1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/etherdevice.h>
35 #ifdef CONFIG_IGB_DCA
36 #include <linux/dca.h>
37 #endif
38 #include <linux/i2c.h>
39 #include "igb.h"
40
41 #define MAJ 5
42 #define MIN 6
43 #define BUILD 0
44 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
45 __stringify(BUILD) "-k"
46
47 enum queue_mode {
48 QUEUE_MODE_STRICT_PRIORITY,
49 QUEUE_MODE_STREAM_RESERVATION,
50 };
51
52 enum tx_queue_prio {
53 TX_QUEUE_PRIO_HIGH,
54 TX_QUEUE_PRIO_LOW,
55 };
56
57 char igb_driver_name[] = "igb";
58 char igb_driver_version[] = DRV_VERSION;
59 static const char igb_driver_string[] =
60 "Intel(R) Gigabit Ethernet Network Driver";
61 static const char igb_copyright[] =
62 "Copyright (c) 2007-2014 Intel Corporation.";
63
64 static const struct e1000_info *igb_info_tbl[] = {
65 [board_82575] = &e1000_82575_info,
66 };
67
68 static const struct pci_device_id igb_pci_tbl[] = {
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
104 /* required last entry */
105 {0, }
106 };
107
108 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
109
110 static int igb_setup_all_tx_resources(struct igb_adapter *);
111 static int igb_setup_all_rx_resources(struct igb_adapter *);
112 static void igb_free_all_tx_resources(struct igb_adapter *);
113 static void igb_free_all_rx_resources(struct igb_adapter *);
114 static void igb_setup_mrqc(struct igb_adapter *);
115 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
116 static void igb_remove(struct pci_dev *pdev);
117 static int igb_sw_init(struct igb_adapter *);
118 int igb_open(struct net_device *);
119 int igb_close(struct net_device *);
120 static void igb_configure(struct igb_adapter *);
121 static void igb_configure_tx(struct igb_adapter *);
122 static void igb_configure_rx(struct igb_adapter *);
123 static void igb_clean_all_tx_rings(struct igb_adapter *);
124 static void igb_clean_all_rx_rings(struct igb_adapter *);
125 static void igb_clean_tx_ring(struct igb_ring *);
126 static void igb_clean_rx_ring(struct igb_ring *);
127 static void igb_set_rx_mode(struct net_device *);
128 static void igb_update_phy_info(struct timer_list *);
129 static void igb_watchdog(struct timer_list *);
130 static void igb_watchdog_task(struct work_struct *);
131 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
132 static void igb_get_stats64(struct net_device *dev,
133 struct rtnl_link_stats64 *stats);
134 static int igb_change_mtu(struct net_device *, int);
135 static int igb_set_mac(struct net_device *, void *);
136 static void igb_set_uta(struct igb_adapter *adapter, bool set);
137 static irqreturn_t igb_intr(int irq, void *);
138 static irqreturn_t igb_intr_msi(int irq, void *);
139 static irqreturn_t igb_msix_other(int irq, void *);
140 static irqreturn_t igb_msix_ring(int irq, void *);
141 #ifdef CONFIG_IGB_DCA
142 static void igb_update_dca(struct igb_q_vector *);
143 static void igb_setup_dca(struct igb_adapter *);
144 #endif /* CONFIG_IGB_DCA */
145 static int igb_poll(struct napi_struct *, int);
146 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
147 static int igb_clean_rx_irq(struct igb_q_vector *, int);
148 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
149 static void igb_tx_timeout(struct net_device *);
150 static void igb_reset_task(struct work_struct *);
151 static void igb_vlan_mode(struct net_device *netdev,
152 netdev_features_t features);
153 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
154 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
155 static void igb_restore_vlan(struct igb_adapter *);
156 static void igb_rar_set_index(struct igb_adapter *, u32);
157 static void igb_ping_all_vfs(struct igb_adapter *);
158 static void igb_msg_task(struct igb_adapter *);
159 static void igb_vmm_control(struct igb_adapter *);
160 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
161 static void igb_flush_mac_table(struct igb_adapter *);
162 static int igb_available_rars(struct igb_adapter *, u8);
163 static void igb_set_default_mac_filter(struct igb_adapter *);
164 static int igb_uc_sync(struct net_device *, const unsigned char *);
165 static int igb_uc_unsync(struct net_device *, const unsigned char *);
166 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
167 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
168 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
169 int vf, u16 vlan, u8 qos, __be16 vlan_proto);
170 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
171 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
172 bool setting);
173 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
174 bool setting);
175 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176 struct ifla_vf_info *ivi);
177 static void igb_check_vf_rate_limit(struct igb_adapter *);
178 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
179 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
180
181 #ifdef CONFIG_PCI_IOV
182 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
183 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
184 static int igb_disable_sriov(struct pci_dev *dev);
185 static int igb_pci_disable_sriov(struct pci_dev *dev);
186 #endif
187
188 static int igb_suspend(struct device *);
189 static int igb_resume(struct device *);
190 static int igb_runtime_suspend(struct device *dev);
191 static int igb_runtime_resume(struct device *dev);
192 static int igb_runtime_idle(struct device *dev);
193 static const struct dev_pm_ops igb_pm_ops = {
194 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
195 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
196 igb_runtime_idle)
197 };
198 static void igb_shutdown(struct pci_dev *);
199 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
200 #ifdef CONFIG_IGB_DCA
201 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
202 static struct notifier_block dca_notifier = {
203 .notifier_call = igb_notify_dca,
204 .next = NULL,
205 .priority = 0
206 };
207 #endif
208 #ifdef CONFIG_PCI_IOV
209 static unsigned int max_vfs;
210 module_param(max_vfs, uint, 0);
211 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
212 #endif /* CONFIG_PCI_IOV */
213
214 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
215 pci_channel_state_t);
216 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
217 static void igb_io_resume(struct pci_dev *);
218
219 static const struct pci_error_handlers igb_err_handler = {
220 .error_detected = igb_io_error_detected,
221 .slot_reset = igb_io_slot_reset,
222 .resume = igb_io_resume,
223 };
224
225 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
226
227 static struct pci_driver igb_driver = {
228 .name = igb_driver_name,
229 .id_table = igb_pci_tbl,
230 .probe = igb_probe,
231 .remove = igb_remove,
232 #ifdef CONFIG_PM
233 .driver.pm = &igb_pm_ops,
234 #endif
235 .shutdown = igb_shutdown,
236 .sriov_configure = igb_pci_sriov_configure,
237 .err_handler = &igb_err_handler
238 };
239
240 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
241 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
242 MODULE_LICENSE("GPL v2");
243 MODULE_VERSION(DRV_VERSION);
244
245 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
246 static int debug = -1;
247 module_param(debug, int, 0);
248 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
249
250 struct igb_reg_info {
251 u32 ofs;
252 char *name;
253 };
254
255 static const struct igb_reg_info igb_reg_info_tbl[] = {
256
257 /* General Registers */
258 {E1000_CTRL, "CTRL"},
259 {E1000_STATUS, "STATUS"},
260 {E1000_CTRL_EXT, "CTRL_EXT"},
261
262 /* Interrupt Registers */
263 {E1000_ICR, "ICR"},
264
265 /* RX Registers */
266 {E1000_RCTL, "RCTL"},
267 {E1000_RDLEN(0), "RDLEN"},
268 {E1000_RDH(0), "RDH"},
269 {E1000_RDT(0), "RDT"},
270 {E1000_RXDCTL(0), "RXDCTL"},
271 {E1000_RDBAL(0), "RDBAL"},
272 {E1000_RDBAH(0), "RDBAH"},
273
274 /* TX Registers */
275 {E1000_TCTL, "TCTL"},
276 {E1000_TDBAL(0), "TDBAL"},
277 {E1000_TDBAH(0), "TDBAH"},
278 {E1000_TDLEN(0), "TDLEN"},
279 {E1000_TDH(0), "TDH"},
280 {E1000_TDT(0), "TDT"},
281 {E1000_TXDCTL(0), "TXDCTL"},
282 {E1000_TDFH, "TDFH"},
283 {E1000_TDFT, "TDFT"},
284 {E1000_TDFHS, "TDFHS"},
285 {E1000_TDFPC, "TDFPC"},
286
287 /* List Terminator */
288 {}
289 };
290
291 /* igb_regdump - register printout routine */
igb_regdump(struct e1000_hw * hw,struct igb_reg_info * reginfo)292 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
293 {
294 int n = 0;
295 char rname[16];
296 u32 regs[8];
297
298 switch (reginfo->ofs) {
299 case E1000_RDLEN(0):
300 for (n = 0; n < 4; n++)
301 regs[n] = rd32(E1000_RDLEN(n));
302 break;
303 case E1000_RDH(0):
304 for (n = 0; n < 4; n++)
305 regs[n] = rd32(E1000_RDH(n));
306 break;
307 case E1000_RDT(0):
308 for (n = 0; n < 4; n++)
309 regs[n] = rd32(E1000_RDT(n));
310 break;
311 case E1000_RXDCTL(0):
312 for (n = 0; n < 4; n++)
313 regs[n] = rd32(E1000_RXDCTL(n));
314 break;
315 case E1000_RDBAL(0):
316 for (n = 0; n < 4; n++)
317 regs[n] = rd32(E1000_RDBAL(n));
318 break;
319 case E1000_RDBAH(0):
320 for (n = 0; n < 4; n++)
321 regs[n] = rd32(E1000_RDBAH(n));
322 break;
323 case E1000_TDBAL(0):
324 for (n = 0; n < 4; n++)
325 regs[n] = rd32(E1000_RDBAL(n));
326 break;
327 case E1000_TDBAH(0):
328 for (n = 0; n < 4; n++)
329 regs[n] = rd32(E1000_TDBAH(n));
330 break;
331 case E1000_TDLEN(0):
332 for (n = 0; n < 4; n++)
333 regs[n] = rd32(E1000_TDLEN(n));
334 break;
335 case E1000_TDH(0):
336 for (n = 0; n < 4; n++)
337 regs[n] = rd32(E1000_TDH(n));
338 break;
339 case E1000_TDT(0):
340 for (n = 0; n < 4; n++)
341 regs[n] = rd32(E1000_TDT(n));
342 break;
343 case E1000_TXDCTL(0):
344 for (n = 0; n < 4; n++)
345 regs[n] = rd32(E1000_TXDCTL(n));
346 break;
347 default:
348 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
349 return;
350 }
351
352 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
353 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
354 regs[2], regs[3]);
355 }
356
357 /* igb_dump - Print registers, Tx-rings and Rx-rings */
igb_dump(struct igb_adapter * adapter)358 static void igb_dump(struct igb_adapter *adapter)
359 {
360 struct net_device *netdev = adapter->netdev;
361 struct e1000_hw *hw = &adapter->hw;
362 struct igb_reg_info *reginfo;
363 struct igb_ring *tx_ring;
364 union e1000_adv_tx_desc *tx_desc;
365 struct my_u0 { u64 a; u64 b; } *u0;
366 struct igb_ring *rx_ring;
367 union e1000_adv_rx_desc *rx_desc;
368 u32 staterr;
369 u16 i, n;
370
371 if (!netif_msg_hw(adapter))
372 return;
373
374 /* Print netdevice Info */
375 if (netdev) {
376 dev_info(&adapter->pdev->dev, "Net device Info\n");
377 pr_info("Device Name state trans_start\n");
378 pr_info("%-15s %016lX %016lX\n", netdev->name,
379 netdev->state, dev_trans_start(netdev));
380 }
381
382 /* Print Registers */
383 dev_info(&adapter->pdev->dev, "Register Dump\n");
384 pr_info(" Register Name Value\n");
385 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
386 reginfo->name; reginfo++) {
387 igb_regdump(hw, reginfo);
388 }
389
390 /* Print TX Ring Summary */
391 if (!netdev || !netif_running(netdev))
392 goto exit;
393
394 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
395 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
396 for (n = 0; n < adapter->num_tx_queues; n++) {
397 struct igb_tx_buffer *buffer_info;
398 tx_ring = adapter->tx_ring[n];
399 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
400 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
401 n, tx_ring->next_to_use, tx_ring->next_to_clean,
402 (u64)dma_unmap_addr(buffer_info, dma),
403 dma_unmap_len(buffer_info, len),
404 buffer_info->next_to_watch,
405 (u64)buffer_info->time_stamp);
406 }
407
408 /* Print TX Rings */
409 if (!netif_msg_tx_done(adapter))
410 goto rx_ring_summary;
411
412 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
413
414 /* Transmit Descriptor Formats
415 *
416 * Advanced Transmit Descriptor
417 * +--------------------------------------------------------------+
418 * 0 | Buffer Address [63:0] |
419 * +--------------------------------------------------------------+
420 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
421 * +--------------------------------------------------------------+
422 * 63 46 45 40 39 38 36 35 32 31 24 15 0
423 */
424
425 for (n = 0; n < adapter->num_tx_queues; n++) {
426 tx_ring = adapter->tx_ring[n];
427 pr_info("------------------------------------\n");
428 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
429 pr_info("------------------------------------\n");
430 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
431
432 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
433 const char *next_desc;
434 struct igb_tx_buffer *buffer_info;
435 tx_desc = IGB_TX_DESC(tx_ring, i);
436 buffer_info = &tx_ring->tx_buffer_info[i];
437 u0 = (struct my_u0 *)tx_desc;
438 if (i == tx_ring->next_to_use &&
439 i == tx_ring->next_to_clean)
440 next_desc = " NTC/U";
441 else if (i == tx_ring->next_to_use)
442 next_desc = " NTU";
443 else if (i == tx_ring->next_to_clean)
444 next_desc = " NTC";
445 else
446 next_desc = "";
447
448 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
449 i, le64_to_cpu(u0->a),
450 le64_to_cpu(u0->b),
451 (u64)dma_unmap_addr(buffer_info, dma),
452 dma_unmap_len(buffer_info, len),
453 buffer_info->next_to_watch,
454 (u64)buffer_info->time_stamp,
455 buffer_info->skb, next_desc);
456
457 if (netif_msg_pktdata(adapter) && buffer_info->skb)
458 print_hex_dump(KERN_INFO, "",
459 DUMP_PREFIX_ADDRESS,
460 16, 1, buffer_info->skb->data,
461 dma_unmap_len(buffer_info, len),
462 true);
463 }
464 }
465
466 /* Print RX Rings Summary */
467 rx_ring_summary:
468 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
469 pr_info("Queue [NTU] [NTC]\n");
470 for (n = 0; n < adapter->num_rx_queues; n++) {
471 rx_ring = adapter->rx_ring[n];
472 pr_info(" %5d %5X %5X\n",
473 n, rx_ring->next_to_use, rx_ring->next_to_clean);
474 }
475
476 /* Print RX Rings */
477 if (!netif_msg_rx_status(adapter))
478 goto exit;
479
480 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
481
482 /* Advanced Receive Descriptor (Read) Format
483 * 63 1 0
484 * +-----------------------------------------------------+
485 * 0 | Packet Buffer Address [63:1] |A0/NSE|
486 * +----------------------------------------------+------+
487 * 8 | Header Buffer Address [63:1] | DD |
488 * +-----------------------------------------------------+
489 *
490 *
491 * Advanced Receive Descriptor (Write-Back) Format
492 *
493 * 63 48 47 32 31 30 21 20 17 16 4 3 0
494 * +------------------------------------------------------+
495 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
496 * | Checksum Ident | | | | Type | Type |
497 * +------------------------------------------------------+
498 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
499 * +------------------------------------------------------+
500 * 63 48 47 32 31 20 19 0
501 */
502
503 for (n = 0; n < adapter->num_rx_queues; n++) {
504 rx_ring = adapter->rx_ring[n];
505 pr_info("------------------------------------\n");
506 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
507 pr_info("------------------------------------\n");
508 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
509 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
510
511 for (i = 0; i < rx_ring->count; i++) {
512 const char *next_desc;
513 struct igb_rx_buffer *buffer_info;
514 buffer_info = &rx_ring->rx_buffer_info[i];
515 rx_desc = IGB_RX_DESC(rx_ring, i);
516 u0 = (struct my_u0 *)rx_desc;
517 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
518
519 if (i == rx_ring->next_to_use)
520 next_desc = " NTU";
521 else if (i == rx_ring->next_to_clean)
522 next_desc = " NTC";
523 else
524 next_desc = "";
525
526 if (staterr & E1000_RXD_STAT_DD) {
527 /* Descriptor Done */
528 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
529 "RWB", i,
530 le64_to_cpu(u0->a),
531 le64_to_cpu(u0->b),
532 next_desc);
533 } else {
534 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
535 "R ", i,
536 le64_to_cpu(u0->a),
537 le64_to_cpu(u0->b),
538 (u64)buffer_info->dma,
539 next_desc);
540
541 if (netif_msg_pktdata(adapter) &&
542 buffer_info->dma && buffer_info->page) {
543 print_hex_dump(KERN_INFO, "",
544 DUMP_PREFIX_ADDRESS,
545 16, 1,
546 page_address(buffer_info->page) +
547 buffer_info->page_offset,
548 igb_rx_bufsz(rx_ring), true);
549 }
550 }
551 }
552 }
553
554 exit:
555 return;
556 }
557
558 /**
559 * igb_get_i2c_data - Reads the I2C SDA data bit
560 * @hw: pointer to hardware structure
561 * @i2cctl: Current value of I2CCTL register
562 *
563 * Returns the I2C data bit value
564 **/
igb_get_i2c_data(void * data)565 static int igb_get_i2c_data(void *data)
566 {
567 struct igb_adapter *adapter = (struct igb_adapter *)data;
568 struct e1000_hw *hw = &adapter->hw;
569 s32 i2cctl = rd32(E1000_I2CPARAMS);
570
571 return !!(i2cctl & E1000_I2C_DATA_IN);
572 }
573
574 /**
575 * igb_set_i2c_data - Sets the I2C data bit
576 * @data: pointer to hardware structure
577 * @state: I2C data value (0 or 1) to set
578 *
579 * Sets the I2C data bit
580 **/
igb_set_i2c_data(void * data,int state)581 static void igb_set_i2c_data(void *data, int state)
582 {
583 struct igb_adapter *adapter = (struct igb_adapter *)data;
584 struct e1000_hw *hw = &adapter->hw;
585 s32 i2cctl = rd32(E1000_I2CPARAMS);
586
587 if (state)
588 i2cctl |= E1000_I2C_DATA_OUT;
589 else
590 i2cctl &= ~E1000_I2C_DATA_OUT;
591
592 i2cctl &= ~E1000_I2C_DATA_OE_N;
593 i2cctl |= E1000_I2C_CLK_OE_N;
594 wr32(E1000_I2CPARAMS, i2cctl);
595 wrfl();
596
597 }
598
599 /**
600 * igb_set_i2c_clk - Sets the I2C SCL clock
601 * @data: pointer to hardware structure
602 * @state: state to set clock
603 *
604 * Sets the I2C clock line to state
605 **/
igb_set_i2c_clk(void * data,int state)606 static void igb_set_i2c_clk(void *data, int state)
607 {
608 struct igb_adapter *adapter = (struct igb_adapter *)data;
609 struct e1000_hw *hw = &adapter->hw;
610 s32 i2cctl = rd32(E1000_I2CPARAMS);
611
612 if (state) {
613 i2cctl |= E1000_I2C_CLK_OUT;
614 i2cctl &= ~E1000_I2C_CLK_OE_N;
615 } else {
616 i2cctl &= ~E1000_I2C_CLK_OUT;
617 i2cctl &= ~E1000_I2C_CLK_OE_N;
618 }
619 wr32(E1000_I2CPARAMS, i2cctl);
620 wrfl();
621 }
622
623 /**
624 * igb_get_i2c_clk - Gets the I2C SCL clock state
625 * @data: pointer to hardware structure
626 *
627 * Gets the I2C clock state
628 **/
igb_get_i2c_clk(void * data)629 static int igb_get_i2c_clk(void *data)
630 {
631 struct igb_adapter *adapter = (struct igb_adapter *)data;
632 struct e1000_hw *hw = &adapter->hw;
633 s32 i2cctl = rd32(E1000_I2CPARAMS);
634
635 return !!(i2cctl & E1000_I2C_CLK_IN);
636 }
637
638 static const struct i2c_algo_bit_data igb_i2c_algo = {
639 .setsda = igb_set_i2c_data,
640 .setscl = igb_set_i2c_clk,
641 .getsda = igb_get_i2c_data,
642 .getscl = igb_get_i2c_clk,
643 .udelay = 5,
644 .timeout = 20,
645 };
646
647 /**
648 * igb_get_hw_dev - return device
649 * @hw: pointer to hardware structure
650 *
651 * used by hardware layer to print debugging information
652 **/
igb_get_hw_dev(struct e1000_hw * hw)653 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
654 {
655 struct igb_adapter *adapter = hw->back;
656 return adapter->netdev;
657 }
658
659 /**
660 * igb_init_module - Driver Registration Routine
661 *
662 * igb_init_module is the first routine called when the driver is
663 * loaded. All it does is register with the PCI subsystem.
664 **/
igb_init_module(void)665 static int __init igb_init_module(void)
666 {
667 int ret;
668
669 pr_info("%s - version %s\n",
670 igb_driver_string, igb_driver_version);
671 pr_info("%s\n", igb_copyright);
672
673 #ifdef CONFIG_IGB_DCA
674 dca_register_notify(&dca_notifier);
675 #endif
676 ret = pci_register_driver(&igb_driver);
677 return ret;
678 }
679
680 module_init(igb_init_module);
681
682 /**
683 * igb_exit_module - Driver Exit Cleanup Routine
684 *
685 * igb_exit_module is called just before the driver is removed
686 * from memory.
687 **/
igb_exit_module(void)688 static void __exit igb_exit_module(void)
689 {
690 #ifdef CONFIG_IGB_DCA
691 dca_unregister_notify(&dca_notifier);
692 #endif
693 pci_unregister_driver(&igb_driver);
694 }
695
696 module_exit(igb_exit_module);
697
698 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
699 /**
700 * igb_cache_ring_register - Descriptor ring to register mapping
701 * @adapter: board private structure to initialize
702 *
703 * Once we know the feature-set enabled for the device, we'll cache
704 * the register offset the descriptor ring is assigned to.
705 **/
igb_cache_ring_register(struct igb_adapter * adapter)706 static void igb_cache_ring_register(struct igb_adapter *adapter)
707 {
708 int i = 0, j = 0;
709 u32 rbase_offset = adapter->vfs_allocated_count;
710
711 switch (adapter->hw.mac.type) {
712 case e1000_82576:
713 /* The queues are allocated for virtualization such that VF 0
714 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
715 * In order to avoid collision we start at the first free queue
716 * and continue consuming queues in the same sequence
717 */
718 if (adapter->vfs_allocated_count) {
719 for (; i < adapter->rss_queues; i++)
720 adapter->rx_ring[i]->reg_idx = rbase_offset +
721 Q_IDX_82576(i);
722 }
723 /* Fall through */
724 case e1000_82575:
725 case e1000_82580:
726 case e1000_i350:
727 case e1000_i354:
728 case e1000_i210:
729 case e1000_i211:
730 /* Fall through */
731 default:
732 for (; i < adapter->num_rx_queues; i++)
733 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
734 for (; j < adapter->num_tx_queues; j++)
735 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
736 break;
737 }
738 }
739
igb_rd32(struct e1000_hw * hw,u32 reg)740 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
741 {
742 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
743 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
744 u32 value = 0;
745
746 if (E1000_REMOVED(hw_addr))
747 return ~value;
748
749 value = readl(&hw_addr[reg]);
750
751 /* reads should not return all F's */
752 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
753 struct net_device *netdev = igb->netdev;
754 hw->hw_addr = NULL;
755 netdev_err(netdev, "PCIe link lost\n");
756 WARN(pci_device_is_present(igb->pdev),
757 "igb: Failed to read reg 0x%x!\n", reg);
758 }
759
760 return value;
761 }
762
763 /**
764 * igb_write_ivar - configure ivar for given MSI-X vector
765 * @hw: pointer to the HW structure
766 * @msix_vector: vector number we are allocating to a given ring
767 * @index: row index of IVAR register to write within IVAR table
768 * @offset: column offset of in IVAR, should be multiple of 8
769 *
770 * This function is intended to handle the writing of the IVAR register
771 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
772 * each containing an cause allocation for an Rx and Tx ring, and a
773 * variable number of rows depending on the number of queues supported.
774 **/
igb_write_ivar(struct e1000_hw * hw,int msix_vector,int index,int offset)775 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
776 int index, int offset)
777 {
778 u32 ivar = array_rd32(E1000_IVAR0, index);
779
780 /* clear any bits that are currently set */
781 ivar &= ~((u32)0xFF << offset);
782
783 /* write vector and valid bit */
784 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
785
786 array_wr32(E1000_IVAR0, index, ivar);
787 }
788
789 #define IGB_N0_QUEUE -1
igb_assign_vector(struct igb_q_vector * q_vector,int msix_vector)790 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
791 {
792 struct igb_adapter *adapter = q_vector->adapter;
793 struct e1000_hw *hw = &adapter->hw;
794 int rx_queue = IGB_N0_QUEUE;
795 int tx_queue = IGB_N0_QUEUE;
796 u32 msixbm = 0;
797
798 if (q_vector->rx.ring)
799 rx_queue = q_vector->rx.ring->reg_idx;
800 if (q_vector->tx.ring)
801 tx_queue = q_vector->tx.ring->reg_idx;
802
803 switch (hw->mac.type) {
804 case e1000_82575:
805 /* The 82575 assigns vectors using a bitmask, which matches the
806 * bitmask for the EICR/EIMS/EIMC registers. To assign one
807 * or more queues to a vector, we write the appropriate bits
808 * into the MSIXBM register for that vector.
809 */
810 if (rx_queue > IGB_N0_QUEUE)
811 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
812 if (tx_queue > IGB_N0_QUEUE)
813 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
814 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
815 msixbm |= E1000_EIMS_OTHER;
816 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
817 q_vector->eims_value = msixbm;
818 break;
819 case e1000_82576:
820 /* 82576 uses a table that essentially consists of 2 columns
821 * with 8 rows. The ordering is column-major so we use the
822 * lower 3 bits as the row index, and the 4th bit as the
823 * column offset.
824 */
825 if (rx_queue > IGB_N0_QUEUE)
826 igb_write_ivar(hw, msix_vector,
827 rx_queue & 0x7,
828 (rx_queue & 0x8) << 1);
829 if (tx_queue > IGB_N0_QUEUE)
830 igb_write_ivar(hw, msix_vector,
831 tx_queue & 0x7,
832 ((tx_queue & 0x8) << 1) + 8);
833 q_vector->eims_value = BIT(msix_vector);
834 break;
835 case e1000_82580:
836 case e1000_i350:
837 case e1000_i354:
838 case e1000_i210:
839 case e1000_i211:
840 /* On 82580 and newer adapters the scheme is similar to 82576
841 * however instead of ordering column-major we have things
842 * ordered row-major. So we traverse the table by using
843 * bit 0 as the column offset, and the remaining bits as the
844 * row index.
845 */
846 if (rx_queue > IGB_N0_QUEUE)
847 igb_write_ivar(hw, msix_vector,
848 rx_queue >> 1,
849 (rx_queue & 0x1) << 4);
850 if (tx_queue > IGB_N0_QUEUE)
851 igb_write_ivar(hw, msix_vector,
852 tx_queue >> 1,
853 ((tx_queue & 0x1) << 4) + 8);
854 q_vector->eims_value = BIT(msix_vector);
855 break;
856 default:
857 BUG();
858 break;
859 }
860
861 /* add q_vector eims value to global eims_enable_mask */
862 adapter->eims_enable_mask |= q_vector->eims_value;
863
864 /* configure q_vector to set itr on first interrupt */
865 q_vector->set_itr = 1;
866 }
867
868 /**
869 * igb_configure_msix - Configure MSI-X hardware
870 * @adapter: board private structure to initialize
871 *
872 * igb_configure_msix sets up the hardware to properly
873 * generate MSI-X interrupts.
874 **/
igb_configure_msix(struct igb_adapter * adapter)875 static void igb_configure_msix(struct igb_adapter *adapter)
876 {
877 u32 tmp;
878 int i, vector = 0;
879 struct e1000_hw *hw = &adapter->hw;
880
881 adapter->eims_enable_mask = 0;
882
883 /* set vector for other causes, i.e. link changes */
884 switch (hw->mac.type) {
885 case e1000_82575:
886 tmp = rd32(E1000_CTRL_EXT);
887 /* enable MSI-X PBA support*/
888 tmp |= E1000_CTRL_EXT_PBA_CLR;
889
890 /* Auto-Mask interrupts upon ICR read. */
891 tmp |= E1000_CTRL_EXT_EIAME;
892 tmp |= E1000_CTRL_EXT_IRCA;
893
894 wr32(E1000_CTRL_EXT, tmp);
895
896 /* enable msix_other interrupt */
897 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
898 adapter->eims_other = E1000_EIMS_OTHER;
899
900 break;
901
902 case e1000_82576:
903 case e1000_82580:
904 case e1000_i350:
905 case e1000_i354:
906 case e1000_i210:
907 case e1000_i211:
908 /* Turn on MSI-X capability first, or our settings
909 * won't stick. And it will take days to debug.
910 */
911 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
912 E1000_GPIE_PBA | E1000_GPIE_EIAME |
913 E1000_GPIE_NSICR);
914
915 /* enable msix_other interrupt */
916 adapter->eims_other = BIT(vector);
917 tmp = (vector++ | E1000_IVAR_VALID) << 8;
918
919 wr32(E1000_IVAR_MISC, tmp);
920 break;
921 default:
922 /* do nothing, since nothing else supports MSI-X */
923 break;
924 } /* switch (hw->mac.type) */
925
926 adapter->eims_enable_mask |= adapter->eims_other;
927
928 for (i = 0; i < adapter->num_q_vectors; i++)
929 igb_assign_vector(adapter->q_vector[i], vector++);
930
931 wrfl();
932 }
933
934 /**
935 * igb_request_msix - Initialize MSI-X interrupts
936 * @adapter: board private structure to initialize
937 *
938 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
939 * kernel.
940 **/
igb_request_msix(struct igb_adapter * adapter)941 static int igb_request_msix(struct igb_adapter *adapter)
942 {
943 struct net_device *netdev = adapter->netdev;
944 int i, err = 0, vector = 0, free_vector = 0;
945
946 err = request_irq(adapter->msix_entries[vector].vector,
947 igb_msix_other, 0, netdev->name, adapter);
948 if (err)
949 goto err_out;
950
951 for (i = 0; i < adapter->num_q_vectors; i++) {
952 struct igb_q_vector *q_vector = adapter->q_vector[i];
953
954 vector++;
955
956 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
957
958 if (q_vector->rx.ring && q_vector->tx.ring)
959 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
960 q_vector->rx.ring->queue_index);
961 else if (q_vector->tx.ring)
962 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
963 q_vector->tx.ring->queue_index);
964 else if (q_vector->rx.ring)
965 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
966 q_vector->rx.ring->queue_index);
967 else
968 sprintf(q_vector->name, "%s-unused", netdev->name);
969
970 err = request_irq(adapter->msix_entries[vector].vector,
971 igb_msix_ring, 0, q_vector->name,
972 q_vector);
973 if (err)
974 goto err_free;
975 }
976
977 igb_configure_msix(adapter);
978 return 0;
979
980 err_free:
981 /* free already assigned IRQs */
982 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
983
984 vector--;
985 for (i = 0; i < vector; i++) {
986 free_irq(adapter->msix_entries[free_vector++].vector,
987 adapter->q_vector[i]);
988 }
989 err_out:
990 return err;
991 }
992
993 /**
994 * igb_free_q_vector - Free memory allocated for specific interrupt vector
995 * @adapter: board private structure to initialize
996 * @v_idx: Index of vector to be freed
997 *
998 * This function frees the memory allocated to the q_vector.
999 **/
igb_free_q_vector(struct igb_adapter * adapter,int v_idx)1000 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1001 {
1002 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1003
1004 adapter->q_vector[v_idx] = NULL;
1005
1006 /* igb_get_stats64() might access the rings on this vector,
1007 * we must wait a grace period before freeing it.
1008 */
1009 if (q_vector)
1010 kfree_rcu(q_vector, rcu);
1011 }
1012
1013 /**
1014 * igb_reset_q_vector - Reset config for interrupt vector
1015 * @adapter: board private structure to initialize
1016 * @v_idx: Index of vector to be reset
1017 *
1018 * If NAPI is enabled it will delete any references to the
1019 * NAPI struct. This is preparation for igb_free_q_vector.
1020 **/
igb_reset_q_vector(struct igb_adapter * adapter,int v_idx)1021 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1022 {
1023 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1024
1025 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1026 * allocated. So, q_vector is NULL so we should stop here.
