1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Procedures for maintaining information about logical memory blocks.
4  *
5  * Peter Bergner, IBM Corp.	June 2001.
6  * Copyright (C) 2001 Peter Bergner.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
19 
20 #include <asm/sections.h>
21 #include <linux/io.h>
22 
23 #include "internal.h"
24 
25 #define INIT_MEMBLOCK_REGIONS			128
26 #define INIT_PHYSMEM_REGIONS			4
27 
28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 # define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
30 #endif
31 
32 #ifndef INIT_MEMBLOCK_MEMORY_REGIONS
33 #define INIT_MEMBLOCK_MEMORY_REGIONS		INIT_MEMBLOCK_REGIONS
34 #endif
35 
36 /**
37  * DOC: memblock overview
38  *
39  * Memblock is a method of managing memory regions during the early
40  * boot period when the usual kernel memory allocators are not up and
41  * running.
42  *
43  * Memblock views the system memory as collections of contiguous
44  * regions. There are several types of these collections:
45  *
46  * * ``memory`` - describes the physical memory available to the
47  *   kernel; this may differ from the actual physical memory installed
48  *   in the system, for instance when the memory is restricted with
49  *   ``mem=`` command line parameter
50  * * ``reserved`` - describes the regions that were allocated
51  * * ``physmem`` - describes the actual physical memory available during
52  *   boot regardless of the possible restrictions and memory hot(un)plug;
53  *   the ``physmem`` type is only available on some architectures.
54  *
55  * Each region is represented by struct memblock_region that
56  * defines the region extents, its attributes and NUMA node id on NUMA
57  * systems. Every memory type is described by the struct memblock_type
58  * which contains an array of memory regions along with
59  * the allocator metadata. The "memory" and "reserved" types are nicely
60  * wrapped with struct memblock. This structure is statically
61  * initialized at build time. The region arrays are initially sized to
62  * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
63  * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
64  * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
65  * The memblock_allow_resize() enables automatic resizing of the region
66  * arrays during addition of new regions. This feature should be used
67  * with care so that memory allocated for the region array will not
68  * overlap with areas that should be reserved, for example initrd.
69  *
70  * The early architecture setup should tell memblock what the physical
71  * memory layout is by using memblock_add() or memblock_add_node()
72  * functions. The first function does not assign the region to a NUMA
73  * node and it is appropriate for UMA systems. Yet, it is possible to
74  * use it on NUMA systems as well and assign the region to a NUMA node
75  * later in the setup process using memblock_set_node(). The
76  * memblock_add_node() performs such an assignment directly.
77  *
78  * Once memblock is setup the memory can be allocated using one of the
79  * API variants:
80  *
81  * * memblock_phys_alloc*() - these functions return the **physical**
82  *   address of the allocated memory
83  * * memblock_alloc*() - these functions return the **virtual** address
84  *   of the allocated memory.
85  *
86  * Note, that both API variants use implicit assumptions about allowed
87  * memory ranges and the fallback methods. Consult the documentation
88  * of memblock_alloc_internal() and memblock_alloc_range_nid()
89  * functions for more elaborate description.
90  *
91  * As the system boot progresses, the architecture specific mem_init()
92  * function frees all the memory to the buddy page allocator.
93  *
94  * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
95  * memblock data structures (except "physmem") will be discarded after the
96  * system initialization completes.
97  */
98 
99 #ifndef CONFIG_NUMA
100 struct pglist_data __refdata contig_page_data;
101 EXPORT_SYMBOL(contig_page_data);
102 #endif
103 
104 unsigned long max_low_pfn;
105 unsigned long min_low_pfn;
106 unsigned long max_pfn;
107 unsigned long long max_possible_pfn;
108 
109 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
110 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
111 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
112 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
113 #endif
114 
115 struct memblock memblock __initdata_memblock = {
116 	.memory.regions		= memblock_memory_init_regions,
117 	.memory.cnt		= 1,	/* empty dummy entry */
118 	.memory.max		= INIT_MEMBLOCK_MEMORY_REGIONS,
119 	.memory.name		= "memory",
120 
121 	.reserved.regions	= memblock_reserved_init_regions,
122 	.reserved.cnt		= 1,	/* empty dummy entry */
123 	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
124 	.reserved.name		= "reserved",
125 
126 	.bottom_up		= false,
127 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
128 };
129 
130 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
131 struct memblock_type physmem = {
132 	.regions		= memblock_physmem_init_regions,
133 	.cnt			= 1,	/* empty dummy entry */
134 	.max			= INIT_PHYSMEM_REGIONS,
135 	.name			= "physmem",
136 };
137 #endif
138 
139 /*
140  * keep a pointer to &memblock.memory in the text section to use it in
141  * __next_mem_range() and its helpers.
142  *  For architectures that do not keep memblock data after init, this
143  * pointer will be reset to NULL at memblock_discard()
144  */
145 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
146 
147 #define for_each_memblock_type(i, memblock_type, rgn)			\
148 	for (i = 0, rgn = &memblock_type->regions[0];			\
149 	     i < memblock_type->cnt;					\
150 	     i++, rgn = &memblock_type->regions[i])
151 
152 #define memblock_dbg(fmt, ...)						\
153 	do {								\
154 		if (memblock_debug)					\
155 			pr_info(fmt, ##__VA_ARGS__);			\
156 	} while (0)
157 
158 static int memblock_debug __initdata_memblock;
159 static bool system_has_some_mirror __initdata_memblock;
160 static int memblock_can_resize __initdata_memblock;
161 static int memblock_memory_in_slab __initdata_memblock;
162 static int memblock_reserved_in_slab __initdata_memblock;
163 
memblock_has_mirror(void)164 bool __init_memblock memblock_has_mirror(void)
165 {
166 	return system_has_some_mirror;
167 }
168 
choose_memblock_flags(void)169 static enum memblock_flags __init_memblock choose_memblock_flags(void)
170 {
171 	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
172 }
173 
174 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
memblock_cap_size(phys_addr_t base,phys_addr_t * size)175 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
176 {
177 	return *size = min(*size, PHYS_ADDR_MAX - base);
178 }
179 
180 /*
181  * Address comparison utilities
182  */
memblock_addrs_overlap(phys_addr_t base1,phys_addr_t size1,phys_addr_t base2,phys_addr_t size2)183 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
184 				       phys_addr_t base2, phys_addr_t size2)
185 {
186 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
187 }
188 
memblock_overlaps_region(struct memblock_type * type,phys_addr_t base,phys_addr_t size)189 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
190 					phys_addr_t base, phys_addr_t size)
191 {
192 	unsigned long i;
193 
194 	memblock_cap_size(base, &size);
195 
196 	for (i = 0; i < type->cnt; i++)
197 		if (memblock_addrs_overlap(base, size, type->regions[i].base,
198 					   type->regions[i].size))
199 			break;
200 	return i < type->cnt;
201 }
202 
203 /**
204  * __memblock_find_range_bottom_up - find free area utility in bottom-up
205  * @start: start of candidate range
206  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
207  *       %MEMBLOCK_ALLOC_ACCESSIBLE
208  * @size: size of free area to find
209  * @align: alignment of free area to find
210  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
211  * @flags: pick from blocks based on memory attributes
212  *
213  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
214  *
215  * Return:
216  * Found address on success, 0 on failure.
217  */
218 static phys_addr_t __init_memblock
__memblock_find_range_bottom_up(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)219 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
220 				phys_addr_t size, phys_addr_t align, int nid,
221 				enum memblock_flags flags)
222 {
223 	phys_addr_t this_start, this_end, cand;
224 	u64 i;
225 
226 	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
227 		this_start = clamp(this_start, start, end);
228 		this_end = clamp(this_end, start, end);
229 
230 		cand = round_up(this_start, align);
231 		if (cand < this_end && this_end - cand >= size)
232 			return cand;
233 	}
234 
235 	return 0;
236 }
237 
238 /**
239  * __memblock_find_range_top_down - find free area utility, in top-down
240  * @start: start of candidate range
241  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
242  *       %MEMBLOCK_ALLOC_ACCESSIBLE
243  * @size: size of free area to find
244  * @align: alignment of free area to find
245  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
246  * @flags: pick from blocks based on memory attributes
247  *
248  * Utility called from memblock_find_in_range_node(), find free area top-down.
249  *
250  * Return:
251  * Found address on success, 0 on failure.
252  */
253 static phys_addr_t __init_memblock
__memblock_find_range_top_down(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)254 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
255 			       phys_addr_t size, phys_addr_t align, int nid,
256 			       enum memblock_flags flags)
257 {
258 	phys_addr_t this_start, this_end, cand;
259 	u64 i;
260 
261 	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
262 					NULL) {
263 		this_start = clamp(this_start, start, end);
264 		this_end = clamp(this_end, start, end);
265 
266 		if (this_end < size)
267 			continue;
268 
269 		cand = round_down(this_end - size, align);
270 		if (cand >= this_start)
271 			return cand;
272 	}
273 
274 	return 0;
275 }
276 
277 /**
278  * memblock_find_in_range_node - find free area in given range and node
279  * @size: size of free area to find
280  * @align: alignment of free area to find
281  * @start: start of candidate range
282  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
283  *       %MEMBLOCK_ALLOC_ACCESSIBLE
284  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
285  * @flags: pick from blocks based on memory attributes
286  *
287  * Find @size free area aligned to @align in the specified range and node.
