/* * arch/arm64/kernel/topology.c * * Copyright (C) 2011,2013,2014 Linaro Limited. * * Based on the arm32 version written by Vincent Guittot in turn based on * arch/sh/kernel/topology.c * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include <linux/acpi.h> #include <linux/arch_topology.h> #include <linux/cacheinfo.h> #include <linux/cpufreq.h> #include <linux/init.h> #include <linux/percpu.h> #include <asm/cpu.h> #include <asm/cputype.h> #include <asm/topology.h> void store_cpu_topology(unsigned int cpuid) { struct cpu_topology *cpuid_topo = &cpu_topology[cpuid]; u64 mpidr; if (cpuid_topo->package_id != -1) goto topology_populated; mpidr = read_cpuid_mpidr(); /* Uniprocessor systems can rely on default topology values */ if (mpidr & MPIDR_UP_BITMASK) return; /* * This would be the place to create cpu topology based on MPIDR. * * However, it cannot be trusted to depict the actual topology; some * pieces of the architecture enforce an artificial cap on Aff0 values * (e.g. GICv3's ICC_SGI1R_EL1 limits it to 15), leading to an * artificial cycling of Aff1, Aff2 and Aff3 values. IOW, these end up * having absolutely no relationship to the actual underlying system * topology, and cannot be reasonably used as core / package ID. * * If the MT bit is set, Aff0 *could* be used to define a thread ID, but * we still wouldn't be able to obtain a sane core ID. This means we * need to entirely ignore MPIDR for any topology deduction. */ cpuid_topo->thread_id = -1; cpuid_topo->core_id = cpuid; cpuid_topo->package_id = cpu_to_node(cpuid); pr_debug("CPU%u: cluster %d core %d thread %d mpidr %#016llx\n", cpuid, cpuid_topo->package_id, cpuid_topo->core_id, cpuid_topo->thread_id, mpidr); topology_populated: update_siblings_masks(cpuid); } #ifdef CONFIG_ACPI static bool __init acpi_cpu_is_threaded(int cpu) { int is_threaded = acpi_pptt_cpu_is_thread(cpu); /* * if the PPTT doesn't have thread information, assume a homogeneous * machine and return the current CPU's thread state. */ if (is_threaded < 0) is_threaded = read_cpuid_mpidr() & MPIDR_MT_BITMASK; return !!is_threaded; } /* * Propagate the topology information of the processor_topology_node tree to the * cpu_topology array. */ int __init parse_acpi_topology(void) { int cpu, topology_id; if (acpi_disabled) return 0; for_each_possible_cpu(cpu) { int i, cache_id; topology_id = find_acpi_cpu_topology(cpu, 0); if (topology_id < 0) return topology_id; if (acpi_cpu_is_threaded(cpu)) { cpu_topology[cpu].thread_id = topology_id; topology_id = find_acpi_cpu_topology(cpu, 1); cpu_topology[cpu].core_id = topology_id; } else { cpu_topology[cpu].thread_id = -1; cpu_topology[cpu].core_id = topology_id; } topology_id = find_acpi_cpu_topology_package(cpu); cpu_topology[cpu].package_id = topology_id; i = acpi_find_last_cache_level(cpu); if (i > 0) { /* * this is the only part of cpu_topology that has * a direct relationship with the cache topology */ cache_id = find_acpi_cpu_cache_topology(cpu, i); if (cache_id > 0) cpu_topology[cpu].llc_id = cache_id; } } return 0; } #endif #ifdef CONFIG_ARM64_AMU_EXTN #undef pr_fmt #define pr_fmt(fmt) "AMU: " fmt static DEFINE_PER_CPU_READ_MOSTLY(unsigned long, arch_max_freq_scale); static DEFINE_PER_CPU(u64, arch_const_cycles_prev); static DEFINE_PER_CPU(u64, arch_core_cycles_prev); static cpumask_var_t amu_fie_cpus; /* Initialize counter reference per-cpu variables for the current CPU */ void init_cpu_freq_invariance_counters(void) { this_cpu_write(arch_core_cycles_prev, read_sysreg_s(SYS_AMEVCNTR0_CORE_EL0)); this_cpu_write(arch_const_cycles_prev, read_sysreg_s(SYS_AMEVCNTR0_CONST_EL0)); } static int validate_cpu_freq_invariance_counters(int cpu) { u64 max_freq_hz, ratio; if (!cpu_has_amu_feat(cpu)) { pr_debug("CPU%d: counters are not supported.\n", cpu); return -EINVAL; } if (unlikely(!per_cpu(arch_const_cycles_prev, cpu) || !per_cpu(arch_core_cycles_prev, cpu))) { pr_debug("CPU%d: cycle counters are not enabled.