1027 */
1028 if (!q_vector)
1029 return;
1030
1031 if (q_vector->tx.ring)
1032 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1033
1034 if (q_vector->rx.ring)
1035 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1036
1037 netif_napi_del(&q_vector->napi);
1038
1039 }
1040
igb_reset_interrupt_capability(struct igb_adapter * adapter)1041 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1042 {
1043 int v_idx = adapter->num_q_vectors;
1044
1045 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1046 pci_disable_msix(adapter->pdev);
1047 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1048 pci_disable_msi(adapter->pdev);
1049
1050 while (v_idx--)
1051 igb_reset_q_vector(adapter, v_idx);
1052 }
1053
1054 /**
1055 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1056 * @adapter: board private structure to initialize
1057 *
1058 * This function frees the memory allocated to the q_vectors. In addition if
1059 * NAPI is enabled it will delete any references to the NAPI struct prior
1060 * to freeing the q_vector.
1061 **/
igb_free_q_vectors(struct igb_adapter * adapter)1062 static void igb_free_q_vectors(struct igb_adapter *adapter)
1063 {
1064 int v_idx = adapter->num_q_vectors;
1065
1066 adapter->num_tx_queues = 0;
1067 adapter->num_rx_queues = 0;
1068 adapter->num_q_vectors = 0;
1069
1070 while (v_idx--) {
1071 igb_reset_q_vector(adapter, v_idx);
1072 igb_free_q_vector(adapter, v_idx);
1073 }
1074 }
1075
1076 /**
1077 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1078 * @adapter: board private structure to initialize
1079 *
1080 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1081 * MSI-X interrupts allocated.
1082 */
igb_clear_interrupt_scheme(struct igb_adapter * adapter)1083 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1084 {
1085 igb_free_q_vectors(adapter);
1086 igb_reset_interrupt_capability(adapter);
1087 }
1088
1089 /**
1090 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1091 * @adapter: board private structure to initialize
1092 * @msix: boolean value of MSIX capability
1093 *
1094 * Attempt to configure interrupts using the best available
1095 * capabilities of the hardware and kernel.
1096 **/
igb_set_interrupt_capability(struct igb_adapter * adapter,bool msix)1097 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1098 {
1099 int err;
1100 int numvecs, i;
1101
1102 if (!msix)
1103 goto msi_only;
1104 adapter->flags |= IGB_FLAG_HAS_MSIX;
1105
1106 /* Number of supported queues. */
1107 adapter->num_rx_queues = adapter->rss_queues;
1108 if (adapter->vfs_allocated_count)
1109 adapter->num_tx_queues = 1;
1110 else
1111 adapter->num_tx_queues = adapter->rss_queues;
1112
1113 /* start with one vector for every Rx queue */
1114 numvecs = adapter->num_rx_queues;
1115
1116 /* if Tx handler is separate add 1 for every Tx queue */
1117 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1118 numvecs += adapter->num_tx_queues;
1119
1120 /* store the number of vectors reserved for queues */
1121 adapter->num_q_vectors = numvecs;
1122
1123 /* add 1 vector for link status interrupts */
1124 numvecs++;
1125 for (i = 0; i < numvecs; i++)
1126 adapter->msix_entries[i].entry = i;
1127
1128 err = pci_enable_msix_range(adapter->pdev,
1129 adapter->msix_entries,
1130 numvecs,
1131 numvecs);
1132 if (err > 0)
1133 return;
1134
1135 igb_reset_interrupt_capability(adapter);
1136
1137 /* If we can't do MSI-X, try MSI */
1138 msi_only:
1139 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1140 #ifdef CONFIG_PCI_IOV
1141 /* disable SR-IOV for non MSI-X configurations */
1142 if (adapter->vf_data) {
1143 struct e1000_hw *hw = &adapter->hw;
1144 /* disable iov and allow time for transactions to clear */
1145 pci_disable_sriov(adapter->pdev);
1146 msleep(500);
1147
1148 kfree(adapter->vf_mac_list);
1149 adapter->vf_mac_list = NULL;
1150 kfree(adapter->vf_data);
1151 adapter->vf_data = NULL;
1152 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1153 wrfl();
1154 msleep(100);
1155 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1156 }
1157 #endif
1158 adapter->vfs_allocated_count = 0;
1159 adapter->rss_queues = 1;
1160 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1161 adapter->num_rx_queues = 1;
1162 adapter->num_tx_queues = 1;
1163 adapter->num_q_vectors = 1;
1164 if (!pci_enable_msi(adapter->pdev))
1165 adapter->flags |= IGB_FLAG_HAS_MSI;
1166 }
1167
igb_add_ring(struct igb_ring * ring,struct igb_ring_container * head)1168 static void igb_add_ring(struct igb_ring *ring,
1169 struct igb_ring_container *head)
1170 {
1171 head->ring = ring;
1172 head->count++;
1173 }
1174
1175 /**
1176 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1177 * @adapter: board private structure to initialize
1178 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1179 * @v_idx: index of vector in adapter struct
1180 * @txr_count: total number of Tx rings to allocate
1181 * @txr_idx: index of first Tx ring to allocate
1182 * @rxr_count: total number of Rx rings to allocate
1183 * @rxr_idx: index of first Rx ring to allocate
1184 *
1185 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1186 **/
igb_alloc_q_vector(struct igb_adapter * adapter,int v_count,int v_idx,int txr_count,int txr_idx,int rxr_count,int rxr_idx)1187 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1188 int v_count, int v_idx,
1189 int txr_count, int txr_idx,
1190 int rxr_count, int rxr_idx)
1191 {
1192 struct igb_q_vector *q_vector;
1193 struct igb_ring *ring;
1194 int ring_count;
1195 size_t size;
1196
1197 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1198 if (txr_count > 1 || rxr_count > 1)
1199 return -ENOMEM;
1200
1201 ring_count = txr_count + rxr_count;
1202 size = struct_size(q_vector, ring, ring_count);
1203
1204 /* allocate q_vector and rings */
1205 q_vector = adapter->q_vector[v_idx];
1206 if (!q_vector) {
1207 q_vector = kzalloc(size, GFP_KERNEL);
1208 } else if (size > ksize(q_vector)) {
1209 kfree_rcu(q_vector, rcu);
1210 q_vector = kzalloc(size, GFP_KERNEL);
1211 } else {
1212 memset(q_vector, 0, size);
1213 }
1214 if (!q_vector)
1215 return -ENOMEM;
1216
1217 /* initialize NAPI */
1218 netif_napi_add(adapter->netdev, &q_vector->napi,
1219 igb_poll, 64);
1220
1221 /* tie q_vector and adapter together */
1222 adapter->q_vector[v_idx] = q_vector;
1223 q_vector->adapter = adapter;
1224
1225 /* initialize work limits */
1226 q_vector->tx.work_limit = adapter->tx_work_limit;
1227
1228 /* initialize ITR configuration */
1229 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1230 q_vector->itr_val = IGB_START_ITR;
1231
1232 /* initialize pointer to rings */
1233 ring = q_vector->ring;
1234
1235 /* intialize ITR */
1236 if (rxr_count) {
1237 /* rx or rx/tx vector */
1238 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1239 q_vector->itr_val = adapter->rx_itr_setting;
1240 } else {
1241 /* tx only vector */
1242 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1243 q_vector->itr_val = adapter->tx_itr_setting;
1244 }
1245
1246 if (txr_count) {
1247 /* assign generic ring traits */
1248 ring->dev = &adapter->pdev->dev;
1249 ring->netdev = adapter->netdev;
1250
1251 /* configure backlink on ring */
1252 ring->q_vector = q_vector;
1253
1254 /* update q_vector Tx values */
1255 igb_add_ring(ring, &q_vector->tx);
1256
1257 /* For 82575, context index must be unique per ring. */
1258 if (adapter->hw.mac.type == e1000_82575)
1259 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1260
1261 /* apply Tx specific ring traits */
1262 ring->count = adapter->tx_ring_count;
1263 ring->queue_index = txr_idx;
1264
1265 ring->cbs_enable = false;
1266 ring->idleslope = 0;
1267 ring->sendslope = 0;
1268 ring->hicredit = 0;
1269 ring->locredit = 0;
1270
1271 u64_stats_init(&ring->tx_syncp);
1272 u64_stats_init(&ring->tx_syncp2);
1273
1274 /* assign ring to adapter */
1275 adapter->tx_ring[txr_idx] = ring;
1276
1277 /* push pointer to next ring */
1278 ring++;
1279 }
1280
1281 if (rxr_count) {
1282 /* assign generic ring traits */
1283 ring->dev = &adapter->pdev->dev;
1284 ring->netdev = adapter->netdev;
1285
1286 /* configure backlink on ring */
1287 ring->q_vector = q_vector;
1288
1289 /* update q_vector Rx values */
1290 igb_add_ring(ring, &q_vector->rx);
1291
1292 /* set flag indicating ring supports SCTP checksum offload */
1293 if (adapter->hw.mac.type >= e1000_82576)
1294 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1295
1296 /* On i350, i354, i210, and i211, loopback VLAN packets
1297 * have the tag byte-swapped.
1298 */
1299 if (adapter->hw.mac.type >= e1000_i350)
1300 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1301
1302 /* apply Rx specific ring traits */
1303 ring->count = adapter->rx_ring_count;
1304 ring->queue_index = rxr_idx;
1305
1306 u64_stats_init(&ring->rx_syncp);
1307
1308 /* assign ring to adapter */
1309 adapter->rx_ring[rxr_idx] = ring;
1310 }
1311
1312 return 0;
1313 }
1314
1315
1316 /**
1317 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1318 * @adapter: board private structure to initialize
1319 *
1320 * We allocate one q_vector per queue interrupt. If allocation fails we
1321 * return -ENOMEM.
1322 **/
igb_alloc_q_vectors(struct igb_adapter * adapter)1323 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1324 {
1325 int q_vectors = adapter->num_q_vectors;
1326 int rxr_remaining = adapter->num_rx_queues;
1327 int txr_remaining = adapter->num_tx_queues;
1328 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1329 int err;
1330
1331 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1332 for (; rxr_remaining; v_idx++) {
1333 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1334 0, 0, 1, rxr_idx);
1335
1336 if (err)
1337 goto err_out;
1338
1339 /* update counts and index */
1340 rxr_remaining--;
1341 rxr_idx++;
1342 }
1343 }
1344
1345 for (; v_idx < q_vectors; v_idx++) {
1346 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1347 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1348
1349 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1350 tqpv, txr_idx, rqpv, rxr_idx);
1351
1352 if (err)
1353 goto err_out;
1354
1355 /* update counts and index */
1356 rxr_remaining -= rqpv;
1357 txr_remaining -= tqpv;
1358 rxr_idx++;
1359 txr_idx++;
1360 }
1361
1362 return 0;
1363
1364 err_out:
1365 adapter->num_tx_queues = 0;
1366 adapter->num_rx_queues = 0;
1367 adapter->num_q_vectors = 0;
1368
1369 while (v_idx--)
1370 igb_free_q_vector(adapter, v_idx);
1371
1372 return -ENOMEM;
1373 }
1374
1375 /**
1376 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1377 * @adapter: board private structure to initialize
1378 * @msix: boolean value of MSIX capability
1379 *
1380 * This function initializes the interrupts and allocates all of the queues.
1381 **/
igb_init_interrupt_scheme(struct igb_adapter * adapter,bool msix)1382 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1383 {
1384 struct pci_dev *pdev = adapter->pdev;
1385 int err;
1386
1387 igb_set_interrupt_capability(adapter, msix);
1388
1389 err = igb_alloc_q_vectors(adapter);
1390 if (err) {
1391 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1392 goto err_alloc_q_vectors;
1393 }
1394
1395 igb_cache_ring_register(adapter);
1396
1397 return 0;
1398
1399 err_alloc_q_vectors:
1400 igb_reset_interrupt_capability(adapter);
1401 return err;
1402 }
1403
1404 /**
1405 * igb_request_irq - initialize interrupts
1406 * @adapter: board private structure to initialize
1407 *
1408 * Attempts to configure interrupts using the best available
1409 * capabilities of the hardware and kernel.
1410 **/
igb_request_irq(struct igb_adapter * adapter)1411 static int igb_request_irq(struct igb_adapter *adapter)
1412 {
1413 struct net_device *netdev = adapter->netdev;
1414 struct pci_dev *pdev = adapter->pdev;
1415 int err = 0;
1416
1417 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1418 err = igb_request_msix(adapter);
1419 if (!err)
1420 goto request_done;
1421 /* fall back to MSI */
1422 igb_free_all_tx_resources(adapter);
1423 igb_free_all_rx_resources(adapter);
1424
1425 igb_clear_interrupt_scheme(adapter);
1426 err = igb_init_interrupt_scheme(adapter, false);
1427 if (err)
1428 goto request_done;
1429
1430 igb_setup_all_tx_resources(adapter);
1431 igb_setup_all_rx_resources(adapter);
1432 igb_configure(adapter);
1433 }
1434
1435 igb_assign_vector(adapter->q_vector[0], 0);
1436
1437 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1438 err = request_irq(pdev->irq, igb_intr_msi, 0,
1439 netdev->name, adapter);
1440 if (!err)
1441 goto request_done;
1442
1443 /* fall back to legacy interrupts */
1444 igb_reset_interrupt_capability(adapter);
1445 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1446 }
1447
1448 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1449 netdev->name, adapter);
1450
1451 if (err)
1452 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1453 err);
1454
1455 request_done:
1456 return err;
1457 }
1458
igb_free_irq(struct igb_adapter * adapter)1459 static void igb_free_irq(struct igb_adapter *adapter)
1460 {
1461 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1462 int vector = 0, i;
1463
1464 free_irq(adapter->msix_entries[vector++].vector, adapter);
1465
1466 for (i = 0; i < adapter->num_q_vectors; i++)
1467 free_irq(adapter->msix_entries[vector++].vector,
1468 adapter->q_vector[i]);
1469 } else {
1470 free_irq(adapter->pdev->irq, adapter);
1471 }
1472 }
1473
1474 /**
1475 * igb_irq_disable - Mask off interrupt generation on the NIC
1476 * @adapter: board private structure
1477 **/
igb_irq_disable(struct igb_adapter * adapter)1478 static void igb_irq_disable(struct igb_adapter *adapter)
1479 {
1480 struct e1000_hw *hw = &adapter->hw;
1481
1482 /* we need to be careful when disabling interrupts. The VFs are also
1483 * mapped into these registers and so clearing the bits can cause
1484 * issues on the VF drivers so we only need to clear what we set
1485 */
1486 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1487 u32 regval = rd32(E1000_EIAM);
1488
1489 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1490 wr32(E1000_EIMC, adapter->eims_enable_mask);
1491 regval = rd32(E1000_EIAC);
1492 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1493 }
1494
1495 wr32(E1000_IAM, 0);
1496 wr32(E1000_IMC, ~0);
1497 wrfl();
1498 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1499 int i;
1500
1501 for (i = 0; i < adapter->num_q_vectors; i++)
1502 synchronize_irq(adapter->msix_entries[i].vector);
1503 } else {
1504 synchronize_irq(adapter->pdev->irq);
1505 }
1506 }
1507
1508 /**
1509 * igb_irq_enable - Enable default interrupt generation settings
1510 * @adapter: board private structure
1511 **/
igb_irq_enable(struct igb_adapter * adapter)1512 static void igb_irq_enable(struct igb_adapter *adapter)
1513 {
1514 struct e1000_hw *hw = &adapter->hw;
1515
1516 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1517 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1518 u32 regval = rd32(E1000_EIAC);
1519
1520 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1521 regval = rd32(E1000_EIAM);
1522 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1523 wr32(E1000_EIMS, adapter->eims_enable_mask);
1524 if (adapter->vfs_allocated_count) {
1525 wr32(E1000_MBVFIMR, 0xFF);
1526 ims |= E1000_IMS_VMMB;
1527 }
1528 wr32(E1000_IMS, ims);
1529 } else {
1530 wr32(E1000_IMS, IMS_ENABLE_MASK |
1531 E1000_IMS_DRSTA);
1532 wr32(E1000_IAM, IMS_ENABLE_MASK |
1533 E1000_IMS_DRSTA);
1534 }
1535 }
1536
igb_update_mng_vlan(struct igb_adapter * adapter)1537 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1538 {
1539 struct e1000_hw *hw = &adapter->hw;
1540 u16 pf_id = adapter->vfs_allocated_count;
1541 u16 vid = adapter->hw.mng_cookie.vlan_id;
1542 u16 old_vid = adapter->mng_vlan_id;
1543
1544 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1545 /* add VID to filter table */
1546 igb_vfta_set(hw, vid, pf_id, true, true);
1547 adapter->mng_vlan_id = vid;
1548 } else {
1549 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1550 }
1551
1552 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1553 (vid != old_vid) &&
1554 !test_bit(old_vid, adapter->active_vlans)) {
1555 /* remove VID from filter table */
1556 igb_vfta_set(hw, vid, pf_id, false, true);
1557 }
1558 }
1559
1560 /**
1561 * igb_release_hw_control - release control of the h/w to f/w
1562 * @adapter: address of board private structure
1563 *
1564 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1565 * For ASF and Pass Through versions of f/w this means that the
1566 * driver is no longer loaded.
1567 **/
igb_release_hw_control(struct igb_adapter * adapter)1568 static void igb_release_hw_control(struct igb_adapter *adapter)
1569 {
1570 struct e1000_hw *hw = &adapter->hw;
1571 u32 ctrl_ext;
1572
1573 /* Let firmware take over control of h/w */
1574 ctrl_ext = rd32(E1000_CTRL_EXT);
1575 wr32(E1000_CTRL_EXT,
1576 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1577 }
1578
1579 /**
1580 * igb_get_hw_control - get control of the h/w from f/w
1581 * @adapter: address of board private structure
1582 *
1583 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1584 * For ASF and Pass Through versions of f/w this means that
1585 * the driver is loaded.
1586 **/
igb_get_hw_control(struct igb_adapter * adapter)1587 static void igb_get_hw_control(struct igb_adapter *adapter)
1588 {
1589 struct e1000_hw *hw = &adapter->hw;
1590 u32 ctrl_ext;
1591
1592 /* Let firmware know the driver has taken over */
1593 ctrl_ext = rd32(E1000_CTRL_EXT);
1594 wr32(E1000_CTRL_EXT,
1595 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1596 }
1597
enable_fqtss(struct igb_adapter * adapter,bool enable)1598 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1599 {
1600 struct net_device *netdev = adapter->netdev;
1601 struct e1000_hw *hw = &adapter->hw;
1602
1603 WARN_ON(hw->mac.type != e1000_i210);
1604
1605 if (enable)
1606 adapter->flags |= IGB_FLAG_FQTSS;
1607 else
1608 adapter->flags &= ~IGB_FLAG_FQTSS;
1609
1610 if (netif_running(netdev))
1611 schedule_work(&adapter->reset_task);
1612 }
1613
is_fqtss_enabled(struct igb_adapter * adapter)1614 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1615 {
1616 return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1617 }
1618
set_tx_desc_fetch_prio(struct e1000_hw * hw,int queue,enum tx_queue_prio prio)1619 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1620 enum tx_queue_prio prio)
1621 {
1622 u32 val;
1623
1624 WARN_ON(hw->mac.type != e1000_i210);
1625 WARN_ON(queue < 0 || queue > 4);
1626
1627 val = rd32(E1000_I210_TXDCTL(queue));
1628
1629 if (prio == TX_QUEUE_PRIO_HIGH)
1630 val |= E1000_TXDCTL_PRIORITY;
1631 else
1632 val &= ~E1000_TXDCTL_PRIORITY;
1633
1634 wr32(E1000_I210_TXDCTL(queue), val);
1635 }
1636
set_queue_mode(struct e1000_hw * hw,int queue,enum queue_mode mode)1637 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1638 {
1639 u32 val;
1640
1641 WARN_ON(hw->mac.type != e1000_i210);
1642 WARN_ON(queue < 0 || queue > 1);
1643
1644 val = rd32(E1000_I210_TQAVCC(queue));
1645
1646 if (mode == QUEUE_MODE_STREAM_RESERVATION)
1647 val |= E1000_TQAVCC_QUEUEMODE;
1648 else
1649 val &= ~E1000_TQAVCC_QUEUEMODE;
1650
1651 wr32(E1000_I210_TQAVCC(queue), val);
1652 }
1653
is_any_cbs_enabled(struct igb_adapter * adapter)1654 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1655 {
1656 int i;
1657
1658 for (i = 0; i < adapter->num_tx_queues; i++) {
1659 if (adapter->tx_ring[i]->cbs_enable)
1660 return true;
1661 }
1662
1663 return false;
1664 }
1665
is_any_txtime_enabled(struct igb_adapter * adapter)1666 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1667 {
1668 int i;
1669
1670 for (i = 0; i < adapter->num_tx_queues; i++) {
1671 if (adapter->tx_ring[i]->launchtime_enable)
1672 return true;
1673 }
1674
1675 return false;
1676 }
1677
1678 /**
1679 * igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1680 * @adapter: pointer to adapter struct
1681 * @queue: queue number
1682 *
1683 * Configure CBS and Launchtime for a given hardware queue.
1684 * Parameters are retrieved from the correct Tx ring, so
1685 * igb_save_cbs_params() and igb_save_txtime_params() should be used
1686 * for setting those correctly prior to this function being called.
1687 **/
igb_config_tx_modes(struct igb_adapter * adapter,int queue)1688 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1689 {
1690 struct igb_ring *ring = adapter->tx_ring[queue];
1691 struct net_device *netdev = adapter->netdev;
1692 struct e1000_hw *hw = &adapter->hw;
1693 u32 tqavcc, tqavctrl;
1694 u16 value;
1695
1696 WARN_ON(hw->mac.type != e1000_i210);
1697 WARN_ON(queue < 0 || queue > 1);
1698
1699 /* If any of the Qav features is enabled, configure queues as SR and
1700 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1701 * as SP.
1702 */
1703 if (ring->cbs_enable || ring->launchtime_enable) {
1704 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1705 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1706 } else {
1707 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1708 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1709 }
1710
1711 /* If CBS is enabled, set DataTranARB and config its parameters. */
1712 if (ring->cbs_enable || queue == 0) {
1713 /* i210 does not allow the queue 0 to be in the Strict
1714 * Priority mode while the Qav mode is enabled, so,
1715 * instead of disabling strict priority mode, we give
1716 * queue 0 the maximum of credits possible.
1717 *
1718 * See section 8.12.19 of the i210 datasheet, "Note:
1719 * Queue0 QueueMode must be set to 1b when
1720 * TransmitMode is set to Qav."
1721 */
1722 if (queue == 0 && !ring->cbs_enable) {
1723 /* max "linkspeed" idleslope in kbps */
1724 ring->idleslope = 1000000;
1725 ring->hicredit = ETH_FRAME_LEN;
1726 }
1727
1728 /* Always set data transfer arbitration to credit-based
1729 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1730 * the queues.
1731 */
1732 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1733 tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1734 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1735
1736 /* According to i210 datasheet section 7.2.7.7, we should set
1737 * the 'idleSlope' field from TQAVCC register following the
1738 * equation:
1739 *
1740 * For 100 Mbps link speed:
1741 *
1742 * value = BW * 0x7735 * 0.2 (E1)
1743 *
1744 * For 1000Mbps link speed:
1745 *
1746 * value = BW * 0x7735 * 2 (E2)
1747 *
1748 * E1 and E2 can be merged into one equation as shown below.
1749 * Note that 'link-speed' is in Mbps.
1750 *
1751 * value = BW * 0x7735 * 2 * link-speed
1752 * -------------- (E3)
1753 * 1000
1754 *
1755 * 'BW' is the percentage bandwidth out of full link speed
1756 * which can be found with the following equation. Note that
1757 * idleSlope here is the parameter from this function which
1758 * is in kbps.
1759 *
1760 * BW = idleSlope
1761 * ----------------- (E4)
1762 * link-speed * 1000
1763 *
1764 * That said, we can come up with a generic equation to
1765 * calculate the value we should set it TQAVCC register by
1766 * replacing 'BW' in E3 by E4. The resulting equation is:
1767 *
1768 * value = idleSlope * 0x7735 * 2 * link-speed
1769 * ----------------- -------------- (E5)
1770 * link-speed * 1000 1000
1771 *
1772 * 'link-speed' is present in both sides of the fraction so
1773 * it is canceled out. The final equation is the following:
1774 *
1775 * value = idleSlope * 61034
1776 * ----------------- (E6)
1777 * 1000000
1778 *
1779 * NOTE: For i210, given the above, we can see that idleslope
1780 * is represented in 16.38431 kbps units by the value at
1781 * the TQAVCC register (1Gbps / 61034), which reduces
1782 * the granularity for idleslope increments.
1783 * For instance, if you want to configure a 2576kbps
1784 * idleslope, the value to be written on the register
1785 * would have to be 157.23. If rounded down, you end
1786 * up with less bandwidth available than originally
1787 * required (~2572 kbps). If rounded up, you end up
1788 * with a higher bandwidth (~2589 kbps). Below the
1789 * approach we take is to always round up the
1790 * calculated value, so the resulting bandwidth might
1791 * be slightly higher for some configurations.
1792 */
1793 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1794
1795 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1796 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1797 tqavcc |= value;
1798 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1799
1800 wr32(E1000_I210_TQAVHC(queue),
1801 0x80000000 + ring->hicredit * 0x7735);
1802 } else {
1803
1804 /* Set idleSlope to zero. */
1805 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1806 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1807 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1808
1809 /* Set hiCredit to zero. */
1810 wr32(E1000_I210_TQAVHC(queue), 0);
1811
1812 /* If CBS is not enabled for any queues anymore, then return to
1813 * the default state of Data Transmission Arbitration on
1814 * TQAVCTRL.
1815 */
1816 if (!is_any_cbs_enabled(adapter)) {
1817 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1818 tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1819 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1820 }
1821 }
1822
1823 /* If LaunchTime is enabled, set DataTranTIM. */
1824 if (ring->launchtime_enable) {
1825 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1826 * for any of the SR queues, and configure fetchtime delta.
1827 * XXX NOTE:
1828 * - LaunchTime will be enabled for all SR queues.
1829 * - A fixed offset can be added relative to the launch
1830 * time of all packets if configured at reg LAUNCH_OS0.
1831 * We are keeping it as 0 for now (default value).
1832 */
1833 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1834 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1835 E1000_TQAVCTRL_FETCHTIME_DELTA;
1836 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1837 } else {
1838 /* If Launchtime is not enabled for any SR queues anymore,
1839 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1840 * effectively disabling Launchtime.
1841 */
1842 if (!is_any_txtime_enabled(adapter)) {
1843 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1844 tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1845 tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1846 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1847 }
1848 }
1849
1850 /* XXX: In i210 controller the sendSlope and loCredit parameters from
1851 * CBS are not configurable by software so we don't do any 'controller
1852 * configuration' in respect to these parameters.
1853 */
1854
1855 netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1856 ring->cbs_enable ? "enabled" : "disabled",
1857 ring->launchtime_enable ? "enabled" : "disabled",
1858 queue,
1859 ring->idleslope, ring->sendslope,
1860 ring->hicredit, ring->locredit);
1861 }
1862
igb_save_txtime_params(struct igb_adapter * adapter,int queue,bool enable)1863 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1864 bool enable)
1865 {
1866 struct igb_ring *ring;
1867
1868 if (queue < 0 || queue > adapter->num_tx_queues)
1869 return -EINVAL;
1870
1871 ring = adapter->tx_ring[queue];
1872 ring->launchtime_enable = enable;
1873
1874 return 0;
1875 }
1876
igb_save_cbs_params(struct igb_adapter * adapter,int queue,bool enable,int idleslope,int sendslope,int hicredit,int locredit)1877 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1878 bool enable, int idleslope, int sendslope,
1879 int hicredit, int locredit)
1880 {
1881 struct igb_ring *ring;
1882
1883 if (queue < 0 || queue > adapter->num_tx_queues)
1884 return -EINVAL;
1885
1886 ring = adapter->tx_ring[queue];
1887
1888 ring->cbs_enable = enable;
1889 ring->idleslope = idleslope;
1890 ring->sendslope = sendslope;
1891 ring->hicredit = hicredit;
1892 ring->locredit = locredit;
1893
1894 return 0;
1895 }
1896
1897 /**
1898 * igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1899 * @adapter: pointer to adapter struct
1900 *
1901 * Configure TQAVCTRL register switching the controller's Tx mode
1902 * if FQTSS mode is enabled or disabled. Additionally, will issue
1903 * a call to igb_config_tx_modes() per queue so any previously saved
1904 * Tx parameters are applied.
1905 **/
igb_setup_tx_mode(struct igb_adapter * adapter)1906 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1907 {
1908 struct net_device *netdev = adapter->netdev;
1909 struct e1000_hw *hw = &adapter->hw;
1910 u32 val;
1911
1912 /* Only i210 controller supports changing the transmission mode. */
1913 if (hw->mac.type != e1000_i210)
1914 return;
1915
1916 if (is_fqtss_enabled(adapter)) {
1917 int i, max_queue;
1918
1919 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1920 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1921 * so SP queues wait for SR ones.
1922 */
1923 val = rd32(E1000_I210_TQAVCTRL);
1924 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1925 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1926 wr32(E1000_I210_TQAVCTRL, val);
1927
1928 /* Configure Tx and Rx packet buffers sizes as described in
1929 * i210 datasheet section 7.2.7.7.
1930 */
1931 val = rd32(E1000_TXPBS);
1932 val &= ~I210_TXPBSIZE_MASK;
1933 val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1934 I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1935 wr32(E1000_TXPBS, val);
1936
1937 val = rd32(E1000_RXPBS);
1938 val &= ~I210_RXPBSIZE_MASK;
1939 val |= I210_RXPBSIZE_PB_30KB;
1940 wr32(E1000_RXPBS, val);
1941
1942 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1943 * register should not exceed the buffer size programmed in
1944 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1945 * so according to the datasheet we should set MAX_TPKT_SIZE to
1946 * 4kB / 64.
1947 *
1948 * However, when we do so, no frame from queue 2 and 3 are
1949 * transmitted. It seems the MAX_TPKT_SIZE should not be great
1950 * or _equal_ to the buffer size programmed in TXPBS. For this
1951 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1952 */
1953 val = (4096 - 1) / 64;
1954 wr32(E1000_I210_DTXMXPKTSZ, val);
1955
1956 /* Since FQTSS mode is enabled, apply any CBS configuration
1957 * previously set. If no previous CBS configuration has been
1958 * done, then the initial configuration is applied, which means
1959 * CBS is disabled.
1960 */
1961 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1962 adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1963
1964 for (i = 0; i < max_queue; i++) {
1965 igb_config_tx_modes(adapter, i);
1966 }
1967 } else {
1968 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1969 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1970 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1971
1972 val = rd32(E1000_I210_TQAVCTRL);
1973 /* According to Section 8.12.21, the other flags we've set when
1974 * enabling FQTSS are not relevant when disabling FQTSS so we
1975 * don't set they here.
1976 */
1977 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1978 wr32(E1000_I210_TQAVCTRL, val);
1979 }
1980
1981 netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1982 "enabled" : "disabled");
1983 }
1984
1985 /**
1986 * igb_configure - configure the hardware for RX and TX
1987 * @adapter: private board structure
1988 **/
igb_configure(struct igb_adapter * adapter)1989 static void igb_configure(struct igb_adapter *adapter)
1990 {
1991 struct net_device *netdev = adapter->netdev;
1992 int i;
1993
1994 igb_get_hw_control(adapter);
1995 igb_set_rx_mode(netdev);
1996 igb_setup_tx_mode(adapter);
1997
1998 igb_restore_vlan(adapter);
1999
2000 igb_setup_tctl(adapter);
2001 igb_setup_mrqc(adapter);
2002 igb_setup_rctl(adapter);
2003
2004 igb_nfc_filter_restore(adapter);
2005 igb_configure_tx(adapter);
2006 igb_configure_rx(adapter);
2007
2008 igb_rx_fifo_flush_82575(&adapter->hw);
2009
2010 /* call igb_desc_unused which always leaves
2011 * at least 1 descriptor unused to make sure
2012 * next_to_use != next_to_clean
2013 */
2014 for (i = 0; i < adapter->num_rx_queues; i++) {
2015 struct igb_ring *ring = adapter->rx_ring[i];
2016 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2017 }
2018 }
2019
2020 /**
2021 * igb_power_up_link - Power up the phy/serdes link
2022 * @adapter: address of board private structure
2023 **/
igb_power_up_link(struct igb_adapter * adapter)2024 void igb_power_up_link(struct igb_adapter *adapter)
2025 {
2026 igb_reset_phy(&adapter->hw);
2027
2028 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2029 igb_power_up_phy_copper(&adapter->hw);
2030 else
2031 igb_power_up_serdes_link_82575(&adapter->hw);
2032
2033 igb_setup_link(&adapter->hw);
2034 }
2035
2036 /**
2037 * igb_power_down_link - Power down the phy/serdes link
2038 * @adapter: address of board private structure
2039 */
igb_power_down_link(struct igb_adapter * adapter)2040 static void igb_power_down_link(struct igb_adapter *adapter)
2041 {
2042 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2043 igb_power_down_phy_copper_82575(&adapter->hw);
2044 else
2045 igb_shutdown_serdes_link_82575(&adapter->hw);
2046 }
2047
2048 /**
2049 * Detect and switch function for Media Auto Sense
2050 * @adapter: address of the board private structure
2051 **/
igb_check_swap_media(struct igb_adapter * adapter)2052 static void igb_check_swap_media(struct igb_adapter *adapter)
2053 {
2054 struct e1000_hw *hw = &adapter->hw;
2055 u32 ctrl_ext, connsw;
2056 bool swap_now = false;
2057
2058 ctrl_ext = rd32(E1000_CTRL_EXT);
2059 connsw = rd32(E1000_CONNSW);
2060
2061 /* need to live swap if current media is copper and we have fiber/serdes
2062 * to go to.