288  *
289  * Return:
290  * Found address on success, 0 on failure.
291  */
memblock_find_in_range_node(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,enum memblock_flags flags)292 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
293 					phys_addr_t align, phys_addr_t start,
294 					phys_addr_t end, int nid,
295 					enum memblock_flags flags)
296 {
297 	/* pump up @end */
298 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
299 	    end == MEMBLOCK_ALLOC_NOLEAKTRACE)
300 		end = memblock.current_limit;
301 
302 	/* avoid allocating the first page */
303 	start = max_t(phys_addr_t, start, PAGE_SIZE);
304 	end = max(start, end);
305 
306 	if (memblock_bottom_up())
307 		return __memblock_find_range_bottom_up(start, end, size, align,
308 						       nid, flags);
309 	else
310 		return __memblock_find_range_top_down(start, end, size, align,
311 						      nid, flags);
312 }
313 
314 /**
315  * memblock_find_in_range - find free area in given range
316  * @start: start of candidate range
317  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
318  *       %MEMBLOCK_ALLOC_ACCESSIBLE
319  * @size: size of free area to find
320  * @align: alignment of free area to find
321  *
322  * Find @size free area aligned to @align in the specified range.
323  *
324  * Return:
325  * Found address on success, 0 on failure.
326  */
memblock_find_in_range(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align)327 static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
328 					phys_addr_t end, phys_addr_t size,
329 					phys_addr_t align)
330 {
331 	phys_addr_t ret;
332 	enum memblock_flags flags = choose_memblock_flags();
333 
334 again:
335 	ret = memblock_find_in_range_node(size, align, start, end,
336 					    NUMA_NO_NODE, flags);
337 
338 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
339 		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
340 			&size);
341 		flags &= ~MEMBLOCK_MIRROR;
342 		goto again;
343 	}
344 
345 	return ret;
346 }
347 
memblock_remove_region(struct memblock_type * type,unsigned long r)348 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
349 {
350 	type->total_size -= type->regions[r].size;
351 	memmove(&type->regions[r], &type->regions[r + 1],
352 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
353 	type->cnt--;
354 
355 	/* Special case for empty arrays */
356 	if (type->cnt == 0) {
357 		WARN_ON(type->total_size != 0);
358 		type->cnt = 1;
359 		type->regions[0].base = 0;
360 		type->regions[0].size = 0;
361 		type->regions[0].flags = 0;
362 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
363 	}
364 }
365 
366 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
367 /**
368  * memblock_discard - discard memory and reserved arrays if they were allocated
369  */
memblock_discard(void)370 void __init memblock_discard(void)
371 {
372 	phys_addr_t addr, size;
373 
374 	if (memblock.reserved.regions != memblock_reserved_init_regions) {
375 		addr = __pa(memblock.reserved.regions);
376 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
377 				  memblock.reserved.max);
378 		if (memblock_reserved_in_slab)
379 			kfree(memblock.reserved.regions);
380 		else
381 			memblock_free_late(addr, size);
382 	}
383 
384 	if (memblock.memory.regions != memblock_memory_init_regions) {
385 		addr = __pa(memblock.memory.regions);
386 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
387 				  memblock.memory.max);
388 		if (memblock_memory_in_slab)
389 			kfree(memblock.memory.regions);
390 		else
391 			memblock_free_late(addr, size);
392 	}
393 
394 	memblock_memory = NULL;
395 }
396 #endif
397 
398 /**
399  * memblock_double_array - double the size of the memblock regions array
400  * @type: memblock type of the regions array being doubled
401  * @new_area_start: starting address of memory range to avoid overlap with
402  * @new_area_size: size of memory range to avoid overlap with
403  *
404  * Double the size of the @type regions array. If memblock is being used to
405  * allocate memory for a new reserved regions array and there is a previously
406  * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
407  * waiting to be reserved, ensure the memory used by the new array does
408  * not overlap.
409  *
410  * Return:
411  * 0 on success, -1 on failure.
412  */
memblock_double_array(struct memblock_type * type,phys_addr_t new_area_start,phys_addr_t new_area_size)413 static int __init_memblock memblock_double_array(struct memblock_type *type,
414 						phys_addr_t new_area_start,
415 						phys_addr_t new_area_size)
416 {
417 	struct memblock_region *new_array, *old_array;
418 	phys_addr_t old_alloc_size, new_alloc_size;
419 	phys_addr_t old_size, new_size, addr, new_end;
420 	int use_slab = slab_is_available();
421 	int *in_slab;
422 
423 	/* We don't allow resizing until we know about the reserved regions
424 	 * of memory that aren't suitable for allocation
425 	 */
426 	if (!memblock_can_resize)
427 		return -1;
428 
429 	/* Calculate new doubled size */
430 	old_size = type->max * sizeof(struct memblock_region);
431 	new_size = old_size << 1;
432 	/*
433 	 * We need to allocated new one align to PAGE_SIZE,
434 	 *   so we can free them completely later.
435 	 */
436 	old_alloc_size = PAGE_ALIGN(old_size);
437 	new_alloc_size = PAGE_ALIGN(new_size);
438 
439 	/* Retrieve the slab flag */
440 	if (type == &memblock.memory)
441 		in_slab = &memblock_memory_in_slab;
442 	else
443 		in_slab = &memblock_reserved_in_slab;
444 
445 	/* Try to find some space for it */
446 	if (use_slab) {
447 		new_array = kmalloc(new_size, GFP_KERNEL);
448 		addr = new_array ? __pa(new_array) : 0;
449 	} else {
450 		/* only exclude range when trying to double reserved.regions */
451 		if (type != &memblock.reserved)
452 			new_area_start = new_area_size = 0;
453 
454 		addr = memblock_find_in_range(new_area_start + new_area_size,
455 						memblock.current_limit,
456 						new_alloc_size, PAGE_SIZE);
457 		if (!addr && new_area_size)
458 			addr = memblock_find_in_range(0,
459 				min(new_area_start, memblock.current_limit),
460 				new_alloc_size, PAGE_SIZE);
461 
462 		new_array = addr ? __va(addr) : NULL;
463 	}
464 	if (!addr) {
465 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
466 		       type->name, type->max, type->max * 2);
467 		return -1;
468 	}
469 
470 	new_end = addr + new_size - 1;
471 	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
472 			type->name, type->max * 2, &addr, &new_end);
473 
474 	/*
475 	 * Found space, we now need to move the array over before we add the
476 	 * reserved region since it may be our reserved array itself that is
477 	 * full.
478 	 */
479 	memcpy(new_array, type->regions, old_size);
480 	memset(new_array + type->max, 0, old_size);
481 	old_array = type->regions;
482 	type->regions = new_array;
483 	type->max <<= 1;
484 
485 	/* Free old array. We needn't free it if the array is the static one */
486 	if (*in_slab)
487 		kfree(old_array);
488 	else if (old_array != memblock_memory_init_regions &&
489 		 old_array != memblock_reserved_init_regions)
490 		memblock_free(old_array, old_alloc_size);
491 
492 	/*
493 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
494 	 * needn't do it
495 	 */
496 	if (!use_slab)
497 		BUG_ON(memblock_reserve(addr, new_alloc_size));
498 
499 	/* Update slab flag */
500 	*in_slab = use_slab;
501 
502 	return 0;
503 }
504 
505 /**
506  * memblock_merge_regions - merge neighboring compatible regions
507  * @type: memblock type to scan
508  * @start_rgn: start scanning from (@start_rgn - 1)
509  * @end_rgn: end scanning at (@end_rgn - 1)
510  * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
511  */
memblock_merge_regions(struct memblock_type * type,unsigned long start_rgn,unsigned long end_rgn)512 static void __init_memblock memblock_merge_regions(struct memblock_type *type,
513 						   unsigned long start_rgn,
514 						   unsigned long end_rgn)
515 {
516 	int i = 0;
517 	if (start_rgn)
518 		i = start_rgn - 1;
519 	end_rgn = min(end_rgn, type->cnt - 1);
520 	while (i < end_rgn) {
521 		struct memblock_region *this = &type->regions[i];
522 		struct memblock_region *next = &type->regions[i + 1];
523 
524 		if (this->base + this->size != next->base ||
525 		    memblock_get_region_node(this) !=
526 		    memblock_get_region_node(next) ||
527 		    this->flags != next->flags) {
528 			BUG_ON(this->base + this->size > next->base);
529 			i++;
530 			continue;
531 		}
532 
533 		this->size += next->size;
534 		/* move forward from next + 1, index of which is i + 2 */
535 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
536 		type->cnt--;
537 		end_rgn--;
538 	}
539 }
540 
541 /**
542  * memblock_insert_region - insert new memblock region
543  * @type:	memblock type to insert into
544  * @idx:	index for the insertion point
545  * @base:	base address of the new region
546  * @size:	size of the new region
547  * @nid:	node id of the new region
548  * @flags:	flags of the new region
549  *
550  * Insert new memblock region [@base, @base + @size) into @type at @idx.
551  * @type must already have extra room to accommodate the new region.
