err(hu->hdev, "Failed to allocate memory for skb packet");
1458  		return -ENOMEM;
1459  	}
1460  
1461  	/* We forcefully crash the controller, by sending 0xfb byte for
1462  	 * 1024 times. We also might have chance of losing data, To be
1463  	 * on safer side we send 1096 bytes to the SoC.
1464  	 */
1465  	memset(skb_put(skb, QCA_CRASHBYTE_PACKET_LEN), QCA_MEMDUMP_BYTE,
1466  	       QCA_CRASHBYTE_PACKET_LEN);
1467  	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1468  	bt_dev_info(hu->hdev, "crash the soc to collect controller dump");
1469  	skb_queue_tail(&qca->txq, skb);
1470  	hci_uart_tx_wakeup(hu);
1471  
1472  	return 0;
1473  }
1474  
qca_wait_for_dump_collection(struct hci_dev * hdev)1475  static void qca_wait_for_dump_collection(struct hci_dev *hdev)
1476  {
1477  	struct hci_uart *hu = hci_get_drvdata(hdev);
1478  	struct qca_data *qca = hu->priv;
1479  
1480  	wait_on_bit_timeout(&qca->flags, QCA_MEMDUMP_COLLECTION,
1481  			    TASK_UNINTERRUPTIBLE, MEMDUMP_TIMEOUT_MS);
1482  
1483  	clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1484  }
1485  
qca_hw_error(struct hci_dev * hdev,u8 code)1486  static void qca_hw_error(struct hci_dev *hdev, u8 code)
1487  {
1488  	struct hci_uart *hu = hci_get_drvdata(hdev);
1489  	struct qca_data *qca = hu->priv;
1490  
1491  	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1492  	set_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1493  	bt_dev_info(hdev, "mem_dump_status: %d", qca->memdump_state);
1494  
1495  	if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1496  		/* If hardware error event received for other than QCA
1497  		 * soc memory dump event, then we need to crash the SOC
1498  		 * and wait here for 8 seconds to get the dump packets.
1499  		 * This will block main thread to be on hold until we
1500  		 * collect dump.
1501  		 */
1502  		set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1503  		qca_send_crashbuffer(hu);
1504  		qca_wait_for_dump_collection(hdev);
1505  	} else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1506  		/* Let us wait here until memory dump collected or
1507  		 * memory dump timer expired.
1508  		 */
1509  		bt_dev_info(hdev, "waiting for dump to complete");
1510  		qca_wait_for_dump_collection(hdev);
1511  	}
1512  
1513  	mutex_lock(&qca->hci_memdump_lock);
1514  	if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1515  		bt_dev_err(hu->hdev, "clearing allocated memory due to memdump timeout");
1516  		if (qca->qca_memdump) {
1517  			vfree(qca->qca_memdump->memdump_buf_head);
1518  			kfree(qca->qca_memdump);
1519  			qca->qca_memdump = NULL;
1520  		}
1521  		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1522  		cancel_delayed_work(&qca->ctrl_memdump_timeout);
1523  	}
1524  	mutex_unlock(&qca->hci_memdump_lock);
1525  
1526  	if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1527  	    qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1528  		cancel_work_sync(&qca->ctrl_memdump_evt);
1529  		skb_queue_purge(&qca->rx_memdump_q);
1530  	}
1531  
1532  	clear_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1533  }
1534  
qca_cmd_timeout(struct hci_dev * hdev)1535  static void qca_cmd_timeout(struct hci_dev *hdev)
1536  {
1537  	struct hci_uart *hu = hci_get_drvdata(hdev);
1538  	struct qca_data *qca = hu->priv;
1539  
1540  	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1541  	if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1542  		set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1543  		qca_send_crashbuffer(hu);
1544  		qca_wait_for_dump_collection(hdev);
1545  	} else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1546  		/* Let us wait here until memory dump collected or
1547  		 * memory dump timer expired.
1548  		 */
1549  		bt_dev_info(hdev, "waiting for dump to complete");
1550  		qca_wait_for_dump_collection(hdev);
1551  	}
1552  
1553  	mutex_lock(&qca->hci_memdump_lock);
1554  	if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1555  		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1556  		if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
1557  			/* Inject hw error event to reset the device
1558  			 * and driver.