2063 */
2064
2065 if ((hw->phy.media_type == e1000_media_type_copper) &&
2066 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2067 swap_now = true;
2068 } else if ((hw->phy.media_type != e1000_media_type_copper) &&
2069 !(connsw & E1000_CONNSW_SERDESD)) {
2070 /* copper signal takes time to appear */
2071 if (adapter->copper_tries < 4) {
2072 adapter->copper_tries++;
2073 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2074 wr32(E1000_CONNSW, connsw);
2075 return;
2076 } else {
2077 adapter->copper_tries = 0;
2078 if ((connsw & E1000_CONNSW_PHYSD) &&
2079 (!(connsw & E1000_CONNSW_PHY_PDN))) {
2080 swap_now = true;
2081 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2082 wr32(E1000_CONNSW, connsw);
2083 }
2084 }
2085 }
2086
2087 if (!swap_now)
2088 return;
2089
2090 switch (hw->phy.media_type) {
2091 case e1000_media_type_copper:
2092 netdev_info(adapter->netdev,
2093 "MAS: changing media to fiber/serdes\n");
2094 ctrl_ext |=
2095 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2096 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2097 adapter->copper_tries = 0;
2098 break;
2099 case e1000_media_type_internal_serdes:
2100 case e1000_media_type_fiber:
2101 netdev_info(adapter->netdev,
2102 "MAS: changing media to copper\n");
2103 ctrl_ext &=
2104 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2105 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2106 break;
2107 default:
2108 /* shouldn't get here during regular operation */
2109 netdev_err(adapter->netdev,
2110 "AMS: Invalid media type found, returning\n");
2111 break;
2112 }
2113 wr32(E1000_CTRL_EXT, ctrl_ext);
2114 }
2115
2116 /**
2117 * igb_up - Open the interface and prepare it to handle traffic
2118 * @adapter: board private structure
2119 **/
igb_up(struct igb_adapter * adapter)2120 int igb_up(struct igb_adapter *adapter)
2121 {
2122 struct e1000_hw *hw = &adapter->hw;
2123 int i;
2124
2125 /* hardware has been reset, we need to reload some things */
2126 igb_configure(adapter);
2127
2128 clear_bit(__IGB_DOWN, &adapter->state);
2129
2130 for (i = 0; i < adapter->num_q_vectors; i++)
2131 napi_enable(&(adapter->q_vector[i]->napi));
2132
2133 if (adapter->flags & IGB_FLAG_HAS_MSIX)
2134 igb_configure_msix(adapter);
2135 else
2136 igb_assign_vector(adapter->q_vector[0], 0);
2137
2138 /* Clear any pending interrupts. */
2139 rd32(E1000_TSICR);
2140 rd32(E1000_ICR);
2141 igb_irq_enable(adapter);
2142
2143 /* notify VFs that reset has been completed */
2144 if (adapter->vfs_allocated_count) {
2145 u32 reg_data = rd32(E1000_CTRL_EXT);
2146
2147 reg_data |= E1000_CTRL_EXT_PFRSTD;
2148 wr32(E1000_CTRL_EXT, reg_data);
2149 }
2150
2151 netif_tx_start_all_queues(adapter->netdev);
2152
2153 /* start the watchdog. */
2154 hw->mac.get_link_status = 1;
2155 schedule_work(&adapter->watchdog_task);
2156
2157 if ((adapter->flags & IGB_FLAG_EEE) &&
2158 (!hw->dev_spec._82575.eee_disable))
2159 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2160
2161 return 0;
2162 }
2163
igb_down(struct igb_adapter * adapter)2164 void igb_down(struct igb_adapter *adapter)
2165 {
2166 struct net_device *netdev = adapter->netdev;
2167 struct e1000_hw *hw = &adapter->hw;
2168 u32 tctl, rctl;
2169 int i;
2170
2171 /* signal that we're down so the interrupt handler does not
2172 * reschedule our watchdog timer
2173 */
2174 set_bit(__IGB_DOWN, &adapter->state);
2175
2176 /* disable receives in the hardware */
2177 rctl = rd32(E1000_RCTL);
2178 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2179 /* flush and sleep below */
2180
2181 igb_nfc_filter_exit(adapter);
2182
2183 netif_carrier_off(netdev);
2184 netif_tx_stop_all_queues(netdev);
2185
2186 /* disable transmits in the hardware */
2187 tctl = rd32(E1000_TCTL);
2188 tctl &= ~E1000_TCTL_EN;
2189 wr32(E1000_TCTL, tctl);
2190 /* flush both disables and wait for them to finish */
2191 wrfl();
2192 usleep_range(10000, 11000);
2193
2194 igb_irq_disable(adapter);
2195
2196 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2197
2198 for (i = 0; i < adapter->num_q_vectors; i++) {
2199 if (adapter->q_vector[i]) {
2200 napi_synchronize(&adapter->q_vector[i]->napi);
2201 napi_disable(&adapter->q_vector[i]->napi);
2202 }
2203 }
2204
2205 del_timer_sync(&adapter->watchdog_timer);
2206 del_timer_sync(&adapter->phy_info_timer);
2207
2208 /* record the stats before reset*/
2209 spin_lock(&adapter->stats64_lock);
2210 igb_update_stats(adapter);
2211 spin_unlock(&adapter->stats64_lock);
2212
2213 adapter->link_speed = 0;
2214 adapter->link_duplex = 0;
2215
2216 if (!pci_channel_offline(adapter->pdev))
2217 igb_reset(adapter);
2218
2219 /* clear VLAN promisc flag so VFTA will be updated if necessary */
2220 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2221
2222 igb_clean_all_tx_rings(adapter);
2223 igb_clean_all_rx_rings(adapter);
2224 #ifdef CONFIG_IGB_DCA
2225
2226 /* since we reset the hardware DCA settings were cleared */
2227 igb_setup_dca(adapter);
2228 #endif
2229 }
2230
igb_reinit_locked(struct igb_adapter * adapter)2231 void igb_reinit_locked(struct igb_adapter *adapter)
2232 {
2233 WARN_ON(in_interrupt());
2234 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2235 usleep_range(1000, 2000);
2236 igb_down(adapter);
2237 igb_up(adapter);
2238 clear_bit(__IGB_RESETTING, &adapter->state);
2239 }
2240
2241 /** igb_enable_mas - Media Autosense re-enable after swap
2242 *
2243 * @adapter: adapter struct
2244 **/
igb_enable_mas(struct igb_adapter * adapter)2245 static void igb_enable_mas(struct igb_adapter *adapter)
2246 {
2247 struct e1000_hw *hw = &adapter->hw;
2248 u32 connsw = rd32(E1000_CONNSW);
2249
2250 /* configure for SerDes media detect */
2251 if ((hw->phy.media_type == e1000_media_type_copper) &&
2252 (!(connsw & E1000_CONNSW_SERDESD))) {
2253 connsw |= E1000_CONNSW_ENRGSRC;
2254 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2255 wr32(E1000_CONNSW, connsw);
2256 wrfl();
2257 }
2258 }
2259
igb_reset(struct igb_adapter * adapter)2260 void igb_reset(struct igb_adapter *adapter)
2261 {
2262 struct pci_dev *pdev = adapter->pdev;
2263 struct e1000_hw *hw = &adapter->hw;
2264 struct e1000_mac_info *mac = &hw->mac;
2265 struct e1000_fc_info *fc = &hw->fc;
2266 u32 pba, hwm;
2267
2268 /* Repartition Pba for greater than 9k mtu
2269 * To take effect CTRL.RST is required.
2270 */
2271 switch (mac->type) {
2272 case e1000_i350:
2273 case e1000_i354:
2274 case e1000_82580:
2275 pba = rd32(E1000_RXPBS);
2276 pba = igb_rxpbs_adjust_82580(pba);
2277 break;
2278 case e1000_82576:
2279 pba = rd32(E1000_RXPBS);
2280 pba &= E1000_RXPBS_SIZE_MASK_82576;
2281 break;
2282 case e1000_82575:
2283 case e1000_i210:
2284 case e1000_i211:
2285 default:
2286 pba = E1000_PBA_34K;
2287 break;
2288 }
2289
2290 if (mac->type == e1000_82575) {
2291 u32 min_rx_space, min_tx_space, needed_tx_space;
2292
2293 /* write Rx PBA so that hardware can report correct Tx PBA */
2294 wr32(E1000_PBA, pba);
2295
2296 /* To maintain wire speed transmits, the Tx FIFO should be
2297 * large enough to accommodate two full transmit packets,
2298 * rounded up to the next 1KB and expressed in KB. Likewise,
2299 * the Rx FIFO should be large enough to accommodate at least
2300 * one full receive packet and is similarly rounded up and
2301 * expressed in KB.
2302 */
2303 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2304
2305 /* The Tx FIFO also stores 16 bytes of information about the Tx
2306 * but don't include Ethernet FCS because hardware appends it.
2307 * We only need to round down to the nearest 512 byte block
2308 * count since the value we care about is 2 frames, not 1.
2309 */
2310 min_tx_space = adapter->max_frame_size;
2311 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2312 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2313
2314 /* upper 16 bits has Tx packet buffer allocation size in KB */
2315 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2316
2317 /* If current Tx allocation is less than the min Tx FIFO size,
2318 * and the min Tx FIFO size is less than the current Rx FIFO
2319 * allocation, take space away from current Rx allocation.
2320 */
2321 if (needed_tx_space < pba) {
2322 pba -= needed_tx_space;
2323
2324 /* if short on Rx space, Rx wins and must trump Tx
2325 * adjustment
2326 */
2327 if (pba < min_rx_space)
2328 pba = min_rx_space;
2329 }
2330
2331 /* adjust PBA for jumbo frames */
2332 wr32(E1000_PBA, pba);
2333 }
2334
2335 /* flow control settings
2336 * The high water mark must be low enough to fit one full frame
2337 * after transmitting the pause frame. As such we must have enough
2338 * space to allow for us to complete our current transmit and then
2339 * receive the frame that is in progress from the link partner.
2340 * Set it to:
2341 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2342 */
2343 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2344
2345 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
2346 fc->low_water = fc->high_water - 16;
2347 fc->pause_time = 0xFFFF;
2348 fc->send_xon = 1;
2349 fc->current_mode = fc->requested_mode;
2350
2351 /* disable receive for all VFs and wait one second */
2352 if (adapter->vfs_allocated_count) {
2353 int i;
2354
2355 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2356 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2357
2358 /* ping all the active vfs to let them know we are going down */
2359 igb_ping_all_vfs(adapter);
2360
2361 /* disable transmits and receives */
2362 wr32(E1000_VFRE, 0);
2363 wr32(E1000_VFTE, 0);
2364 }
2365
2366 /* Allow time for pending master requests to run */
2367 hw->mac.ops.reset_hw(hw);
2368 wr32(E1000_WUC, 0);
2369
2370 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2371 /* need to resetup here after media swap */
2372 adapter->ei.get_invariants(hw);
2373 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2374 }
2375 if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2376 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2377 igb_enable_mas(adapter);
2378 }
2379 if (hw->mac.ops.init_hw(hw))
2380 dev_err(&pdev->dev, "Hardware Error\n");
2381
2382 /* RAR registers were cleared during init_hw, clear mac table */
2383 igb_flush_mac_table(adapter);
2384 __dev_uc_unsync(adapter->netdev, NULL);
2385
2386 /* Recover default RAR entry */
2387 igb_set_default_mac_filter(adapter);
2388
2389 /* Flow control settings reset on hardware reset, so guarantee flow
2390 * control is off when forcing speed.
2391 */
2392 if (!hw->mac.autoneg)
2393 igb_force_mac_fc(hw);
2394
2395 igb_init_dmac(adapter, pba);
2396 #ifdef CONFIG_IGB_HWMON
2397 /* Re-initialize the thermal sensor on i350 devices. */
2398 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2399 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2400 /* If present, re-initialize the external thermal sensor
2401 * interface.
2402 */
2403 if (adapter->ets)
2404 mac->ops.init_thermal_sensor_thresh(hw);
2405 }
2406 }
2407 #endif
2408 /* Re-establish EEE setting */
2409 if (hw->phy.media_type == e1000_media_type_copper) {
2410 switch (mac->type) {
2411 case e1000_i350:
2412 case e1000_i210:
2413 case e1000_i211:
2414 igb_set_eee_i350(hw, true, true);
2415 break;
2416 case e1000_i354:
2417 igb_set_eee_i354(hw, true, true);
2418 break;
2419 default:
2420 break;
2421 }
2422 }
2423 if (!netif_running(adapter->netdev))
2424 igb_power_down_link(adapter);
2425
2426 igb_update_mng_vlan(adapter);
2427
2428 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2429 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2430
2431 /* Re-enable PTP, where applicable. */
2432 if (adapter->ptp_flags & IGB_PTP_ENABLED)
2433 igb_ptp_reset(adapter);
2434
2435 igb_get_phy_info(hw);
2436 }
2437
igb_fix_features(struct net_device * netdev,netdev_features_t features)2438 static netdev_features_t igb_fix_features(struct net_device *netdev,
2439 netdev_features_t features)
2440 {
2441 /* Since there is no support for separate Rx/Tx vlan accel
2442 * enable/disable make sure Tx flag is always in same state as Rx.
2443 */
2444 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2445 features |= NETIF_F_HW_VLAN_CTAG_TX;
2446 else
2447 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2448
2449 return features;
2450 }
2451
igb_set_features(struct net_device * netdev,netdev_features_t features)2452 static int igb_set_features(struct net_device *netdev,
2453 netdev_features_t features)
2454 {
2455 netdev_features_t changed = netdev->features ^ features;
2456 struct igb_adapter *adapter = netdev_priv(netdev);
2457
2458 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2459 igb_vlan_mode(netdev, features);
2460
2461 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2462 return 0;
2463
2464 if (!(features & NETIF_F_NTUPLE)) {
2465 struct hlist_node *node2;
2466 struct igb_nfc_filter *rule;
2467
2468 spin_lock(&adapter->nfc_lock);
2469 hlist_for_each_entry_safe(rule, node2,
2470 &adapter->nfc_filter_list, nfc_node) {
2471 igb_erase_filter(adapter, rule);
2472 hlist_del(&rule->nfc_node);
2473 kfree(rule);
2474 }
2475 spin_unlock(&adapter->nfc_lock);
2476 adapter->nfc_filter_count = 0;
2477 }
2478
2479 netdev->features = features;
2480
2481 if (netif_running(netdev))
2482 igb_reinit_locked(adapter);
2483 else
2484 igb_reset(adapter);
2485
2486 return 1;
2487 }
2488
igb_ndo_fdb_add(struct ndmsg * ndm,struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,struct netlink_ext_ack * extack)2489 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2490 struct net_device *dev,
2491 const unsigned char *addr, u16 vid,
2492 u16 flags,
2493 struct netlink_ext_ack *extack)
2494 {
2495 /* guarantee we can provide a unique filter for the unicast address */
2496 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2497 struct igb_adapter *adapter = netdev_priv(dev);
2498 int vfn = adapter->vfs_allocated_count;
2499
2500 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2501 return -ENOMEM;
2502 }
2503
2504 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2505 }
2506
2507 #define IGB_MAX_MAC_HDR_LEN 127
2508 #define IGB_MAX_NETWORK_HDR_LEN 511
2509
2510 static netdev_features_t
igb_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2511 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2512 netdev_features_t features)
2513 {
2514 unsigned int network_hdr_len, mac_hdr_len;
2515
2516 /* Make certain the headers can be described by a context descriptor */
2517 mac_hdr_len = skb_network_header(skb) - skb->data;
2518 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2519 return features & ~(NETIF_F_HW_CSUM |
2520 NETIF_F_SCTP_CRC |
2521 NETIF_F_HW_VLAN_CTAG_TX |
2522 NETIF_F_TSO |
2523 NETIF_F_TSO6);
2524
2525 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2526 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
2527 return features & ~(NETIF_F_HW_CSUM |
2528 NETIF_F_SCTP_CRC |
2529 NETIF_F_TSO |
2530 NETIF_F_TSO6);
2531
2532 /* We can only support IPV4 TSO in tunnels if we can mangle the
2533 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2534 */
2535 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2536 features &= ~NETIF_F_TSO;
2537
2538 return features;
2539 }
2540
igb_offload_apply(struct igb_adapter * adapter,s32 queue)2541 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2542 {
2543 if (!is_fqtss_enabled(adapter)) {
2544 enable_fqtss(adapter, true);
2545 return;
2546 }
2547
2548 igb_config_tx_modes(adapter, queue);
2549
2550 if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2551 enable_fqtss(adapter, false);
2552 }
2553
igb_offload_cbs(struct igb_adapter * adapter,struct tc_cbs_qopt_offload * qopt)2554 static int igb_offload_cbs(struct igb_adapter *adapter,
2555 struct tc_cbs_qopt_offload *qopt)
2556 {
2557 struct e1000_hw *hw = &adapter->hw;
2558 int err;
2559
2560 /* CBS offloading is only supported by i210 controller. */
2561 if (hw->mac.type != e1000_i210)
2562 return -EOPNOTSUPP;
2563
2564 /* CBS offloading is only supported by queue 0 and queue 1. */
2565 if (qopt->queue < 0 || qopt->queue > 1)
2566 return -EINVAL;
2567
2568 err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2569 qopt->idleslope, qopt->sendslope,
2570 qopt->hicredit, qopt->locredit);
2571 if (err)
2572 return err;
2573
2574 igb_offload_apply(adapter, qopt->queue);
2575
2576 return 0;
2577 }
2578
2579 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2580 #define VLAN_PRIO_FULL_MASK (0x07)
2581
igb_parse_cls_flower(struct igb_adapter * adapter,struct flow_cls_offload * f,int traffic_class,struct igb_nfc_filter * input)2582 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2583 struct flow_cls_offload *f,
2584 int traffic_class,
2585 struct igb_nfc_filter *input)
2586 {
2587 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2588 struct flow_dissector *dissector = rule->match.dissector;
2589 struct netlink_ext_ack *extack = f->common.extack;
2590
2591 if (dissector->used_keys &
2592 ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2593 BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2594 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2595 BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2596 NL_SET_ERR_MSG_MOD(extack,
2597 "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2598 return -EOPNOTSUPP;
2599 }
2600
2601 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2602 struct flow_match_eth_addrs match;
2603
2604 flow_rule_match_eth_addrs(rule, &match);
2605 if (!is_zero_ether_addr(match.mask->dst)) {
2606 if (!is_broadcast_ether_addr(match.mask->dst)) {
2607 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2608 return -EINVAL;
2609 }
2610
2611 input->filter.match_flags |=
2612 IGB_FILTER_FLAG_DST_MAC_ADDR;
2613 ether_addr_copy(input->filter.dst_addr, match.key->dst);
2614 }
2615
2616 if (!is_zero_ether_addr(match.mask->src)) {
2617 if (!is_broadcast_ether_addr(match.mask->src)) {
2618 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2619 return -EINVAL;
2620 }
2621
2622 input->filter.match_flags |=
2623 IGB_FILTER_FLAG_SRC_MAC_ADDR;
2624 ether_addr_copy(input->filter.src_addr, match.key->src);
2625 }
2626 }
2627
2628 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2629 struct flow_match_basic match;
2630
2631 flow_rule_match_basic(rule, &match);
2632 if (match.mask->n_proto) {
2633 if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2634 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2635 return -EINVAL;
2636 }
2637
2638 input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2639 input->filter.etype = match.key->n_proto;
2640 }
2641 }
2642
2643 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2644 struct flow_match_vlan match;
2645
2646 flow_rule_match_vlan(rule, &match);
2647 if (match.mask->vlan_priority) {
2648 if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2649 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2650 return -EINVAL;
2651 }
2652
2653 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2654 input->filter.vlan_tci = match.key->vlan_priority;
2655 }
2656 }
2657
2658 input->action = traffic_class;
2659 input->cookie = f->cookie;
2660
2661 return 0;
2662 }
2663
igb_configure_clsflower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2664 static int igb_configure_clsflower(struct igb_adapter *adapter,
2665 struct flow_cls_offload *cls_flower)
2666 {
2667 struct netlink_ext_ack *extack = cls_flower->common.extack;
2668 struct igb_nfc_filter *filter, *f;
2669 int err, tc;
2670
2671 tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2672 if (tc < 0) {
2673 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2674 return -EINVAL;
2675 }
2676
2677 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2678 if (!filter)
2679 return -ENOMEM;
2680
2681 err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2682 if (err < 0)
2683 goto err_parse;
2684
2685 spin_lock(&adapter->nfc_lock);
2686
2687 hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2688 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2689 err = -EEXIST;
2690 NL_SET_ERR_MSG_MOD(extack,
2691 "This filter is already set in ethtool");
2692 goto err_locked;
2693 }
2694 }
2695
2696 hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2697 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2698 err = -EEXIST;
2699 NL_SET_ERR_MSG_MOD(extack,
2700 "This filter is already set in cls_flower");
2701 goto err_locked;
2702 }
2703 }
2704
2705 err = igb_add_filter(adapter, filter);
2706 if (err < 0) {
2707 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2708 goto err_locked;
2709 }
2710
2711 hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2712
2713 spin_unlock(&adapter->nfc_lock);
2714
2715 return 0;
2716
2717 err_locked:
2718 spin_unlock(&adapter->nfc_lock);
2719
2720 err_parse:
2721 kfree(filter);
2722
2723 return err;
2724 }
2725
igb_delete_clsflower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2726 static int igb_delete_clsflower(struct igb_adapter *adapter,
2727 struct flow_cls_offload *cls_flower)
2728 {
2729 struct igb_nfc_filter *filter;
2730 int err;
2731
2732 spin_lock(&adapter->nfc_lock);
2733
2734 hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2735 if (filter->cookie == cls_flower->cookie)
2736 break;
2737
2738 if (!filter) {
2739 err = -ENOENT;
2740 goto out;
2741 }
2742
2743 err = igb_erase_filter(adapter, filter);
2744 if (err < 0)
2745 goto out;
2746
2747 hlist_del(&filter->nfc_node);
2748 kfree(filter);
2749
2750 out:
2751 spin_unlock(&adapter->nfc_lock);
2752
2753 return err;
2754 }
2755
igb_setup_tc_cls_flower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2756 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2757 struct flow_cls_offload *cls_flower)
2758 {
2759 switch (cls_flower->command) {
2760 case FLOW_CLS_REPLACE:
2761 return igb_configure_clsflower(adapter, cls_flower);
2762 case FLOW_CLS_DESTROY:
2763 return igb_delete_clsflower(adapter, cls_flower);
2764 case FLOW_CLS_STATS:
2765 return -EOPNOTSUPP;
2766 default:
2767 return -EOPNOTSUPP;
2768 }
2769 }
2770
igb_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)2771 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2772 void *cb_priv)
2773 {
2774 struct igb_adapter *adapter = cb_priv;
2775
2776 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2777 return -EOPNOTSUPP;
2778
2779 switch (type) {
2780 case TC_SETUP_CLSFLOWER:
2781 return igb_setup_tc_cls_flower(adapter, type_data);
2782
2783 default:
2784 return -EOPNOTSUPP;
2785 }
2786 }
2787
igb_offload_txtime(struct igb_adapter * adapter,struct tc_etf_qopt_offload * qopt)2788 static int igb_offload_txtime(struct igb_adapter *adapter,
2789 struct tc_etf_qopt_offload *qopt)
2790 {
2791 struct e1000_hw *hw = &adapter->hw;
2792 int err;
2793
2794 /* Launchtime offloading is only supported by i210 controller. */
2795 if (hw->mac.type != e1000_i210)
2796 return -EOPNOTSUPP;
2797
2798 /* Launchtime offloading is only supported by queues 0 and 1. */
2799 if (qopt->queue < 0 || qopt->queue > 1)
2800 return -EINVAL;
2801
2802 err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2803 if (err)
2804 return err;
2805
2806 igb_offload_apply(adapter, qopt->queue);
2807
2808 return 0;
2809 }
2810
2811 static LIST_HEAD(igb_block_cb_list);
2812
igb_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)2813 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2814 void *type_data)
2815 {
2816 struct igb_adapter *adapter = netdev_priv(dev);
2817
2818 switch (type) {
2819 case TC_SETUP_QDISC_CBS:
2820 return igb_offload_cbs(adapter, type_data);
2821 case TC_SETUP_BLOCK:
2822 return flow_block_cb_setup_simple(type_data,
2823 &igb_block_cb_list,
2824 igb_setup_tc_block_cb,
2825 adapter, adapter, true);
2826
2827 case TC_SETUP_QDISC_ETF:
2828 return igb_offload_txtime(adapter, type_data);
2829
2830 default:
2831 return -EOPNOTSUPP;
2832 }
2833 }
2834
2835 static const struct net_device_ops igb_netdev_ops = {
2836 .ndo_open = igb_open,
2837 .ndo_stop = igb_close,
2838 .ndo_start_xmit = igb_xmit_frame,
2839 .ndo_get_stats64 = igb_get_stats64,
2840 .ndo_set_rx_mode = igb_set_rx_mode,
2841 .ndo_set_mac_address = igb_set_mac,
2842 .ndo_change_mtu = igb_change_mtu,
2843 .ndo_do_ioctl = igb_ioctl,
2844 .ndo_tx_timeout = igb_tx_timeout,
2845 .ndo_validate_addr = eth_validate_addr,
2846 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2847 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
2848 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2849 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
2850 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
2851 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
2852 .ndo_set_vf_trust = igb_ndo_set_vf_trust,
2853 .ndo_get_vf_config = igb_ndo_get_vf_config,
2854 .ndo_fix_features = igb_fix_features,
2855 .ndo_set_features = igb_set_features,
2856 .ndo_fdb_add = igb_ndo_fdb_add,
2857 .ndo_features_check = igb_features_check,
2858 .ndo_setup_tc = igb_setup_tc,
2859 };
2860
2861 /**
2862 * igb_set_fw_version - Configure version string for ethtool
2863 * @adapter: adapter struct
2864 **/
igb_set_fw_version(struct igb_adapter * adapter)2865 void igb_set_fw_version(struct igb_adapter *adapter)
2866 {
2867 struct e1000_hw *hw = &adapter->hw;
2868 struct e1000_fw_version fw;
2869
2870 igb_get_fw_version(hw, &fw);
2871
2872 switch (hw->mac.type) {
2873 case e1000_i210:
2874 case e1000_i211:
2875 if (!(igb_get_flash_presence_i210(hw))) {
2876 snprintf(adapter->fw_version,
2877 sizeof(adapter->fw_version),
2878 "%2d.%2d-%d",
2879 fw.invm_major, fw.invm_minor,
2880 fw.invm_img_type);
2881 break;
2882 }
2883 /* fall through */
2884 default:
2885 /* if option is rom valid, display its version too */
2886 if (fw.or_valid) {
2887 snprintf(adapter->fw_version,
2888 sizeof(adapter->fw_version),
2889 "%d.%d, 0x%08x, %d.%d.%d",
2890 fw.eep_major, fw.eep_minor, fw.etrack_id,
2891 fw.or_major, fw.or_build, fw.or_patch);
2892 /* no option rom */
2893 } else if (fw.etrack_id != 0X0000) {
2894 snprintf(adapter->fw_version,
2895 sizeof(adapter->fw_version),
2896 "%d.%d, 0x%08x",
2897 fw.eep_major, fw.eep_minor, fw.etrack_id);
2898 } else {
2899 snprintf(adapter->fw_version,
2900 sizeof(adapter->fw_version),
2901 "%d.%d.%d",
2902 fw.eep_major, fw.eep_minor, fw.eep_build);
2903 }
2904 break;
2905 }
2906 }
2907
2908 /**
2909 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2910 *
2911 * @adapter: adapter struct
2912 **/
igb_init_mas(struct igb_adapter * adapter)2913 static void igb_init_mas(struct igb_adapter *adapter)
2914 {
2915 struct e1000_hw *hw = &adapter->hw;
2916 u16 eeprom_data;
2917
2918 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2919 switch (hw->bus.func) {
2920 case E1000_FUNC_0:
2921 if (eeprom_data & IGB_MAS_ENABLE_0) {
2922 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2923 netdev_info(adapter->netdev,
2924 "MAS: Enabling Media Autosense for port %d\n",
2925 hw->bus.func);
2926 }
2927 break;
2928 case E1000_FUNC_1:
2929 if (eeprom_data & IGB_MAS_ENABLE_1) {
2930 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2931 netdev_info(adapter->netdev,
2932 "MAS: Enabling Media Autosense for port %d\n",
2933 hw->bus.func);
2934 }
2935 break;
2936 case E1000_FUNC_2:
2937 if (eeprom_data & IGB_MAS_ENABLE_2) {
2938 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2939 netdev_info(adapter->netdev,
2940 "MAS: Enabling Media Autosense for port %d\n",
2941 hw->bus.func);
2942 }
2943 break;
2944 case E1000_FUNC_3:
2945 if (eeprom_data & IGB_MAS_ENABLE_3) {
2946 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2947 netdev_info(adapter->netdev,
2948 "MAS: Enabling Media Autosense for port %d\n",
2949 hw->bus.func);
2950 }
2951 break;
2952 default:
2953 /* Shouldn't get here */
2954 netdev_err(adapter->netdev,
2955 "MAS: Invalid port configuration, returning\n");
2956 break;
2957 }
2958 }
2959
2960 /**
2961 * igb_init_i2c - Init I2C interface
2962 * @adapter: pointer to adapter structure
2963 **/
igb_init_i2c(struct igb_adapter * adapter)2964 static s32 igb_init_i2c(struct igb_adapter *adapter)
2965 {
2966 s32 status = 0;
2967
2968 /* I2C interface supported on i350 devices */
2969 if (adapter->hw.mac.type != e1000_i350)
2970 return 0;
2971
2972 /* Initialize the i2c bus which is controlled by the registers.
2973 * This bus will use the i2c_algo_bit structue that implements
2974 * the protocol through toggling of the 4 bits in the register.
2975 */
2976 adapter->i2c_adap.owner = THIS_MODULE;
2977 adapter->i2c_algo = igb_i2c_algo;
2978 adapter->i2c_algo.data = adapter;
2979 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2980 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2981 strlcpy(adapter->i2c_adap.name, "igb BB",
2982 sizeof(adapter->i2c_adap.name));
2983 status = i2c_bit_add_bus(&adapter->i2c_adap);
2984 return status;
2985 }
2986
2987 /**
2988 * igb_probe - Device Initialization Routine
2989 * @pdev: PCI device information struct
2990 * @ent: entry in igb_pci_tbl
2991 *
2992 * Returns 0 on success, negative on failure
2993 *
2994 * igb_probe initializes an adapter identified by a pci_dev structure.
2995 * The OS initialization, configuring of the adapter private structure,
2996 * and a hardware reset occur.
2997 **/
igb_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2998 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2999 {
3000 struct net_device *netdev;
3001 struct igb_adapter *adapter;
3002 struct e1000_hw *hw;
3003 u16 eeprom_data = 0;
3004 s32 ret_val;
3005 static int global_quad_port_a; /* global quad port a indication */
3006 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3007 int err, pci_using_dac;
3008 u8 part_str[E1000_PBANUM_LENGTH];
3009
3010 /* Catch broken hardware that put the wrong VF device ID in
3011 * the PCIe SR-IOV capability.