552  */
memblock_insert_region(struct memblock_type * type,int idx,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)553 static void __init_memblock memblock_insert_region(struct memblock_type *type,
554 						   int idx, phys_addr_t base,
555 						   phys_addr_t size,
556 						   int nid,
557 						   enum memblock_flags flags)
558 {
559 	struct memblock_region *rgn = &type->regions[idx];
560 
561 	BUG_ON(type->cnt >= type->max);
562 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
563 	rgn->base = base;
564 	rgn->size = size;
565 	rgn->flags = flags;
566 	memblock_set_region_node(rgn, nid);
567 	type->cnt++;
568 	type->total_size += size;
569 }
570 
571 /**
572  * memblock_add_range - add new memblock region
573  * @type: memblock type to add new region into
574  * @base: base address of the new region
575  * @size: size of the new region
576  * @nid: nid of the new region
577  * @flags: flags of the new region
578  *
579  * Add new memblock region [@base, @base + @size) into @type.  The new region
580  * is allowed to overlap with existing ones - overlaps don't affect already
581  * existing regions.  @type is guaranteed to be minimal (all neighbouring
582  * compatible regions are merged) after the addition.
583  *
584  * Return:
585  * 0 on success, -errno on failure.
586  */
memblock_add_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)587 static int __init_memblock memblock_add_range(struct memblock_type *type,
588 				phys_addr_t base, phys_addr_t size,
589 				int nid, enum memblock_flags flags)
590 {
591 	bool insert = false;
592 	phys_addr_t obase = base;
593 	phys_addr_t end = base + memblock_cap_size(base, &size);
594 	int idx, nr_new, start_rgn = -1, end_rgn;
595 	struct memblock_region *rgn;
596 
597 	if (!size)
598 		return 0;
599 
600 	/* special case for empty array */
601 	if (type->regions[0].size == 0) {
602 		WARN_ON(type->cnt != 1 || type->total_size);
603 		type->regions[0].base = base;
604 		type->regions[0].size = size;
605 		type->regions[0].flags = flags;
606 		memblock_set_region_node(&type->regions[0], nid);
607 		type->total_size = size;
608 		return 0;
609 	}
610 
611 	/*
612 	 * The worst case is when new range overlaps all existing regions,
613 	 * then we'll need type->cnt + 1 empty regions in @type. So if
614 	 * type->cnt * 2 + 1 is less than or equal to type->max, we know
615 	 * that there is enough empty regions in @type, and we can insert
616 	 * regions directly.
617 	 */
618 	if (type->cnt * 2 + 1 <= type->max)
619 		insert = true;
620 
621 repeat:
622 	/*
623 	 * The following is executed twice.  Once with %false @insert and
624 	 * then with %true.  The first counts the number of regions needed
625 	 * to accommodate the new area.  The second actually inserts them.
626 	 */
627 	base = obase;
628 	nr_new = 0;
629 
630 	for_each_memblock_type(idx, type, rgn) {
631 		phys_addr_t rbase = rgn->base;
632 		phys_addr_t rend = rbase + rgn->size;
633 
634 		if (rbase >= end)
635 			break;
636 		if (rend <= base)
637 			continue;
638 		/*
639 		 * @rgn overlaps.  If it separates the lower part of new
640 		 * area, insert that portion.
641 		 */
642 		if (rbase > base) {
643 #ifdef CONFIG_NUMA
644 			WARN_ON(nid != memblock_get_region_node(rgn));
645 #endif
646 			WARN_ON(flags != rgn->flags);
647 			nr_new++;
648 			if (insert) {
649 				if (start_rgn == -1)
650 					start_rgn = idx;
651 				end_rgn = idx + 1;
652 				memblock_insert_region(type, idx++, base,
653 						       rbase - base, nid,
654 						       flags);
655 			}
656 		}
657 		/* area below @rend is dealt with, forget about it */
658 		base = min(rend, end);
659 	}
660 
661 	/* insert the remaining portion */
662 	if (base < end) {
663 		nr_new++;
664 		if (insert) {
665 			if (start_rgn == -1)
666 				start_rgn = idx;
667 			end_rgn = idx + 1;
668 			memblock_insert_region(type, idx, base, end - base,
669 					       nid, flags);
670 		}
671 	}
672 
673 	if (!nr_new)
674 		return 0;
675 
676 	/*
677 	 * If this was the first round, resize array and repeat for actual
678 	 * insertions; otherwise, merge and return.
679 	 */
680 	if (!insert) {
681 		while (type->cnt + nr_new > type->max)
682 			if (memblock_double_array(type, obase, size) < 0)
683 				return -ENOMEM;
684 		insert = true;
685 		goto repeat;
686 	} else {
687 		memblock_merge_regions(type, start_rgn, end_rgn);
688 		return 0;
689 	}
690 }
691 
692 /**
693  * memblock_add_node - add new memblock region within a NUMA node
694  * @base: base address of the new region
695  * @size: size of the new region
696  * @nid: nid of the new region
697  * @flags: flags of the new region
698  *
699  * Add new memblock region [@base, @base + @size) to the "memory"
700  * type. See memblock_add_range() description for mode details
701  *
702  * Return:
703  * 0 on success, -errno on failure.
704  */
memblock_add_node(phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)705 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
706 				      int nid, enum memblock_flags flags)
707 {
708 	phys_addr_t end = base + size - 1;
709 
710 	memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
711 		     &base, &end, nid, flags, (void *)_RET_IP_);
712 
713 	return memblock_add_range(&memblock.memory, base, size, nid, flags);
714 }
715 
716 /**
717  * memblock_add - add new memblock region
718  * @base: base address of the new region
719  * @size: size of the new region
720  *
721  * Add new memblock region [@base, @base + @size) to the "memory"
722  * type. See memblock_add_range() description for mode details
723  *
724  * Return:
725  * 0 on success, -errno on failure.
726  */
memblock_add(phys_addr_t base,phys_addr_t size)727 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
728 {
729 	phys_addr_t end = base + size - 1;
730 
731 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
732 		     &base, &end, (void *)_RET_IP_);
733 
734 	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
735 }
736 
737 /**
738  * memblock_isolate_range - isolate given range into disjoint memblocks
739  * @type: memblock type to isolate range for
740  * @base: base of range to isolate
741  * @size: size of range to isolate
742  * @start_rgn: out parameter for the start of isolated region
743  * @end_rgn: out parameter for the end of isolated region
744  *
745  * Walk @type and ensure that regions don't cross the boundaries defined by
746  * [@base, @base + @size).  Crossing regions are split at the boundaries,
747  * which may create at most two more regions.  The index of the first
748  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
749  *
750  * Return:
751  * 0 on success, -errno on failure.
752  */
memblock_isolate_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int * start_rgn,int * end_rgn)753 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
754 					phys_addr_t base, phys_addr_t size,
755 					int *start_rgn, int *end_rgn)
756 {
757 	phys_addr_t end = base + memblock_cap_size(base, &size);
758 	int idx;
759 	struct memblock_region *rgn;
760 
761 	*start_rgn = *end_rgn = 0;
762 
763 	if (!size)
764 		return 0;
765 
766 	/* we'll create at most two more regions */
767 	while (type->cnt + 2 > type->max)
768 		if (memblock_double_array(type, base, size) < 0)
769 			return -ENOMEM;
770 
771 	for_each_memblock_type(idx, type, rgn) {
772 		phys_addr_t rbase = rgn->base;
773 		phys_addr_t rend = rbase + rgn->size;
774 
775 		if (rbase >= end)
776 			break;
777 		if (rend <= base)
778 			continue;
779 
780 		if (rbase < base) {
781 			/*
782 			 * @rgn intersects from below.  Split and continue
783 			 * to process the next region - the new top half.
784 			 */
785 			rgn->base = base;
786 			rgn->size -= base - rbase;
787 			type->total_size -= base - rbase;
788 			memblock_insert_region(type, idx, rbase, base - rbase,
789 					       memblock_get_region_node(rgn),
790 					       rgn->flags);
791 		} else if (rend > end) {
792 			/*
793 			 * @rgn intersects from above.  Split and redo the
794 			 * current region - the new bottom half.
795 			 */
796 			rgn->base = end;
797 			rgn->size -= end - rbase;
798 			type->total_size -= end - rbase;
799 			memblock_insert_region(type, idx--, rbase, end - rbase,
800 					       memblock_get_region_node(rgn),
801 					       rgn->flags);
802 		} else {
803 			/* @rgn is fully contained, record it */
804 			if (!*end_rgn)
805 				*start_rgn = idx;
806 			*end_rgn = idx + 1;
807 		}
808 	}
809 
810 	return 0;
811 }
812 
memblock_remove_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size)813 static int __init_memblock memblock_remove_range(struct memblock_type *type,
814 					  phys_addr_t base, phys_addr_t size)
815 {
816 	int start_rgn, end_rgn;
817 	int i, ret;
818 
819 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
820 	if (ret)
821 		return ret;
822 
823 	for (i = end_rgn - 1; i >= start_rgn; i--)
824 		memblock_remove_region(type, i);
825 	return 0;
826 }
827 
memblock_remove(phys_addr_t base,phys_addr_t size)828 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
829 {
830 	phys_addr_t end = base + size - 1;
831 
832 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
833 		     &base, &end, (void *)_RET_IP_);
834 
835 	return memblock_remove_range(&memblock.memory, base, size);
836 }
837 
838 /**
839  * memblock_free - free boot memory allocation
840  * @ptr: starting address of the  boot memory allocation
841  * @size: size of the boot memory block in bytes
842  *
843  * Free boot memory block previously allocated by memblock_alloc_xx() API.
844  * The freeing memory will not be released to the buddy allocator.
