1 /*
2 * arch/arm64/kernel/topology.c
3 *
4 * Copyright (C) 2011,2013,2014 Linaro Limited.
5 *
6 * Based on the arm32 version written by Vincent Guittot in turn based on
7 * arch/sh/kernel/topology.c
8 *
9 * This file is subject to the terms and conditions of the GNU General Public
10 * License. See the file "COPYING" in the main directory of this archive
11 * for more details.
12 */
13
14 #include <linux/acpi.h>
15 #include <linux/arch_topology.h>
16 #include <linux/cacheinfo.h>
17 #include <linux/cpufreq.h>
18 #include <linux/init.h>
19 #include <linux/percpu.h>
20
21 #include <asm/cpu.h>
22 #include <asm/cputype.h>
23 #include <asm/topology.h>
24
store_cpu_topology(unsigned int cpuid)25 void store_cpu_topology(unsigned int cpuid)
26 {
27 struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
28 u64 mpidr;
29
30 if (cpuid_topo->package_id != -1)
31 goto topology_populated;
32
33 mpidr = read_cpuid_mpidr();
34
35 /* Uniprocessor systems can rely on default topology values */
36 if (mpidr & MPIDR_UP_BITMASK)
37 return;
38
39 /*
40 * This would be the place to create cpu topology based on MPIDR.
41 *
42 * However, it cannot be trusted to depict the actual topology; some
43 * pieces of the architecture enforce an artificial cap on Aff0 values
44 * (e.g. GICv3's ICC_SGI1R_EL1 limits it to 15), leading to an
45 * artificial cycling of Aff1, Aff2 and Aff3 values. IOW, these end up
46 * having absolutely no relationship to the actual underlying system
47 * topology, and cannot be reasonably used as core / package ID.
48 *
49 * If the MT bit is set, Aff0 *could* be used to define a thread ID, but
50 * we still wouldn't be able to obtain a sane core ID. This means we
51 * need to entirely ignore MPIDR for any topology deduction.
52 */
53 cpuid_topo->thread_id = -1;
54 cpuid_topo->core_id = cpuid;
55 cpuid_topo->package_id = cpu_to_node(cpuid);
56
57 pr_debug("CPU%u: cluster %d core %d thread %d mpidr %#016llx\n",
58 cpuid, cpuid_topo->package_id, cpuid_topo->core_id,
59 cpuid_topo->thread_id, mpidr);
60
61 topology_populated:
62 update_siblings_masks(cpuid);
63 }
64
65 #ifdef CONFIG_ACPI
acpi_cpu_is_threaded(int cpu)66 static bool __init acpi_cpu_is_threaded(int cpu)
67 {
68 int is_threaded = acpi_pptt_cpu_is_thread(cpu);
69
70 /*
71 * if the PPTT doesn't have thread information, assume a homogeneous
72 * machine and return the current CPU's thread state.
73 */
74 if (is_threaded < 0)
75 is_threaded = read_cpuid_mpidr() & MPIDR_MT_BITMASK;
76
77 return !!is_threaded;
78 }
79
80 /*
81 * Propagate the topology information of the processor_topology_node tree to the
82 * cpu_topology array.