3012 */
3013 if (pdev->is_virtfn) {
3014 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
3015 pci_name(pdev), pdev->vendor, pdev->device);
3016 return -EINVAL;
3017 }
3018
3019 err = pci_enable_device_mem(pdev);
3020 if (err)
3021 return err;
3022
3023 pci_using_dac = 0;
3024 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3025 if (!err) {
3026 pci_using_dac = 1;
3027 } else {
3028 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3029 if (err) {
3030 dev_err(&pdev->dev,
3031 "No usable DMA configuration, aborting\n");
3032 goto err_dma;
3033 }
3034 }
3035
3036 err = pci_request_mem_regions(pdev, igb_driver_name);
3037 if (err)
3038 goto err_pci_reg;
3039
3040 pci_enable_pcie_error_reporting(pdev);
3041
3042 pci_set_master(pdev);
3043 pci_save_state(pdev);
3044
3045 err = -ENOMEM;
3046 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3047 IGB_MAX_TX_QUEUES);
3048 if (!netdev)
3049 goto err_alloc_etherdev;
3050
3051 SET_NETDEV_DEV(netdev, &pdev->dev);
3052
3053 pci_set_drvdata(pdev, netdev);
3054 adapter = netdev_priv(netdev);
3055 adapter->netdev = netdev;
3056 adapter->pdev = pdev;
3057 hw = &adapter->hw;
3058 hw->back = adapter;
3059 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3060
3061 err = -EIO;
3062 adapter->io_addr = pci_iomap(pdev, 0, 0);
3063 if (!adapter->io_addr)
3064 goto err_ioremap;
3065 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3066 hw->hw_addr = adapter->io_addr;
3067
3068 netdev->netdev_ops = &igb_netdev_ops;
3069 igb_set_ethtool_ops(netdev);
3070 netdev->watchdog_timeo = 5 * HZ;
3071
3072 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3073
3074 netdev->mem_start = pci_resource_start(pdev, 0);
3075 netdev->mem_end = pci_resource_end(pdev, 0);
3076
3077 /* PCI config space info */
3078 hw->vendor_id = pdev->vendor;
3079 hw->device_id = pdev->device;
3080 hw->revision_id = pdev->revision;
3081 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3082 hw->subsystem_device_id = pdev->subsystem_device;
3083
3084 /* Copy the default MAC, PHY and NVM function pointers */
3085 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3086 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3087 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3088 /* Initialize skew-specific constants */
3089 err = ei->get_invariants(hw);
3090 if (err)
3091 goto err_sw_init;
3092
3093 /* setup the private structure */
3094 err = igb_sw_init(adapter);
3095 if (err)
3096 goto err_sw_init;
3097
3098 igb_get_bus_info_pcie(hw);
3099
3100 hw->phy.autoneg_wait_to_complete = false;
3101
3102 /* Copper options */
3103 if (hw->phy.media_type == e1000_media_type_copper) {
3104 hw->phy.mdix = AUTO_ALL_MODES;
3105 hw->phy.disable_polarity_correction = false;
3106 hw->phy.ms_type = e1000_ms_hw_default;
3107 }
3108
3109 if (igb_check_reset_block(hw))
3110 dev_info(&pdev->dev,
3111 "PHY reset is blocked due to SOL/IDER session.\n");
3112
3113 /* features is initialized to 0 in allocation, it might have bits
3114 * set by igb_sw_init so we should use an or instead of an
3115 * assignment.
3116 */
3117 netdev->features |= NETIF_F_SG |
3118 NETIF_F_TSO |
3119 NETIF_F_TSO6 |
3120 NETIF_F_RXHASH |
3121 NETIF_F_RXCSUM |
3122 NETIF_F_HW_CSUM;
3123
3124 if (hw->mac.type >= e1000_82576)
3125 netdev->features |= NETIF_F_SCTP_CRC;
3126
3127 if (hw->mac.type >= e1000_i350)
3128 netdev->features |= NETIF_F_HW_TC;
3129
3130 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3131 NETIF_F_GSO_GRE_CSUM | \
3132 NETIF_F_GSO_IPXIP4 | \
3133 NETIF_F_GSO_IPXIP6 | \
3134 NETIF_F_GSO_UDP_TUNNEL | \
3135 NETIF_F_GSO_UDP_TUNNEL_CSUM)
3136
3137 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3138 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3139
3140 /* copy netdev features into list of user selectable features */
3141 netdev->hw_features |= netdev->features |
3142 NETIF_F_HW_VLAN_CTAG_RX |
3143 NETIF_F_HW_VLAN_CTAG_TX |
3144 NETIF_F_RXALL;
3145
3146 if (hw->mac.type >= e1000_i350)
3147 netdev->hw_features |= NETIF_F_NTUPLE;
3148
3149 if (pci_using_dac)
3150 netdev->features |= NETIF_F_HIGHDMA;
3151
3152 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3153 netdev->mpls_features |= NETIF_F_HW_CSUM;
3154 netdev->hw_enc_features |= netdev->vlan_features;
3155
3156 /* set this bit last since it cannot be part of vlan_features */
3157 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3158 NETIF_F_HW_VLAN_CTAG_RX |
3159 NETIF_F_HW_VLAN_CTAG_TX;
3160
3161 netdev->priv_flags |= IFF_SUPP_NOFCS;
3162
3163 netdev->priv_flags |= IFF_UNICAST_FLT;
3164
3165 /* MTU range: 68 - 9216 */
3166 netdev->min_mtu = ETH_MIN_MTU;
3167 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3168
3169 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3170
3171 /* before reading the NVM, reset the controller to put the device in a
3172 * known good starting state
3173 */
3174 hw->mac.ops.reset_hw(hw);
3175
3176 /* make sure the NVM is good , i211/i210 parts can have special NVM
3177 * that doesn't contain a checksum
3178 */
3179 switch (hw->mac.type) {
3180 case e1000_i210:
3181 case e1000_i211:
3182 if (igb_get_flash_presence_i210(hw)) {
3183 if (hw->nvm.ops.validate(hw) < 0) {
3184 dev_err(&pdev->dev,
3185 "The NVM Checksum Is Not Valid\n");
3186 err = -EIO;
3187 goto err_eeprom;
3188 }
3189 }
3190 break;
3191 default:
3192 if (hw->nvm.ops.validate(hw) < 0) {
3193 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3194 err = -EIO;
3195 goto err_eeprom;
3196 }
3197 break;
3198 }
3199
3200 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3201 /* copy the MAC address out of the NVM */
3202 if (hw->mac.ops.read_mac_addr(hw))
3203 dev_err(&pdev->dev, "NVM Read Error\n");
3204 }
3205
3206 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
3207
3208 if (!is_valid_ether_addr(netdev->dev_addr)) {
3209 dev_err(&pdev->dev, "Invalid MAC Address\n");
3210 err = -EIO;
3211 goto err_eeprom;
3212 }
3213
3214 igb_set_default_mac_filter(adapter);
3215
3216 /* get firmware version for ethtool -i */
3217 igb_set_fw_version(adapter);
3218
3219 /* configure RXPBSIZE and TXPBSIZE */
3220 if (hw->mac.type == e1000_i210) {
3221 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3222 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3223 }
3224
3225 timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3226 timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3227
3228 INIT_WORK(&adapter->reset_task, igb_reset_task);
3229 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3230
3231 /* Initialize link properties that are user-changeable */
3232 adapter->fc_autoneg = true;
3233 hw->mac.autoneg = true;
3234 hw->phy.autoneg_advertised = 0x2f;
3235
3236 hw->fc.requested_mode = e1000_fc_default;
3237 hw->fc.current_mode = e1000_fc_default;
3238
3239 igb_validate_mdi_setting(hw);
3240
3241 /* By default, support wake on port A */
3242 if (hw->bus.func == 0)
3243 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3244
3245 /* Check the NVM for wake support on non-port A ports */
3246 if (hw->mac.type >= e1000_82580)
3247 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3248 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3249 &eeprom_data);
3250 else if (hw->bus.func == 1)
3251 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3252
3253 if (eeprom_data & IGB_EEPROM_APME)
3254 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3255
3256 /* now that we have the eeprom settings, apply the special cases where
3257 * the eeprom may be wrong or the board simply won't support wake on
3258 * lan on a particular port
3259 */
3260 switch (pdev->device) {
3261 case E1000_DEV_ID_82575GB_QUAD_COPPER:
3262 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3263 break;
3264 case E1000_DEV_ID_82575EB_FIBER_SERDES:
3265 case E1000_DEV_ID_82576_FIBER:
3266 case E1000_DEV_ID_82576_SERDES:
3267 /* Wake events only supported on port A for dual fiber
3268 * regardless of eeprom setting
3269 */
3270 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3271 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3272 break;
3273 case E1000_DEV_ID_82576_QUAD_COPPER:
3274 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3275 /* if quad port adapter, disable WoL on all but port A */
3276 if (global_quad_port_a != 0)
3277 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3278 else
3279 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3280 /* Reset for multiple quad port adapters */
3281 if (++global_quad_port_a == 4)
3282 global_quad_port_a = 0;
3283 break;
3284 default:
3285 /* If the device can't wake, don't set software support */
3286 if (!device_can_wakeup(&adapter->pdev->dev))
3287 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3288 }
3289
3290 /* initialize the wol settings based on the eeprom settings */
3291 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3292 adapter->wol |= E1000_WUFC_MAG;
3293
3294 /* Some vendors want WoL disabled by default, but still supported */
3295 if ((hw->mac.type == e1000_i350) &&
3296 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3297 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3298 adapter->wol = 0;
3299 }
3300
3301 /* Some vendors want the ability to Use the EEPROM setting as
3302 * enable/disable only, and not for capability
3303 */
3304 if (((hw->mac.type == e1000_i350) ||
3305 (hw->mac.type == e1000_i354)) &&
3306 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3307 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3308 adapter->wol = 0;
3309 }
3310 if (hw->mac.type == e1000_i350) {
3311 if (((pdev->subsystem_device == 0x5001) ||
3312 (pdev->subsystem_device == 0x5002)) &&
3313 (hw->bus.func == 0)) {
3314 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3315 adapter->wol = 0;
3316 }
3317 if (pdev->subsystem_device == 0x1F52)
3318 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3319 }
3320
3321 device_set_wakeup_enable(&adapter->pdev->dev,
3322 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3323
3324 /* reset the hardware with the new settings */
3325 igb_reset(adapter);
3326
3327 /* Init the I2C interface */
3328 err = igb_init_i2c(adapter);
3329 if (err) {
3330 dev_err(&pdev->dev, "failed to init i2c interface\n");
3331 goto err_eeprom;
3332 }
3333
3334 /* let the f/w know that the h/w is now under the control of the
3335 * driver.
3336 */
3337 igb_get_hw_control(adapter);
3338
3339 strcpy(netdev->name, "eth%d");
3340 err = register_netdev(netdev);
3341 if (err)
3342 goto err_register;
3343
3344 /* carrier off reporting is important to ethtool even BEFORE open */
3345 netif_carrier_off(netdev);
3346
3347 #ifdef CONFIG_IGB_DCA
3348 if (dca_add_requester(&pdev->dev) == 0) {
3349 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3350 dev_info(&pdev->dev, "DCA enabled\n");
3351 igb_setup_dca(adapter);
3352 }
3353
3354 #endif
3355 #ifdef CONFIG_IGB_HWMON
3356 /* Initialize the thermal sensor on i350 devices. */
3357 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3358 u16 ets_word;
3359
3360 /* Read the NVM to determine if this i350 device supports an
3361 * external thermal sensor.
3362 */
3363 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3364 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3365 adapter->ets = true;
3366 else
3367 adapter->ets = false;
3368 if (igb_sysfs_init(adapter))
3369 dev_err(&pdev->dev,
3370 "failed to allocate sysfs resources\n");
3371 } else {
3372 adapter->ets = false;
3373 }
3374 #endif
3375 /* Check if Media Autosense is enabled */
3376 adapter->ei = *ei;
3377 if (hw->dev_spec._82575.mas_capable)
3378 igb_init_mas(adapter);
3379
3380 /* do hw tstamp init after resetting */
3381 igb_ptp_init(adapter);
3382
3383 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3384 /* print bus type/speed/width info, not applicable to i354 */
3385 if (hw->mac.type != e1000_i354) {
3386 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3387 netdev->name,
3388 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3389 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3390 "unknown"),
3391 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3392 "Width x4" :
3393 (hw->bus.width == e1000_bus_width_pcie_x2) ?
3394 "Width x2" :
3395 (hw->bus.width == e1000_bus_width_pcie_x1) ?
3396 "Width x1" : "unknown"), netdev->dev_addr);
3397 }
3398
3399 if ((hw->mac.type >= e1000_i210 ||
3400 igb_get_flash_presence_i210(hw))) {
3401 ret_val = igb_read_part_string(hw, part_str,
3402 E1000_PBANUM_LENGTH);
3403 } else {
3404 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3405 }
3406
3407 if (ret_val)
3408 strcpy(part_str, "Unknown");
3409 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3410 dev_info(&pdev->dev,
3411 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3412 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3413 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3414 adapter->num_rx_queues, adapter->num_tx_queues);
3415 if (hw->phy.media_type == e1000_media_type_copper) {
3416 switch (hw->mac.type) {
3417 case e1000_i350:
3418 case e1000_i210:
3419 case e1000_i211:
3420 /* Enable EEE for internal copper PHY devices */
3421 err = igb_set_eee_i350(hw, true, true);
3422 if ((!err) &&
3423 (!hw->dev_spec._82575.eee_disable)) {
3424 adapter->eee_advert =
3425 MDIO_EEE_100TX | MDIO_EEE_1000T;
3426 adapter->flags |= IGB_FLAG_EEE;
3427 }
3428 break;
3429 case e1000_i354:
3430 if ((rd32(E1000_CTRL_EXT) &
3431 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3432 err = igb_set_eee_i354(hw, true, true);
3433 if ((!err) &&
3434 (!hw->dev_spec._82575.eee_disable)) {
3435 adapter->eee_advert =
3436 MDIO_EEE_100TX | MDIO_EEE_1000T;
3437 adapter->flags |= IGB_FLAG_EEE;
3438 }
3439 }
3440 break;
3441 default:
3442 break;
3443 }
3444 }
3445
3446 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NEVER_SKIP);
3447
3448 pm_runtime_put_noidle(&pdev->dev);
3449 return 0;
3450
3451 err_register:
3452 igb_release_hw_control(adapter);
3453 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3454 err_eeprom:
3455 if (!igb_check_reset_block(hw))
3456 igb_reset_phy(hw);
3457
3458 if (hw->flash_address)
3459 iounmap(hw->flash_address);
3460 err_sw_init:
3461 kfree(adapter->mac_table);
3462 kfree(adapter->shadow_vfta);
3463 igb_clear_interrupt_scheme(adapter);
3464 #ifdef CONFIG_PCI_IOV
3465 igb_disable_sriov(pdev);
3466 #endif
3467 pci_iounmap(pdev, adapter->io_addr);
3468 err_ioremap:
3469 free_netdev(netdev);
3470 err_alloc_etherdev:
3471 pci_release_mem_regions(pdev);
3472 err_pci_reg:
3473 err_dma:
3474 pci_disable_device(pdev);
3475 return err;
3476 }
3477
3478 #ifdef CONFIG_PCI_IOV
igb_disable_sriov(struct pci_dev * pdev)3479 static int igb_disable_sriov(struct pci_dev *pdev)
3480 {
3481 struct net_device *netdev = pci_get_drvdata(pdev);
3482 struct igb_adapter *adapter = netdev_priv(netdev);
3483 struct e1000_hw *hw = &adapter->hw;
3484
3485 /* reclaim resources allocated to VFs */
3486 if (adapter->vf_data) {
3487 /* disable iov and allow time for transactions to clear */
3488 if (pci_vfs_assigned(pdev)) {
3489 dev_warn(&pdev->dev,
3490 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3491 return -EPERM;
3492 } else {
3493 pci_disable_sriov(pdev);
3494 msleep(500);
3495 }
3496
3497 kfree(adapter->vf_mac_list);
3498 adapter->vf_mac_list = NULL;
3499 kfree(adapter->vf_data);
3500 adapter->vf_data = NULL;
3501 adapter->vfs_allocated_count = 0;
3502 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3503 wrfl();
3504 msleep(100);
3505 dev_info(&pdev->dev, "IOV Disabled\n");
3506
3507 /* Re-enable DMA Coalescing flag since IOV is turned off */
3508 adapter->flags |= IGB_FLAG_DMAC;
3509 }
3510
3511 return 0;
3512 }
3513
igb_enable_sriov(struct pci_dev * pdev,int num_vfs)3514 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3515 {
3516 struct net_device *netdev = pci_get_drvdata(pdev);
3517 struct igb_adapter *adapter = netdev_priv(netdev);
3518 int old_vfs = pci_num_vf(pdev);
3519 struct vf_mac_filter *mac_list;
3520 int err = 0;
3521 int num_vf_mac_filters, i;
3522
3523 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3524 err = -EPERM;
3525 goto out;
3526 }
3527 if (!num_vfs)
3528 goto out;
3529
3530 if (old_vfs) {
3531 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3532 old_vfs, max_vfs);
3533 adapter->vfs_allocated_count = old_vfs;
3534 } else
3535 adapter->vfs_allocated_count = num_vfs;
3536
3537 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3538 sizeof(struct vf_data_storage), GFP_KERNEL);
3539
3540 /* if allocation failed then we do not support SR-IOV */
3541 if (!adapter->vf_data) {
3542 adapter->vfs_allocated_count = 0;
3543 err = -ENOMEM;
3544 goto out;
3545 }
3546
3547 /* Due to the limited number of RAR entries calculate potential
3548 * number of MAC filters available for the VFs. Reserve entries
3549 * for PF default MAC, PF MAC filters and at least one RAR entry
3550 * for each VF for VF MAC.
3551 */
3552 num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3553 (1 + IGB_PF_MAC_FILTERS_RESERVED +
3554 adapter->vfs_allocated_count);
3555
3556 adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3557 sizeof(struct vf_mac_filter),
3558 GFP_KERNEL);
3559
3560 mac_list = adapter->vf_mac_list;
3561 INIT_LIST_HEAD(&adapter->vf_macs.l);
3562
3563 if (adapter->vf_mac_list) {
3564 /* Initialize list of VF MAC filters */
3565 for (i = 0; i < num_vf_mac_filters; i++) {
3566 mac_list->vf = -1;
3567 mac_list->free = true;
3568 list_add(&mac_list->l, &adapter->vf_macs.l);
3569 mac_list++;
3570 }
3571 } else {
3572 /* If we could not allocate memory for the VF MAC filters
3573 * we can continue without this feature but warn user.
3574 */
3575 dev_err(&pdev->dev,
3576 "Unable to allocate memory for VF MAC filter list\n");
3577 }
3578
3579 /* only call pci_enable_sriov() if no VFs are allocated already */
3580 if (!old_vfs) {
3581 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3582 if (err)
3583 goto err_out;
3584 }
3585 dev_info(&pdev->dev, "%d VFs allocated\n",
3586 adapter->vfs_allocated_count);
3587 for (i = 0; i < adapter->vfs_allocated_count; i++)
3588 igb_vf_configure(adapter, i);
3589
3590 /* DMA Coalescing is not supported in IOV mode. */
3591 adapter->flags &= ~IGB_FLAG_DMAC;
3592 goto out;
3593
3594 err_out:
3595 kfree(adapter->vf_mac_list);
3596 adapter->vf_mac_list = NULL;
3597 kfree(adapter->vf_data);
3598 adapter->vf_data = NULL;
3599 adapter->vfs_allocated_count = 0;
3600 out:
3601 return err;
3602 }
3603
3604 #endif
3605 /**
3606 * igb_remove_i2c - Cleanup I2C interface
3607 * @adapter: pointer to adapter structure
3608 **/
igb_remove_i2c(struct igb_adapter * adapter)3609 static void igb_remove_i2c(struct igb_adapter *adapter)
3610 {
3611 /* free the adapter bus structure */
3612 i2c_del_adapter(&adapter->i2c_adap);
3613 }
3614
3615 /**
3616 * igb_remove - Device Removal Routine
3617 * @pdev: PCI device information struct
3618 *
3619 * igb_remove is called by the PCI subsystem to alert the driver
3620 * that it should release a PCI device. The could be caused by a
3621 * Hot-Plug event, or because the driver is going to be removed from
3622 * memory.
3623 **/
igb_remove(struct pci_dev * pdev)3624 static void igb_remove(struct pci_dev *pdev)
3625 {
3626 struct net_device *netdev = pci_get_drvdata(pdev);
3627 struct igb_adapter *adapter = netdev_priv(netdev);
3628 struct e1000_hw *hw = &adapter->hw;
3629
3630 pm_runtime_get_noresume(&pdev->dev);
3631 #ifdef CONFIG_IGB_HWMON
3632 igb_sysfs_exit(adapter);
3633 #endif
3634 igb_remove_i2c(adapter);
3635 igb_ptp_stop(adapter);
3636 /* The watchdog timer may be rescheduled, so explicitly
3637 * disable watchdog from being rescheduled.
3638 */
3639 set_bit(__IGB_DOWN, &adapter->state);
3640 del_timer_sync(&adapter->watchdog_timer);
3641 del_timer_sync(&adapter->phy_info_timer);
3642
3643 cancel_work_sync(&adapter->reset_task);
3644 cancel_work_sync(&adapter->watchdog_task);
3645
3646 #ifdef CONFIG_IGB_DCA
3647 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3648 dev_info(&pdev->dev, "DCA disabled\n");
3649 dca_remove_requester(&pdev->dev);
3650 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3651 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3652 }
3653 #endif
3654
3655 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3656 * would have already happened in close and is redundant.
3657 */
3658 igb_release_hw_control(adapter);
3659
3660 #ifdef CONFIG_PCI_IOV
3661 igb_disable_sriov(pdev);
3662 #endif
3663
3664 unregister_netdev(netdev);
3665
3666 igb_clear_interrupt_scheme(adapter);
3667
3668 pci_iounmap(pdev, adapter->io_addr);
3669 if (hw->flash_address)
3670 iounmap(hw->flash_address);
3671 pci_release_mem_regions(pdev);
3672
3673 kfree(adapter->mac_table);
3674 kfree(adapter->shadow_vfta);
3675 free_netdev(netdev);
3676
3677 pci_disable_pcie_error_reporting(pdev);
3678
3679 pci_disable_device(pdev);
3680 }
3681
3682 /**
3683 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3684 * @adapter: board private structure to initialize
3685 *
3686 * This function initializes the vf specific data storage and then attempts to
3687 * allocate the VFs. The reason for ordering it this way is because it is much
3688 * mor expensive time wise to disable SR-IOV than it is to allocate and free
3689 * the memory for the VFs.
3690 **/
igb_probe_vfs(struct igb_adapter * adapter)3691 static void igb_probe_vfs(struct igb_adapter *adapter)
3692 {
3693 #ifdef CONFIG_PCI_IOV
3694 struct pci_dev *pdev = adapter->pdev;
3695 struct e1000_hw *hw = &adapter->hw;
3696
3697 /* Virtualization features not supported on i210 family. */
3698 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3699 return;
3700
3701 /* Of the below we really only want the effect of getting
3702 * IGB_FLAG_HAS_MSIX set (if available), without which
3703 * igb_enable_sriov() has no effect.
3704 */
3705 igb_set_interrupt_capability(adapter, true);
3706 igb_reset_interrupt_capability(adapter);
3707
3708 pci_sriov_set_totalvfs(pdev, 7);
3709 igb_enable_sriov(pdev, max_vfs);
3710
3711 #endif /* CONFIG_PCI_IOV */
3712 }
3713
igb_get_max_rss_queues(struct igb_adapter * adapter)3714 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3715 {
3716 struct e1000_hw *hw = &adapter->hw;
3717 unsigned int max_rss_queues;
3718
3719 /* Determine the maximum number of RSS queues supported. */
3720 switch (hw->mac.type) {
3721 case e1000_i211:
3722 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3723 break;
3724 case e1000_82575:
3725 case e1000_i210:
3726 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3727 break;
3728 case e1000_i350:
3729 /* I350 cannot do RSS and SR-IOV at the same time */
3730 if (!!adapter->vfs_allocated_count) {
3731 max_rss_queues = 1;
3732 break;
3733 }
3734 /* fall through */
3735 case e1000_82576:
3736 if (!!adapter->vfs_allocated_count) {
3737 max_rss_queues = 2;
3738 break;
3739 }
3740 /* fall through */
3741 case e1000_82580:
3742 case e1000_i354:
3743 default:
3744 max_rss_queues = IGB_MAX_RX_QUEUES;
3745 break;
3746 }
3747
3748 return max_rss_queues;
3749 }
3750
igb_init_queue_configuration(struct igb_adapter * adapter)3751 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3752 {
3753 u32 max_rss_queues;
3754
3755 max_rss_queues = igb_get_max_rss_queues(adapter);
3756 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3757
3758 igb_set_flag_queue_pairs(adapter, max_rss_queues);
3759 }
3760
igb_set_flag_queue_pairs(struct igb_adapter * adapter,const u32 max_rss_queues)3761 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3762 const u32 max_rss_queues)
3763 {
3764 struct e1000_hw *hw = &adapter->hw;
3765
3766 /* Determine if we need to pair queues. */
3767 switch (hw->mac.type) {
3768 case e1000_82575:
3769 case e1000_i211:
3770 /* Device supports enough interrupts without queue pairing. */
3771 break;
3772 case e1000_82576:
3773 case e1000_82580:
3774 case e1000_i350:
3775 case e1000_i354:
3776 case e1000_i210:
3777 default:
3778 /* If rss_queues > half of max_rss_queues, pair the queues in
3779 * order to conserve interrupts due to limited supply.
3780 */
3781 if (adapter->rss_queues > (max_rss_queues / 2))
3782 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3783 else
3784 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3785 break;
3786 }
3787 }
3788
3789 /**
3790 * igb_sw_init - Initialize general software structures (struct igb_adapter)
3791 * @adapter: board private structure to initialize
3792 *
3793 * igb_sw_init initializes the Adapter private data structure.
3794 * Fields are initialized based on PCI device information and
3795 * OS network device settings (MTU size).
3796 **/
igb_sw_init(struct igb_adapter * adapter)3797 static int igb_sw_init(struct igb_adapter *adapter)
3798 {
3799 struct e1000_hw *hw = &adapter->hw;
3800 struct net_device *netdev = adapter->netdev;
3801 struct pci_dev *pdev = adapter->pdev;
3802
3803 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3804
3805 /* set default ring sizes */
3806 adapter->tx_ring_count = IGB_DEFAULT_TXD;
3807 adapter->rx_ring_count = IGB_DEFAULT_RXD;
3808
3809 /* set default ITR values */
3810 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3811 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3812
3813 /* set default work limits */
3814 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3815
3816 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3817 VLAN_HLEN;
3818 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3819
3820 spin_lock_init(&adapter->nfc_lock);
3821 spin_lock_init(&adapter->stats64_lock);
3822 #ifdef CONFIG_PCI_IOV
3823 switch (hw->mac.type) {
3824 case e1000_82576:
3825 case e1000_i350:
3826 if (max_vfs > 7) {
3827 dev_warn(&pdev->dev,
3828 "Maximum of 7 VFs per PF, using max\n");
3829 max_vfs = adapter->vfs_allocated_count = 7;
3830 } else
3831 adapter->vfs_allocated_count = max_vfs;
3832 if (adapter->vfs_allocated_count)
3833 dev_warn(&pdev->dev,
3834 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3835 break;
3836 default:
3837 break;
3838 }
3839 #endif /* CONFIG_PCI_IOV */
3840
3841 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3842 adapter->flags |= IGB_FLAG_HAS_MSIX;
3843
3844 adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
3845 sizeof(struct igb_mac_addr),
3846 GFP_KERNEL);
3847 if (!adapter->mac_table)
3848 return -ENOMEM;
3849
3850 igb_probe_vfs(adapter);
3851
3852 igb_init_queue_configuration(adapter);
3853
3854 /* Setup and initialize a copy of the hw vlan table array */
3855 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3856 GFP_KERNEL);
3857 if (!adapter->shadow_vfta)
3858 return -ENOMEM;
3859
3860 /* This call may decrease the number of queues */
3861 if (igb_init_interrupt_scheme(adapter, true)) {
3862 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3863 return -ENOMEM;
3864 }
3865
3866 /* Explicitly disable IRQ since the NIC can be in any state. */
3867 igb_irq_disable(adapter);
3868
3869 if (hw->mac.type >= e1000_i350)
3870 adapter->flags &= ~IGB_FLAG_DMAC;
3871
3872 set_bit(__IGB_DOWN, &adapter->state);
3873 return 0;
3874 }
3875
3876 /**
3877 * igb_open - Called when a network interface is made active
3878 * @netdev: network interface device structure
3879 *
3880 * Returns 0 on success, negative value on failure
3881 *
3882 * The open entry point is called when a network interface is made
3883 * active by the system (IFF_UP). At this point all resources needed
3884 * for transmit and receive operations are allocated, the interrupt
3885 * handler is registered with the OS, the watchdog timer is started,
3886 * and the stack is notified that the interface is ready.
3887 **/
__igb_open(struct net_device * netdev,bool resuming)3888 static int __igb_open(struct net_device *netdev, bool resuming)
3889 {
3890 struct igb_adapter *adapter = netdev_priv(netdev);
3891 struct e1000_hw *hw = &adapter->hw;
3892 struct pci_dev *pdev = adapter->pdev;
3893 int err;
3894 int i;
3895
3896 /* disallow open during test */
3897 if (test_bit(__IGB_TESTING, &adapter->state)) {
3898 WARN_ON(resuming);
3899 return -EBUSY;
3900 }
3901
3902 if (!resuming)
3903 pm_runtime_get_sync(&pdev->dev);
3904
3905 netif_carrier_off(netdev);
3906
3907 /* allocate transmit descriptors */
3908 err = igb_setup_all_tx_resources(adapter);
3909 if (err)
3910 goto err_setup_tx;
3911
3912 /* allocate receive descriptors */
3913 err = igb_setup_all_rx_resources(adapter);
3914 if (err)
3915 goto err_setup_rx;
3916
3917 igb_power_up_link(adapter);
3918
3919 /* before we allocate an interrupt, we must be ready to handle it.
3920 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3921 * as soon as we call pci_request_irq, so we have to setup our
3922 * clean_rx handler before we do so.
3923 */
3924 igb_configure(adapter);
3925
3926 err = igb_request_irq(adapter);
3927 if (err)
3928 goto err_req_irq;
3929
3930 /* Notify the stack of the actual queue counts. */
3931 err = netif_set_real_num_tx_queues(adapter->netdev,
3932 adapter->num_tx_queues);
3933 if (err)
3934 goto err_set_queues;
3935
3936 err = netif_set_real_num_rx_queues(adapter->netdev,
3937 adapter->num_rx_queues);
3938 if (err)
3939 goto err_set_queues;
3940
3941 /* From here on the code is the same as igb_up() */
3942 clear_bit(__IGB_DOWN, &adapter->state);
3943
3944 for (i = 0; i < adapter->num_q_vectors; i++)
3945 napi_enable(&(adapter->q_vector[i]->napi));
3946
3947 /* Clear any pending interrupts. */
3948 rd32(E1000_TSICR);
3949 rd32(E1000_ICR);
3950
3951 igb_irq_enable(adapter);
3952
3953 /* notify VFs that reset has been completed */
3954 if (adapter->vfs_allocated_count) {
3955 u32 reg_data = rd32(E1000_CTRL_EXT);
3956
3957 reg_data |= E1000_CTRL_EXT_PFRSTD;
3958 wr32(E1000_CTRL_EXT, reg_data);
3959 }
3960
3961 netif_tx_start_all_queues(netdev);
3962
3963 if (!resuming)
3964 pm_runtime_put(&pdev->dev);
3965
3966 /* start the watchdog. */
3967 hw->mac.get_link_status = 1;
3968 schedule_work(&adapter->watchdog_task);
3969
3970 return 0;
3971
3972 err_set_queues:
3973 igb_free_irq(adapter);
3974 err_req_irq:
3975 igb_release_hw_control(adapter);
3976 igb_power_down_link(adapter);
3977 igb_free_all_rx_resources(adapter);
3978 err_setup_rx:
3979 igb_free_all_tx_resources(adapter);
3980 err_setup_tx:
3981 igb_reset(adapter);
3982 if (!resuming)
3983 pm_runtime_put(&pdev->dev);
3984
3985 return err;
3986 }
3987
igb_open(struct net_device * netdev)3988 int igb_open(struct net_device *netdev)
3989 {
3990 return __igb_open(netdev, false);
3991 }
3992
3993 /**
3994 * igb_close - Disables a network interface
3995 * @netdev: network interface device structure
3996 *
3997 * Returns 0, this is not allowed to fail
3998 *
3999 * The close entry point is called when an interface is de-activated
4000 * by the OS. The hardware is still under the driver's control, but
4001 * needs to be disabled. A global MAC reset is issued to stop the
4002 * hardware, and all transmit and receive resources are freed.