1559  			 */
1560  			hci_reset_dev(hu->hdev);
1561  		}
1562  	}
1563  	mutex_unlock(&qca->hci_memdump_lock);
1564  }
1565  
qca_wcn3990_init(struct hci_uart * hu)1566  static int qca_wcn3990_init(struct hci_uart *hu)
1567  {
1568  	struct qca_serdev *qcadev;
1569  	int ret;
1570  
1571  	/* Check for vregs status, may be hci down has turned
1572  	 * off the voltage regulator.
1573  	 */
1574  	qcadev = serdev_device_get_drvdata(hu->serdev);
1575  	if (!qcadev->bt_power->vregs_on) {
1576  		serdev_device_close(hu->serdev);
1577  		ret = qca_regulator_enable(qcadev);
1578  		if (ret)
1579  			return ret;
1580  
1581  		ret = serdev_device_open(hu->serdev);
1582  		if (ret) {
1583  			bt_dev_err(hu->hdev, "failed to open port");
1584  			return ret;
1585  		}
1586  	}
1587  
1588  	/* Forcefully enable wcn3990 to enter in to boot mode. */
1589  	host_set_baudrate(hu, 2400);
1590  	ret = qca_send_power_pulse(hu, false);
1591  	if (ret)
1592  		return ret;
1593  
1594  	qca_set_speed(hu, QCA_INIT_SPEED);
1595  	ret = qca_send_power_pulse(hu, true);
1596  	if (ret)
1597  		return ret;
1598  
1599  	/* Now the device is in ready state to communicate with host.
1600  	 * To sync host with device we need to reopen port.
1601  	 * Without this, we will have RTS and CTS synchronization
1602  	 * issues.
1603  	 */
1604  	serdev_device_close(hu->serdev);
1605  	ret = serdev_device_open(hu->serdev);
1606  	if (ret) {
1607  		bt_dev_err(hu->hdev, "failed to open port");
1608  		return ret;
1609  	}
1610  
1611  	hci_uart_set_flow_control(hu, false);
1612  
1613  	return 0;
1614  }
1615  
qca_power_on(struct hci_dev * hdev)1616  static int qca_power_on(struct hci_dev *hdev)
1617  {
1618  	struct hci_uart *hu = hci_get_drvdata(hdev);
1619  	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1620  	struct qca_serdev *qcadev;
1621  	int ret = 0;
1622  
1623  	/* Non-serdev device usually is powered by external power
1624  	 * and don't need additional action in driver for power on
1625  	 */
1626  	if (!hu->serdev)
1627  		return 0;
1628  
1629  	if (qca_is_wcn399x(soc_type)) {
1630  		ret = qca_wcn3990_init(hu);
1631  	} else {
1632  		qcadev = serdev_device_get_drvdata(hu->serdev);
1633  		if (qcadev->bt_en) {
1634  			gpiod_set_value_cansleep(qcadev->bt_en, 1);
1635  			/* Controller needs time to bootup. */
1636  			msleep(150);
1637  		}
1638  	}
1639  
1640  	return ret;
1641  }
1642  
qca_setup(struct hci_uart * hu)1643  static int qca_setup(struct hci_uart *hu)
1644  {
1645  	struct hci_dev *hdev = hu->hdev;
1646  	struct qca_data *qca = hu->priv;
1647  	unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200;
1648  	unsigned int retries = 0;
1649  	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1650  	const char *firmware_name = qca_get_firmware_name(hu);
1651  	int ret;
1652  	int soc_ver = 0;
1653  
1654  	ret = qca_check_speeds(hu);
1655  	if (ret)
1656  		return ret;
1657  
1658  	/* Patch downloading has to be done without IBS mode */
1659  	clear_bit(QCA_IBS_ENABLED, &qca->flags);
1660  
1661  	/* Enable controller to do both LE scan and BR/EDR inquiry
1662  	 * simultaneously.