845  */
memblock_free(void * ptr,size_t size)846 void __init_memblock memblock_free(void *ptr, size_t size)
847 {
848 	if (ptr)
849 		memblock_phys_free(__pa(ptr), size);
850 }
851 
852 /**
853  * memblock_phys_free - free boot memory block
854  * @base: phys starting address of the  boot memory block
855  * @size: size of the boot memory block in bytes
856  *
857  * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
858  * The freeing memory will not be released to the buddy allocator.
859  */
memblock_phys_free(phys_addr_t base,phys_addr_t size)860 int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
861 {
862 	phys_addr_t end = base + size - 1;
863 
864 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
865 		     &base, &end, (void *)_RET_IP_);
866 
867 	kmemleak_free_part_phys(base, size);
868 	return memblock_remove_range(&memblock.reserved, base, size);
869 }
870 
memblock_reserve(phys_addr_t base,phys_addr_t size)871 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
872 {
873 	phys_addr_t end = base + size - 1;
874 
875 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
876 		     &base, &end, (void *)_RET_IP_);
877 
878 	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
879 }
880 
881 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
memblock_physmem_add(phys_addr_t base,phys_addr_t size)882 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
883 {
884 	phys_addr_t end = base + size - 1;
885 
886 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
887 		     &base, &end, (void *)_RET_IP_);
888 
889 	return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
890 }
891 #endif
892 
893 /**
894  * memblock_setclr_flag - set or clear flag for a memory region
895  * @base: base address of the region
896  * @size: size of the region
897  * @set: set or clear the flag
898  * @flag: the flag to update
899  *
900  * This function isolates region [@base, @base + @size), and sets/clears flag
901  *
902  * Return: 0 on success, -errno on failure.
903  */
memblock_setclr_flag(phys_addr_t base,phys_addr_t size,int set,int flag)904 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
905 				phys_addr_t size, int set, int flag)
906 {
907 	struct memblock_type *type = &memblock.memory;
908 	int i, ret, start_rgn, end_rgn;
909 
910 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
911 	if (ret)
912 		return ret;
913 
914 	for (i = start_rgn; i < end_rgn; i++) {
915 		struct memblock_region *r = &type->regions[i];
916 
917 		if (set)
918 			r->flags |= flag;
919 		else
920 			r->flags &= ~flag;
921 	}
922 
923 	memblock_merge_regions(type, start_rgn, end_rgn);
924 	return 0;
925 }
926 
927 /**
928  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
929  * @base: the base phys addr of the region
930  * @size: the size of the region
931  *
932  * Return: 0 on success, -errno on failure.
933  */
memblock_mark_hotplug(phys_addr_t base,phys_addr_t size)934 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
935 {
936 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
937 }
938 
939 /**
940  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
941  * @base: the base phys addr of the region
942  * @size: the size of the region
943  *
944  * Return: 0 on success, -errno on failure.
945  */
memblock_clear_hotplug(phys_addr_t base,phys_addr_t size)946 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
947 {
948 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
949 }
950 
951 /**
952  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
953  * @base: the base phys addr of the region
954  * @size: the size of the region
955  *
956  * Return: 0 on success, -errno on failure.
957  */
memblock_mark_mirror(phys_addr_t base,phys_addr_t size)958 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
959 {
960 	if (!mirrored_kernelcore)
961 		return 0;
962 
963 	system_has_some_mirror = true;
964 
965 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
966 }
967 
968 /**
969  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
970  * @base: the base phys addr of the region
971  * @size: the size of the region
972  *
973  * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
974  * direct mapping of the physical memory. These regions will still be
975  * covered by the memory map. The struct page representing NOMAP memory
976  * frames in the memory map will be PageReserved()
977  *
978  * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
979  * memblock, the caller must inform kmemleak to ignore that memory
980  *
981  * Return: 0 on success, -errno on failure.
982  */
memblock_mark_nomap(phys_addr_t base,phys_addr_t size)983 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
984 {
985 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
986 }
987 
988 /**
989  * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
990  * @base: the base phys addr of the region
991  * @size: the size of the region
992  *
993  * Return: 0 on success, -errno on failure.
994  */
memblock_clear_nomap(phys_addr_t base,phys_addr_t size)995 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
996 {
997 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
998 }
999 
should_skip_region(struct memblock_type * type,struct memblock_region * m,int nid,int flags)1000 static bool should_skip_region(struct memblock_type *type,
1001 			       struct memblock_region *m,
1002 			       int nid, int flags)
1003 {
1004 	int m_nid = memblock_get_region_node(m);
1005 
1006 	/* we never skip regions when iterating memblock.reserved or physmem */
1007 	if (type != memblock_memory)
1008 		return false;
1009 
1010 	/* only memory regions are associated with nodes, check it */
1011 	if (nid != NUMA_NO_NODE && nid != m_nid)
1012 		return true;
1013 
1014 	/* skip hotpluggable memory regions if needed */
1015 	if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
1016 	    !(flags & MEMBLOCK_HOTPLUG))
1017 		return true;
1018 
1019 	/* if we want mirror memory skip non-mirror memory regions */
1020 	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1021 		return true;
1022 
1023 	/* skip nomap memory unless we were asked for it explicitly */
1024 	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1025 		return true;
1026 
1027 	/* skip driver-managed memory unless we were asked for it explicitly */
1028 	if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1029 		return true;
1030 
1031 	return false;
1032 }
1033 
1034 /**
1035  * __next_mem_range - next function for for_each_free_mem_range() etc.
1036  * @idx: pointer to u64 loop variable
1037  * @nid: node selector, %NUMA_NO_NODE for all nodes
1038  * @flags: pick from blocks based on memory attributes
1039  * @type_a: pointer to memblock_type from where the range is taken
1040  * @type_b: pointer to memblock_type which excludes memory from being taken
1041  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1042  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1043  * @out_nid: ptr to int for nid of the range, can be %NULL
1044  *
1045  * Find the first area from *@idx which matches @nid, fill the out
1046  * parameters, and update *@idx for the next iteration.  The lower 32bit of
1047  * *@idx contains index into type_a and the upper 32bit indexes the
1048  * areas before each region in type_b.	For example, if type_b regions
1049  * look like the following,
1050  *
1051  *	0:[0-16), 1:[32-48), 2:[128-130)
1052  *
1053  * The upper 32bit indexes the following regions.
1054  *
1055  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1056  *
1057  * As both region arrays are sorted, the function advances the two indices
1058  * in lockstep and returns each intersection.
1059  */
__next_mem_range(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1060 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1061 		      struct memblock_type *type_a,
1062 		      struct memblock_type *type_b, phys_addr_t *out_start,
1063 		      phys_addr_t *out_end, int *out_nid)
1064 {
1065 	int idx_a = *idx & 0xffffffff;
1066 	int idx_b = *idx >> 32;
1067 
1068 	if (WARN_ONCE(nid == MAX_NUMNODES,
1069 	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1070 		nid = NUMA_NO_NODE;
1071 
1072 	for (; idx_a < type_a->cnt; idx_a++) {
1073 		struct memblock_region *m = &type_a->regions[idx_a];
1074 
1075 		phys_addr_t m_start = m->base;
1076 		phys_addr_t m_end = m->base + m->size;
1077 		int	    m_nid = memblock_get_region_node(m);
1078 
1079 		if (should_skip_region(type_a, m, nid, flags))
1080 			continue;
1081 
1082 		if (!type_b) {
1083 			if (out_start)
1084 				*out_start = m_start;
1085 			if (out_end)
1086 				*out_end = m_end;
1087 			if (out_nid)
1088 				*out_nid = m_nid;
1089 			idx_a++;
1090 			*idx = (u32)idx_a | (u64)idx_b << 32;
1091 			return;
1092 		}
1093 
1094 		/* scan areas before each reservation */
1095 		for (; idx_b < type_b->cnt + 1; idx_b++) {
1096 			struct memblock_region *r;
1097 			phys_addr_t r_start;
1098 			phys_addr_t r_end;
1099 
1100 			r = &type_b->regions[idx_b];
1101 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1102 			r_end = idx_b < type_b->cnt ?
1103 				r->base : PHYS_ADDR_MAX;
1104 
1105 			/*
1106 			 * if idx_b advanced past idx_a,
1107 			 * break out to advance idx_a
1108 			 */
1109 			if (r_start >= m_end)
1110 				break;
1111 			/* if the two regions intersect, we're done */
1112 			if (m_start < r_end) {
1113 				if (out_start)
1114 					*out_start =
1115 						max(m_start, r_start);
1116 				if (out_end)
1117 					*out_end = min(m_end, r_end);
1118 				if (out_nid)
1119 					*out_nid = m_nid;
1120 				/*
1121 				 * The region which ends first is
1122 				 * advanced for the next iteration.
1123 				 */
1124 				if (m_end <= r_end)
1125 					idx_a++;
1126 				else
1127 					idx_b++;
1128 				*idx = (u32)idx_a | (u64)idx_b << 32;
1129 				return;
1130 			}
1131 		}
1132 	}
1133 
1134 	/* signal end of iteration */
1135 	*idx = ULLONG_MAX;
1136 }
1137 
1138 /**
1139  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1140  *
1141  * @idx: pointer to u64 loop variable
1142  * @nid: node selector, %NUMA_NO_NODE for all nodes
1143  * @flags: pick from blocks based on memory attributes
1144  * @type_a: pointer to memblock_type from where the range is taken
1145  * @type_b: pointer to memblock_type which excludes memory from being taken
1146  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1147  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1148  * @out_nid: ptr to int for nid of the range, can be %NULL
1149  *
1150  * Finds the next range from type_a which is not marked as unsuitable
1151  * in type_b.