4003 **/
__igb_close(struct net_device * netdev,bool suspending)4004 static int __igb_close(struct net_device *netdev, bool suspending)
4005 {
4006 struct igb_adapter *adapter = netdev_priv(netdev);
4007 struct pci_dev *pdev = adapter->pdev;
4008
4009 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4010
4011 if (!suspending)
4012 pm_runtime_get_sync(&pdev->dev);
4013
4014 igb_down(adapter);
4015 igb_free_irq(adapter);
4016
4017 igb_free_all_tx_resources(adapter);
4018 igb_free_all_rx_resources(adapter);
4019
4020 if (!suspending)
4021 pm_runtime_put_sync(&pdev->dev);
4022 return 0;
4023 }
4024
igb_close(struct net_device * netdev)4025 int igb_close(struct net_device *netdev)
4026 {
4027 if (netif_device_present(netdev) || netdev->dismantle)
4028 return __igb_close(netdev, false);
4029 return 0;
4030 }
4031
4032 /**
4033 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
4034 * @tx_ring: tx descriptor ring (for a specific queue) to setup
4035 *
4036 * Return 0 on success, negative on failure
4037 **/
igb_setup_tx_resources(struct igb_ring * tx_ring)4038 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4039 {
4040 struct device *dev = tx_ring->dev;
4041 int size;
4042
4043 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4044
4045 tx_ring->tx_buffer_info = vmalloc(size);
4046 if (!tx_ring->tx_buffer_info)
4047 goto err;
4048
4049 /* round up to nearest 4K */
4050 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4051 tx_ring->size = ALIGN(tx_ring->size, 4096);
4052
4053 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4054 &tx_ring->dma, GFP_KERNEL);
4055 if (!tx_ring->desc)
4056 goto err;
4057
4058 tx_ring->next_to_use = 0;
4059 tx_ring->next_to_clean = 0;
4060
4061 return 0;
4062
4063 err:
4064 vfree(tx_ring->tx_buffer_info);
4065 tx_ring->tx_buffer_info = NULL;
4066 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4067 return -ENOMEM;
4068 }
4069
4070 /**
4071 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
4072 * (Descriptors) for all queues
4073 * @adapter: board private structure
4074 *
4075 * Return 0 on success, negative on failure
4076 **/
igb_setup_all_tx_resources(struct igb_adapter * adapter)4077 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4078 {
4079 struct pci_dev *pdev = adapter->pdev;
4080 int i, err = 0;
4081
4082 for (i = 0; i < adapter->num_tx_queues; i++) {
4083 err = igb_setup_tx_resources(adapter->tx_ring[i]);
4084 if (err) {
4085 dev_err(&pdev->dev,
4086 "Allocation for Tx Queue %u failed\n", i);
4087 for (i--; i >= 0; i--)
4088 igb_free_tx_resources(adapter->tx_ring[i]);
4089 break;
4090 }
4091 }
4092
4093 return err;
4094 }
4095
4096 /**
4097 * igb_setup_tctl - configure the transmit control registers
4098 * @adapter: Board private structure
4099 **/
igb_setup_tctl(struct igb_adapter * adapter)4100 void igb_setup_tctl(struct igb_adapter *adapter)
4101 {
4102 struct e1000_hw *hw = &adapter->hw;
4103 u32 tctl;
4104
4105 /* disable queue 0 which is enabled by default on 82575 and 82576 */
4106 wr32(E1000_TXDCTL(0), 0);
4107
4108 /* Program the Transmit Control Register */
4109 tctl = rd32(E1000_TCTL);
4110 tctl &= ~E1000_TCTL_CT;
4111 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4112 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4113
4114 igb_config_collision_dist(hw);
4115
4116 /* Enable transmits */
4117 tctl |= E1000_TCTL_EN;
4118
4119 wr32(E1000_TCTL, tctl);
4120 }
4121
4122 /**
4123 * igb_configure_tx_ring - Configure transmit ring after Reset
4124 * @adapter: board private structure
4125 * @ring: tx ring to configure
4126 *
4127 * Configure a transmit ring after a reset.
4128 **/
igb_configure_tx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4129 void igb_configure_tx_ring(struct igb_adapter *adapter,
4130 struct igb_ring *ring)
4131 {
4132 struct e1000_hw *hw = &adapter->hw;
4133 u32 txdctl = 0;
4134 u64 tdba = ring->dma;
4135 int reg_idx = ring->reg_idx;
4136
4137 wr32(E1000_TDLEN(reg_idx),
4138 ring->count * sizeof(union e1000_adv_tx_desc));
4139 wr32(E1000_TDBAL(reg_idx),
4140 tdba & 0x00000000ffffffffULL);
4141 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4142
4143 ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4144 wr32(E1000_TDH(reg_idx), 0);
4145 writel(0, ring->tail);
4146
4147 txdctl |= IGB_TX_PTHRESH;
4148 txdctl |= IGB_TX_HTHRESH << 8;
4149 txdctl |= IGB_TX_WTHRESH << 16;
4150
4151 /* reinitialize tx_buffer_info */
4152 memset(ring->tx_buffer_info, 0,
4153 sizeof(struct igb_tx_buffer) * ring->count);
4154
4155 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4156 wr32(E1000_TXDCTL(reg_idx), txdctl);
4157 }
4158
4159 /**
4160 * igb_configure_tx - Configure transmit Unit after Reset
4161 * @adapter: board private structure
4162 *
4163 * Configure the Tx unit of the MAC after a reset.
4164 **/
igb_configure_tx(struct igb_adapter * adapter)4165 static void igb_configure_tx(struct igb_adapter *adapter)
4166 {
4167 struct e1000_hw *hw = &adapter->hw;
4168 int i;
4169
4170 /* disable the queues */
4171 for (i = 0; i < adapter->num_tx_queues; i++)
4172 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4173
4174 wrfl();
4175 usleep_range(10000, 20000);
4176
4177 for (i = 0; i < adapter->num_tx_queues; i++)
4178 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4179 }
4180
4181 /**
4182 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
4183 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
4184 *
4185 * Returns 0 on success, negative on failure
4186 **/
igb_setup_rx_resources(struct igb_ring * rx_ring)4187 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4188 {
4189 struct device *dev = rx_ring->dev;
4190 int size;
4191
4192 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4193
4194 rx_ring->rx_buffer_info = vmalloc(size);
4195 if (!rx_ring->rx_buffer_info)
4196 goto err;
4197
4198 /* Round up to nearest 4K */
4199 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4200 rx_ring->size = ALIGN(rx_ring->size, 4096);
4201
4202 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4203 &rx_ring->dma, GFP_KERNEL);
4204 if (!rx_ring->desc)
4205 goto err;
4206
4207 rx_ring->next_to_alloc = 0;
4208 rx_ring->next_to_clean = 0;
4209 rx_ring->next_to_use = 0;
4210
4211 return 0;
4212
4213 err:
4214 vfree(rx_ring->rx_buffer_info);
4215 rx_ring->rx_buffer_info = NULL;
4216 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4217 return -ENOMEM;
4218 }
4219
4220 /**
4221 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
4222 * (Descriptors) for all queues
4223 * @adapter: board private structure
4224 *
4225 * Return 0 on success, negative on failure
4226 **/
igb_setup_all_rx_resources(struct igb_adapter * adapter)4227 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4228 {
4229 struct pci_dev *pdev = adapter->pdev;
4230 int i, err = 0;
4231
4232 for (i = 0; i < adapter->num_rx_queues; i++) {
4233 err = igb_setup_rx_resources(adapter->rx_ring[i]);
4234 if (err) {
4235 dev_err(&pdev->dev,
4236 "Allocation for Rx Queue %u failed\n", i);
4237 for (i--; i >= 0; i--)
4238 igb_free_rx_resources(adapter->rx_ring[i]);
4239 break;
4240 }
4241 }
4242
4243 return err;
4244 }
4245
4246 /**
4247 * igb_setup_mrqc - configure the multiple receive queue control registers
4248 * @adapter: Board private structure
4249 **/
igb_setup_mrqc(struct igb_adapter * adapter)4250 static void igb_setup_mrqc(struct igb_adapter *adapter)
4251 {
4252 struct e1000_hw *hw = &adapter->hw;
4253 u32 mrqc, rxcsum;
4254 u32 j, num_rx_queues;
4255 u32 rss_key[10];
4256
4257 netdev_rss_key_fill(rss_key, sizeof(rss_key));
4258 for (j = 0; j < 10; j++)
4259 wr32(E1000_RSSRK(j), rss_key[j]);
4260
4261 num_rx_queues = adapter->rss_queues;
4262
4263 switch (hw->mac.type) {
4264 case e1000_82576:
4265 /* 82576 supports 2 RSS queues for SR-IOV */
4266 if (adapter->vfs_allocated_count)
4267 num_rx_queues = 2;
4268 break;
4269 default:
4270 break;
4271 }
4272
4273 if (adapter->rss_indir_tbl_init != num_rx_queues) {
4274 for (j = 0; j < IGB_RETA_SIZE; j++)
4275 adapter->rss_indir_tbl[j] =
4276 (j * num_rx_queues) / IGB_RETA_SIZE;
4277 adapter->rss_indir_tbl_init = num_rx_queues;
4278 }
4279 igb_write_rss_indir_tbl(adapter);
4280
4281 /* Disable raw packet checksumming so that RSS hash is placed in
4282 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
4283 * offloads as they are enabled by default
4284 */
4285 rxcsum = rd32(E1000_RXCSUM);
4286 rxcsum |= E1000_RXCSUM_PCSD;
4287
4288 if (adapter->hw.mac.type >= e1000_82576)
4289 /* Enable Receive Checksum Offload for SCTP */
4290 rxcsum |= E1000_RXCSUM_CRCOFL;
4291
4292 /* Don't need to set TUOFL or IPOFL, they default to 1 */
4293 wr32(E1000_RXCSUM, rxcsum);
4294
4295 /* Generate RSS hash based on packet types, TCP/UDP
4296 * port numbers and/or IPv4/v6 src and dst addresses
4297 */
4298 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4299 E1000_MRQC_RSS_FIELD_IPV4_TCP |
4300 E1000_MRQC_RSS_FIELD_IPV6 |
4301 E1000_MRQC_RSS_FIELD_IPV6_TCP |
4302 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4303
4304 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4305 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4306 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4307 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4308
4309 /* If VMDq is enabled then we set the appropriate mode for that, else
4310 * we default to RSS so that an RSS hash is calculated per packet even
4311 * if we are only using one queue
4312 */
4313 if (adapter->vfs_allocated_count) {
4314 if (hw->mac.type > e1000_82575) {
4315 /* Set the default pool for the PF's first queue */
4316 u32 vtctl = rd32(E1000_VT_CTL);
4317
4318 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4319 E1000_VT_CTL_DISABLE_DEF_POOL);
4320 vtctl |= adapter->vfs_allocated_count <<
4321 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4322 wr32(E1000_VT_CTL, vtctl);
4323 }
4324 if (adapter->rss_queues > 1)
4325 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4326 else
4327 mrqc |= E1000_MRQC_ENABLE_VMDQ;
4328 } else {
4329 if (hw->mac.type != e1000_i211)
4330 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4331 }
4332 igb_vmm_control(adapter);
4333
4334 wr32(E1000_MRQC, mrqc);
4335 }
4336
4337 /**
4338 * igb_setup_rctl - configure the receive control registers
4339 * @adapter: Board private structure
4340 **/
igb_setup_rctl(struct igb_adapter * adapter)4341 void igb_setup_rctl(struct igb_adapter *adapter)
4342 {
4343 struct e1000_hw *hw = &adapter->hw;
4344 u32 rctl;
4345
4346 rctl = rd32(E1000_RCTL);
4347
4348 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4349 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4350
4351 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4352 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4353
4354 /* enable stripping of CRC. It's unlikely this will break BMC
4355 * redirection as it did with e1000. Newer features require
4356 * that the HW strips the CRC.
4357 */
4358 rctl |= E1000_RCTL_SECRC;
4359
4360 /* disable store bad packets and clear size bits. */
4361 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4362
4363 /* enable LPE to allow for reception of jumbo frames */
4364 rctl |= E1000_RCTL_LPE;
4365
4366 /* disable queue 0 to prevent tail write w/o re-config */
4367 wr32(E1000_RXDCTL(0), 0);
4368
4369 /* Attention!!! For SR-IOV PF driver operations you must enable
4370 * queue drop for all VF and PF queues to prevent head of line blocking
4371 * if an un-trusted VF does not provide descriptors to hardware.
4372 */
4373 if (adapter->vfs_allocated_count) {
4374 /* set all queue drop enable bits */
4375 wr32(E1000_QDE, ALL_QUEUES);
4376 }
4377
4378 /* This is useful for sniffing bad packets. */
4379 if (adapter->netdev->features & NETIF_F_RXALL) {
4380 /* UPE and MPE will be handled by normal PROMISC logic
4381 * in e1000e_set_rx_mode
4382 */
4383 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4384 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4385 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4386
4387 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4388 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4389 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4390 * and that breaks VLANs.
4391 */
4392 }
4393
4394 wr32(E1000_RCTL, rctl);
4395 }
4396
igb_set_vf_rlpml(struct igb_adapter * adapter,int size,int vfn)4397 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4398 int vfn)
4399 {
4400 struct e1000_hw *hw = &adapter->hw;
4401 u32 vmolr;
4402
4403 if (size > MAX_JUMBO_FRAME_SIZE)
4404 size = MAX_JUMBO_FRAME_SIZE;
4405
4406 vmolr = rd32(E1000_VMOLR(vfn));
4407 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4408 vmolr |= size | E1000_VMOLR_LPE;
4409 wr32(E1000_VMOLR(vfn), vmolr);
4410
4411 return 0;
4412 }
4413
igb_set_vf_vlan_strip(struct igb_adapter * adapter,int vfn,bool enable)4414 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4415 int vfn, bool enable)
4416 {
4417 struct e1000_hw *hw = &adapter->hw;
4418 u32 val, reg;
4419
4420 if (hw->mac.type < e1000_82576)
4421 return;
4422
4423 if (hw->mac.type == e1000_i350)
4424 reg = E1000_DVMOLR(vfn);
4425 else
4426 reg = E1000_VMOLR(vfn);
4427
4428 val = rd32(reg);
4429 if (enable)
4430 val |= E1000_VMOLR_STRVLAN;
4431 else
4432 val &= ~(E1000_VMOLR_STRVLAN);
4433 wr32(reg, val);
4434 }
4435
igb_set_vmolr(struct igb_adapter * adapter,int vfn,bool aupe)4436 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4437 int vfn, bool aupe)
4438 {
4439 struct e1000_hw *hw = &adapter->hw;
4440 u32 vmolr;
4441
4442 /* This register exists only on 82576 and newer so if we are older then
4443 * we should exit and do nothing
4444 */
4445 if (hw->mac.type < e1000_82576)
4446 return;
4447
4448 vmolr = rd32(E1000_VMOLR(vfn));
4449 if (aupe)
4450 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4451 else
4452 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4453
4454 /* clear all bits that might not be set */
4455 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4456
4457 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4458 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4459 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4460 * multicast packets
4461 */
4462 if (vfn <= adapter->vfs_allocated_count)
4463 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4464
4465 wr32(E1000_VMOLR(vfn), vmolr);
4466 }
4467
4468 /**
4469 * igb_configure_rx_ring - Configure a receive ring after Reset
4470 * @adapter: board private structure
4471 * @ring: receive ring to be configured
4472 *
4473 * Configure the Rx unit of the MAC after a reset.
4474 **/
igb_configure_rx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4475 void igb_configure_rx_ring(struct igb_adapter *adapter,
4476 struct igb_ring *ring)
4477 {
4478 struct e1000_hw *hw = &adapter->hw;
4479 union e1000_adv_rx_desc *rx_desc;
4480 u64 rdba = ring->dma;
4481 int reg_idx = ring->reg_idx;
4482 u32 srrctl = 0, rxdctl = 0;
4483
4484 /* disable the queue */
4485 wr32(E1000_RXDCTL(reg_idx), 0);
4486
4487 /* Set DMA base address registers */
4488 wr32(E1000_RDBAL(reg_idx),
4489 rdba & 0x00000000ffffffffULL);
4490 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4491 wr32(E1000_RDLEN(reg_idx),
4492 ring->count * sizeof(union e1000_adv_rx_desc));
4493
4494 /* initialize head and tail */
4495 ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4496 wr32(E1000_RDH(reg_idx), 0);
4497 writel(0, ring->tail);
4498
4499 /* set descriptor configuration */
4500 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4501 if (ring_uses_large_buffer(ring))
4502 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4503 else
4504 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4505 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4506 if (hw->mac.type >= e1000_82580)
4507 srrctl |= E1000_SRRCTL_TIMESTAMP;
4508 /* Only set Drop Enable if we are supporting multiple queues */
4509 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
4510 srrctl |= E1000_SRRCTL_DROP_EN;
4511
4512 wr32(E1000_SRRCTL(reg_idx), srrctl);
4513
4514 /* set filtering for VMDQ pools */
4515 igb_set_vmolr(adapter, reg_idx & 0x7, true);
4516
4517 rxdctl |= IGB_RX_PTHRESH;
4518 rxdctl |= IGB_RX_HTHRESH << 8;
4519 rxdctl |= IGB_RX_WTHRESH << 16;
4520
4521 /* initialize rx_buffer_info */
4522 memset(ring->rx_buffer_info, 0,
4523 sizeof(struct igb_rx_buffer) * ring->count);
4524
4525 /* initialize Rx descriptor 0 */
4526 rx_desc = IGB_RX_DESC(ring, 0);
4527 rx_desc->wb.upper.length = 0;
4528
4529 /* enable receive descriptor fetching */
4530 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4531 wr32(E1000_RXDCTL(reg_idx), rxdctl);
4532 }
4533
igb_set_rx_buffer_len(struct igb_adapter * adapter,struct igb_ring * rx_ring)4534 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4535 struct igb_ring *rx_ring)
4536 {
4537 /* set build_skb and buffer size flags */
4538 clear_ring_build_skb_enabled(rx_ring);
4539 clear_ring_uses_large_buffer(rx_ring);
4540
4541 if (adapter->flags & IGB_FLAG_RX_LEGACY)
4542 return;
4543
4544 set_ring_build_skb_enabled(rx_ring);
4545
4546 #if (PAGE_SIZE < 8192)
4547 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4548 return;
4549
4550 set_ring_uses_large_buffer(rx_ring);
4551 #endif
4552 }
4553
4554 /**
4555 * igb_configure_rx - Configure receive Unit after Reset
4556 * @adapter: board private structure
4557 *
4558 * Configure the Rx unit of the MAC after a reset.
4559 **/
igb_configure_rx(struct igb_adapter * adapter)4560 static void igb_configure_rx(struct igb_adapter *adapter)
4561 {
4562 int i;
4563
4564 /* set the correct pool for the PF default MAC address in entry 0 */
4565 igb_set_default_mac_filter(adapter);
4566
4567 /* Setup the HW Rx Head and Tail Descriptor Pointers and
4568 * the Base and Length of the Rx Descriptor Ring
4569 */
4570 for (i = 0; i < adapter->num_rx_queues; i++) {
4571 struct igb_ring *rx_ring = adapter->rx_ring[i];
4572
4573 igb_set_rx_buffer_len(adapter, rx_ring);
4574 igb_configure_rx_ring(adapter, rx_ring);
4575 }
4576 }
4577
4578 /**
4579 * igb_free_tx_resources - Free Tx Resources per Queue
4580 * @tx_ring: Tx descriptor ring for a specific queue
4581 *
4582 * Free all transmit software resources
4583 **/
igb_free_tx_resources(struct igb_ring * tx_ring)4584 void igb_free_tx_resources(struct igb_ring *tx_ring)
4585 {
4586 igb_clean_tx_ring(tx_ring);
4587
4588 vfree(tx_ring->tx_buffer_info);
4589 tx_ring->tx_buffer_info = NULL;
4590
4591 /* if not set, then don't free */
4592 if (!tx_ring->desc)
4593 return;
4594
4595 dma_free_coherent(tx_ring->dev, tx_ring->size,
4596 tx_ring->desc, tx_ring->dma);
4597
4598 tx_ring->desc = NULL;
4599 }
4600
4601 /**
4602 * igb_free_all_tx_resources - Free Tx Resources for All Queues
4603 * @adapter: board private structure
4604 *
4605 * Free all transmit software resources
4606 **/
igb_free_all_tx_resources(struct igb_adapter * adapter)4607 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4608 {
4609 int i;
4610
4611 for (i = 0; i < adapter->num_tx_queues; i++)
4612 if (adapter->tx_ring[i])
4613 igb_free_tx_resources(adapter->tx_ring[i]);
4614 }
4615
4616 /**
4617 * igb_clean_tx_ring - Free Tx Buffers
4618 * @tx_ring: ring to be cleaned
4619 **/
igb_clean_tx_ring(struct igb_ring * tx_ring)4620 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4621 {
4622 u16 i = tx_ring->next_to_clean;
4623 struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4624
4625 while (i != tx_ring->next_to_use) {
4626 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4627
4628 /* Free all the Tx ring sk_buffs */
4629 dev_kfree_skb_any(tx_buffer->skb);
4630
4631 /* unmap skb header data */
4632 dma_unmap_single(tx_ring->dev,
4633 dma_unmap_addr(tx_buffer, dma),
4634 dma_unmap_len(tx_buffer, len),
4635 DMA_TO_DEVICE);
4636
4637 /* check for eop_desc to determine the end of the packet */
4638 eop_desc = tx_buffer->next_to_watch;
4639 tx_desc = IGB_TX_DESC(tx_ring, i);
4640
4641 /* unmap remaining buffers */
4642 while (tx_desc != eop_desc) {
4643 tx_buffer++;
4644 tx_desc++;
4645 i++;
4646 if (unlikely(i == tx_ring->count)) {
4647 i = 0;
4648 tx_buffer = tx_ring->tx_buffer_info;
4649 tx_desc = IGB_TX_DESC(tx_ring, 0);
4650 }
4651
4652 /* unmap any remaining paged data */
4653 if (dma_unmap_len(tx_buffer, len))
4654 dma_unmap_page(tx_ring->dev,
4655 dma_unmap_addr(tx_buffer, dma),
4656 dma_unmap_len(tx_buffer, len),
4657 DMA_TO_DEVICE);
4658 }
4659
4660 /* move us one more past the eop_desc for start of next pkt */
4661 tx_buffer++;
4662 i++;
4663 if (unlikely(i == tx_ring->count)) {
4664 i = 0;
4665 tx_buffer = tx_ring->tx_buffer_info;
4666 }
4667 }
4668
4669 /* reset BQL for queue */
4670 netdev_tx_reset_queue(txring_txq(tx_ring));
4671
4672 /* reset next_to_use and next_to_clean */
4673 tx_ring->next_to_use = 0;
4674 tx_ring->next_to_clean = 0;
4675 }
4676
4677 /**
4678 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
4679 * @adapter: board private structure
4680 **/
igb_clean_all_tx_rings(struct igb_adapter * adapter)4681 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4682 {
4683 int i;
4684
4685 for (i = 0; i < adapter->num_tx_queues; i++)
4686 if (adapter->tx_ring[i])
4687 igb_clean_tx_ring(adapter->tx_ring[i]);
4688 }
4689
4690 /**
4691 * igb_free_rx_resources - Free Rx Resources
4692 * @rx_ring: ring to clean the resources from
4693 *
4694 * Free all receive software resources
4695 **/
igb_free_rx_resources(struct igb_ring * rx_ring)4696 void igb_free_rx_resources(struct igb_ring *rx_ring)
4697 {
4698 igb_clean_rx_ring(rx_ring);
4699
4700 vfree(rx_ring->rx_buffer_info);
4701 rx_ring->rx_buffer_info = NULL;
4702
4703 /* if not set, then don't free */
4704 if (!rx_ring->desc)
4705 return;
4706
4707 dma_free_coherent(rx_ring->dev, rx_ring->size,
4708 rx_ring->desc, rx_ring->dma);
4709
4710 rx_ring->desc = NULL;
4711 }
4712
4713 /**
4714 * igb_free_all_rx_resources - Free Rx Resources for All Queues
4715 * @adapter: board private structure
4716 *
4717 * Free all receive software resources
4718 **/
igb_free_all_rx_resources(struct igb_adapter * adapter)4719 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4720 {
4721 int i;
4722
4723 for (i = 0; i < adapter->num_rx_queues; i++)
4724 if (adapter->rx_ring[i])
4725 igb_free_rx_resources(adapter->rx_ring[i]);
4726 }
4727
4728 /**
4729 * igb_clean_rx_ring - Free Rx Buffers per Queue
4730 * @rx_ring: ring to free buffers from
4731 **/
igb_clean_rx_ring(struct igb_ring * rx_ring)4732 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4733 {
4734 u16 i = rx_ring->next_to_clean;
4735
4736 dev_kfree_skb(rx_ring->skb);
4737 rx_ring->skb = NULL;
4738
4739 /* Free all the Rx ring sk_buffs */
4740 while (i != rx_ring->next_to_alloc) {
4741 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4742
4743 /* Invalidate cache lines that may have been written to by
4744 * device so that we avoid corrupting memory.
4745 */
4746 dma_sync_single_range_for_cpu(rx_ring->dev,
4747 buffer_info->dma,
4748 buffer_info->page_offset,
4749 igb_rx_bufsz(rx_ring),
4750 DMA_FROM_DEVICE);
4751
4752 /* free resources associated with mapping */
4753 dma_unmap_page_attrs(rx_ring->dev,
4754 buffer_info->dma,
4755 igb_rx_pg_size(rx_ring),
4756 DMA_FROM_DEVICE,
4757 IGB_RX_DMA_ATTR);
4758 __page_frag_cache_drain(buffer_info->page,
4759 buffer_info->pagecnt_bias);
4760
4761 i++;
4762 if (i == rx_ring->count)
4763 i = 0;
4764 }
4765
4766 rx_ring->next_to_alloc = 0;
4767 rx_ring->next_to_clean = 0;
4768 rx_ring->next_to_use = 0;
4769 }
4770
4771 /**
4772 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
4773 * @adapter: board private structure
4774 **/
igb_clean_all_rx_rings(struct igb_adapter * adapter)4775 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4776 {
4777 int i;
4778
4779 for (i = 0; i < adapter->num_rx_queues; i++)
4780 if (adapter->rx_ring[i])
4781 igb_clean_rx_ring(adapter->rx_ring[i]);
4782 }
4783
4784 /**
4785 * igb_set_mac - Change the Ethernet Address of the NIC
4786 * @netdev: network interface device structure
4787 * @p: pointer to an address structure
4788 *
4789 * Returns 0 on success, negative on failure
4790 **/
igb_set_mac(struct net_device * netdev,void * p)4791 static int igb_set_mac(struct net_device *netdev, void *p)
4792 {
4793 struct igb_adapter *adapter = netdev_priv(netdev);
4794 struct e1000_hw *hw = &adapter->hw;
4795 struct sockaddr *addr = p;
4796
4797 if (!is_valid_ether_addr(addr->sa_data))
4798 return -EADDRNOTAVAIL;
4799
4800 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4801 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4802
4803 /* set the correct pool for the new PF MAC address in entry 0 */
4804 igb_set_default_mac_filter(adapter);
4805
4806 return 0;
4807 }
4808
4809 /**
4810 * igb_write_mc_addr_list - write multicast addresses to MTA
4811 * @netdev: network interface device structure
4812 *
4813 * Writes multicast address list to the MTA hash table.
4814 * Returns: -ENOMEM on failure
4815 * 0 on no addresses written
4816 * X on writing X addresses to MTA
4817 **/
igb_write_mc_addr_list(struct net_device * netdev)4818 static int igb_write_mc_addr_list(struct net_device *netdev)
4819 {
4820 struct igb_adapter *adapter = netdev_priv(netdev);
4821 struct e1000_hw *hw = &adapter->hw;
4822 struct netdev_hw_addr *ha;
4823 u8 *mta_list;
4824 int i;
4825
4826 if (netdev_mc_empty(netdev)) {
4827 /* nothing to program, so clear mc list */
4828 igb_update_mc_addr_list(hw, NULL, 0);
4829 igb_restore_vf_multicasts(adapter);
4830 return 0;
4831 }
4832
4833 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
4834 if (!mta_list)
4835 return -ENOMEM;
4836
4837 /* The shared function expects a packed array of only addresses. */
4838 i = 0;
4839 netdev_for_each_mc_addr(ha, netdev)
4840 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4841
4842 igb_update_mc_addr_list(hw, mta_list, i);
4843 kfree(mta_list);
4844
4845 return netdev_mc_count(netdev);
4846 }
4847
igb_vlan_promisc_enable(struct igb_adapter * adapter)4848 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4849 {
4850 struct e1000_hw *hw = &adapter->hw;
4851 u32 i, pf_id;
4852
4853 switch (hw->mac.type) {
4854 case e1000_i210:
4855 case e1000_i211:
4856 case e1000_i350:
4857 /* VLAN filtering needed for VLAN prio filter */
4858 if (adapter->netdev->features & NETIF_F_NTUPLE)
4859 break;
4860 /* fall through */
4861 case e1000_82576:
4862 case e1000_82580:
4863 case e1000_i354:
4864 /* VLAN filtering needed for pool filtering */
4865 if (adapter->vfs_allocated_count)
4866 break;
4867 /* fall through */
4868 default:
4869 return 1;
4870 }
4871
4872 /* We are already in VLAN promisc, nothing to do */
4873 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4874 return 0;
4875
4876 if (!adapter->vfs_allocated_count)
4877 goto set_vfta;
4878
4879 /* Add PF to all active pools */
4880 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4881
4882 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4883 u32 vlvf = rd32(E1000_VLVF(i));
4884
4885 vlvf |= BIT(pf_id);
4886 wr32(E1000_VLVF(i), vlvf);
4887 }
4888
4889 set_vfta:
4890 /* Set all bits in the VLAN filter table array */
4891 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4892 hw->mac.ops.write_vfta(hw, i, ~0U);
4893
4894 /* Set flag so we don't redo unnecessary work */
4895 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4896
4897 return 0;
4898 }
4899
4900 #define VFTA_BLOCK_SIZE 8
igb_scrub_vfta(struct igb_adapter * adapter,u32 vfta_offset)4901 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4902 {
4903 struct e1000_hw *hw = &adapter->hw;
4904 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4905 u32 vid_start = vfta_offset * 32;
4906 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4907 u32 i, vid, word, bits, pf_id;
4908
4909 /* guarantee that we don't scrub out management VLAN */
4910 vid = adapter->mng_vlan_id;
4911 if (vid >= vid_start && vid < vid_end)
4912 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4913
4914 if (!adapter->vfs_allocated_count)
4915 goto set_vfta;
4916
4917 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4918
4919 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4920 u32 vlvf = rd32(E1000_VLVF(i));
4921
4922 /* pull VLAN ID from VLVF */
4923 vid = vlvf & VLAN_VID_MASK;
4924
4925 /* only concern ourselves with a certain range */
4926 if (vid < vid_start || vid >= vid_end)
4927 continue;
4928
4929 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4930 /* record VLAN ID in VFTA */
4931 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4932
4933 /* if PF is part of this then continue */
4934 if (test_bit(vid, adapter->active_vlans))
4935 continue;
4936 }
4937
4938 /* remove PF from the pool */
4939 bits = ~BIT(pf_id);
4940 bits &= rd32(E1000_VLVF(i));
4941 wr32(E1000_VLVF(i), bits);
4942 }
4943
4944 set_vfta:
4945 /* extract values from active_vlans and write back to VFTA */
4946 for (i = VFTA_BLOCK_SIZE; i--;) {
4947 vid = (vfta_offset + i) * 32;
4948 word = vid / BITS_PER_LONG;
4949 bits = vid % BITS_PER_LONG;
4950
4951 vfta[i] |= adapter->active_vlans[word] >> bits;
4952
4953 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4954 }
4955 }
4956
igb_vlan_promisc_disable(struct igb_adapter * adapter)4957 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4958 {
4959 u32 i;
4960
4961 /* We are not in VLAN promisc, nothing to do */
4962 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4963 return;
4964
4965 /* Set flag so we don't redo unnecessary work */
4966 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4967
4968 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4969 igb_scrub_vfta(adapter, i);
4970 }
4971
4972 /**
4973 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4974 * @netdev: network interface device structure
4975 *
4976 * The set_rx_mode entry point is called whenever the unicast or multicast
4977 * address lists or the network interface flags are updated. This routine is
4978 * responsible for configuring the hardware for proper unicast, multicast,
4979 * promiscuous mode, and all-multi behavior.