1663  	 */
1664  	set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
1665  
1666  	bt_dev_info(hdev, "setting up %s",
1667  		qca_is_wcn399x(soc_type) ? "wcn399x" : "ROME/QCA6390");
1668  
1669  	qca->memdump_state = QCA_MEMDUMP_IDLE;
1670  
1671  retry:
1672  	ret = qca_power_on(hdev);
1673  	if (ret)
1674  		return ret;
1675  
1676  	clear_bit(QCA_SSR_TRIGGERED, &qca->flags);
1677  
1678  	if (qca_is_wcn399x(soc_type)) {
1679  		set_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks);
1680  
1681  		ret = qca_read_soc_version(hdev, &soc_ver, soc_type);
1682  		if (ret)
1683  			return ret;
1684  	} else {
1685  		qca_set_speed(hu, QCA_INIT_SPEED);
1686  	}
1687  
1688  	/* Setup user speed if needed */
1689  	speed = qca_get_speed(hu, QCA_OPER_SPEED);
1690  	if (speed) {
1691  		ret = qca_set_speed(hu, QCA_OPER_SPEED);
1692  		if (ret)
1693  			return ret;
1694  
1695  		qca_baudrate = qca_get_baudrate_value(speed);
1696  	}
1697  
1698  	if (!qca_is_wcn399x(soc_type)) {
1699  		/* Get QCA version information */
1700  		ret = qca_read_soc_version(hdev, &soc_ver, soc_type);
1701  		if (ret)
1702  			return ret;
1703  	}
1704  
1705  	bt_dev_info(hdev, "QCA controller version 0x%08x", soc_ver);
1706  	/* Setup patch / NVM configurations */
1707  	ret = qca_uart_setup(hdev, qca_baudrate, soc_type, soc_ver,
1708  			firmware_name);
1709  	if (!ret) {
1710  		set_bit(QCA_IBS_ENABLED, &qca->flags);
1711  		qca_debugfs_init(hdev);
1712  		hu->hdev->hw_error = qca_hw_error;
1713  		hu->hdev->cmd_timeout = qca_cmd_timeout;
1714  	} else if (ret == -ENOENT) {
1715  		/* No patch/nvm-config found, run with original fw/config */
1716  		ret = 0;
1717  	} else if (ret == -EAGAIN) {
1718  		/*
1719  		 * Userspace firmware loader will return -EAGAIN in case no
1720  		 * patch/nvm-config is found, so run with original fw/config.
1721  		 */
1722  		ret = 0;
1723  	} else {
1724  		if (retries < MAX_INIT_RETRIES) {
1725  			qca_power_shutdown(hu);
1726  			if (hu->serdev) {
1727  				serdev_device_close(hu->serdev);
1728  				ret = serdev_device_open(hu->serdev);
1729  				if (ret) {
1730  					bt_dev_err(hdev, "failed to open port");
1731  					return ret;
1732  				}
1733  			}
1734  			retries++;
1735  			goto retry;
1736  		}
1737  	}
1738  
1739  	/* Setup bdaddr */
1740  	if (soc_type == QCA_ROME)
1741  		hu->hdev->set_bdaddr = qca_set_bdaddr_rome;
1742  	else
1743  		hu->hdev->set_bdaddr = qca_set_bdaddr;
1744  
1745  	return ret;
1746  }
1747  
1748  static const struct hci_uart_proto qca_proto = {
1749  	.id		= HCI_UART_QCA,
1750  	.name		= "QCA",
1751  	.manufacturer	= 29,
1752  	.init_speed	= 115200,
1753  	.oper_speed	= 3000000,
1754  	.open		= qca_open,
1755  	.close		= qca_close,
1756  	.flush		= qca_flush,
1757  	.setup		= qca_setup,
1758  	.recv		= qca_recv,
1759  	.enqueue	= qca_enqueue,
1760  	.dequeue	= qca_dequeue,
1761  };
1762  
1763  static const struct qca_device_data qca_soc_data_wcn3990 = {
1764  	.soc_type = QCA_WCN3990,
1765  	.vregs = (struct qca_vreg []) {
1766  		{ "vddio", 15000  },
1767  		{ "vddxo", 80000  },
1768  		{ "vddrf", 300000 },
1769  		{ "vddch0", 450000 },
1770  	},
1771  	.num_vregs = 4,
1772  };
1773  
1774  static const struct qca_device_data qca_soc_data_wcn3991 = {
1775  	.soc_type = QCA_WCN3991,
1776  	.vregs = (struct qca_vreg []) {
1777  		{ "vddio", 15000  },
1778  		{ "vddxo", 80000  },
1779  		{ "vddrf", 300000 },
1780  		{ "vddch0", 450000 },
1781  	},
1782  	.num_vregs = 4,
1783  	.capabilities = QCA_CAP_WIDEBAND_SPEECH,
1784  };
1785  
1786  static const struct qca_device_data qca_soc_data_wcn3998 = {
1787  	.soc_type = QCA_WCN3998,
1788  	.vregs = (struct qca_vreg []) {
1789  		{ "vddio", 10000  },
1790  		{ "vddxo", 80000  },
1791  		{ "vddrf", 300000 },
1792  		{ "vddch0", 450000 },
1793  	},
1794  	.num_vregs = 4,
1795  };
1796  
1797  static const struct qca_device_data qca_soc_data_qca6390 = {
1798  	.soc_type = QCA_QCA6390,
1799  	.num_vregs = 0,
1800  };
1801  
qca_power_shutdown(struct hci_uart * hu)1802  static void qca_power_shutdown(struct hci_uart *hu)
1803  {
1804  	struct qca_serdev *qcadev;
1805  	struct qca_data *qca = hu->priv;
1806  	unsigned long flags;
1807  	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1808  
1809  	qcadev = serdev_device_get_drvdata(hu->serdev);
1810  
1811  	/* From this point we go into power off state. But serial port is
1812  	 * still open, stop queueing the IBS data and flush all the buffered
1813  	 * data in skb's.