1152  *
1153  * Reverse of __next_mem_range().
1154  */
__next_mem_range_rev(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1155 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1156 					  enum memblock_flags flags,
1157 					  struct memblock_type *type_a,
1158 					  struct memblock_type *type_b,
1159 					  phys_addr_t *out_start,
1160 					  phys_addr_t *out_end, int *out_nid)
1161 {
1162 	int idx_a = *idx & 0xffffffff;
1163 	int idx_b = *idx >> 32;
1164 
1165 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1166 		nid = NUMA_NO_NODE;
1167 
1168 	if (*idx == (u64)ULLONG_MAX) {
1169 		idx_a = type_a->cnt - 1;
1170 		if (type_b != NULL)
1171 			idx_b = type_b->cnt;
1172 		else
1173 			idx_b = 0;
1174 	}
1175 
1176 	for (; idx_a >= 0; idx_a--) {
1177 		struct memblock_region *m = &type_a->regions[idx_a];
1178 
1179 		phys_addr_t m_start = m->base;
1180 		phys_addr_t m_end = m->base + m->size;
1181 		int m_nid = memblock_get_region_node(m);
1182 
1183 		if (should_skip_region(type_a, m, nid, flags))
1184 			continue;
1185 
1186 		if (!type_b) {
1187 			if (out_start)
1188 				*out_start = m_start;
1189 			if (out_end)
1190 				*out_end = m_end;
1191 			if (out_nid)
1192 				*out_nid = m_nid;
1193 			idx_a--;
1194 			*idx = (u32)idx_a | (u64)idx_b << 32;
1195 			return;
1196 		}
1197 
1198 		/* scan areas before each reservation */
1199 		for (; idx_b >= 0; idx_b--) {
1200 			struct memblock_region *r;
1201 			phys_addr_t r_start;
1202 			phys_addr_t r_end;
1203 
1204 			r = &type_b->regions[idx_b];
1205 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1206 			r_end = idx_b < type_b->cnt ?
1207 				r->base : PHYS_ADDR_MAX;
1208 			/*
1209 			 * if idx_b advanced past idx_a,
1210 			 * break out to advance idx_a
1211 			 */
1212 
1213 			if (r_end <= m_start)
1214 				break;
1215 			/* if the two regions intersect, we're done */
1216 			if (m_end > r_start) {
1217 				if (out_start)
1218 					*out_start = max(m_start, r_start);
1219 				if (out_end)
1220 					*out_end = min(m_end, r_end);
1221 				if (out_nid)
1222 					*out_nid = m_nid;
1223 				if (m_start >= r_start)
1224 					idx_a--;
1225 				else
1226 					idx_b--;
1227 				*idx = (u32)idx_a | (u64)idx_b << 32;
1228 				return;
1229 			}
1230 		}
1231 	}
1232 	/* signal end of iteration */
1233 	*idx = ULLONG_MAX;
1234 }
1235 
1236 /*
1237  * Common iterator interface used to define for_each_mem_pfn_range().
1238  */
__next_mem_pfn_range(int * idx,int nid,unsigned long * out_start_pfn,unsigned long * out_end_pfn,int * out_nid)1239 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1240 				unsigned long *out_start_pfn,
1241 				unsigned long *out_end_pfn, int *out_nid)
1242 {
1243 	struct memblock_type *type = &memblock.memory;
1244 	struct memblock_region *r;
1245 	int r_nid;
1246 
1247 	while (++*idx < type->cnt) {
1248 		r = &type->regions[*idx];
1249 		r_nid = memblock_get_region_node(r);
1250 
1251 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1252 			continue;
1253 		if (nid == MAX_NUMNODES || nid == r_nid)
1254 			break;
1255 	}
1256 	if (*idx >= type->cnt) {
1257 		*idx = -1;
1258 		return;
1259 	}
1260 
1261 	if (out_start_pfn)
1262 		*out_start_pfn = PFN_UP(r->base);
1263 	if (out_end_pfn)
1264 		*out_end_pfn = PFN_DOWN(r->base + r->size);
1265 	if (out_nid)
1266 		*out_nid = r_nid;
1267 }
1268 
1269 /**
1270  * memblock_set_node - set node ID on memblock regions
1271  * @base: base of area to set node ID for
1272  * @size: size of area to set node ID for
1273  * @type: memblock type to set node ID for
1274  * @nid: node ID to set
1275  *
1276  * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1277  * Regions which cross the area boundaries are split as necessary.
1278  *
1279  * Return:
1280  * 0 on success, -errno on failure.
1281  */
memblock_set_node(phys_addr_t base,phys_addr_t size,struct memblock_type * type,int nid)1282 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1283 				      struct memblock_type *type, int nid)
1284 {
1285 #ifdef CONFIG_NUMA
1286 	int start_rgn, end_rgn;
1287 	int i, ret;
1288 
1289 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1290 	if (ret)
1291 		return ret;
1292 
1293 	for (i = start_rgn; i < end_rgn; i++)
1294 		memblock_set_region_node(&type->regions[i], nid);
1295 
1296 	memblock_merge_regions(type, start_rgn, end_rgn);
1297 #endif
1298 	return 0;
1299 }
1300 
1301 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1302 /**
1303  * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1304  *
1305  * @idx: pointer to u64 loop variable
1306  * @zone: zone in which all of the memory blocks reside
1307  * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1308  * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1309  *
1310  * This function is meant to be a zone/pfn specific wrapper for the
1311  * for_each_mem_range type iterators. Specifically they are used in the
1312  * deferred memory init routines and as such we were duplicating much of
1313  * this logic throughout the code. So instead of having it in multiple
1314  * locations it seemed like it would make more sense to centralize this to
1315  * one new iterator that does everything they need.
1316  */
1317 void __init_memblock
__next_mem_pfn_range_in_zone(u64 * idx,struct zone * zone,unsigned long * out_spfn,unsigned long * out_epfn)1318 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1319 			     unsigned long *out_spfn, unsigned long *out_epfn)
1320 {
1321 	int zone_nid = zone_to_nid(zone);
1322 	phys_addr_t spa, epa;
1323 
1324 	__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1325 			 &memblock.memory, &memblock.reserved,
1326 			 &spa, &epa, NULL);
1327 
1328 	while (*idx != U64_MAX) {
1329 		unsigned long epfn = PFN_DOWN(epa);
1330 		unsigned long spfn = PFN_UP(spa);
1331 
1332 		/*
1333 		 * Verify the end is at least past the start of the zone and
1334 		 * that we have at least one PFN to initialize.
1335 		 */
1336 		if (zone->zone_start_pfn < epfn && spfn < epfn) {
1337 			/* if we went too far just stop searching */
1338 			if (zone_end_pfn(zone) <= spfn) {
1339 				*idx = U64_MAX;
1340 				break;
1341 			}
1342 
1343 			if (out_spfn)
1344 				*out_spfn = max(zone->zone_start_pfn, spfn);
1345 			if (out_epfn)
1346 				*out_epfn = min(zone_end_pfn(zone), epfn);
1347 
1348 			return;
1349 		}
1350 
1351 		__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1352 				 &memblock.memory, &memblock.reserved,
1353 				 &spa, &epa, NULL);
1354 	}
1355 
1356 	/* signal end of iteration */
1357 	if (out_spfn)
1358 		*out_spfn = ULONG_MAX;
1359 	if (out_epfn)
1360 		*out_epfn = 0;
1361 }
1362 
1363 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1364 
1365 /**
1366  * memblock_alloc_range_nid - allocate boot memory block
1367  * @size: size of memory block to be allocated in bytes
1368  * @align: alignment of the region and block's size
1369  * @start: the lower bound of the memory region to allocate (phys address)
1370  * @end: the upper bound of the memory region to allocate (phys address)
1371  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1372  * @exact_nid: control the allocation fall back to other nodes
1373  *
1374  * The allocation is performed from memory region limited by
1375  * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1376  *
1377  * If the specified node can not hold the requested memory and @exact_nid
1378  * is false, the allocation falls back to any node in the system.
1379  *
1380  * For systems with memory mirroring, the allocation is attempted first
1381  * from the regions with mirroring enabled and then retried from any
1382  * memory region.
1383  *
1384  * In addition, function using kmemleak_alloc_phys for allocated boot
1385  * memory block, it is never reported as leaks.
1386  *
1387  * Return:
1388  * Physical address of allocated memory block on success, %0 on failure.
1389  */
memblock_alloc_range_nid(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,bool exact_nid)1390 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1391 					phys_addr_t align, phys_addr_t start,
1392 					phys_addr_t end, int nid,
1393 					bool exact_nid)
1394 {
1395 	enum memblock_flags flags = choose_memblock_flags();
1396 	phys_addr_t found;
1397 
1398 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1399 		nid = NUMA_NO_NODE;
1400 
1401 	if (!align) {
1402 		/* Can't use WARNs this early in boot on powerpc */
1403 		dump_stack();
1404 		align = SMP_CACHE_BYTES;
1405 	}
1406 
1407 again:
1408 	found = memblock_find_in_range_node(size, align, start, end, nid,
1409 					    flags);
1410 	if (found && !memblock_reserve(found, size))
1411 		goto done;
1412 
1413 	if (nid != NUMA_NO_NODE && !exact_nid) {
1414 		found = memblock_find_in_range_node(size, align, start,
1415 						    end, NUMA_NO_NODE,
1416 						    flags);
1417 		if (found && !memblock_reserve(found, size))
1418 			goto done;
1419 	}
1420 
1421 	if (flags & MEMBLOCK_MIRROR) {
1422 		flags &= ~MEMBLOCK_MIRROR;
1423 		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
1424 			&size);
1425 		goto again;
1426 	}
1427 
1428 	return 0;
1429 
1430 done:
1431 	/*
1432 	 * Skip kmemleak for those places like kasan_init() and
1433 	 * early_pgtable_alloc() due to high volume.