\n", cpu); return -EINVAL; } /* Convert maximum frequency from KHz to Hz and validate */ max_freq_hz = cpufreq_get_hw_max_freq(cpu) * 1000; if (unlikely(!max_freq_hz)) { pr_debug("CPU%d: invalid maximum frequency.\n", cpu); return -EINVAL; } /* * Pre-compute the fixed ratio between the frequency of the constant * counter and the maximum frequency of the CPU. * * const_freq * arch_max_freq_scale = ---------------- * SCHED_CAPACITY_SCALE² * cpuinfo_max_freq * * We use a factor of 2 * SCHED_CAPACITY_SHIFT -> SCHED_CAPACITY_SCALE² * in order to ensure a good resolution for arch_max_freq_scale for * very low arch timer frequencies (down to the KHz range which should * be unlikely). */ ratio = (u64)arch_timer_get_rate() << (2 * SCHED_CAPACITY_SHIFT); ratio = div64_u64(ratio, max_freq_hz); if (!ratio) { WARN_ONCE(1, "System timer frequency too low.\n"); return -EINVAL; } per_cpu(arch_max_freq_scale, cpu) = (unsigned long)ratio; return 0; } static inline bool enable_policy_freq_counters(int cpu, cpumask_var_t valid_cpus) { struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); if (!policy) { pr_debug("CPU%d: No cpufreq policy found.\n", cpu); return false; } if (cpumask_subset(policy->related_cpus, valid_cpus)) cpumask_or(amu_fie_cpus, policy->related_cpus, amu_fie_cpus); cpufreq_cpu_put(policy); return true; } static DEFINE_STATIC_KEY_FALSE(amu_fie_key); #define amu_freq_invariant() static_branch_unlikely(&amu_fie_key) static int __init init_amu_fie(void) { cpumask_var_t valid_cpus; bool have_policy = false; int ret = 0; int cpu; if (!zalloc_cpumask_var(&valid_cpus, GFP_KERNEL)) return -ENOMEM; if (!zalloc_cpumask_var(&amu_fie_cpus, GFP_KERNEL)) { ret = -ENOMEM; goto free_valid_mask; } for_each_present_cpu(cpu) { if (validate_cpu_freq_invariance_counters(cpu)) continue; cpumask_set_cpu(cpu, valid_cpus); have_policy |= enable_policy_freq_counters(cpu, valid_cpus); } /* * If we are not restricted by cpufreq policies, we only enable * the use of the AMU feature for FIE if all CPUs support AMU. * Otherwise, enable_policy_freq_counters has already enabled * policy cpus. */ if (!have_policy && cpumask_equal(valid_cpus, cpu_present_mask)) cpumask_or(amu_fie_cpus, amu_fie_cpus, valid_cpus); if (!cpumask_empty(amu_fie_cpus)) { pr_info("CPUs[%*pbl]: counters will be used for FIE.", cpumask_pr_args(amu_fie_cpus)); static_branch_enable(&amu_fie_key); } /* * If the system is not fully invariant after AMU init, disable * partial use of counters for frequency invariance. */ if (!topology_scale_freq_invariant()) static_branch_disable(&amu_fie_key); free_valid_mask: free_cpumask_var(valid_cpus); return ret; } late_initcall_sync(init_amu_fie); bool arch_freq_counters_available(const struct cpumask *cpus) { return amu_freq_invariant() && cpumask_subset(cpus, amu_fie_cpus); } void topology_scale_freq_tick(void) { u64 prev_core_cnt, prev_const_cnt; u64 core_cnt, const_cnt, scale; int cpu = smp_processor_id(); if (!amu_freq_invariant()) return; if (!cpumask_test_cpu(cpu, amu_fie_cpus)) return; const_cnt = read_sysreg_s(SYS_AMEVCNTR0_CONST_EL0); core_cnt = read_sysreg_s(SYS_AMEVCNTR0_CORE_EL0); prev_const_cnt = this_cpu_read(arch_const_cycles_prev); prev_core_cnt = this_cpu_read(arch_core_cycles_prev); if (unlikely(core_cnt <= prev_core_cnt || const_cnt <= prev_const_cnt)) goto store_and_exit; /* * /\core arch_max_freq_scale * scale = ------- * -------------------- * /\const SCHED_CAPACITY_SCALE * * See validate_cpu_freq_invariance_counters() for details on * arch_max_freq_scale and the use of SCHED_CAPACITY_SHIFT. */ scale = core_cnt - prev_core_cnt; scale *= this_cpu_read(arch_max_freq_scale); scale = div64_u64(scale >> SCHED_CAPACITY_SHIFT, const_cnt - prev_const_cnt); scale = min_t(unsigned long, scale, SCHED_CAPACITY_SCALE); this_cpu_write(freq_scale, (unsigned long)scale); store_and_exit: this_cpu_write(arch_core_cycles_prev, core_cnt); this_cpu_write(arch_const_cycles_prev, const_cnt); } #endif /* CONFIG_ARM64_AMU_EXTN */