1814  	 */
1815  	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
1816  	clear_bit(QCA_IBS_ENABLED, &qca->flags);
1817  	qca_flush(hu);
1818  	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
1819  
1820  	/* Non-serdev device usually is powered by external power
1821  	 * and don't need additional action in driver for power down
1822  	 */
1823  	if (!hu->serdev)
1824  		return;
1825  
1826  	if (qca_is_wcn399x(soc_type)) {
1827  		host_set_baudrate(hu, 2400);
1828  		qca_send_power_pulse(hu, false);
1829  		qca_regulator_disable(qcadev);
1830  	} else if (qcadev->bt_en) {
1831  		gpiod_set_value_cansleep(qcadev->bt_en, 0);
1832  	}
1833  }
1834  
qca_power_off(struct hci_dev * hdev)1835  static int qca_power_off(struct hci_dev *hdev)
1836  {
1837  	struct hci_uart *hu = hci_get_drvdata(hdev);
1838  	struct qca_data *qca = hu->priv;
1839  	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1840  
1841  	hu->hdev->hw_error = NULL;
1842  	hu->hdev->cmd_timeout = NULL;
1843  
1844  	/* Stop sending shutdown command if soc crashes. */
1845  	if (soc_type != QCA_ROME
1846  		&& qca->memdump_state == QCA_MEMDUMP_IDLE) {
1847  		qca_send_pre_shutdown_cmd(hdev);
1848  		usleep_range(8000, 10000);
1849  	}
1850  
1851  	qca_power_shutdown(hu);
1852  	return 0;
1853  }
1854  
qca_regulator_enable(struct qca_serdev * qcadev)1855  static int qca_regulator_enable(struct qca_serdev *qcadev)
1856  {
1857  	struct qca_power *power = qcadev->bt_power;
1858  	int ret;
1859  
1860  	/* Already enabled */
1861  	if (power->vregs_on)
1862  		return 0;
1863  
1864  	BT_DBG("enabling %d regulators)", power->num_vregs);
1865  
1866  	ret = regulator_bulk_enable(power->num_vregs, power->vreg_bulk);
1867  	if (ret)
1868  		return ret;
1869  
1870  	power->vregs_on = true;
1871  
1872  	ret = clk_prepare_enable(qcadev->susclk);
1873  	if (ret)
1874  		qca_regulator_disable(qcadev);
1875  
1876  	return ret;
1877  }
1878  
qca_regulator_disable(struct qca_serdev * qcadev)1879  static void qca_regulator_disable(struct qca_serdev *qcadev)
1880  {
1881  	struct qca_power *power;
1882  
1883  	if (!qcadev)
1884  		return;
1885  
1886  	power = qcadev->bt_power;
1887  
1888  	/* Already disabled? */
1889  	if (!power->vregs_on)
1890  		return;
1891  
1892  	regulator_bulk_disable(power->num_vregs, power->vreg_bulk);
1893  	power->vregs_on = false;
1894  
1895  	clk_disable_unprepare(qcadev->susclk);
1896  }
1897  
qca_init_regulators(struct qca_power * qca,const struct qca_vreg * vregs,size_t num_vregs)1898  static int qca_init_regulators(struct qca_power *qca,
1899  				const struct qca_vreg *vregs, size_t num_vregs)
1900  {
1901  	struct regulator_bulk_data *bulk;
1902  	int ret;
1903  	int i;
1904  
1905  	bulk = devm_kcalloc(qca->dev, num_vregs, sizeof(*bulk), GFP_KERNEL);
1906  	if (!bulk)
1907  		return -ENOMEM;
1908  
1909  	for (i = 0; i < num_vregs; i++)
1910  		bulk[i].supply = vregs[i].name;
1911  
1912  	ret = devm_regulator_bulk_get(qca->dev, num_vregs, bulk);
1913  	if (ret < 0)
1914  		return ret;
1915  
1916  	for (i = 0; i < num_vregs; i++) {
1917  		ret = regulator_set_load(bulk[i].consumer, vregs[i].load_uA);
1918  		if (ret)
1919  			return ret;
1920  	}
1921  
1922  	qca->vreg_bulk = bulk;