4980 **/
igb_set_rx_mode(struct net_device * netdev)4981 static void igb_set_rx_mode(struct net_device *netdev)
4982 {
4983 struct igb_adapter *adapter = netdev_priv(netdev);
4984 struct e1000_hw *hw = &adapter->hw;
4985 unsigned int vfn = adapter->vfs_allocated_count;
4986 u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
4987 int count;
4988
4989 /* Check for Promiscuous and All Multicast modes */
4990 if (netdev->flags & IFF_PROMISC) {
4991 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
4992 vmolr |= E1000_VMOLR_MPME;
4993
4994 /* enable use of UTA filter to force packets to default pool */
4995 if (hw->mac.type == e1000_82576)
4996 vmolr |= E1000_VMOLR_ROPE;
4997 } else {
4998 if (netdev->flags & IFF_ALLMULTI) {
4999 rctl |= E1000_RCTL_MPE;
5000 vmolr |= E1000_VMOLR_MPME;
5001 } else {
5002 /* Write addresses to the MTA, if the attempt fails
5003 * then we should just turn on promiscuous mode so
5004 * that we can at least receive multicast traffic
5005 */
5006 count = igb_write_mc_addr_list(netdev);
5007 if (count < 0) {
5008 rctl |= E1000_RCTL_MPE;
5009 vmolr |= E1000_VMOLR_MPME;
5010 } else if (count) {
5011 vmolr |= E1000_VMOLR_ROMPE;
5012 }
5013 }
5014 }
5015
5016 /* Write addresses to available RAR registers, if there is not
5017 * sufficient space to store all the addresses then enable
5018 * unicast promiscuous mode
5019 */
5020 if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5021 rctl |= E1000_RCTL_UPE;
5022 vmolr |= E1000_VMOLR_ROPE;
5023 }
5024
5025 /* enable VLAN filtering by default */
5026 rctl |= E1000_RCTL_VFE;
5027
5028 /* disable VLAN filtering for modes that require it */
5029 if ((netdev->flags & IFF_PROMISC) ||
5030 (netdev->features & NETIF_F_RXALL)) {
5031 /* if we fail to set all rules then just clear VFE */
5032 if (igb_vlan_promisc_enable(adapter))
5033 rctl &= ~E1000_RCTL_VFE;
5034 } else {
5035 igb_vlan_promisc_disable(adapter);
5036 }
5037
5038 /* update state of unicast, multicast, and VLAN filtering modes */
5039 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5040 E1000_RCTL_VFE);
5041 wr32(E1000_RCTL, rctl);
5042
5043 #if (PAGE_SIZE < 8192)
5044 if (!adapter->vfs_allocated_count) {
5045 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5046 rlpml = IGB_MAX_FRAME_BUILD_SKB;
5047 }
5048 #endif
5049 wr32(E1000_RLPML, rlpml);
5050
5051 /* In order to support SR-IOV and eventually VMDq it is necessary to set
5052 * the VMOLR to enable the appropriate modes. Without this workaround
5053 * we will have issues with VLAN tag stripping not being done for frames
5054 * that are only arriving because we are the default pool
5055 */
5056 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5057 return;
5058
5059 /* set UTA to appropriate mode */
5060 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5061
5062 vmolr |= rd32(E1000_VMOLR(vfn)) &
5063 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5064
5065 /* enable Rx jumbo frames, restrict as needed to support build_skb */
5066 vmolr &= ~E1000_VMOLR_RLPML_MASK;
5067 #if (PAGE_SIZE < 8192)
5068 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5069 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5070 else
5071 #endif
5072 vmolr |= MAX_JUMBO_FRAME_SIZE;
5073 vmolr |= E1000_VMOLR_LPE;
5074
5075 wr32(E1000_VMOLR(vfn), vmolr);
5076
5077 igb_restore_vf_multicasts(adapter);
5078 }
5079
igb_check_wvbr(struct igb_adapter * adapter)5080 static void igb_check_wvbr(struct igb_adapter *adapter)
5081 {
5082 struct e1000_hw *hw = &adapter->hw;
5083 u32 wvbr = 0;
5084
5085 switch (hw->mac.type) {
5086 case e1000_82576:
5087 case e1000_i350:
5088 wvbr = rd32(E1000_WVBR);
5089 if (!wvbr)
5090 return;
5091 break;
5092 default:
5093 break;
5094 }
5095
5096 adapter->wvbr |= wvbr;
5097 }
5098
5099 #define IGB_STAGGERED_QUEUE_OFFSET 8
5100
igb_spoof_check(struct igb_adapter * adapter)5101 static void igb_spoof_check(struct igb_adapter *adapter)
5102 {
5103 int j;
5104
5105 if (!adapter->wvbr)
5106 return;
5107
5108 for (j = 0; j < adapter->vfs_allocated_count; j++) {
5109 if (adapter->wvbr & BIT(j) ||
5110 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5111 dev_warn(&adapter->pdev->dev,
5112 "Spoof event(s) detected on VF %d\n", j);
5113 adapter->wvbr &=
5114 ~(BIT(j) |
5115 BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5116 }
5117 }
5118 }
5119
5120 /* Need to wait a few seconds after link up to get diagnostic information from
5121 * the phy
5122 */
igb_update_phy_info(struct timer_list * t)5123 static void igb_update_phy_info(struct timer_list *t)
5124 {
5125 struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5126 igb_get_phy_info(&adapter->hw);
5127 }
5128
5129 /**
5130 * igb_has_link - check shared code for link and determine up/down
5131 * @adapter: pointer to driver private info
5132 **/
igb_has_link(struct igb_adapter * adapter)5133 bool igb_has_link(struct igb_adapter *adapter)
5134 {
5135 struct e1000_hw *hw = &adapter->hw;
5136 bool link_active = false;
5137
5138 /* get_link_status is set on LSC (link status) interrupt or
5139 * rx sequence error interrupt. get_link_status will stay
5140 * false until the e1000_check_for_link establishes link
5141 * for copper adapters ONLY
5142 */
5143 switch (hw->phy.media_type) {
5144 case e1000_media_type_copper:
5145 if (!hw->mac.get_link_status)
5146 return true;
5147 /* fall through */
5148 case e1000_media_type_internal_serdes:
5149 hw->mac.ops.check_for_link(hw);
5150 link_active = !hw->mac.get_link_status;
5151 break;
5152 default:
5153 case e1000_media_type_unknown:
5154 break;
5155 }
5156
5157 if (((hw->mac.type == e1000_i210) ||
5158 (hw->mac.type == e1000_i211)) &&
5159 (hw->phy.id == I210_I_PHY_ID)) {
5160 if (!netif_carrier_ok(adapter->netdev)) {
5161 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5162 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5163 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5164 adapter->link_check_timeout = jiffies;
5165 }
5166 }
5167
5168 return link_active;
5169 }
5170
igb_thermal_sensor_event(struct e1000_hw * hw,u32 event)5171 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5172 {
5173 bool ret = false;
5174 u32 ctrl_ext, thstat;
5175
5176 /* check for thermal sensor event on i350 copper only */
5177 if (hw->mac.type == e1000_i350) {
5178 thstat = rd32(E1000_THSTAT);
5179 ctrl_ext = rd32(E1000_CTRL_EXT);
5180
5181 if ((hw->phy.media_type == e1000_media_type_copper) &&
5182 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5183 ret = !!(thstat & event);
5184 }
5185
5186 return ret;
5187 }
5188
5189 /**
5190 * igb_check_lvmmc - check for malformed packets received
5191 * and indicated in LVMMC register
5192 * @adapter: pointer to adapter
5193 **/
igb_check_lvmmc(struct igb_adapter * adapter)5194 static void igb_check_lvmmc(struct igb_adapter *adapter)
5195 {
5196 struct e1000_hw *hw = &adapter->hw;
5197 u32 lvmmc;
5198
5199 lvmmc = rd32(E1000_LVMMC);
5200 if (lvmmc) {
5201 if (unlikely(net_ratelimit())) {
5202 netdev_warn(adapter->netdev,
5203 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5204 lvmmc);
5205 }
5206 }
5207 }
5208
5209 /**
5210 * igb_watchdog - Timer Call-back
5211 * @data: pointer to adapter cast into an unsigned long
5212 **/
igb_watchdog(struct timer_list * t)5213 static void igb_watchdog(struct timer_list *t)
5214 {
5215 struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5216 /* Do the rest outside of interrupt context */
5217 schedule_work(&adapter->watchdog_task);
5218 }
5219
igb_watchdog_task(struct work_struct * work)5220 static void igb_watchdog_task(struct work_struct *work)
5221 {
5222 struct igb_adapter *adapter = container_of(work,
5223 struct igb_adapter,
5224 watchdog_task);
5225 struct e1000_hw *hw = &adapter->hw;
5226 struct e1000_phy_info *phy = &hw->phy;
5227 struct net_device *netdev = adapter->netdev;
5228 u32 link;
5229 int i;
5230 u32 connsw;
5231 u16 phy_data, retry_count = 20;
5232
5233 link = igb_has_link(adapter);
5234
5235 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5236 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5237 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5238 else
5239 link = false;
5240 }
5241
5242 /* Force link down if we have fiber to swap to */
5243 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5244 if (hw->phy.media_type == e1000_media_type_copper) {
5245 connsw = rd32(E1000_CONNSW);
5246 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5247 link = 0;
5248 }
5249 }
5250 if (link) {
5251 /* Perform a reset if the media type changed. */
5252 if (hw->dev_spec._82575.media_changed) {
5253 hw->dev_spec._82575.media_changed = false;
5254 adapter->flags |= IGB_FLAG_MEDIA_RESET;
5255 igb_reset(adapter);
5256 }
5257 /* Cancel scheduled suspend requests. */
5258 pm_runtime_resume(netdev->dev.parent);
5259
5260 if (!netif_carrier_ok(netdev)) {
5261 u32 ctrl;
5262
5263 hw->mac.ops.get_speed_and_duplex(hw,
5264 &adapter->link_speed,
5265 &adapter->link_duplex);
5266
5267 ctrl = rd32(E1000_CTRL);
5268 /* Links status message must follow this format */
5269 netdev_info(netdev,
5270 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5271 netdev->name,
5272 adapter->link_speed,
5273 adapter->link_duplex == FULL_DUPLEX ?
5274 "Full" : "Half",
5275 (ctrl & E1000_CTRL_TFCE) &&
5276 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5277 (ctrl & E1000_CTRL_RFCE) ? "RX" :
5278 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
5279
5280 /* disable EEE if enabled */
5281 if ((adapter->flags & IGB_FLAG_EEE) &&
5282 (adapter->link_duplex == HALF_DUPLEX)) {
5283 dev_info(&adapter->pdev->dev,
5284 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5285 adapter->hw.dev_spec._82575.eee_disable = true;
5286 adapter->flags &= ~IGB_FLAG_EEE;
5287 }
5288
5289 /* check if SmartSpeed worked */
5290 igb_check_downshift(hw);
5291 if (phy->speed_downgraded)
5292 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5293
5294 /* check for thermal sensor event */
5295 if (igb_thermal_sensor_event(hw,
5296 E1000_THSTAT_LINK_THROTTLE))
5297 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5298
5299 /* adjust timeout factor according to speed/duplex */
5300 adapter->tx_timeout_factor = 1;
5301 switch (adapter->link_speed) {
5302 case SPEED_10:
5303 adapter->tx_timeout_factor = 14;
5304 break;
5305 case SPEED_100:
5306 /* maybe add some timeout factor ? */
5307 break;
5308 }
5309
5310 if (adapter->link_speed != SPEED_1000)
5311 goto no_wait;
5312
5313 /* wait for Remote receiver status OK */
5314 retry_read_status:
5315 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5316 &phy_data)) {
5317 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5318 retry_count) {
5319 msleep(100);
5320 retry_count--;
5321 goto retry_read_status;
5322 } else if (!retry_count) {
5323 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5324 }
5325 } else {
5326 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5327 }
5328 no_wait:
5329 netif_carrier_on(netdev);
5330
5331 igb_ping_all_vfs(adapter);
5332 igb_check_vf_rate_limit(adapter);
5333
5334 /* link state has changed, schedule phy info update */
5335 if (!test_bit(__IGB_DOWN, &adapter->state))
5336 mod_timer(&adapter->phy_info_timer,
5337 round_jiffies(jiffies + 2 * HZ));
5338 }
5339 } else {
5340 if (netif_carrier_ok(netdev)) {
5341 adapter->link_speed = 0;
5342 adapter->link_duplex = 0;
5343
5344 /* check for thermal sensor event */
5345 if (igb_thermal_sensor_event(hw,
5346 E1000_THSTAT_PWR_DOWN)) {
5347 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5348 }
5349
5350 /* Links status message must follow this format */
5351 netdev_info(netdev, "igb: %s NIC Link is Down\n",
5352 netdev->name);
5353 netif_carrier_off(netdev);
5354
5355 igb_ping_all_vfs(adapter);
5356
5357 /* link state has changed, schedule phy info update */
5358 if (!test_bit(__IGB_DOWN, &adapter->state))
5359 mod_timer(&adapter->phy_info_timer,
5360 round_jiffies(jiffies + 2 * HZ));
5361
5362 /* link is down, time to check for alternate media */
5363 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5364 igb_check_swap_media(adapter);
5365 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5366 schedule_work(&adapter->reset_task);
5367 /* return immediately */
5368 return;
5369 }
5370 }
5371 pm_schedule_suspend(netdev->dev.parent,
5372 MSEC_PER_SEC * 5);
5373
5374 /* also check for alternate media here */
5375 } else if (!netif_carrier_ok(netdev) &&
5376 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5377 igb_check_swap_media(adapter);
5378 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5379 schedule_work(&adapter->reset_task);
5380 /* return immediately */
5381 return;
5382 }
5383 }
5384 }
5385
5386 spin_lock(&adapter->stats64_lock);
5387 igb_update_stats(adapter);
5388 spin_unlock(&adapter->stats64_lock);
5389
5390 for (i = 0; i < adapter->num_tx_queues; i++) {
5391 struct igb_ring *tx_ring = adapter->tx_ring[i];
5392 if (!netif_carrier_ok(netdev)) {
5393 /* We've lost link, so the controller stops DMA,
5394 * but we've got queued Tx work that's never going
5395 * to get done, so reset controller to flush Tx.
5396 * (Do the reset outside of interrupt context).
5397 */
5398 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5399 adapter->tx_timeout_count++;
5400 schedule_work(&adapter->reset_task);
5401 /* return immediately since reset is imminent */
5402 return;
5403 }
5404 }
5405
5406 /* Force detection of hung controller every watchdog period */
5407 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5408 }
5409
5410 /* Cause software interrupt to ensure Rx ring is cleaned */
5411 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5412 u32 eics = 0;
5413
5414 for (i = 0; i < adapter->num_q_vectors; i++)
5415 eics |= adapter->q_vector[i]->eims_value;
5416 wr32(E1000_EICS, eics);
5417 } else {
5418 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5419 }
5420
5421 igb_spoof_check(adapter);
5422 igb_ptp_rx_hang(adapter);
5423 igb_ptp_tx_hang(adapter);
5424
5425 /* Check LVMMC register on i350/i354 only */
5426 if ((adapter->hw.mac.type == e1000_i350) ||
5427 (adapter->hw.mac.type == e1000_i354))
5428 igb_check_lvmmc(adapter);
5429
5430 /* Reset the timer */
5431 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5432 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5433 mod_timer(&adapter->watchdog_timer,
5434 round_jiffies(jiffies + HZ));
5435 else
5436 mod_timer(&adapter->watchdog_timer,
5437 round_jiffies(jiffies + 2 * HZ));
5438 }
5439 }
5440
5441 enum latency_range {
5442 lowest_latency = 0,
5443 low_latency = 1,
5444 bulk_latency = 2,
5445 latency_invalid = 255
5446 };
5447
5448 /**
5449 * igb_update_ring_itr - update the dynamic ITR value based on packet size
5450 * @q_vector: pointer to q_vector
5451 *
5452 * Stores a new ITR value based on strictly on packet size. This
5453 * algorithm is less sophisticated than that used in igb_update_itr,
5454 * due to the difficulty of synchronizing statistics across multiple
5455 * receive rings. The divisors and thresholds used by this function
5456 * were determined based on theoretical maximum wire speed and testing
5457 * data, in order to minimize response time while increasing bulk
5458 * throughput.
5459 * This functionality is controlled by ethtool's coalescing settings.
5460 * NOTE: This function is called only when operating in a multiqueue
5461 * receive environment.
5462 **/
igb_update_ring_itr(struct igb_q_vector * q_vector)5463 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5464 {
5465 int new_val = q_vector->itr_val;
5466 int avg_wire_size = 0;
5467 struct igb_adapter *adapter = q_vector->adapter;
5468 unsigned int packets;
5469
5470 /* For non-gigabit speeds, just fix the interrupt rate at 4000
5471 * ints/sec - ITR timer value of 120 ticks.
5472 */
5473 if (adapter->link_speed != SPEED_1000) {
5474 new_val = IGB_4K_ITR;
5475 goto set_itr_val;
5476 }
5477
5478 packets = q_vector->rx.total_packets;
5479 if (packets)
5480 avg_wire_size = q_vector->rx.total_bytes / packets;
5481
5482 packets = q_vector->tx.total_packets;
5483 if (packets)
5484 avg_wire_size = max_t(u32, avg_wire_size,
5485 q_vector->tx.total_bytes / packets);
5486
5487 /* if avg_wire_size isn't set no work was done */
5488 if (!avg_wire_size)
5489 goto clear_counts;
5490
5491 /* Add 24 bytes to size to account for CRC, preamble, and gap */
5492 avg_wire_size += 24;
5493
5494 /* Don't starve jumbo frames */
5495 avg_wire_size = min(avg_wire_size, 3000);
5496
5497 /* Give a little boost to mid-size frames */
5498 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5499 new_val = avg_wire_size / 3;
5500 else
5501 new_val = avg_wire_size / 2;
5502
5503 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5504 if (new_val < IGB_20K_ITR &&
5505 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5506 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5507 new_val = IGB_20K_ITR;
5508
5509 set_itr_val:
5510 if (new_val != q_vector->itr_val) {
5511 q_vector->itr_val = new_val;
5512 q_vector->set_itr = 1;
5513 }
5514 clear_counts:
5515 q_vector->rx.total_bytes = 0;
5516 q_vector->rx.total_packets = 0;
5517 q_vector->tx.total_bytes = 0;
5518 q_vector->tx.total_packets = 0;
5519 }
5520
5521 /**
5522 * igb_update_itr - update the dynamic ITR value based on statistics
5523 * @q_vector: pointer to q_vector
5524 * @ring_container: ring info to update the itr for
5525 *
5526 * Stores a new ITR value based on packets and byte
5527 * counts during the last interrupt. The advantage of per interrupt
5528 * computation is faster updates and more accurate ITR for the current
5529 * traffic pattern. Constants in this function were computed
5530 * based on theoretical maximum wire speed and thresholds were set based
5531 * on testing data as well as attempting to minimize response time
5532 * while increasing bulk throughput.
5533 * This functionality is controlled by ethtool's coalescing settings.
5534 * NOTE: These calculations are only valid when operating in a single-
5535 * queue environment.
5536 **/
igb_update_itr(struct igb_q_vector * q_vector,struct igb_ring_container * ring_container)5537 static void igb_update_itr(struct igb_q_vector *q_vector,
5538 struct igb_ring_container *ring_container)
5539 {
5540 unsigned int packets = ring_container->total_packets;
5541 unsigned int bytes = ring_container->total_bytes;
5542 u8 itrval = ring_container->itr;
5543
5544 /* no packets, exit with status unchanged */
5545 if (packets == 0)
5546 return;
5547
5548 switch (itrval) {
5549 case lowest_latency:
5550 /* handle TSO and jumbo frames */
5551 if (bytes/packets > 8000)
5552 itrval = bulk_latency;
5553 else if ((packets < 5) && (bytes > 512))
5554 itrval = low_latency;
5555 break;
5556 case low_latency: /* 50 usec aka 20000 ints/s */
5557 if (bytes > 10000) {
5558 /* this if handles the TSO accounting */
5559 if (bytes/packets > 8000)
5560 itrval = bulk_latency;
5561 else if ((packets < 10) || ((bytes/packets) > 1200))
5562 itrval = bulk_latency;
5563 else if ((packets > 35))
5564 itrval = lowest_latency;
5565 } else if (bytes/packets > 2000) {
5566 itrval = bulk_latency;
5567 } else if (packets <= 2 && bytes < 512) {
5568 itrval = lowest_latency;
5569 }
5570 break;
5571 case bulk_latency: /* 250 usec aka 4000 ints/s */
5572 if (bytes > 25000) {
5573 if (packets > 35)
5574 itrval = low_latency;
5575 } else if (bytes < 1500) {
5576 itrval = low_latency;
5577 }
5578 break;
5579 }
5580
5581 /* clear work counters since we have the values we need */
5582 ring_container->total_bytes = 0;
5583 ring_container->total_packets = 0;
5584
5585 /* write updated itr to ring container */
5586 ring_container->itr = itrval;
5587 }
5588
igb_set_itr(struct igb_q_vector * q_vector)5589 static void igb_set_itr(struct igb_q_vector *q_vector)
5590 {
5591 struct igb_adapter *adapter = q_vector->adapter;
5592 u32 new_itr = q_vector->itr_val;
5593 u8 current_itr = 0;
5594
5595 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5596 if (adapter->link_speed != SPEED_1000) {
5597 current_itr = 0;
5598 new_itr = IGB_4K_ITR;
5599 goto set_itr_now;
5600 }
5601
5602 igb_update_itr(q_vector, &q_vector->tx);
5603 igb_update_itr(q_vector, &q_vector->rx);
5604
5605 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5606
5607 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5608 if (current_itr == lowest_latency &&
5609 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5610 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5611 current_itr = low_latency;
5612
5613 switch (current_itr) {
5614 /* counts and packets in update_itr are dependent on these numbers */
5615 case lowest_latency:
5616 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5617 break;
5618 case low_latency:
5619 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5620 break;
5621 case bulk_latency:
5622 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
5623 break;
5624 default:
5625 break;
5626 }
5627
5628 set_itr_now:
5629 if (new_itr != q_vector->itr_val) {
5630 /* this attempts to bias the interrupt rate towards Bulk
5631 * by adding intermediate steps when interrupt rate is
5632 * increasing
5633 */
5634 new_itr = new_itr > q_vector->itr_val ?
5635 max((new_itr * q_vector->itr_val) /
5636 (new_itr + (q_vector->itr_val >> 2)),
5637 new_itr) : new_itr;
5638 /* Don't write the value here; it resets the adapter's
5639 * internal timer, and causes us to delay far longer than
5640 * we should between interrupts. Instead, we write the ITR
5641 * value at the beginning of the next interrupt so the timing
5642 * ends up being correct.
5643 */
5644 q_vector->itr_val = new_itr;
5645 q_vector->set_itr = 1;
5646 }
5647 }
5648
igb_tx_ctxtdesc(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)5649 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5650 struct igb_tx_buffer *first,
5651 u32 vlan_macip_lens, u32 type_tucmd,
5652 u32 mss_l4len_idx)
5653 {
5654 struct e1000_adv_tx_context_desc *context_desc;
5655 u16 i = tx_ring->next_to_use;
5656 struct timespec64 ts;
5657
5658 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5659
5660 i++;
5661 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5662
5663 /* set bits to identify this as an advanced context descriptor */
5664 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5665
5666 /* For 82575, context index must be unique per ring. */
5667 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5668 mss_l4len_idx |= tx_ring->reg_idx << 4;
5669
5670 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
5671 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
5672 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
5673
5674 /* We assume there is always a valid tx time available. Invalid times
5675 * should have been handled by the upper layers.
5676 */
5677 if (tx_ring->launchtime_enable) {
5678 ts = ktime_to_timespec64(first->skb->tstamp);
5679 first->skb->tstamp = ktime_set(0, 0);
5680 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5681 } else {
5682 context_desc->seqnum_seed = 0;
5683 }
5684 }
5685
igb_tso(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u8 * hdr_len)5686 static int igb_tso(struct igb_ring *tx_ring,
5687 struct igb_tx_buffer *first,
5688 u8 *hdr_len)
5689 {
5690 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5691 struct sk_buff *skb = first->skb;
5692 union {
5693 struct iphdr *v4;
5694 struct ipv6hdr *v6;
5695 unsigned char *hdr;
5696 } ip;
5697 union {
5698 struct tcphdr *tcp;
5699 unsigned char *hdr;
5700 } l4;
5701 u32 paylen, l4_offset;
5702 int err;
5703
5704 if (skb->ip_summed != CHECKSUM_PARTIAL)
5705 return 0;
5706
5707 if (!skb_is_gso(skb))
5708 return 0;
5709
5710 err = skb_cow_head(skb, 0);
5711 if (err < 0)
5712 return err;
5713
5714 ip.hdr = skb_network_header(skb);
5715 l4.hdr = skb_checksum_start(skb);
5716
5717 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5718 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5719
5720 /* initialize outer IP header fields */
5721 if (ip.v4->version == 4) {
5722 unsigned char *csum_start = skb_checksum_start(skb);
5723 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5724
5725 /* IP header will have to cancel out any data that
5726 * is not a part of the outer IP header
5727 */
5728 ip.v4->check = csum_fold(csum_partial(trans_start,
5729 csum_start - trans_start,
5730 0));
5731 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5732
5733 ip.v4->tot_len = 0;
5734 first->tx_flags |= IGB_TX_FLAGS_TSO |
5735 IGB_TX_FLAGS_CSUM |
5736 IGB_TX_FLAGS_IPV4;
5737 } else {
5738 ip.v6->payload_len = 0;
5739 first->tx_flags |= IGB_TX_FLAGS_TSO |
5740 IGB_TX_FLAGS_CSUM;
5741 }
5742
5743 /* determine offset of inner transport header */
5744 l4_offset = l4.hdr - skb->data;
5745
5746 /* compute length of segmentation header */
5747 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
5748
5749 /* remove payload length from inner checksum */
5750 paylen = skb->len - l4_offset;
5751 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
5752
5753 /* update gso size and bytecount with header size */
5754 first->gso_segs = skb_shinfo(skb)->gso_segs;
5755 first->bytecount += (first->gso_segs - 1) * *hdr_len;
5756
5757 /* MSS L4LEN IDX */
5758 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5759 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5760
5761 /* VLAN MACLEN IPLEN */
5762 vlan_macip_lens = l4.hdr - ip.hdr;
5763 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5764 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5765
5766 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5767 type_tucmd, mss_l4len_idx);
5768
5769 return 1;
5770 }
5771
igb_ipv6_csum_is_sctp(struct sk_buff * skb)5772 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5773 {
5774 unsigned int offset = 0;
5775
5776 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5777
5778 return offset == skb_checksum_start_offset(skb);
5779 }
5780
igb_tx_csum(struct igb_ring * tx_ring,struct igb_tx_buffer * first)5781 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5782 {
5783 struct sk_buff *skb = first->skb;
5784 u32 vlan_macip_lens = 0;
5785 u32 type_tucmd = 0;
5786
5787 if (skb->ip_summed != CHECKSUM_PARTIAL) {
5788 csum_failed:
5789 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
5790 !tx_ring->launchtime_enable)
5791 return;
5792 goto no_csum;
5793 }
5794
5795 switch (skb->csum_offset) {
5796 case offsetof(struct tcphdr, check):
5797 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5798 /* fall through */
5799 case offsetof(struct udphdr, check):
5800 break;
5801 case offsetof(struct sctphdr, checksum):
5802 /* validate that this is actually an SCTP request */
5803 if (((first->protocol == htons(ETH_P_IP)) &&
5804 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5805 ((first->protocol == htons(ETH_P_IPV6)) &&
5806 igb_ipv6_csum_is_sctp(skb))) {
5807 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5808 break;
5809 }
5810 /* fall through */
5811 default:
5812 skb_checksum_help(skb);
5813 goto csum_failed;
5814 }
5815
5816 /* update TX checksum flag */
5817 first->tx_flags |= IGB_TX_FLAGS_CSUM;
5818 vlan_macip_lens = skb_checksum_start_offset(skb) -
5819 skb_network_offset(skb);
5820 no_csum:
5821 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5822 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5823
5824 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
5825 }
5826
5827 #define IGB_SET_FLAG(_input, _flag, _result) \
5828 ((_flag <= _result) ? \
5829 ((u32)(_input & _flag) * (_result / _flag)) : \
5830 ((u32)(_input & _flag) / (_flag / _result)))
5831
igb_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)5832 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5833 {
5834 /* set type for advanced descriptor with frame checksum insertion */
5835 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5836 E1000_ADVTXD_DCMD_DEXT |
5837 E1000_ADVTXD_DCMD_IFCS;
5838
5839 /* set HW vlan bit if vlan is present */
5840 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5841 (E1000_ADVTXD_DCMD_VLE));
5842
5843 /* set segmentation bits for TSO */
5844 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5845 (E1000_ADVTXD_DCMD_TSE));
5846
5847 /* set timestamp bit if present */
5848 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5849 (E1000_ADVTXD_MAC_TSTAMP));
5850
5851 /* insert frame checksum */
5852 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5853
5854 return cmd_type;
5855 }
5856
igb_tx_olinfo_status(struct igb_ring * tx_ring,union e1000_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)5857 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5858 union e1000_adv_tx_desc *tx_desc,
5859 u32 tx_flags, unsigned int paylen)
5860 {
5861 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5862
5863 /* 82575 requires a unique index per ring */
5864 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5865 olinfo_status |= tx_ring->reg_idx << 4;
5866
5867 /* insert L4 checksum */
5868 olinfo_status |= IGB_SET_FLAG(tx_flags,
5869 IGB_TX_FLAGS_CSUM,
5870 (E1000_TXD_POPTS_TXSM << 8));
5871
5872 /* insert IPv4 checksum */
5873 olinfo_status |= IGB_SET_FLAG(tx_flags,
5874 IGB_TX_FLAGS_IPV4,
5875 (E1000_TXD_POPTS_IXSM << 8));
5876
5877 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5878 }
5879
__igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)5880 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5881 {
5882 struct net_device *netdev = tx_ring->netdev;
5883
5884 netif_stop_subqueue(netdev, tx_ring->queue_index);
5885
5886 /* Herbert's original patch had:
5887 * smp_mb__after_netif_stop_queue();
5888 * but since that doesn't exist yet, just open code it.
5889 */
5890 smp_mb();
5891
5892 /* We need to check again in a case another CPU has just
5893 * made room available.
5894 */
5895 if (igb_desc_unused(tx_ring) < size)
5896 return -EBUSY;
5897
5898 /* A reprieve! */
5899 netif_wake_subqueue(netdev, tx_ring->queue_index);
5900
5901 u64_stats_update_begin(&tx_ring->tx_syncp2);
5902 tx_ring->tx_stats.restart_queue2++;
5903 u64_stats_update_end(&tx_ring->tx_syncp2);
5904
5905 return 0;
5906 }
5907
igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)5908 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5909 {
5910 if (igb_desc_unused(tx_ring) >= size)
5911 return 0;
5912 return __igb_maybe_stop_tx(tx_ring, size);
5913 }
5914
igb_tx_map(struct igb_ring * tx_ring,struct igb_tx_buffer * first,const u8 hdr_len)5915 static int igb_tx_map(struct igb_ring *tx_ring,
5916 struct igb_tx_buffer *first,
5917 const u8 hdr_len)
5918 {
5919 struct sk_buff *skb = first->skb;
5920 struct igb_tx_buffer *tx_buffer;
5921 union e1000_adv_tx_desc *tx_desc;
5922 skb_frag_t *frag;
5923 dma_addr_t dma;
5924 unsigned int data_len, size;
5925 u32 tx_flags = first->tx_flags;
5926 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5927 u16 i = tx_ring->next_to_use;
5928
5929 tx_desc = IGB_TX_DESC(tx_ring, i);
5930
5931 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5932
5933 size = skb_headlen(skb);
5934 data_len = skb->data_len;
5935
5936 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5937
5938 tx_buffer = first;
5939
5940 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5941 if (dma_mapping_error(tx_ring->dev, dma))
5942 goto dma_error;
5943
5944 /* record length, and DMA address */
5945 dma_unmap_len_set(tx_buffer, len, size);
5946 dma_unmap_addr_set(tx_buffer, dma, dma);
5947
5948 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5949
5950 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5951 tx_desc->read.cmd_type_len =
5952 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5953
5954 i++;
5955 tx_desc++;
5956 if (i == tx_ring->count) {
5957 tx_desc = IGB_TX_DESC(tx_ring, 0);
5958 i = 0;
5959 }
5960 tx_desc->read.olinfo_status = 0;
5961
5962 dma += IGB_MAX_DATA_PER_TXD;
5963 size -= IGB_MAX_DATA_PER_TXD;
5964
5965 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5966 }
5967
5968 if (likely(!data_len))
5969 break;
5970
5971 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5972
5973 i++;
5974 tx_desc++;
5975 if (i == tx_ring->count) {
5976 tx_desc = IGB_TX_DESC(tx_ring, 0);
5977 i = 0;
5978 }
5979 tx_desc->read.olinfo_status = 0;
5980
5981 size = skb_frag_size(frag);
5982 data_len -= size;
5983
5984 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5985 size, DMA_TO_DEVICE);
5986
5987 tx_buffer = &tx_ring->tx_buffer_info[i];
5988 }
5989
5990 /* write last descriptor with RS and EOP bits */
5991 cmd_type |= size | IGB_TXD_DCMD;
5992 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
5993
5994 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5995
5996 /* set the timestamp */
5997 first->time_stamp = jiffies;
5998
5999 skb_tx_timestamp(skb);
6000
6001 /* Force memory writes to complete before letting h/w know there
6002 * are new descriptors to fetch. (Only applicable for weak-ordered
6003 * memory model archs, such as IA-64).