1434 	 */
1435 	if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1436 		/*
1437 		 * Memblock allocated blocks are never reported as
1438 		 * leaks. This is because many of these blocks are
1439 		 * only referred via the physical address which is
1440 		 * not looked up by kmemleak.
1441 		 */
1442 		kmemleak_alloc_phys(found, size, 0);
1443 
1444 	/*
1445 	 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
1446 	 * require memory to be accepted before it can be used by the
1447 	 * guest.
1448 	 *
1449 	 * Accept the memory of the allocated buffer.
1450 	 */
1451 	accept_memory(found, found + size);
1452 
1453 	return found;
1454 }
1455 
1456 /**
1457  * memblock_phys_alloc_range - allocate a memory block inside specified range
1458  * @size: size of memory block to be allocated in bytes
1459  * @align: alignment of the region and block's size
1460  * @start: the lower bound of the memory region to allocate (physical address)
1461  * @end: the upper bound of the memory region to allocate (physical address)
1462  *
1463  * Allocate @size bytes in the between @start and @end.
1464  *
1465  * Return: physical address of the allocated memory block on success,
1466  * %0 on failure.
1467  */
memblock_phys_alloc_range(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end)1468 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1469 					     phys_addr_t align,
1470 					     phys_addr_t start,
1471 					     phys_addr_t end)
1472 {
1473 	memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1474 		     __func__, (u64)size, (u64)align, &start, &end,
1475 		     (void *)_RET_IP_);
1476 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1477 					false);
1478 }
1479 
1480 /**
1481  * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1482  * @size: size of memory block to be allocated in bytes
1483  * @align: alignment of the region and block's size
1484  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1485  *
1486  * Allocates memory block from the specified NUMA node. If the node
1487  * has no available memory, attempts to allocated from any node in the
1488  * system.
1489  *
1490  * Return: physical address of the allocated memory block on success,
1491  * %0 on failure.
1492  */
memblock_phys_alloc_try_nid(phys_addr_t size,phys_addr_t align,int nid)1493 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1494 {
1495 	return memblock_alloc_range_nid(size, align, 0,
1496 					MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1497 }
1498 
1499 /**
1500  * memblock_alloc_internal - allocate boot memory block
1501  * @size: size of memory block to be allocated in bytes
1502  * @align: alignment of the region and block's size
1503  * @min_addr: the lower bound of the memory region to allocate (phys address)
1504  * @max_addr: the upper bound of the memory region to allocate (phys address)
1505  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1506  * @exact_nid: control the allocation fall back to other nodes
1507  *
1508  * Allocates memory block using memblock_alloc_range_nid() and
1509  * converts the returned physical address to virtual.
1510  *
1511  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1512  * will fall back to memory below @min_addr. Other constraints, such
1513  * as node and mirrored memory will be handled again in
1514  * memblock_alloc_range_nid().
1515  *
1516  * Return:
1517  * Virtual address of allocated memory block on success, NULL on failure.
1518  */
memblock_alloc_internal(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid,bool exact_nid)1519 static void * __init memblock_alloc_internal(
1520 				phys_addr_t size, phys_addr_t align,
1521 				phys_addr_t min_addr, phys_addr_t max_addr,
1522 				int nid, bool exact_nid)
1523 {
1524 	phys_addr_t alloc;
1525 
1526 	/*
1527 	 * Detect any accidental use of these APIs after slab is ready, as at
1528 	 * this moment memblock may be deinitialized already and its
1529 	 * internal data may be destroyed (after execution of memblock_free_all)
1530 	 */
1531 	if (WARN_ON_ONCE(slab_is_available()))
1532 		return kzalloc_node(size, GFP_NOWAIT, nid);
1533 
1534 	if (max_addr > memblock.current_limit)
1535 		max_addr = memblock.current_limit;
1536 
1537 	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1538 					exact_nid);
1539 
1540 	/* retry allocation without lower limit */
1541 	if (!alloc && min_addr)
1542 		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1543 						exact_nid);
1544 
1545 	if (!alloc)
1546 		return NULL;
1547 
1548 	return phys_to_virt(alloc);
1549 }
1550 
1551 /**
1552  * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1553  * without zeroing memory
1554  * @size: size of memory block to be allocated in bytes
1555  * @align: alignment of the region and block's size
1556  * @min_addr: the lower bound of the memory region from where the allocation
1557  *	  is preferred (phys address)
1558  * @max_addr: the upper bound of the memory region from where the allocation
1559  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1560  *	      allocate only from memory limited by memblock.current_limit value
1561  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1562  *
1563  * Public function, provides additional debug information (including caller
1564  * info), if enabled. Does not zero allocated memory.
1565  *
1566  * Return:
1567  * Virtual address of allocated memory block on success, NULL on failure.
1568  */
memblock_alloc_exact_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1569 void * __init memblock_alloc_exact_nid_raw(
1570 			phys_addr_t size, phys_addr_t align,
1571 			phys_addr_t min_addr, phys_addr_t max_addr,
1572 			int nid)
1573 {
1574 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1575 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1576 		     &max_addr, (void *)_RET_IP_);
1577 
1578 	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1579 				       true);
1580 }
1581 
1582 /**
1583  * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1584  * memory and without panicking
1585  * @size: size of memory block to be allocated in bytes
1586  * @align: alignment of the region and block's size
1587  * @min_addr: the lower bound of the memory region from where the allocation
1588  *	  is preferred (phys address)
1589  * @max_addr: the upper bound of the memory region from where the allocation
1590  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1591  *	      allocate only from memory limited by memblock.current_limit value
1592  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1593  *
1594  * Public function, provides additional debug information (including caller
1595  * info), if enabled. Does not zero allocated memory, does not panic if request
1596  * cannot be satisfied.
1597  *
1598  * Return:
1599  * Virtual address of allocated memory block on success, NULL on failure.
1600  */
memblock_alloc_try_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1601 void * __init memblock_alloc_try_nid_raw(
1602 			phys_addr_t size, phys_addr_t align,
1603 			phys_addr_t min_addr, phys_addr_t max_addr,
1604 			int nid)
1605 {
1606 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1607 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1608 		     &max_addr, (void *)_RET_IP_);
1609 
1610 	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1611 				       false);
1612 }
1613 
1614 /**
1615  * memblock_alloc_try_nid - allocate boot memory block
1616  * @size: size of memory block to be allocated in bytes
1617  * @align: alignment of the region and block's size
1618  * @min_addr: the lower bound of the memory region from where the allocation
1619  *	  is preferred (phys address)
1620  * @max_addr: the upper bound of the memory region from where the allocation
1621  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1622  *	      allocate only from memory limited by memblock.current_limit value
1623  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1624  *
1625  * Public function, provides additional debug information (including caller
1626  * info), if enabled. This function zeroes the allocated memory.
1627  *
1628  * Return:
1629  * Virtual address of allocated memory block on success, NULL on failure.
1630  */
memblock_alloc_try_nid(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1631 void * __init memblock_alloc_try_nid(
1632 			phys_addr_t size, phys_addr_t align,
1633 			phys_addr_t min_addr, phys_addr_t max_addr,
1634 			int nid)
1635 {
1636 	void *ptr;
1637 
1638 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1639 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1640 		     &max_addr, (void *)_RET_IP_);
1641 	ptr = memblock_alloc_internal(size, align,
1642 					   min_addr, max_addr, nid, false);
1643 	if (ptr)
1644 		memset(ptr, 0, size);
1645 
1646 	return ptr;
1647 }
1648 
1649 /**
1650  * memblock_free_late - free pages directly to buddy allocator
1651  * @base: phys starting address of the  boot memory block
1652  * @size: size of the boot memory block in bytes
1653  *
1654  * This is only useful when the memblock allocator has already been torn
1655  * down, but we are still initializing the system.  Pages are released directly
1656  * to the buddy allocator.