1923  	qca->num_vregs = num_vregs;
1924  
1925  	return 0;
1926  }
1927  
qca_serdev_probe(struct serdev_device * serdev)1928  static int qca_serdev_probe(struct serdev_device *serdev)
1929  {
1930  	struct qca_serdev *qcadev;
1931  	struct hci_dev *hdev;
1932  	const struct qca_device_data *data;
1933  	int err;
1934  	bool power_ctrl_enabled = true;
1935  
1936  	qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL);
1937  	if (!qcadev)
1938  		return -ENOMEM;
1939  
1940  	qcadev->serdev_hu.serdev = serdev;
1941  	data = device_get_match_data(&serdev->dev);
1942  	serdev_device_set_drvdata(serdev, qcadev);
1943  	device_property_read_string(&serdev->dev, "firmware-name",
1944  					 &qcadev->firmware_name);
1945  	device_property_read_u32(&serdev->dev, "max-speed",
1946  				 &qcadev->oper_speed);
1947  	if (!qcadev->oper_speed)
1948  		BT_DBG("UART will pick default operating speed");
1949  
1950  	if (data && qca_is_wcn399x(data->soc_type)) {
1951  		qcadev->btsoc_type = data->soc_type;
1952  		qcadev->bt_power = devm_kzalloc(&serdev->dev,
1953  						sizeof(struct qca_power),
1954  						GFP_KERNEL);
1955  		if (!qcadev->bt_power)
1956  			return -ENOMEM;
1957  
1958  		qcadev->bt_power->dev = &serdev->dev;
1959  		err = qca_init_regulators(qcadev->bt_power, data->vregs,
1960  					  data->num_vregs);
1961  		if (err) {
1962  			BT_ERR("Failed to init regulators:%d", err);
1963  			return err;
1964  		}
1965  
1966  		qcadev->bt_power->vregs_on = false;
1967  
1968  		qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
1969  		if (IS_ERR(qcadev->susclk)) {
1970  			dev_err(&serdev->dev, "failed to acquire clk\n");
1971  			return PTR_ERR(qcadev->susclk);
1972  		}
1973  
1974  		err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
1975  		if (err) {
1976  			BT_ERR("wcn3990 serdev registration failed");
1977  			return err;
1978  		}
1979  	} else {
1980  		if (data)
1981  			qcadev->btsoc_type = data->soc_type;
1982  		else
1983  			qcadev->btsoc_type = QCA_ROME;
1984  
1985  		qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
1986  					       GPIOD_OUT_LOW);
1987  		if (!qcadev->bt_en) {
1988  			dev_warn(&serdev->dev, "failed to acquire enable gpio\n");
1989  			power_ctrl_enabled = false;
1990  		}
1991  
1992  		qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
1993  		if (IS_ERR(qcadev->susclk)) {
1994  			dev_warn(&serdev->dev, "failed to acquire clk\n");
1995  			return PTR_ERR(qcadev->susclk);
1996  		}
1997  		err = clk_set_rate(qcadev->susclk, SUSCLK_RATE_32KHZ);
1998  		if (err)
1999  			return err;
2000  
2001  		err = clk_prepare_enable(qcadev->susclk);
2002  		if (err)
2003  			return err;
2004  
2005  		err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
2006  		if (err) {
2007  			BT_ERR("Rome serdev registration failed");
2008  			clk_disable_unprepare(qcadev->susclk);
2009  			return err;
2010  		}
2011  	}
2012  
2013  	hdev = qcadev->serdev_hu.hdev;
2014  
2015  	if (power_ctrl_enabled) {
2016  		set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks);
2017  		hdev->shutdown = qca_power_off;
2018  	}
2019  
2020  	/* Wideband speech support must be set per driver since it can't be
2021  	 * queried via hci.