83 */
parse_acpi_topology(void)84 int __init parse_acpi_topology(void)
85 {
86 int cpu, topology_id;
87
88 if (acpi_disabled)
89 return 0;
90
91 for_each_possible_cpu(cpu) {
92 int i, cache_id;
93
94 topology_id = find_acpi_cpu_topology(cpu, 0);
95 if (topology_id < 0)
96 return topology_id;
97
98 if (acpi_cpu_is_threaded(cpu)) {
99 cpu_topology[cpu].thread_id = topology_id;
100 topology_id = find_acpi_cpu_topology(cpu, 1);
101 cpu_topology[cpu].core_id = topology_id;
102 } else {
103 cpu_topology[cpu].thread_id = -1;
104 cpu_topology[cpu].core_id = topology_id;
105 }
106 topology_id = find_acpi_cpu_topology_package(cpu);
107 cpu_topology[cpu].package_id = topology_id;
108
109 i = acpi_find_last_cache_level(cpu);
110
111 if (i > 0) {
112 /*
113 * this is the only part of cpu_topology that has
114 * a direct relationship with the cache topology
115 */
116 cache_id = find_acpi_cpu_cache_topology(cpu, i);
117 if (cache_id > 0)
118 cpu_topology[cpu].llc_id = cache_id;
119 }
120 }
121
122 return 0;
123 }
124 #endif
125
126 #ifdef CONFIG_ARM64_AMU_EXTN
127
128 #undef pr_fmt
129 #define pr_fmt(fmt) "AMU: " fmt
130
131 static DEFINE_PER_CPU_READ_MOSTLY(unsigned long, arch_max_freq_scale);
132 static DEFINE_PER_CPU(u64, arch_const_cycles_prev);
133 static DEFINE_PER_CPU(u64, arch_core_cycles_prev);
134 static cpumask_var_t amu_fie_cpus;
135
136 /* Initialize counter reference per-cpu variables for the current CPU */
init_cpu_freq_invariance_counters(void)137 void init_cpu_freq_invariance_counters(void)
138 {
139 this_cpu_write(arch_core_cycles_prev,
140 read_sysreg_s(SYS_AMEVCNTR0_CORE_EL0));
141 this_cpu_write(arch_const_cycles_prev,
142 read_sysreg_s(SYS_AMEVCNTR0_CONST_EL0));
143 }
144
validate_cpu_freq_invariance_counters(int cpu)145 static int validate_cpu_freq_invariance_counters(int cpu)
146 {
147 u64 max_freq_hz, ratio;
148
149 if (!cpu_has_amu_feat(cpu)) {
150 pr_debug("CPU%d: counters are not supported.\n", cpu);
151 return -EINVAL;
152 }
153
154 if (unlikely(!per_cpu(arch_const_cycles_prev, cpu) ||
155 !per_cpu(arch_core_cycles_prev, cpu))) {
156 pr_debug("CPU%d: cycle counters are not enabled.\n", cpu);
157 return -EINVAL;
158 }
159
160 /* Convert maximum frequency from KHz to Hz and validate */
161 max_freq_hz = cpufreq_get_hw_max_freq(cpu) * 1000;
162 if (unlikely(!max_freq_hz)) {
163 pr_debug("CPU%d: invalid maximum frequency.\n", cpu);
164 return -EINVAL;
165 }
166
167 /*
168 * Pre-compute the fixed ratio between the frequency of the constant
169 * counter and the maximum frequency of the CPU.
170 *
171 * const_freq
172 * arch_max_freq_scale = ---------------- * SCHED_CAPACITY_SCALE²
173 * cpuinfo_max_freq
174 *
175 * We use a factor of 2 * SCHED_CAPACITY_SHIFT -> SCHED_CAPACITY_SCALE²
176 * in order to ensure a good resolution for arch_max_freq_scale for
177 * very low arch timer frequencies (down to the KHz range which should
178 * be unlikely).
179 */
180 ratio = (u64)arch_timer_get_rate() << (2 * SCHED_CAPACITY_SHIFT);
181 ratio = div64_u64(ratio, max_freq_hz);
182 if (!ratio) {
183 WARN_ONCE(1, "System timer frequency too low.\n");
184 return -EINVAL;
185 }
186
187 per_cpu(arch_max_freq_scale, cpu) = (unsigned long)ratio;
188
189 return 0;
190 }
191
192 static inline bool
enable_policy_freq_counters(int cpu,cpumask_var_t valid_cpus)193 enable_policy_freq_counters(int cpu, cpumask_var_t valid_cpus)
194 {
195 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
196
197 if (!policy) {
198 pr_debug("CPU%d: No cpufreq policy found.\n", cpu);
199 return false;
200 }
201
202 if (cpumask_subset(policy->related_cpus, valid_cpus))
203 cpumask_or(amu_fie_cpus, policy->related_cpus,
204 amu_fie_cpus);
205
206 cpufreq_cpu_put(policy);
207
208 return true;
209 }
210
211 static DEFINE_STATIC_KEY_FALSE(amu_fie_key);
212 #define amu_freq_invariant() static_branch_unlikely(&amu_fie_key)
213
init_amu_fie(void)214 static int __init init_amu_fie(void)
215 {
216 cpumask_var_t valid_cpus;
217 bool have_policy = false;
218 int ret = 0;
219 int cpu;
220
221 if (!zalloc_cpumask_var(&valid_cpus, GFP_KERNEL))
222 return -ENOMEM;
223
224 if (!zalloc_cpumask_var(&amu_fie_cpus, GFP_KERNEL)) {
225 ret = -ENOMEM;
226 goto free_valid_mask;
227 }
228
229 for_each_present_cpu(cpu) {
230 if (validate_cpu_freq_invariance_counters(cpu))
231 continue;
232 cpumask_set_cpu(cpu, valid_cpus);
233 have_policy |= enable_policy_freq_counters(cpu, valid_cpus);
234 }
235
236 /*
237 * If we are not restricted by cpufreq policies, we only enable
238 * the use of the AMU feature for FIE if all CPUs support AMU.