1657  */
memblock_free_late(phys_addr_t base,phys_addr_t size)1658 void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1659 {
1660 	phys_addr_t cursor, end;
1661 
1662 	end = base + size - 1;
1663 	memblock_dbg("%s: [%pa-%pa] %pS\n",
1664 		     __func__, &base, &end, (void *)_RET_IP_);
1665 	kmemleak_free_part_phys(base, size);
1666 	cursor = PFN_UP(base);
1667 	end = PFN_DOWN(base + size);
1668 
1669 	for (; cursor < end; cursor++) {
1670 		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1671 		totalram_pages_inc();
1672 	}
1673 }
1674 
1675 /*
1676  * Remaining API functions
1677  */
1678 
memblock_phys_mem_size(void)1679 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1680 {
1681 	return memblock.memory.total_size;
1682 }
1683 
memblock_reserved_size(void)1684 phys_addr_t __init_memblock memblock_reserved_size(void)
1685 {
1686 	return memblock.reserved.total_size;
1687 }
1688 
1689 /* lowest address */
memblock_start_of_DRAM(void)1690 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1691 {
1692 	return memblock.memory.regions[0].base;
1693 }
1694 
memblock_end_of_DRAM(void)1695 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1696 {
1697 	int idx = memblock.memory.cnt - 1;
1698 
1699 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1700 }
1701 
__find_max_addr(phys_addr_t limit)1702 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1703 {
1704 	phys_addr_t max_addr = PHYS_ADDR_MAX;
1705 	struct memblock_region *r;
1706 
1707 	/*
1708 	 * translate the memory @limit size into the max address within one of
1709 	 * the memory memblock regions, if the @limit exceeds the total size
1710 	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1711 	 */
1712 	for_each_mem_region(r) {
1713 		if (limit <= r->size) {
1714 			max_addr = r->base + limit;
1715 			break;
1716 		}
1717 		limit -= r->size;
1718 	}
1719 
1720 	return max_addr;
1721 }
1722 
memblock_enforce_memory_limit(phys_addr_t limit)1723 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1724 {
1725 	phys_addr_t max_addr;
1726 
1727 	if (!limit)
1728 		return;
1729 
1730 	max_addr = __find_max_addr(limit);
1731 
1732 	/* @limit exceeds the total size of the memory, do nothing */
1733 	if (max_addr == PHYS_ADDR_MAX)
1734 		return;
1735 
1736 	/* truncate both memory and reserved regions */
1737 	memblock_remove_range(&memblock.memory, max_addr,
1738 			      PHYS_ADDR_MAX);
1739 	memblock_remove_range(&memblock.reserved, max_addr,
1740 			      PHYS_ADDR_MAX);
1741 }
1742 
memblock_cap_memory_range(phys_addr_t base,phys_addr_t size)1743 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1744 {
1745 	int start_rgn, end_rgn;
1746 	int i, ret;
1747 
1748 	if (!size)
1749 		return;
1750 
1751 	if (!memblock_memory->total_size) {
1752 		pr_warn("%s: No memory registered yet\n", __func__);
1753 		return;
1754 	}
1755 
1756 	ret = memblock_isolate_range(&memblock.memory, base, size,
1757 						&start_rgn, &end_rgn);
1758 	if (ret)
1759 		return;
1760 
1761 	/* remove all the MAP regions */
1762 	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1763 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1764 			memblock_remove_region(&memblock.memory, i);
1765 
1766 	for (i = start_rgn - 1; i >= 0; i--)
1767 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1768 			memblock_remove_region(&memblock.memory, i);
1769 
1770 	/* truncate the reserved regions */
1771 	memblock_remove_range(&memblock.reserved, 0, base);
1772 	memblock_remove_range(&memblock.reserved,
1773 			base + size, PHYS_ADDR_MAX);
1774 }
1775 
memblock_mem_limit_remove_map(phys_addr_t limit)1776 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1777 {
1778 	phys_addr_t max_addr;
1779 
1780 	if (!limit)
1781 		return;
1782 
1783 	max_addr = __find_max_addr(limit);
1784 
1785 	/* @limit exceeds the total size of the memory, do nothing */
1786 	if (max_addr == PHYS_ADDR_MAX)
1787 		return;
1788 
1789 	memblock_cap_memory_range(0, max_addr);
1790 }
1791 
memblock_search(struct memblock_type * type,phys_addr_t addr)1792 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1793 {
1794 	unsigned int left = 0, right = type->cnt;
1795 
1796 	do {
1797 		unsigned int mid = (right + left) / 2;
1798 
1799 		if (addr < type->regions[mid].base)
1800 			right = mid;
1801 		else if (addr >= (type->regions[mid].base +
1802 				  type->regions[mid].size))
1803 			left = mid + 1;
1804 		else
1805 			return mid;
1806 	} while (left < right);
1807 	return -1;
1808 }
1809 
memblock_is_reserved(phys_addr_t addr)1810 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1811 {
1812 	return memblock_search(&memblock.reserved, addr) != -1;
1813 }
1814 
memblock_is_memory(phys_addr_t addr)1815 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1816 {
1817 	return memblock_search(&memblock.memory, addr) != -1;
1818 }
1819 
memblock_is_map_memory(phys_addr_t addr)1820 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1821 {
1822 	int i = memblock_search(&memblock.memory, addr);
1823 
1824 	if (i == -1)
1825 		return false;
1826 	return !memblock_is_nomap(&memblock.memory.regions[i]);
1827 }
1828 
memblock_search_pfn_nid(unsigned long pfn,unsigned long * start_pfn,unsigned long * end_pfn)1829 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1830 			 unsigned long *start_pfn, unsigned long *end_pfn)
1831 {
1832 	struct memblock_type *type = &memblock.memory;
1833 	int mid = memblock_search(type, PFN_PHYS(pfn));
1834 
1835 	if (mid == -1)
1836 		return -1;
1837 
1838 	*start_pfn = PFN_DOWN(type->regions[mid].base);
1839 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1840 
1841 	return memblock_get_region_node(&type->regions[mid]);
1842 }
1843 
1844 /**
1845  * memblock_is_region_memory - check if a region is a subset of memory
1846  * @base: base of region to check
1847  * @size: size of region to check
1848  *
1849  * Check if the region [@base, @base + @size) is a subset of a memory block.
1850  *
1851  * Return:
1852  * 0 if false, non-zero if true
1853  */
memblock_is_region_memory(phys_addr_t base,phys_addr_t size)1854 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1855 {
1856 	int idx = memblock_search(&memblock.memory, base);
1857 	phys_addr_t end = base + memblock_cap_size(base, &size);
1858 
1859 	if (idx == -1)
1860 		return false;
1861 	return (memblock.memory.regions[idx].base +
1862 		 memblock.memory.regions[idx].size) >= end;
1863 }
1864 
1865 /**
1866  * memblock_is_region_reserved - check if a region intersects reserved memory
1867  * @base: base of region to check
1868  * @size: size of region to check
1869  *
1870  * Check if the region [@base, @base + @size) intersects a reserved
1871  * memory block.
1872  *
1873  * Return:
1874  * True if they intersect, false if not.
1875  */
memblock_is_region_reserved(phys_addr_t base,phys_addr_t size)1876 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1877 {
1878 	return memblock_overlaps_region(&memblock.reserved, base, size);
1879 }
1880 
memblock_trim_memory(phys_addr_t align)1881 void __init_memblock memblock_trim_memory(phys_addr_t align)
1882 {
1883 	phys_addr_t start, end, orig_start, orig_end;
1884 	struct memblock_region *r;
1885 
1886 	for_each_mem_region(r) {
1887 		orig_start = r->base;
1888 		orig_end = r->base + r->size;
1889 		start = round_up(orig_start, align);
1890 		end = round_down(orig_end, align);
1891 
1892 		if (start == orig_start && end == orig_end)
1893 			continue;
1894 
1895 		if (start < end) {
1896 			r->base = start;
1897 			r->size = end - start;
1898 		} else {
1899 			memblock_remove_region(&memblock.memory,
1900 					       r - memblock.memory.regions);
1901 			r--;
1902 		}
1903 	}
1904 }
1905 
memblock_set_current_limit(phys_addr_t limit)1906 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1907 {
1908 	memblock.current_limit = limit;
1909 }
1910 
memblock_get_current_limit(void)1911 phys_addr_t __init_memblock memblock_get_current_limit(void)
1912 {
1913 	return memblock.current_limit;
1914 }
1915 
memblock_dump(struct memblock_type * type)1916 static void __init_memblock memblock_dump(struct memblock_type *type)
1917 {
1918 	phys_addr_t base, end, size;
1919 	enum memblock_flags flags;
1920 	int idx;
1921 	struct memblock_region *rgn;
1922 
1923 	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1924 
1925 	for_each_memblock_type(idx, type, rgn) {
1926 		char nid_buf[32] = "";
1927 
1928 		base = rgn->base;
1929 		size = rgn->size;
1930 		end = base + size - 1;
1931 		flags = rgn->flags;
1932 #ifdef CONFIG_NUMA
1933 		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1934 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1935 				 memblock_get_region_node(rgn));
1936 #endif
1937 		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1938 			type->name, idx, &base, &end, &size, nid_buf, flags);
1939 	}
1940 }
1941 
__memblock_dump_all(void)1942 static void __init_memblock __memblock_dump_all(void)
1943 {
1944 	pr_info("MEMBLOCK configuration:\n");
1945 	pr_info(" memory size = %pa reserved size = %pa\n",
1946 		&memblock.memory.total_size,
1947 		&memblock.reserved.total_size);
1948 
1949 	memblock_dump(&memblock.memory);
1950 	memblock_dump(&memblock.reserved);
1951 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1952 	memblock_dump(&physmem);
1953 #endif
1954 }
1955 
memblock_dump_all(void)1956 void __init_memblock memblock_dump_all(void)
1957 {
1958 	if (memblock_debug)
1959 		__memblock_dump_all();
1960 }
1961 
memblock_allow_resize(void)1962 void __init memblock_allow_resize(void)
1963 {
1964 	memblock_can_resize = 1;
1965 }
1966 
early_memblock(char * p)1967 static int __init early_memblock(char *p)
1968 {
1969 	if (p && strstr(p, "debug"))
1970 		memblock_debug = 1;
1971 	return 0;
1972 }
1973 early_param("memblock", early_memblock);
1974 
free_memmap(unsigned long start_pfn,unsigned long end_pfn)1975 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
1976 {
1977 	struct page *start_pg, *end_pg;
1978 	phys_addr_t pg, pgend;
1979 
1980 	/*
1981 	 * Convert start_pfn/end_pfn to a struct page pointer.