2022  	 */
2023  	if (data && (data->capabilities & QCA_CAP_WIDEBAND_SPEECH))
2024  		set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks);
2025  
2026  	return 0;
2027  }
2028  
qca_serdev_remove(struct serdev_device * serdev)2029  static void qca_serdev_remove(struct serdev_device *serdev)
2030  {
2031  	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2032  	struct qca_power *power = qcadev->bt_power;
2033  
2034  	if (qca_is_wcn399x(qcadev->btsoc_type) && power->vregs_on)
2035  		qca_power_shutdown(&qcadev->serdev_hu);
2036  	else if (qcadev->susclk)
2037  		clk_disable_unprepare(qcadev->susclk);
2038  
2039  	hci_uart_unregister_device(&qcadev->serdev_hu);
2040  }
2041  
qca_serdev_shutdown(struct device * dev)2042  static void qca_serdev_shutdown(struct device *dev)
2043  {
2044  	int ret;
2045  	int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
2046  	struct serdev_device *serdev = to_serdev_device(dev);
2047  	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2048  	const u8 ibs_wake_cmd[] = { 0xFD };
2049  	const u8 edl_reset_soc_cmd[] = { 0x01, 0x00, 0xFC, 0x01, 0x05 };
2050  
2051  	if (qcadev->btsoc_type == QCA_QCA6390) {
2052  		serdev_device_write_flush(serdev);
2053  		ret = serdev_device_write_buf(serdev, ibs_wake_cmd,
2054  					      sizeof(ibs_wake_cmd));
2055  		if (ret < 0) {
2056  			BT_ERR("QCA send IBS_WAKE_IND error: %d", ret);
2057  			return;
2058  		}
2059  		serdev_device_wait_until_sent(serdev, timeout);
2060  		usleep_range(8000, 10000);
2061  
2062  		serdev_device_write_flush(serdev);
2063  		ret = serdev_device_write_buf(serdev, edl_reset_soc_cmd,
2064  					      sizeof(edl_reset_soc_cmd));
2065  		if (ret < 0) {
2066  			BT_ERR("QCA send EDL_RESET_REQ error: %d", ret);
2067  			return;
2068  		}
2069  		serdev_device_wait_until_sent(serdev, timeout);
2070  		usleep_range(8000, 10000);
2071  	}
2072  }
2073  
qca_suspend(struct device * dev)2074  static int __maybe_unused qca_suspend(struct device *dev)
2075  {
2076  	struct serdev_device *serdev = to_serdev_device(dev);
2077  	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2078  	struct hci_uart *hu = &qcadev->serdev_hu;
2079  	struct qca_data *qca = hu->priv;
2080  	unsigned long flags;
2081  	bool tx_pending = false;
2082  	int ret = 0;
2083  	u8 cmd;
2084  
2085  	set_bit(QCA_SUSPENDING, &qca->flags);
2086  
2087  	/* Device is downloading patch or doesn't support in-band sleep. */
2088  	if (!test_bit(QCA_IBS_ENABLED, &qca->flags))
2089  		return 0;
2090  
2091  	cancel_work_sync(&qca->ws_awake_device);
2092  	cancel_work_sync(&qca->ws_awake_rx);
2093  
2094  	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
2095  				 flags, SINGLE_DEPTH_NESTING);
2096  
2097  	switch (qca->tx_ibs_state) {
2098  	case HCI_IBS_TX_WAKING:
2099  		del_timer(&qca->wake_retrans_timer);
2100  		fallthrough;
2101  	case HCI_IBS_TX_AWAKE:
2102  		del_timer(&qca->tx_idle_timer);
2103  
2104  		serdev_device_write_flush(hu->serdev);
2105  		cmd = HCI_IBS_SLEEP_IND;
2106  		ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
2107  
2108  		if (ret < 0) {
2109  			BT_ERR("Failed to send SLEEP to device");
2110  			break;
2111  		}
2112  
2113  		qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
2114  		qca->ibs_sent_slps++;
2115  		tx_pending = true;
2116  		break;
2117  
2118  	case HCI_IBS_TX_ASLEEP:
2119  		break;
2120  
2121  	default:
2122  		BT_ERR("Spurious tx state %d", qca->tx_ibs_state);
2123  		ret = -EINVAL;
2124  		break;
2125  	}
2126  
2127  	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
2128  
2129  	if (ret < 0)
2130  		goto error;
2131  
2132  	if (tx_pending) {
2133  		serdev_device_wait_until_sent(hu->serdev,
2134  					      msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
2135  		serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
2136  	}
2137  
2138  	/* Wait for HCI_IBS_SLEEP_IND sent by device to indicate its Tx is going
2139  	 * to sleep, so that the packet does not wake the system later.