239 * Otherwise, enable_policy_freq_counters has already enabled
240 * policy cpus.
241 */
242 if (!have_policy && cpumask_equal(valid_cpus, cpu_present_mask))
243 cpumask_or(amu_fie_cpus, amu_fie_cpus, valid_cpus);
244
245 if (!cpumask_empty(amu_fie_cpus)) {
246 pr_info("CPUs[%*pbl]: counters will be used for FIE.",
247 cpumask_pr_args(amu_fie_cpus));
248 static_branch_enable(&amu_fie_key);
249 }
250
251 /*
252 * If the system is not fully invariant after AMU init, disable
253 * partial use of counters for frequency invariance.
254 */
255 if (!topology_scale_freq_invariant())
256 static_branch_disable(&amu_fie_key);
257
258 free_valid_mask:
259 free_cpumask_var(valid_cpus);
260
261 return ret;
262 }
263 late_initcall_sync(init_amu_fie);
264
arch_freq_counters_available(const struct cpumask * cpus)265 bool arch_freq_counters_available(const struct cpumask *cpus)
266 {
267 return amu_freq_invariant() &&
268 cpumask_subset(cpus, amu_fie_cpus);
269 }
270
topology_scale_freq_tick(void)271 void topology_scale_freq_tick(void)
272 {
273 u64 prev_core_cnt, prev_const_cnt;
274 u64 core_cnt, const_cnt, scale;
275 int cpu = smp_processor_id();
276
277 if (!amu_freq_invariant())
278 return;
279
280 if (!cpumask_test_cpu(cpu, amu_fie_cpus))
281 return;
282
283 const_cnt = read_sysreg_s(SYS_AMEVCNTR0_CONST_EL0);
284 core_cnt = read_sysreg_s(SYS_AMEVCNTR0_CORE_EL0);
285 prev_const_cnt = this_cpu_read(arch_const_cycles_prev);
286 prev_core_cnt = this_cpu_read(arch_core_cycles_prev);
287
288 if (unlikely(core_cnt <= prev_core_cnt ||
289 const_cnt <= prev_const_cnt))
290 goto store_and_exit;
291
292 /*
293 * /\core arch_max_freq_scale
294 * scale = ------- * --------------------
295 * /\const SCHED_CAPACITY_SCALE
296 *
297 * See validate_cpu_freq_invariance_counters() for details on
298 * arch_max_freq_scale and the use of SCHED_CAPACITY_SHIFT.
299 */
300 scale = core_cnt - prev_core_cnt;
301 scale *= this_cpu_read(arch_max_freq_scale);
302 scale = div64_u64(scale >> SCHED_CAPACITY_SHIFT,
303 const_cnt - prev_const_cnt);
304
305 scale = min_t(unsigned long, scale, SCHED_CAPACITY_SCALE);
306 this_cpu_write(freq_scale, (unsigned long)scale);
307
308 store_and_exit:
309 this_cpu_write(arch_core_cycles_prev, core_cnt);
310 this_cpu_write(arch_const_cycles_prev, const_cnt);
311 }
312 #endif /* CONFIG_ARM64_AMU_EXTN */
313