1982 	 */
1983 	start_pg = pfn_to_page(start_pfn - 1) + 1;
1984 	end_pg = pfn_to_page(end_pfn - 1) + 1;
1985 
1986 	/*
1987 	 * Convert to physical addresses, and round start upwards and end
1988 	 * downwards.
1989 	 */
1990 	pg = PAGE_ALIGN(__pa(start_pg));
1991 	pgend = __pa(end_pg) & PAGE_MASK;
1992 
1993 	/*
1994 	 * If there are free pages between these, free the section of the
1995 	 * memmap array.
1996 	 */
1997 	if (pg < pgend)
1998 		memblock_phys_free(pg, pgend - pg);
1999 }
2000 
2001 /*
2002  * The mem_map array can get very big.  Free the unused area of the memory map.
2003  */
free_unused_memmap(void)2004 static void __init free_unused_memmap(void)
2005 {
2006 	unsigned long start, end, prev_end = 0;
2007 	int i;
2008 
2009 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
2010 	    IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
2011 		return;
2012 
2013 	/*
2014 	 * This relies on each bank being in address order.
2015 	 * The banks are sorted previously in bootmem_init().
2016 	 */
2017 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
2018 #ifdef CONFIG_SPARSEMEM
2019 		/*
2020 		 * Take care not to free memmap entries that don't exist
2021 		 * due to SPARSEMEM sections which aren't present.
2022 		 */
2023 		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
2024 #endif
2025 		/*
2026 		 * Align down here since many operations in VM subsystem
2027 		 * presume that there are no holes in the memory map inside
2028 		 * a pageblock
2029 		 */
2030 		start = pageblock_start_pfn(start);
2031 
2032 		/*
2033 		 * If we had a previous bank, and there is a space
2034 		 * between the current bank and the previous, free it.
2035 		 */
2036 		if (prev_end && prev_end < start)
2037 			free_memmap(prev_end, start);
2038 
2039 		/*
2040 		 * Align up here since many operations in VM subsystem
2041 		 * presume that there are no holes in the memory map inside
2042 		 * a pageblock
2043 		 */
2044 		prev_end = pageblock_align(end);
2045 	}
2046 
2047 #ifdef CONFIG_SPARSEMEM
2048 	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2049 		prev_end = pageblock_align(end);
2050 		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2051 	}
2052 #endif
2053 }
2054 
__free_pages_memory(unsigned long start,unsigned long end)2055 static void __init __free_pages_memory(unsigned long start, unsigned long end)
2056 {
2057 	int order;
2058 
2059 	while (start < end) {
2060 		/*
2061 		 * Free the pages in the largest chunks alignment allows.
2062 		 *
2063 		 * __ffs() behaviour is undefined for 0. start == 0 is
2064 		 * MAX_ORDER-aligned, set order to MAX_ORDER for the case.
2065 		 */
2066 		if (start)
2067 			order = min_t(int, MAX_ORDER, __ffs(start));
2068 		else
2069 			order = MAX_ORDER;
2070 
2071 		while (start + (1UL << order) > end)
2072 			order--;
2073 
2074 		memblock_free_pages(pfn_to_page(start), start, order);
2075 
2076 		start += (1UL << order);
2077 	}
2078 }
2079 
__free_memory_core(phys_addr_t start,phys_addr_t end)2080 static unsigned long __init __free_memory_core(phys_addr_t start,
2081 				 phys_addr_t end)
2082 {
2083 	unsigned long start_pfn = PFN_UP(start);
2084 	unsigned long end_pfn = min_t(unsigned long,
2085 				      PFN_DOWN(end), max_low_pfn);
2086 
2087 	if (start_pfn >= end_pfn)
2088 		return 0;
2089 
2090 	__free_pages_memory(start_pfn, end_pfn);
2091 
2092 	return end_pfn - start_pfn;
2093 }
2094 
memmap_init_reserved_pages(void)2095 static void __init memmap_init_reserved_pages(void)
2096 {
2097 	struct memblock_region *region;
2098 	phys_addr_t start, end;
2099 	int nid;
2100 
2101 	/*
2102 	 * set nid on all reserved pages and also treat struct
2103 	 * pages for the NOMAP regions as PageReserved
2104 	 */
2105 	for_each_mem_region(region) {
2106 		nid = memblock_get_region_node(region);
2107 		start = region->base;
2108 		end = start + region->size;
2109 
2110 		if (memblock_is_nomap(region))
2111 			reserve_bootmem_region(start, end, nid);
2112 
2113 		memblock_set_node(start, end, &memblock.reserved, nid);
2114 	}
2115 
2116 	/* initialize struct pages for the reserved regions */
2117 	for_each_reserved_mem_region(region) {
2118 		nid = memblock_get_region_node(region);
2119 		start = region->base;
2120 		end = start + region->size;
2121 
2122 		reserve_bootmem_region(start, end, nid);
2123 	}
2124 }
2125 
free_low_memory_core_early(void)2126 static unsigned long __init free_low_memory_core_early(void)
2127 {
2128 	unsigned long count = 0;
2129 	phys_addr_t start, end;
2130 	u64 i;
2131 
2132 	memblock_clear_hotplug(0, -1);
2133 
2134 	memmap_init_reserved_pages();
2135 
2136 	/*
2137 	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2138 	 *  because in some case like Node0 doesn't have RAM installed
2139 	 *  low ram will be on Node1
2140 	 */
2141 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2142 				NULL)
2143 		count += __free_memory_core(start, end);
2144 
2145 	return count;
2146 }
2147 
2148 static int reset_managed_pages_done __initdata;
2149 
reset_node_managed_pages(pg_data_t * pgdat)2150 static void __init reset_node_managed_pages(pg_data_t *pgdat)
2151 {
2152 	struct zone *z;
2153 
2154 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2155 		atomic_long_set(&z->managed_pages, 0);
2156 }
2157 
reset_all_zones_managed_pages(void)2158 void __init reset_all_zones_managed_pages(void)
2159 {
2160 	struct pglist_data *pgdat;
2161 
2162 	if (reset_managed_pages_done)
2163 		return;
2164 
2165 	for_each_online_pgdat(pgdat)
2166 		reset_node_managed_pages(pgdat);
2167 
2168 	reset_managed_pages_done = 1;
2169 }
2170 
2171 /**
2172  * memblock_free_all - release free pages to the buddy allocator
2173  */
memblock_free_all(void)2174 void __init memblock_free_all(void)
2175 {
2176 	unsigned long pages;
2177 
2178 	free_unused_memmap();
2179 	reset_all_zones_managed_pages();
2180 
2181 	pages = free_low_memory_core_early();
2182 	totalram_pages_add(pages);
2183 }
2184 
2185 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2186 static const char * const flagname[] = {
2187 	[ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG",
2188 	[ilog2(MEMBLOCK_MIRROR)] = "MIRROR",
2189 	[ilog2(MEMBLOCK_NOMAP)] = "NOMAP",
2190 	[ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG",
2191 };
2192 
memblock_debug_show(struct seq_file * m,void * private)2193 static int memblock_debug_show(struct seq_file *m, void *private)
2194 {
2195 	struct memblock_type *type = m->private;
2196 	struct memblock_region *reg;
2197 	int i, j, nid;
2198 	unsigned int count = ARRAY_SIZE(flagname);
2199 	phys_addr_t end;
2200 
2201 	for (i = 0; i < type->cnt; i++) {
2202 		reg = &type->regions[i];
2203 		end = reg->base + reg->size - 1;
2204 		nid = memblock_get_region_node(reg);
2205 
2206 		seq_printf(m, "%4d: ", i);
2207 		seq_printf(m, "%pa..%pa ", &reg->base, &end);
2208 		if (nid != MAX_NUMNODES)
2209 			seq_printf(m, "%4d ", nid);
2210 		else
2211 			seq_printf(m, "%4c ", 'x');
2212 		if (reg->flags) {
2213 			for (j = 0; j < count; j++) {
2214 				if (reg->flags & (1U << j)) {
2215 					seq_printf(m, "%s\n", flagname[j]);
2216 					break;
2217 				}
2218 			}
2219 			if (j == count)
2220 				seq_printf(m, "%s\n", "UNKNOWN");
2221 		} else {
2222 			seq_printf(m, "%s\n", "NONE");
2223 		}
2224 	}
2225 	return 0;
2226 }
2227 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2228 
memblock_init_debugfs(void)2229 static int __init memblock_init_debugfs(void)
2230 {
2231 	struct dentry *root = debugfs_create_dir("memblock", NULL);
2232 
2233 	debugfs_create_file("memory", 0444, root,
2234 			    &memblock.memory, &memblock_debug_fops);
2235 	debugfs_create_file("reserved", 0444, root,
2236 			    &memblock.reserved, &memblock_debug_fops);
2237 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2238 	debugfs_create_file("physmem", 0444, root, &physmem,
2239 			    &memblock_debug_fops);
2240 #endif
2241 
2242 	return 0;
2243 }
2244 __initcall(memblock_init_debugfs);
2245 
2246 #endif /* CONFIG_DEBUG_FS */
2247