2140  	 */
2141  	ret = wait_event_interruptible_timeout(qca->suspend_wait_q,
2142  			qca->rx_ibs_state == HCI_IBS_RX_ASLEEP,
2143  			msecs_to_jiffies(IBS_BTSOC_TX_IDLE_TIMEOUT_MS));
2144  	if (ret == 0) {
2145  		ret = -ETIMEDOUT;
2146  		goto error;
2147  	}
2148  
2149  	return 0;
2150  
2151  error:
2152  	clear_bit(QCA_SUSPENDING, &qca->flags);
2153  
2154  	return ret;
2155  }
2156  
qca_resume(struct device * dev)2157  static int __maybe_unused qca_resume(struct device *dev)
2158  {
2159  	struct serdev_device *serdev = to_serdev_device(dev);
2160  	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2161  	struct hci_uart *hu = &qcadev->serdev_hu;
2162  	struct qca_data *qca = hu->priv;
2163  
2164  	clear_bit(QCA_SUSPENDING, &qca->flags);
2165  
2166  	return 0;
2167  }
2168  
2169  static SIMPLE_DEV_PM_OPS(qca_pm_ops, qca_suspend, qca_resume);
2170  
2171  #ifdef CONFIG_OF
2172  static const struct of_device_id qca_bluetooth_of_match[] = {
2173  	{ .compatible = "qcom,qca6174-bt" },
2174  	{ .compatible = "qcom,qca6390-bt", .data = &qca_soc_data_qca6390},
2175  	{ .compatible = "qcom,qca9377-bt" },
2176  	{ .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data_wcn3990},
2177  	{ .compatible = "qcom,wcn3991-bt", .data = &qca_soc_data_wcn3991},
2178  	{ .compatible = "qcom,wcn3998-bt", .data = &qca_soc_data_wcn3998},
2179  	{ /* sentinel */ }
2180  };
2181  MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match);
2182  #endif
2183  
2184  #ifdef CONFIG_ACPI
2185  static const struct acpi_device_id qca_bluetooth_acpi_match[] = {
2186  	{ "QCOM6390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2187  	{ "DLA16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2188  	{ "DLB16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2189  	{ "DLB26390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2190  	{ },
2191  };
2192  MODULE_DEVICE_TABLE(acpi, qca_bluetooth_acpi_match);
2193  #endif
2194  
2195  
2196  static struct serdev_device_driver qca_serdev_driver = {
2197  	.probe = qca_serdev_probe,
2198  	.remove = qca_serdev_remove,
2199  	.driver = {
2200  		.name = "hci_uart_qca",
2201  		.of_match_table = of_match_ptr(qca_bluetooth_of_match),
2202  		.acpi_match_table = ACPI_PTR(qca_bluetooth_acpi_match),
2203  		.shutdown = qca_serdev_shutdown,
2204  		.pm = &qca_pm_ops,
2205  	},
2206  };
2207  
qca_init(void)2208  int __init qca_init(void)
2209  {
2210  	serdev_device_driver_register(&qca_serdev_driver);
2211  
2212  	return hci_uart_register_proto(&qca_proto);
2213  }
2214  
qca_deinit(void)2215  int __exit qca_deinit(void)
2216  {
2217  	serdev_device_driver_unregister(&qca_serdev_driver);
2218  
2219  	return hci_uart_unregister_proto(&qca_proto);
2220  }
2221