6004 *
6005 * We also need this memory barrier to make certain all of the
6006 * status bits have been updated before next_to_watch is written.
6007 */
6008 dma_wmb();
6009
6010 /* set next_to_watch value indicating a packet is present */
6011 first->next_to_watch = tx_desc;
6012
6013 i++;
6014 if (i == tx_ring->count)
6015 i = 0;
6016
6017 tx_ring->next_to_use = i;
6018
6019 /* Make sure there is space in the ring for the next send. */
6020 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6021
6022 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6023 writel(i, tx_ring->tail);
6024 }
6025 return 0;
6026
6027 dma_error:
6028 dev_err(tx_ring->dev, "TX DMA map failed\n");
6029 tx_buffer = &tx_ring->tx_buffer_info[i];
6030
6031 /* clear dma mappings for failed tx_buffer_info map */
6032 while (tx_buffer != first) {
6033 if (dma_unmap_len(tx_buffer, len))
6034 dma_unmap_page(tx_ring->dev,
6035 dma_unmap_addr(tx_buffer, dma),
6036 dma_unmap_len(tx_buffer, len),
6037 DMA_TO_DEVICE);
6038 dma_unmap_len_set(tx_buffer, len, 0);
6039
6040 if (i-- == 0)
6041 i += tx_ring->count;
6042 tx_buffer = &tx_ring->tx_buffer_info[i];
6043 }
6044
6045 if (dma_unmap_len(tx_buffer, len))
6046 dma_unmap_single(tx_ring->dev,
6047 dma_unmap_addr(tx_buffer, dma),
6048 dma_unmap_len(tx_buffer, len),
6049 DMA_TO_DEVICE);
6050 dma_unmap_len_set(tx_buffer, len, 0);
6051
6052 dev_kfree_skb_any(tx_buffer->skb);
6053 tx_buffer->skb = NULL;
6054
6055 tx_ring->next_to_use = i;
6056
6057 return -1;
6058 }
6059
igb_xmit_frame_ring(struct sk_buff * skb,struct igb_ring * tx_ring)6060 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6061 struct igb_ring *tx_ring)
6062 {
6063 struct igb_tx_buffer *first;
6064 int tso;
6065 u32 tx_flags = 0;
6066 unsigned short f;
6067 u16 count = TXD_USE_COUNT(skb_headlen(skb));
6068 __be16 protocol = vlan_get_protocol(skb);
6069 u8 hdr_len = 0;
6070
6071 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6072 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6073 * + 2 desc gap to keep tail from touching head,
6074 * + 1 desc for context descriptor,
6075 * otherwise try next time
6076 */
6077 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6078 count += TXD_USE_COUNT(skb_frag_size(
6079 &skb_shinfo(skb)->frags[f]));
6080
6081 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6082 /* this is a hard error */
6083 return NETDEV_TX_BUSY;
6084 }
6085
6086 /* record the location of the first descriptor for this packet */
6087 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6088 first->skb = skb;
6089 first->bytecount = skb->len;
6090 first->gso_segs = 1;
6091
6092 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6093 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6094
6095 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6096 !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6097 &adapter->state)) {
6098 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6099 tx_flags |= IGB_TX_FLAGS_TSTAMP;
6100
6101 adapter->ptp_tx_skb = skb_get(skb);
6102 adapter->ptp_tx_start = jiffies;
6103 if (adapter->hw.mac.type == e1000_82576)
6104 schedule_work(&adapter->ptp_tx_work);
6105 } else {
6106 adapter->tx_hwtstamp_skipped++;
6107 }
6108 }
6109
6110 if (skb_vlan_tag_present(skb)) {
6111 tx_flags |= IGB_TX_FLAGS_VLAN;
6112 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6113 }
6114
6115 /* record initial flags and protocol */
6116 first->tx_flags = tx_flags;
6117 first->protocol = protocol;
6118
6119 tso = igb_tso(tx_ring, first, &hdr_len);
6120 if (tso < 0)
6121 goto out_drop;
6122 else if (!tso)
6123 igb_tx_csum(tx_ring, first);
6124
6125 if (igb_tx_map(tx_ring, first, hdr_len))
6126 goto cleanup_tx_tstamp;
6127
6128 return NETDEV_TX_OK;
6129
6130 out_drop:
6131 dev_kfree_skb_any(first->skb);
6132 first->skb = NULL;
6133 cleanup_tx_tstamp:
6134 if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6135 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6136
6137 dev_kfree_skb_any(adapter->ptp_tx_skb);
6138 adapter->ptp_tx_skb = NULL;
6139 if (adapter->hw.mac.type == e1000_82576)
6140 cancel_work_sync(&adapter->ptp_tx_work);
6141 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6142 }
6143
6144 return NETDEV_TX_OK;
6145 }
6146
igb_tx_queue_mapping(struct igb_adapter * adapter,struct sk_buff * skb)6147 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6148 struct sk_buff *skb)
6149 {
6150 unsigned int r_idx = skb->queue_mapping;
6151
6152 if (r_idx >= adapter->num_tx_queues)
6153 r_idx = r_idx % adapter->num_tx_queues;
6154
6155 return adapter->tx_ring[r_idx];
6156 }
6157
igb_xmit_frame(struct sk_buff * skb,struct net_device * netdev)6158 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6159 struct net_device *netdev)
6160 {
6161 struct igb_adapter *adapter = netdev_priv(netdev);
6162
6163 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6164 * in order to meet this minimum size requirement.
6165 */
6166 if (skb_put_padto(skb, 17))
6167 return NETDEV_TX_OK;
6168
6169 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6170 }
6171
6172 /**
6173 * igb_tx_timeout - Respond to a Tx Hang
6174 * @netdev: network interface device structure
6175 **/
igb_tx_timeout(struct net_device * netdev)6176 static void igb_tx_timeout(struct net_device *netdev)
6177 {
6178 struct igb_adapter *adapter = netdev_priv(netdev);
6179 struct e1000_hw *hw = &adapter->hw;
6180
6181 /* Do the reset outside of interrupt context */
6182 adapter->tx_timeout_count++;
6183
6184 if (hw->mac.type >= e1000_82580)
6185 hw->dev_spec._82575.global_device_reset = true;
6186
6187 schedule_work(&adapter->reset_task);
6188 wr32(E1000_EICS,
6189 (adapter->eims_enable_mask & ~adapter->eims_other));
6190 }
6191
igb_reset_task(struct work_struct * work)6192 static void igb_reset_task(struct work_struct *work)
6193 {
6194 struct igb_adapter *adapter;
6195 adapter = container_of(work, struct igb_adapter, reset_task);
6196
6197 igb_dump(adapter);
6198 netdev_err(adapter->netdev, "Reset adapter\n");
6199 igb_reinit_locked(adapter);
6200 }
6201
6202 /**
6203 * igb_get_stats64 - Get System Network Statistics
6204 * @netdev: network interface device structure
6205 * @stats: rtnl_link_stats64 pointer
6206 **/
igb_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)6207 static void igb_get_stats64(struct net_device *netdev,
6208 struct rtnl_link_stats64 *stats)
6209 {
6210 struct igb_adapter *adapter = netdev_priv(netdev);
6211
6212 spin_lock(&adapter->stats64_lock);
6213 igb_update_stats(adapter);
6214 memcpy(stats, &adapter->stats64, sizeof(*stats));
6215 spin_unlock(&adapter->stats64_lock);
6216 }
6217
6218 /**
6219 * igb_change_mtu - Change the Maximum Transfer Unit
6220 * @netdev: network interface device structure
6221 * @new_mtu: new value for maximum frame size
6222 *
6223 * Returns 0 on success, negative on failure
6224 **/
igb_change_mtu(struct net_device * netdev,int new_mtu)6225 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6226 {
6227 struct igb_adapter *adapter = netdev_priv(netdev);
6228 struct pci_dev *pdev = adapter->pdev;
6229 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
6230
6231 /* adjust max frame to be at least the size of a standard frame */
6232 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6233 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6234
6235 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6236 usleep_range(1000, 2000);
6237
6238 /* igb_down has a dependency on max_frame_size */
6239 adapter->max_frame_size = max_frame;
6240
6241 if (netif_running(netdev))
6242 igb_down(adapter);
6243
6244 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
6245 netdev->mtu, new_mtu);
6246 netdev->mtu = new_mtu;
6247
6248 if (netif_running(netdev))
6249 igb_up(adapter);
6250 else
6251 igb_reset(adapter);
6252
6253 clear_bit(__IGB_RESETTING, &adapter->state);
6254
6255 return 0;
6256 }
6257
6258 /**
6259 * igb_update_stats - Update the board statistics counters
6260 * @adapter: board private structure
6261 **/
igb_update_stats(struct igb_adapter * adapter)6262 void igb_update_stats(struct igb_adapter *adapter)
6263 {
6264 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6265 struct e1000_hw *hw = &adapter->hw;
6266 struct pci_dev *pdev = adapter->pdev;
6267 u32 reg, mpc;
6268 int i;
6269 u64 bytes, packets;
6270 unsigned int start;
6271 u64 _bytes, _packets;
6272
6273 /* Prevent stats update while adapter is being reset, or if the pci
6274 * connection is down.
6275 */
6276 if (adapter->link_speed == 0)
6277 return;
6278 if (pci_channel_offline(pdev))
6279 return;
6280
6281 bytes = 0;
6282 packets = 0;
6283
6284 rcu_read_lock();
6285 for (i = 0; i < adapter->num_rx_queues; i++) {
6286 struct igb_ring *ring = adapter->rx_ring[i];
6287 u32 rqdpc = rd32(E1000_RQDPC(i));
6288 if (hw->mac.type >= e1000_i210)
6289 wr32(E1000_RQDPC(i), 0);
6290
6291 if (rqdpc) {
6292 ring->rx_stats.drops += rqdpc;
6293 net_stats->rx_fifo_errors += rqdpc;
6294 }
6295
6296 do {
6297 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6298 _bytes = ring->rx_stats.bytes;
6299 _packets = ring->rx_stats.packets;
6300 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6301 bytes += _bytes;
6302 packets += _packets;
6303 }
6304
6305 net_stats->rx_bytes = bytes;
6306 net_stats->rx_packets = packets;
6307
6308 bytes = 0;
6309 packets = 0;
6310 for (i = 0; i < adapter->num_tx_queues; i++) {
6311 struct igb_ring *ring = adapter->tx_ring[i];
6312 do {
6313 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6314 _bytes = ring->tx_stats.bytes;
6315 _packets = ring->tx_stats.packets;
6316 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6317 bytes += _bytes;
6318 packets += _packets;
6319 }
6320 net_stats->tx_bytes = bytes;
6321 net_stats->tx_packets = packets;
6322 rcu_read_unlock();
6323
6324 /* read stats registers */
6325 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6326 adapter->stats.gprc += rd32(E1000_GPRC);
6327 adapter->stats.gorc += rd32(E1000_GORCL);
6328 rd32(E1000_GORCH); /* clear GORCL */
6329 adapter->stats.bprc += rd32(E1000_BPRC);
6330 adapter->stats.mprc += rd32(E1000_MPRC);
6331 adapter->stats.roc += rd32(E1000_ROC);
6332
6333 adapter->stats.prc64 += rd32(E1000_PRC64);
6334 adapter->stats.prc127 += rd32(E1000_PRC127);
6335 adapter->stats.prc255 += rd32(E1000_PRC255);
6336 adapter->stats.prc511 += rd32(E1000_PRC511);
6337 adapter->stats.prc1023 += rd32(E1000_PRC1023);
6338 adapter->stats.prc1522 += rd32(E1000_PRC1522);
6339 adapter->stats.symerrs += rd32(E1000_SYMERRS);
6340 adapter->stats.sec += rd32(E1000_SEC);
6341
6342 mpc = rd32(E1000_MPC);
6343 adapter->stats.mpc += mpc;
6344 net_stats->rx_fifo_errors += mpc;
6345 adapter->stats.scc += rd32(E1000_SCC);
6346 adapter->stats.ecol += rd32(E1000_ECOL);
6347 adapter->stats.mcc += rd32(E1000_MCC);
6348 adapter->stats.latecol += rd32(E1000_LATECOL);
6349 adapter->stats.dc += rd32(E1000_DC);
6350 adapter->stats.rlec += rd32(E1000_RLEC);
6351 adapter->stats.xonrxc += rd32(E1000_XONRXC);
6352 adapter->stats.xontxc += rd32(E1000_XONTXC);
6353 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6354 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6355 adapter->stats.fcruc += rd32(E1000_FCRUC);
6356 adapter->stats.gptc += rd32(E1000_GPTC);
6357 adapter->stats.gotc += rd32(E1000_GOTCL);
6358 rd32(E1000_GOTCH); /* clear GOTCL */
6359 adapter->stats.rnbc += rd32(E1000_RNBC);
6360 adapter->stats.ruc += rd32(E1000_RUC);
6361 adapter->stats.rfc += rd32(E1000_RFC);
6362 adapter->stats.rjc += rd32(E1000_RJC);
6363 adapter->stats.tor += rd32(E1000_TORH);
6364 adapter->stats.tot += rd32(E1000_TOTH);
6365 adapter->stats.tpr += rd32(E1000_TPR);
6366
6367 adapter->stats.ptc64 += rd32(E1000_PTC64);
6368 adapter->stats.ptc127 += rd32(E1000_PTC127);
6369 adapter->stats.ptc255 += rd32(E1000_PTC255);
6370 adapter->stats.ptc511 += rd32(E1000_PTC511);
6371 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6372 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6373
6374 adapter->stats.mptc += rd32(E1000_MPTC);
6375 adapter->stats.bptc += rd32(E1000_BPTC);
6376
6377 adapter->stats.tpt += rd32(E1000_TPT);
6378 adapter->stats.colc += rd32(E1000_COLC);
6379
6380 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6381 /* read internal phy specific stats */
6382 reg = rd32(E1000_CTRL_EXT);
6383 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6384 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6385
6386 /* this stat has invalid values on i210/i211 */
6387 if ((hw->mac.type != e1000_i210) &&
6388 (hw->mac.type != e1000_i211))
6389 adapter->stats.tncrs += rd32(E1000_TNCRS);
6390 }
6391
6392 adapter->stats.tsctc += rd32(E1000_TSCTC);
6393 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6394
6395 adapter->stats.iac += rd32(E1000_IAC);
6396 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6397 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6398 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6399 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6400 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6401 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6402 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6403 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6404
6405 /* Fill out the OS statistics structure */
6406 net_stats->multicast = adapter->stats.mprc;
6407 net_stats->collisions = adapter->stats.colc;
6408
6409 /* Rx Errors */
6410
6411 /* RLEC on some newer hardware can be incorrect so build
6412 * our own version based on RUC and ROC
6413 */
6414 net_stats->rx_errors = adapter->stats.rxerrc +
6415 adapter->stats.crcerrs + adapter->stats.algnerrc +
6416 adapter->stats.ruc + adapter->stats.roc +
6417 adapter->stats.cexterr;
6418 net_stats->rx_length_errors = adapter->stats.ruc +
6419 adapter->stats.roc;
6420 net_stats->rx_crc_errors = adapter->stats.crcerrs;
6421 net_stats->rx_frame_errors = adapter->stats.algnerrc;
6422 net_stats->rx_missed_errors = adapter->stats.mpc;
6423
6424 /* Tx Errors */
6425 net_stats->tx_errors = adapter->stats.ecol +
6426 adapter->stats.latecol;
6427 net_stats->tx_aborted_errors = adapter->stats.ecol;
6428 net_stats->tx_window_errors = adapter->stats.latecol;
6429 net_stats->tx_carrier_errors = adapter->stats.tncrs;
6430
6431 /* Tx Dropped needs to be maintained elsewhere */
6432
6433 /* Management Stats */
6434 adapter->stats.mgptc += rd32(E1000_MGTPTC);
6435 adapter->stats.mgprc += rd32(E1000_MGTPRC);
6436 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6437
6438 /* OS2BMC Stats */
6439 reg = rd32(E1000_MANC);
6440 if (reg & E1000_MANC_EN_BMC2OS) {
6441 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6442 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6443 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6444 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6445 }
6446 }
6447
igb_tsync_interrupt(struct igb_adapter * adapter)6448 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6449 {
6450 struct e1000_hw *hw = &adapter->hw;
6451 struct ptp_clock_event event;
6452 struct timespec64 ts;
6453 u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6454
6455 if (tsicr & TSINTR_SYS_WRAP) {
6456 event.type = PTP_CLOCK_PPS;
6457 if (adapter->ptp_caps.pps)
6458 ptp_clock_event(adapter->ptp_clock, &event);
6459 ack |= TSINTR_SYS_WRAP;
6460 }
6461
6462 if (tsicr & E1000_TSICR_TXTS) {
6463 /* retrieve hardware timestamp */
6464 schedule_work(&adapter->ptp_tx_work);
6465 ack |= E1000_TSICR_TXTS;
6466 }
6467
6468 if (tsicr & TSINTR_TT0) {
6469 spin_lock(&adapter->tmreg_lock);
6470 ts = timespec64_add(adapter->perout[0].start,
6471 adapter->perout[0].period);
6472 /* u32 conversion of tv_sec is safe until y2106 */
6473 wr32(E1000_TRGTTIML0, ts.tv_nsec);
6474 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6475 tsauxc = rd32(E1000_TSAUXC);
6476 tsauxc |= TSAUXC_EN_TT0;
6477 wr32(E1000_TSAUXC, tsauxc);
6478 adapter->perout[0].start = ts;
6479 spin_unlock(&adapter->tmreg_lock);
6480 ack |= TSINTR_TT0;
6481 }
6482
6483 if (tsicr & TSINTR_TT1) {
6484 spin_lock(&adapter->tmreg_lock);
6485 ts = timespec64_add(adapter->perout[1].start,
6486 adapter->perout[1].period);
6487 wr32(E1000_TRGTTIML1, ts.tv_nsec);
6488 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6489 tsauxc = rd32(E1000_TSAUXC);
6490 tsauxc |= TSAUXC_EN_TT1;
6491 wr32(E1000_TSAUXC, tsauxc);
6492 adapter->perout[1].start = ts;
6493 spin_unlock(&adapter->tmreg_lock);
6494 ack |= TSINTR_TT1;
6495 }
6496
6497 if (tsicr & TSINTR_AUTT0) {
6498 nsec = rd32(E1000_AUXSTMPL0);
6499 sec = rd32(E1000_AUXSTMPH0);
6500 event.type = PTP_CLOCK_EXTTS;
6501 event.index = 0;
6502 event.timestamp = sec * 1000000000ULL + nsec;
6503 ptp_clock_event(adapter->ptp_clock, &event);
6504 ack |= TSINTR_AUTT0;
6505 }
6506
6507 if (tsicr & TSINTR_AUTT1) {
6508 nsec = rd32(E1000_AUXSTMPL1);
6509 sec = rd32(E1000_AUXSTMPH1);
6510 event.type = PTP_CLOCK_EXTTS;
6511 event.index = 1;
6512 event.timestamp = sec * 1000000000ULL + nsec;
6513 ptp_clock_event(adapter->ptp_clock, &event);
6514 ack |= TSINTR_AUTT1;
6515 }
6516
6517 /* acknowledge the interrupts */
6518 wr32(E1000_TSICR, ack);
6519 }
6520
igb_msix_other(int irq,void * data)6521 static irqreturn_t igb_msix_other(int irq, void *data)
6522 {
6523 struct igb_adapter *adapter = data;
6524 struct e1000_hw *hw = &adapter->hw;
6525 u32 icr = rd32(E1000_ICR);
6526 /* reading ICR causes bit 31 of EICR to be cleared */
6527
6528 if (icr & E1000_ICR_DRSTA)
6529 schedule_work(&adapter->reset_task);
6530
6531 if (icr & E1000_ICR_DOUTSYNC) {
6532 /* HW is reporting DMA is out of sync */
6533 adapter->stats.doosync++;
6534 /* The DMA Out of Sync is also indication of a spoof event
6535 * in IOV mode. Check the Wrong VM Behavior register to
6536 * see if it is really a spoof event.
6537 */
6538 igb_check_wvbr(adapter);
6539 }
6540
6541 /* Check for a mailbox event */
6542 if (icr & E1000_ICR_VMMB)
6543 igb_msg_task(adapter);
6544
6545 if (icr & E1000_ICR_LSC) {
6546 hw->mac.get_link_status = 1;
6547 /* guard against interrupt when we're going down */
6548 if (!test_bit(__IGB_DOWN, &adapter->state))
6549 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6550 }
6551
6552 if (icr & E1000_ICR_TS)
6553 igb_tsync_interrupt(adapter);
6554
6555 wr32(E1000_EIMS, adapter->eims_other);
6556
6557 return IRQ_HANDLED;
6558 }
6559
igb_write_itr(struct igb_q_vector * q_vector)6560 static void igb_write_itr(struct igb_q_vector *q_vector)
6561 {
6562 struct igb_adapter *adapter = q_vector->adapter;
6563 u32 itr_val = q_vector->itr_val & 0x7FFC;
6564
6565 if (!q_vector->set_itr)
6566 return;
6567
6568 if (!itr_val)
6569 itr_val = 0x4;
6570
6571 if (adapter->hw.mac.type == e1000_82575)
6572 itr_val |= itr_val << 16;
6573 else
6574 itr_val |= E1000_EITR_CNT_IGNR;
6575
6576 writel(itr_val, q_vector->itr_register);
6577 q_vector->set_itr = 0;
6578 }
6579
igb_msix_ring(int irq,void * data)6580 static irqreturn_t igb_msix_ring(int irq, void *data)
6581 {
6582 struct igb_q_vector *q_vector = data;
6583
6584 /* Write the ITR value calculated from the previous interrupt. */
6585 igb_write_itr(q_vector);
6586
6587 napi_schedule(&q_vector->napi);
6588
6589 return IRQ_HANDLED;
6590 }
6591
6592 #ifdef CONFIG_IGB_DCA
igb_update_tx_dca(struct igb_adapter * adapter,struct igb_ring * tx_ring,int cpu)6593 static void igb_update_tx_dca(struct igb_adapter *adapter,
6594 struct igb_ring *tx_ring,
6595 int cpu)
6596 {
6597 struct e1000_hw *hw = &adapter->hw;
6598 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6599
6600 if (hw->mac.type != e1000_82575)
6601 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6602
6603 /* We can enable relaxed ordering for reads, but not writes when
6604 * DCA is enabled. This is due to a known issue in some chipsets
6605 * which will cause the DCA tag to be cleared.
6606 */
6607 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6608 E1000_DCA_TXCTRL_DATA_RRO_EN |
6609 E1000_DCA_TXCTRL_DESC_DCA_EN;
6610
6611 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6612 }
6613
igb_update_rx_dca(struct igb_adapter * adapter,struct igb_ring * rx_ring,int cpu)6614 static void igb_update_rx_dca(struct igb_adapter *adapter,
6615 struct igb_ring *rx_ring,
6616 int cpu)
6617 {
6618 struct e1000_hw *hw = &adapter->hw;
6619 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6620
6621 if (hw->mac.type != e1000_82575)
6622 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6623
6624 /* We can enable relaxed ordering for reads, but not writes when
6625 * DCA is enabled. This is due to a known issue in some chipsets
6626 * which will cause the DCA tag to be cleared.
6627 */
6628 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6629 E1000_DCA_RXCTRL_DESC_DCA_EN;
6630
6631 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6632 }
6633
igb_update_dca(struct igb_q_vector * q_vector)6634 static void igb_update_dca(struct igb_q_vector *q_vector)
6635 {
6636 struct igb_adapter *adapter = q_vector->adapter;
6637 int cpu = get_cpu();
6638
6639 if (q_vector->cpu == cpu)
6640 goto out_no_update;
6641
6642 if (q_vector->tx.ring)
6643 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6644
6645 if (q_vector->rx.ring)
6646 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6647
6648 q_vector->cpu = cpu;
6649 out_no_update:
6650 put_cpu();
6651 }
6652
igb_setup_dca(struct igb_adapter * adapter)6653 static void igb_setup_dca(struct igb_adapter *adapter)
6654 {
6655 struct e1000_hw *hw = &adapter->hw;
6656 int i;
6657
6658 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6659 return;
6660
6661 /* Always use CB2 mode, difference is masked in the CB driver. */
6662 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6663
6664 for (i = 0; i < adapter->num_q_vectors; i++) {
6665 adapter->q_vector[i]->cpu = -1;
6666 igb_update_dca(adapter->q_vector[i]);
6667 }
6668 }
6669
__igb_notify_dca(struct device * dev,void * data)6670 static int __igb_notify_dca(struct device *dev, void *data)
6671 {
6672 struct net_device *netdev = dev_get_drvdata(dev);
6673 struct igb_adapter *adapter = netdev_priv(netdev);
6674 struct pci_dev *pdev = adapter->pdev;
6675 struct e1000_hw *hw = &adapter->hw;
6676 unsigned long event = *(unsigned long *)data;
6677
6678 switch (event) {
6679 case DCA_PROVIDER_ADD:
6680 /* if already enabled, don't do it again */
6681 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6682 break;
6683 if (dca_add_requester(dev) == 0) {
6684 adapter->flags |= IGB_FLAG_DCA_ENABLED;
6685 dev_info(&pdev->dev, "DCA enabled\n");
6686 igb_setup_dca(adapter);
6687 break;
6688 }
6689 /* Fall Through - since DCA is disabled. */
6690 case DCA_PROVIDER_REMOVE:
6691 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6692 /* without this a class_device is left
6693 * hanging around in the sysfs model
6694 */
6695 dca_remove_requester(dev);
6696 dev_info(&pdev->dev, "DCA disabled\n");
6697 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6698 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
6699 }
6700 break;
6701 }
6702
6703 return 0;
6704 }
6705
igb_notify_dca(struct notifier_block * nb,unsigned long event,void * p)6706 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6707 void *p)
6708 {
6709 int ret_val;
6710
6711 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
6712 __igb_notify_dca);
6713
6714 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
6715 }
6716 #endif /* CONFIG_IGB_DCA */
6717
6718 #ifdef CONFIG_PCI_IOV
igb_vf_configure(struct igb_adapter * adapter,int vf)6719 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
6720 {
6721 unsigned char mac_addr[ETH_ALEN];
6722
6723 eth_zero_addr(mac_addr);
6724 igb_set_vf_mac(adapter, vf, mac_addr);
6725
6726 /* By default spoof check is enabled for all VFs */
6727 adapter->vf_data[vf].spoofchk_enabled = true;
6728
6729 /* By default VFs are not trusted */
6730 adapter->vf_data[vf].trusted = false;
6731
6732 return 0;
6733 }
6734
6735 #endif
igb_ping_all_vfs(struct igb_adapter * adapter)6736 static void igb_ping_all_vfs(struct igb_adapter *adapter)
6737 {
6738 struct e1000_hw *hw = &adapter->hw;
6739 u32 ping;
6740 int i;
6741
6742 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
6743 ping = E1000_PF_CONTROL_MSG;
6744 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
6745 ping |= E1000_VT_MSGTYPE_CTS;
6746 igb_write_mbx(hw, &ping, 1, i);
6747 }
6748 }
6749
igb_set_vf_promisc(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)6750 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6751 {
6752 struct e1000_hw *hw = &adapter->hw;
6753 u32 vmolr = rd32(E1000_VMOLR(vf));
6754 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6755
6756 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
6757 IGB_VF_FLAG_MULTI_PROMISC);
6758 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6759
6760 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
6761 vmolr |= E1000_VMOLR_MPME;
6762 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
6763 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
6764 } else {
6765 /* if we have hashes and we are clearing a multicast promisc
6766 * flag we need to write the hashes to the MTA as this step
6767 * was previously skipped
6768 */
6769 if (vf_data->num_vf_mc_hashes > 30) {
6770 vmolr |= E1000_VMOLR_MPME;
6771 } else if (vf_data->num_vf_mc_hashes) {
6772 int j;
6773
6774 vmolr |= E1000_VMOLR_ROMPE;
6775 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6776 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6777 }
6778 }
6779
6780 wr32(E1000_VMOLR(vf), vmolr);
6781
6782 /* there are flags left unprocessed, likely not supported */
6783 if (*msgbuf & E1000_VT_MSGINFO_MASK)
6784 return -EINVAL;
6785
6786 return 0;
6787 }
6788
igb_set_vf_multicasts(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)6789 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
6790 u32 *msgbuf, u32 vf)
6791 {
6792 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6793 u16 *hash_list = (u16 *)&msgbuf[1];
6794 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6795 int i;
6796
6797 /* salt away the number of multicast addresses assigned
6798 * to this VF for later use to restore when the PF multi cast
6799 * list changes
6800 */
6801 vf_data->num_vf_mc_hashes = n;
6802
6803 /* only up to 30 hash values supported */
6804 if (n > 30)
6805 n = 30;
6806
6807 /* store the hashes for later use */
6808 for (i = 0; i < n; i++)
6809 vf_data->vf_mc_hashes[i] = hash_list[i];
6810
6811 /* Flush and reset the mta with the new values */
6812 igb_set_rx_mode(adapter->netdev);
6813
6814 return 0;
6815 }
6816
igb_restore_vf_multicasts(struct igb_adapter * adapter)6817 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6818 {
6819 struct e1000_hw *hw = &adapter->hw;
6820 struct vf_data_storage *vf_data;
6821 int i, j;
6822
6823 for (i = 0; i < adapter->vfs_allocated_count; i++) {
6824 u32 vmolr = rd32(E1000_VMOLR(i));
6825
6826 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6827
6828 vf_data = &adapter->vf_data[i];
6829
6830 if ((vf_data->num_vf_mc_hashes > 30) ||
6831 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6832 vmolr |= E1000_VMOLR_MPME;
6833 } else if (vf_data->num_vf_mc_hashes) {
6834 vmolr |= E1000_VMOLR_ROMPE;
6835 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6836 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6837 }
6838 wr32(E1000_VMOLR(i), vmolr);
6839 }
6840 }
6841
igb_clear_vf_vfta(struct igb_adapter * adapter,u32 vf)6842 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6843 {
6844 struct e1000_hw *hw = &adapter->hw;
6845 u32 pool_mask, vlvf_mask, i;
6846
6847 /* create mask for VF and other pools */
6848 pool_mask = E1000_VLVF_POOLSEL_MASK;
6849 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6850
6851 /* drop PF from pool bits */
6852 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6853 adapter->vfs_allocated_count);
6854
6855 /* Find the vlan filter for this id */
6856 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6857 u32 vlvf = rd32(E1000_VLVF(i));
6858 u32 vfta_mask, vid, vfta;
6859
6860 /* remove the vf from the pool */
6861 if (!(vlvf & vlvf_mask))
6862 continue;
6863
6864 /* clear out bit from VLVF */
6865 vlvf ^= vlvf_mask;
6866
6867 /* if other pools are present, just remove ourselves */
6868 if (vlvf & pool_mask)
6869 goto update_vlvfb;
6870
6871 /* if PF is present, leave VFTA */
6872 if (vlvf & E1000_VLVF_POOLSEL_MASK)
6873 goto update_vlvf;
6874
6875 vid = vlvf & E1000_VLVF_VLANID_MASK;
6876 vfta_mask = BIT(vid % 32);
6877
6878 /* clear bit from VFTA */
6879 vfta = adapter->shadow_vfta[vid / 32];
6880 if (vfta & vfta_mask)
6881 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6882 update_vlvf:
6883 /* clear pool selection enable */
6884 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6885 vlvf &= E1000_VLVF_POOLSEL_MASK;
6886 else
6887 vlvf = 0;
6888 update_vlvfb:
6889 /* clear pool bits */
6890 wr32(E1000_VLVF(i), vlvf);
6891 }
6892 }
6893
igb_find_vlvf_entry(struct e1000_hw * hw,u32 vlan)6894 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6895 {
6896 u32 vlvf;
6897 int idx;
6898
6899 /* short cut the special case */
6900 if (vlan == 0)
6901 return 0;
6902
6903 /* Search for the VLAN id in the VLVF entries */
6904 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6905 vlvf = rd32(E1000_VLVF(idx));
6906 if ((vlvf & VLAN_VID_MASK) == vlan)
6907 break;
6908 }
6909
6910 return idx;
6911 }
6912
igb_update_pf_vlvf(struct igb_adapter * adapter,u32 vid)6913 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6914 {
6915 struct e1000_hw *hw = &adapter->hw;
6916 u32 bits, pf_id;
6917 int idx;
6918
6919 idx = igb_find_vlvf_entry(hw, vid);
6920 if (!idx)
6921 return;
6922
6923 /* See if any other pools are set for this VLAN filter
6924 * entry other than the PF.
6925 */
6926 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6927 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6928 bits &= rd32(E1000_VLVF(idx));
6929
6930 /* Disable the filter so this falls into the default pool. */
6931 if (!bits) {
6932 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6933 wr32(E1000_VLVF(idx), BIT(pf_id));
6934 else
6935 wr32(E1000_VLVF(idx), 0);
6936 }
6937 }
6938
igb_set_vf_vlan(struct igb_adapter * adapter,u32 vid,bool add,u32 vf)6939 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6940 bool add, u32 vf)
6941 {
6942 int pf_id = adapter->vfs_allocated_count;
6943 struct e1000_hw *hw = &adapter->hw;
6944 int err;
6945
6946 /* If VLAN overlaps with one the PF is currently monitoring make
6947 * sure that we are able to allocate a VLVF entry. This may be
6948 * redundant but it guarantees PF will maintain visibility to
6949 * the VLAN.
6950 */
6951 if (add && test_bit(vid, adapter->active_vlans)) {
6952 err = igb_vfta_set(hw, vid, pf_id, true, false);
6953 if (err)
6954 return err;
6955 }
6956
6957 err = igb_vfta_set(hw, vid, vf, add, false);
6958
6959 if (add && !err)
6960 return err;
6961
6962 /* If we failed to add the VF VLAN or we are removing the VF VLAN
6963 * we may need to drop the PF pool bit in order to allow us to free
6964 * up the VLVF resources.
6965 */
6966 if (test_bit(vid, adapter->active_vlans) ||
6967 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6968 igb_update_pf_vlvf(adapter, vid);
6969
6970 return err;
6971 }
6972
igb_set_vmvir(struct igb_adapter * adapter,u32 vid,u32 vf)6973 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6974 {
6975 struct e1000_hw *hw = &adapter->hw;
6976
6977 if (vid)
6978 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6979 else
6980 wr32(E1000_VMVIR(vf), 0);
6981 }
6982
igb_enable_port_vlan(struct igb_adapter * adapter,int vf,u16 vlan,u8 qos)6983 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6984 u16 vlan, u8 qos)
6985 {
6986 int err;
6987
6988 err = igb_set_vf_vlan(adapter, vlan, true, vf);
6989 if (err)
6990 return err;
6991
6992 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6993 igb_set_vmolr(adapter, vf, !vlan);
6994
6995 /* revoke access to previous VLAN */
6996 if (vlan != adapter->vf_data[vf].pf_vlan)
6997 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6998 false, vf);
6999
7000 adapter->vf_data[vf].pf_vlan = vlan;
7001 adapter->vf_data[vf].pf_qos = qos;
7002 igb_set_vf_vlan_strip(adapter, vf, true);
7003 dev_info(&adapter->pdev->dev,
7004 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7005 if (test_bit(__IGB_DOWN, &adapter->state)) {
7006 dev_warn(&adapter->pdev->dev,
7007 "The VF VLAN has been set, but the PF device is not up.\n");
7008 dev_warn(&adapter->pdev->dev,
7009 "Bring the PF device up before attempting to use the VF device.\n");
7010 }
7011
7012 return err;
7013 }
7014
igb_disable_port_vlan(struct igb_adapter * adapter,int vf)7015 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7016 {
7017 /* Restore tagless access via VLAN 0 */
7018 igb_set_vf_vlan(adapter, 0, true, vf);
7019
7020 igb_set_vmvir(adapter, 0, vf);
7021 igb_set_vmolr(adapter, vf, true);
7022
7023 /* Remove any PF assigned VLAN */
7024 if (adapter->vf_data[vf].pf_vlan)
7025 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7026 false, vf);
7027
7028 adapter->vf_data[vf].pf_vlan = 0;
7029 adapter->vf_data[vf].pf_qos = 0;
7030 igb_set_vf_vlan_strip(adapter, vf, false);
7031
7032 return 0;
7033 }
7034
igb_ndo_set_vf_vlan(struct net_device * netdev,int vf,u16 vlan,u8 qos,__be16 vlan_proto)7035 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7036 u16 vlan, u8 qos, __be16 vlan_proto)
7037 {
7038 struct igb_adapter *adapter = netdev_priv(netdev);
7039
7040 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7041 return -EINVAL;
7042
7043 if (vlan_proto != htons(ETH_P_8021Q))
7044 return -EPROTONOSUPPORT;
7045
7046 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7047 igb_disable_port_vlan(adapter, vf);
7048 }
7049
igb_set_vf_vlan_msg(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7050 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7051 {
7052 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7053 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7054 int ret;
7055
7056 if (adapter->vf_data[vf].pf_vlan)
7057 return -1;
7058
7059 /* VLAN 0 is a special case, don't allow it to be removed */
7060 if (!vid && !add)
7061 return 0;
7062
7063 ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7064 if (!ret)
7065 igb_set_vf_vlan_strip(adapter, vf, !!vid);
7066 return ret;
7067 }
7068
igb_vf_reset(struct igb_adapter * adapter,u32 vf)7069 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7070 {
7071 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7072
7073 /* clear flags - except flag that indicates PF has set the MAC */
7074 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7075 vf_data->last_nack = jiffies;
7076
7077 /* reset vlans for device */
7078 igb_clear_vf_vfta(adapter, vf);
7079 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7080 igb_set_vmvir(adapter, vf_data->pf_vlan |
7081 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7082 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7083 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7084
7085 /* reset multicast table array for vf */
7086 adapter->vf_data[vf].num_vf_mc_hashes = 0;
7087
7088 /* Flush and reset the mta with the new values */
7089 igb_set_rx_mode(adapter->netdev);
7090 }
7091
igb_vf_reset_event(struct igb_adapter * adapter,u32 vf)7092 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7093 {
7094 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7095
7096 /* clear mac address as we were hotplug removed/added */
7097 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7098 eth_zero_addr(vf_mac);
7099
7100 /* process remaining reset events */
7101 igb_vf_reset(adapter, vf);
7102 }
7103
igb_vf_reset_msg(struct igb_adapter * adapter,u32 vf)7104 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7105 {
7106 struct e1000_hw *hw = &adapter->hw;
7107 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7108 u32 reg, msgbuf[3];
7109 u8 *addr = (u8 *)(&msgbuf[1]);
7110
7111 /* process all the same items cleared in a function level reset */
7112 igb_vf_reset(adapter, vf);
7113
7114 /* set vf mac address */
7115 igb_set_vf_mac(adapter, vf, vf_mac);
7116
7117 /* enable transmit and receive for vf */
7118 reg = rd32(E1000_VFTE);
7119 wr32(E1000_VFTE, reg | BIT(vf));
7120 reg = rd32(E1000_VFRE);
7121 wr32(E1000_VFRE, reg | BIT(vf));
7122
7123 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7124
7125 /* reply to reset with ack and vf mac address */
7126 if (!is_zero_ether_addr(vf_mac)) {
7127 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7128 memcpy(addr, vf_mac, ETH_ALEN);
7129 } else {
7130 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7131 }
7132 igb_write_mbx(hw, msgbuf, 3, vf);
7133 }
7134
igb_flush_mac_table(struct igb_adapter * adapter)7135 static void igb_flush_mac_table(struct igb_adapter *adapter)
7136 {
7137 struct e1000_hw *hw = &adapter->hw;
7138 int i;
7139
7140 for (i = 0; i < hw->mac.rar_entry_count; i++) {
7141 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7142 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
7143 adapter->mac_table[i].queue = 0;
7144 igb_rar_set_index(adapter, i);
7145 }
7146 }
7147
igb_available_rars(struct igb_adapter * adapter,u8 queue)7148 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7149 {
7150 struct e1000_hw *hw = &adapter->hw;
7151 /* do not count rar entries reserved for VFs MAC addresses */
7152 int rar_entries = hw->mac.rar_entry_count -
7153 adapter->vfs_allocated_count;
7154 int i, count = 0;
7155
7156 for (i = 0; i < rar_entries; i++) {
7157 /* do not count default entries */
7158 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7159 continue;
7160
7161 /* do not count "in use" entries for different queues */
7162 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7163 (adapter->mac_table[i].queue != queue))
7164 continue;
7165
7166 count++;
7167 }
7168
7169 return count;
7170 }
7171
7172 /* Set default MAC address for the PF in the first RAR entry */
igb_set_default_mac_filter(struct igb_adapter * adapter)7173 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7174 {
7175 struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7176
7177 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7178 mac_table->queue = adapter->vfs_allocated_count;
7179 mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7180
7181 igb_rar_set_index(adapter, 0);
7182 }
7183
7184 /* If the filter to be added and an already existing filter express
7185 * the same address and address type, it should be possible to only
7186 * override the other configurations, for example the queue to steer
7187 * traffic.
7188 */
igb_mac_entry_can_be_used(const struct igb_mac_addr * entry,const u8 * addr,const u8 flags)7189 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7190 const u8 *addr, const u8 flags)
7191 {
7192 if (!(entry->state & IGB_MAC_STATE_IN_USE))
7193 return true;
7194
7195 if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7196 (flags & IGB_MAC_STATE_SRC_ADDR))
7197 return false;
7198
7199 if (!ether_addr_equal(addr, entry->addr))
7200 return false;
7201
7202 return true;
7203 }
7204
7205 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7206 * 'flags' is used to indicate what kind of match is made, match is by
7207 * default for the destination address, if matching by source address
7208 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7209 */
igb_add_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7210 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7211 const u8 *addr, const u8 queue,
7212 const u8 flags)
7213 {
7214 struct e1000_hw *hw = &adapter->hw;
7215 int rar_entries = hw->mac.rar_entry_count -
7216 adapter->vfs_allocated_count;
7217 int i;
7218
7219 if (is_zero_ether_addr(addr))
7220 return -EINVAL;
7221
7222 /* Search for the first empty entry in the MAC table.
7223 * Do not touch entries at the end of the table reserved for the VF MAC
7224 * addresses.
7225 */
7226 for (i = 0; i < rar_entries; i++) {
7227 if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7228 addr, flags))
7229 continue;
7230
7231 ether_addr_copy(adapter->mac_table[i].addr, addr);
7232 adapter->mac_table[i].queue = queue;
7233 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7234
7235 igb_rar_set_index(adapter, i);
7236 return i;
7237 }
7238
7239 return -ENOSPC;
7240 }
7241
igb_add_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7242 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7243 const u8 queue)
7244 {
7245 return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7246 }
7247
7248 /* Remove a MAC filter for 'addr' directing matching traffic to
7249 * 'queue', 'flags' is used to indicate what kind of match need to be
7250 * removed, match is by default for the destination address, if
7251 * matching by source address is to be removed the flag
7252 * IGB_MAC_STATE_SRC_ADDR can be used.
7253 */
igb_del_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7254 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7255 const u8 *addr, const u8 queue,
7256 const u8 flags)
7257 {
7258 struct e1000_hw *hw = &adapter->hw;
7259 int rar_entries = hw->mac.rar_entry_count -
7260 adapter->vfs_allocated_count;
7261 int i;
7262
7263 if (is_zero_ether_addr(addr))
7264 return -EINVAL;
7265
7266 /* Search for matching entry in the MAC table based on given address
7267 * and queue. Do not touch entries at the end of the table reserved
7268 * for the VF MAC addresses.
7269 */
7270 for (i = 0; i < rar_entries; i++) {
7271 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7272 continue;
7273 if ((adapter->mac_table[i].state & flags) != flags)
7274 continue;
7275 if (adapter->mac_table[i].queue != queue)
7276 continue;
7277 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7278 continue;
7279
7280 /* When a filter for the default address is "deleted",
7281 * we return it to its initial configuration
7282 */
7283 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7284 adapter->mac_table[i].state =
7285 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7286 adapter->mac_table[i].queue =
7287 adapter->vfs_allocated_count;
7288 } else {
7289 adapter->mac_table[i].state = 0;
7290 adapter->mac_table[i].queue = 0;
7291 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
7292 }
7293
7294 igb_rar_set_index(adapter, i);
7295 return 0;
7296 }
7297
7298 return -ENOENT;
7299 }
7300
igb_del_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7301 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7302 const u8 queue)
7303 {
7304 return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7305 }
7306
igb_add_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7307 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7308 const u8 *addr, u8 queue, u8 flags)
7309 {
7310 struct e1000_hw *hw = &adapter->hw;
7311
7312 /* In theory, this should be supported on 82575 as well, but
7313 * that part wasn't easily accessible during development.
7314 */
7315 if (hw->mac.type != e1000_i210)
7316 return -EOPNOTSUPP;
7317
7318 return igb_add_mac_filter_flags(adapter, addr, queue,
7319 IGB_MAC_STATE_QUEUE_STEERING | flags);
7320 }
7321
igb_del_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7322 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7323 const u8 *addr, u8 queue, u8 flags)
7324 {
7325 return igb_del_mac_filter_flags(adapter, addr, queue,
7326 IGB_MAC_STATE_QUEUE_STEERING | flags);
7327 }
7328
igb_uc_sync(struct net_device * netdev,const unsigned char * addr)7329 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7330 {
7331 struct igb_adapter *adapter = netdev_priv(netdev);
7332 int ret;
7333
7334 ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7335
7336 return min_t(int, ret, 0);
7337 }
7338
igb_uc_unsync(struct net_device * netdev,const unsigned char * addr)7339 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7340 {
7341 struct igb_adapter *adapter = netdev_priv(netdev);
7342
7343 igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7344
7345 return 0;
7346 }
7347
igb_set_vf_mac_filter(struct igb_adapter * adapter,const int vf,const u32 info,const u8 * addr)7348 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7349 const u32 info, const u8 *addr)
7350 {
7351 struct pci_dev *pdev = adapter->pdev;
7352 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7353 struct list_head *pos;
7354 struct vf_mac_filter *entry = NULL;
7355 int ret = 0;
7356
7357 switch (info) {
7358 case E1000_VF_MAC_FILTER_CLR:
7359 /* remove all unicast MAC filters related to the current VF */
7360 list_for_each(pos, &adapter->vf_macs.l) {
7361 entry = list_entry(pos, struct vf_mac_filter, l);
7362 if (entry->vf == vf) {
7363 entry->vf = -1;
7364 entry->free = true;
7365 igb_del_mac_filter(adapter, entry->vf_mac, vf);
7366 }
7367 }
7368 break;
7369 case E1000_VF_MAC_FILTER_ADD:
7370 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7371 !vf_data->trusted) {
7372 dev_warn(&pdev->dev,
7373 "VF %d requested MAC filter but is administratively denied\n",
7374 vf);
7375 return -EINVAL;
7376 }
7377 if (!is_valid_ether_addr(addr)) {
7378 dev_warn(&pdev->dev,
7379 "VF %d attempted to set invalid MAC filter\n",
7380 vf);
7381 return -EINVAL;
7382 }
7383
7384 /* try to find empty slot in the list */
7385 list_for_each(pos, &adapter->vf_macs.l) {
7386 entry = list_entry(pos, struct vf_mac_filter, l);
7387 if (entry->free)
7388 break;
7389 }
7390
7391 if (entry && entry->free) {
7392 entry->free = false;
7393 entry->vf = vf;
7394 ether_addr_copy(entry->vf_mac, addr);
7395
7396 ret = igb_add_mac_filter(adapter, addr, vf);
7397 ret = min_t(int, ret, 0);
7398 } else {
7399 ret = -ENOSPC;
7400 }
7401
7402 if (ret == -ENOSPC)
7403 dev_warn(&pdev->dev,
7404 "VF %d has requested MAC filter but there is no space for it\n",
7405 vf);
7406 break;
7407 default:
7408 ret = -EINVAL;
7409 break;
7410 }
7411
7412 return ret;
7413 }
7414
igb_set_vf_mac_addr(struct igb_adapter * adapter,u32 * msg,int vf)7415 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7416 {
7417 struct pci_dev *pdev = adapter->pdev;
7418 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7419 u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7420
7421 /* The VF MAC Address is stored in a packed array of bytes
7422 * starting at the second 32 bit word of the msg array
7423 */
7424 unsigned char *addr = (unsigned char *)&msg[1];
7425 int ret = 0;
7426
7427 if (!info) {
7428 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7429 !vf_data->trusted) {
7430 dev_warn(&pdev->dev,
7431 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7432 vf);
7433 return -EINVAL;
7434 }
7435
7436 if (!is_valid_ether_addr(addr)) {
7437 dev_warn(&pdev->dev,
7438 "VF %d attempted to set invalid MAC\n",
7439 vf);
7440 return -EINVAL;
7441 }
7442
7443 ret = igb_set_vf_mac(adapter, vf, addr);
7444 } else {
7445 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7446 }
7447
7448 return ret;
7449 }
7450
igb_rcv_ack_from_vf(struct igb_adapter * adapter,u32 vf)7451 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7452 {
7453 struct e1000_hw *hw = &adapter->hw;
7454 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7455 u32 msg = E1000_VT_MSGTYPE_NACK;
7456
7457 /* if device isn't clear to send it shouldn't be reading either */
7458 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7459 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7460 igb_write_mbx(hw, &msg, 1, vf);
7461 vf_data->last_nack = jiffies;
7462 }
7463 }
7464
igb_rcv_msg_from_vf(struct igb_adapter * adapter,u32 vf)7465 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7466 {
7467 struct pci_dev *pdev = adapter->pdev;
7468 u32 msgbuf[E1000_VFMAILBOX_SIZE];
7469 struct e1000_hw *hw = &adapter->hw;
7470 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7471 s32 retval;
7472
7473 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7474
7475 if (retval) {
7476 /* if receive failed revoke VF CTS stats and restart init */
7477 dev_err(&pdev->dev, "Error receiving message from VF\n");
7478 vf_data->flags &= ~IGB_VF_FLAG_CTS;
7479 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7480 goto unlock;
7481 goto out;
7482 }
7483
7484 /* this is a message we already processed, do nothing */
7485 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7486 goto unlock;
7487
7488 /* until the vf completes a reset it should not be
7489 * allowed to start any configuration.
7490 */
7491 if (msgbuf[0] == E1000_VF_RESET) {
7492 /* unlocks mailbox */
7493 igb_vf_reset_msg(adapter, vf);
7494 return;
7495 }
7496
7497 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7498 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7499 goto unlock;
7500 retval = -1;
7501 goto out;
7502 }
7503
7504 switch ((msgbuf[0] & 0xFFFF)) {
7505 case E1000_VF_SET_MAC_ADDR:
7506 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7507 break;
7508 case E1000_VF_SET_PROMISC:
7509 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7510 break;
7511 case E1000_VF_SET_MULTICAST:
7512 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7513 break;
7514 case E1000_VF_SET_LPE:
7515 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7516 break;
7517 case E1000_VF_SET_VLAN:
7518 retval = -1;
7519 if (vf_data->pf_vlan)
7520 dev_warn(&pdev->dev,
7521 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7522 vf);
7523 else
7524 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7525 break;
7526 default:
7527 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7528 retval = -1;
7529 break;
7530 }
7531
7532 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7533 out:
7534 /* notify the VF of the results of what it sent us */
7535 if (retval)
7536 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7537 else
7538 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7539
7540 /* unlocks mailbox */
7541 igb_write_mbx(hw, msgbuf, 1, vf);
7542 return;
7543
7544 unlock:
7545 igb_unlock_mbx(hw, vf);
7546 }
7547
igb_msg_task(struct igb_adapter * adapter)7548 static void igb_msg_task(struct igb_adapter *adapter)
7549 {
7550 struct e1000_hw *hw = &adapter->hw;
7551 u32 vf;
7552
7553 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7554 /* process any reset requests */
7555 if (!igb_check_for_rst(hw, vf))
7556 igb_vf_reset_event(adapter, vf);
7557
7558 /* process any messages pending */
7559 if (!igb_check_for_msg(hw, vf))
7560 igb_rcv_msg_from_vf(adapter, vf);
7561
7562 /* process any acks */
7563 if (!igb_check_for_ack(hw, vf))
7564 igb_rcv_ack_from_vf(adapter, vf);
7565 }
7566 }
7567
7568 /**
7569 * igb_set_uta - Set unicast filter table address
7570 * @adapter: board private structure
7571 * @set: boolean indicating if we are setting or clearing bits
7572 *
7573 * The unicast table address is a register array of 32-bit registers.
7574 * The table is meant to be used in a way similar to how the MTA is used
7575 * however due to certain limitations in the hardware it is necessary to
7576 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7577 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
7578 **/
igb_set_uta(struct igb_adapter * adapter,bool set)7579 static void igb_set_uta(struct igb_adapter *adapter, bool set)
7580 {
7581 struct e1000_hw *hw = &adapter->hw;
7582 u32 uta = set ? ~0 : 0;
7583 int i;
7584
7585 /* we only need to do this if VMDq is enabled */
7586 if (!adapter->vfs_allocated_count)
7587 return;
7588
7589 for (i = hw->mac.uta_reg_count; i--;)
7590 array_wr32(E1000_UTA, i, uta);
7591 }
7592
7593 /**
7594 * igb_intr_msi - Interrupt Handler
7595 * @irq: interrupt number
7596 * @data: pointer to a network interface device structure
7597 **/
igb_intr_msi(int irq,void * data)7598 static irqreturn_t igb_intr_msi(int irq, void *data)
7599 {
7600 struct igb_adapter *adapter = data;
7601 struct igb_q_vector *q_vector = adapter->q_vector[0];
7602 struct e1000_hw *hw = &adapter->hw;
7603 /* read ICR disables interrupts using IAM */
7604 u32 icr = rd32(E1000_ICR);
7605
7606 igb_write_itr(q_vector);
7607
7608 if (icr & E1000_ICR_DRSTA)
7609 schedule_work(&adapter->reset_task);
7610
7611 if (icr & E1000_ICR_DOUTSYNC) {
7612 /* HW is reporting DMA is out of sync */
7613 adapter->stats.doosync++;
7614 }
7615
7616 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7617 hw->mac.get_link_status = 1;
7618 if (!test_bit(__IGB_DOWN, &adapter->state))
7619 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7620 }
7621
7622 if (icr & E1000_ICR_TS)
7623 igb_tsync_interrupt(adapter);
7624
7625 napi_schedule(&q_vector->napi);
7626
7627 return IRQ_HANDLED;
7628 }
7629
7630 /**
7631 * igb_intr - Legacy Interrupt Handler
7632 * @irq: interrupt number
7633 * @data: pointer to a network interface device structure
7634 **/
igb_intr(int irq,void * data)7635 static irqreturn_t igb_intr(int irq, void *data)
7636 {
7637 struct igb_adapter *adapter = data;
7638 struct igb_q_vector *q_vector = adapter->q_vector[0];
7639 struct e1000_hw *hw = &adapter->hw;
7640 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
7641 * need for the IMC write
7642 */
7643 u32 icr = rd32(E1000_ICR);
7644
7645 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7646 * not set, then the adapter didn't send an interrupt
7647 */
7648 if (!(icr & E1000_ICR_INT_ASSERTED))
7649 return IRQ_NONE;
7650
7651 igb_write_itr(q_vector);
7652
7653 if (icr & E1000_ICR_DRSTA)
7654 schedule_work(&adapter->reset_task);
7655
7656 if (icr & E1000_ICR_DOUTSYNC) {
7657 /* HW is reporting DMA is out of sync */
7658 adapter->stats.doosync++;
7659 }
7660
7661 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7662 hw->mac.get_link_status = 1;
7663 /* guard against interrupt when we're going down */
7664 if (!test_bit(__IGB_DOWN, &adapter->state))
7665 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7666 }
7667
7668 if (icr & E1000_ICR_TS)
7669 igb_tsync_interrupt(adapter);
7670
7671 napi_schedule(&q_vector->napi);
7672
7673 return IRQ_HANDLED;
7674 }
7675
igb_ring_irq_enable(struct igb_q_vector * q_vector)7676 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7677 {
7678 struct igb_adapter *adapter = q_vector->adapter;
7679 struct e1000_hw *hw = &adapter->hw;
7680
7681 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7682 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7683 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7684 igb_set_itr(q_vector);
7685 else
7686 igb_update_ring_itr(q_vector);
7687 }
7688
7689 if (!test_bit(__IGB_DOWN, &adapter->state)) {
7690 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7691 wr32(E1000_EIMS, q_vector->eims_value);
7692 else
7693 igb_irq_enable(adapter);
7694 }
7695 }
7696
7697 /**
7698 * igb_poll - NAPI Rx polling callback
7699 * @napi: napi polling structure
7700 * @budget: count of how many packets we should handle
7701 **/
igb_poll(struct napi_struct * napi,int budget)7702 static int igb_poll(struct napi_struct *napi, int budget)
7703 {
7704 struct igb_q_vector *q_vector = container_of(napi,
7705 struct igb_q_vector,
7706 napi);
7707 bool clean_complete = true;
7708 int work_done = 0;
7709
7710 #ifdef CONFIG_IGB_DCA
7711 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
7712 igb_update_dca(q_vector);
7713 #endif
7714 if (q_vector->tx.ring)
7715 clean_complete = igb_clean_tx_irq(q_vector, budget);
7716
7717 if (q_vector->rx.ring) {
7718 int cleaned = igb_clean_rx_irq(q_vector, budget);
7719
7720 work_done += cleaned;
7721 if (cleaned >= budget)
7722 clean_complete = false;
7723 }
7724
7725 /* If all work not completed, return budget and keep polling */
7726 if (!clean_complete)
7727 return budget;
7728
7729 /* Exit the polling mode, but don't re-enable interrupts if stack might
7730 * poll us due to busy-polling
7731 */
7732 if (likely(napi_complete_done(napi, work_done)))
7733 igb_ring_irq_enable(q_vector);
7734
7735 return min(work_done, budget - 1);
7736 }
7737
7738 /**
7739 * igb_clean_tx_irq - Reclaim resources after transmit completes
7740 * @q_vector: pointer to q_vector containing needed info
7741 * @napi_budget: Used to determine if we are in netpoll
7742 *
7743 * returns true if ring is completely cleaned
7744 **/
igb_clean_tx_irq(struct igb_q_vector * q_vector,int napi_budget)7745 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
7746 {
7747 struct igb_adapter *adapter = q_vector->adapter;
7748 struct igb_ring *tx_ring = q_vector->tx.ring;
7749 struct igb_tx_buffer *tx_buffer;
7750 union e1000_adv_tx_desc *tx_desc;
7751 unsigned int total_bytes = 0, total_packets = 0;
7752 unsigned int budget = q_vector->tx.work_limit;
7753 unsigned int i = tx_ring->next_to_clean;
7754
7755 if (test_bit(__IGB_DOWN, &adapter->state))
7756 return true;
7757
7758 tx_buffer = &tx_ring->tx_buffer_info[i];
7759 tx_desc = IGB_TX_DESC(tx_ring, i);
7760 i -= tx_ring->count;
7761
7762 do {
7763 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
7764
7765 /* if next_to_watch is not set then there is no work pending */
7766 if (!eop_desc)
7767 break;
7768
7769 /* prevent any other reads prior to eop_desc */
7770 smp_rmb();
7771
7772 /* if DD is not set pending work has not been completed */
7773 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
7774 break;
7775
7776 /* clear next_to_watch to prevent false hangs */
7777 tx_buffer->next_to_watch = NULL;
7778
7779 /* update the statistics for this packet */
7780 total_bytes += tx_buffer->bytecount;
7781 total_packets += tx_buffer->gso_segs;
7782
7783 /* free the skb */
7784 napi_consume_skb(tx_buffer->skb, napi_budget);
7785
7786 /* unmap skb header data */
7787 dma_unmap_single(tx_ring->dev,
7788 dma_unmap_addr(tx_buffer, dma),
7789 dma_unmap_len(tx_buffer, len),
7790 DMA_TO_DEVICE);
7791
7792 /* clear tx_buffer data */
7793 dma_unmap_len_set(tx_buffer, len, 0);
7794
7795 /* clear last DMA location and unmap remaining buffers */
7796 while (tx_desc != eop_desc) {
7797 tx_buffer++;
7798 tx_desc++;
7799 i++;
7800 if (unlikely(!i)) {
7801 i -= tx_ring->count;
7802 tx_buffer = tx_ring->tx_buffer_info;
7803 tx_desc = IGB_TX_DESC(tx_ring, 0);
7804 }
7805
7806 /* unmap any remaining paged data */
7807 if (dma_unmap_len(tx_buffer, len)) {
7808 dma_unmap_page(tx_ring->dev,
7809 dma_unmap_addr(tx_buffer, dma),
7810 dma_unmap_len(tx_buffer, len),
7811 DMA_TO_DEVICE);
7812 dma_unmap_len_set(tx_buffer, len, 0);
7813 }
7814 }
7815
7816 /* move us one more past the eop_desc for start of next pkt */
7817 tx_buffer++;
7818 tx_desc++;
7819 i++;
7820 if (unlikely(!i)) {
7821 i -= tx_ring->count;
7822 tx_buffer = tx_ring->tx_buffer_info;
7823 tx_desc = IGB_TX_DESC(tx_ring, 0);
7824 }
7825
7826 /* issue prefetch for next Tx descriptor */
7827 prefetch(tx_desc);
7828
7829 /* update budget accounting */
7830 budget--;
7831 } while (likely(budget));
7832
7833 netdev_tx_completed_queue(txring_txq(tx_ring),
7834 total_packets, total_bytes);
7835 i += tx_ring->count;
7836 tx_ring->next_to_clean = i;
7837 u64_stats_update_begin(&tx_ring->tx_syncp);
7838 tx_ring->tx_stats.bytes += total_bytes;
7839 tx_ring->tx_stats.packets += total_packets;
7840 u64_stats_update_end(&tx_ring->tx_syncp);
7841 q_vector->tx.total_bytes += total_bytes;
7842 q_vector->tx.total_packets += total_packets;
7843
7844 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
7845 struct e1000_hw *hw = &adapter->hw;
7846
7847 /* Detect a transmit hang in hardware, this serializes the
7848 * check with the clearing of time_stamp and movement of i
7849 */
7850 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
7851 if (tx_buffer->next_to_watch &&
7852 time_after(jiffies, tx_buffer->time_stamp +
7853 (adapter->tx_timeout_factor * HZ)) &&
7854 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
7855
7856 /* detected Tx unit hang */
7857 dev_err(tx_ring->dev,
7858 "Detected Tx Unit Hang\n"
7859 " Tx Queue <%d>\n"
7860 " TDH <%x>\n"
7861 " TDT <%x>\n"
7862 " next_to_use <%x>\n"
7863 " next_to_clean <%x>\n"
7864 "buffer_info[next_to_clean]\n"
7865 " time_stamp <%lx>\n"
7866 " next_to_watch <%p>\n"
7867 " jiffies <%lx>\n"
7868 " desc.status <%x>\n",
7869 tx_ring->queue_index,
7870 rd32(E1000_TDH(tx_ring->reg_idx)),
7871 readl(tx_ring->tail),
7872 tx_ring->next_to_use,
7873 tx_ring->next_to_clean,
7874 tx_buffer->time_stamp,
7875 tx_buffer->next_to_watch,
7876 jiffies,
7877 tx_buffer->next_to_watch->wb.status);
7878 netif_stop_subqueue(tx_ring->netdev,
7879 tx_ring->queue_index);
7880
7881 /* we are about to reset, no point in enabling stuff */
7882 return true;
7883 }
7884 }
7885
7886 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
7887 if (unlikely(total_packets &&
7888 netif_carrier_ok(tx_ring->netdev) &&
7889 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
7890 /* Make sure that anybody stopping the queue after this
7891 * sees the new next_to_clean.
7892 */
7893 smp_mb();
7894 if (__netif_subqueue_stopped(tx_ring->netdev,
7895 tx_ring->queue_index) &&
7896 !(test_bit(__IGB_DOWN, &adapter->state))) {
7897 netif_wake_subqueue(tx_ring->netdev,
7898 tx_ring->queue_index);
7899
7900 u64_stats_update_begin(&tx_ring->tx_syncp);
7901 tx_ring->tx_stats.restart_queue++;
7902 u64_stats_update_end(&tx_ring->tx_syncp);
7903 }
7904 }
7905
7906 return !!budget;
7907 }
7908
7909 /**
7910 * igb_reuse_rx_page - page flip buffer and store it back on the ring
7911 * @rx_ring: rx descriptor ring to store buffers on
7912 * @old_buff: donor buffer to have page reused
7913 *
7914 * Synchronizes page for reuse by the adapter
7915 **/
igb_reuse_rx_page(struct igb_ring * rx_ring,struct igb_rx_buffer * old_buff)7916 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
7917 struct igb_rx_buffer *old_buff)
7918 {
7919 struct igb_rx_buffer *new_buff;
7920 u16 nta = rx_ring->next_to_alloc;
7921
7922 new_buff = &rx_ring->rx_buffer_info[nta];
7923
7924 /* update, and store next to alloc */
7925 nta++;
7926 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7927
7928 /* Transfer page from old buffer to new buffer.
7929 * Move each member individually to avoid possible store
7930 * forwarding stalls.
7931 */
7932 new_buff->dma = old_buff->dma;
7933 new_buff->page = old_buff->page;
7934 new_buff->page_offset = old_buff->page_offset;
7935 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
7936 }
7937
igb_page_is_reserved(struct page * page)7938 static inline bool igb_page_is_reserved(struct page *page)
7939 {
7940 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
7941 }
7942
igb_can_reuse_rx_page(struct igb_rx_buffer * rx_buffer)7943 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
7944 {
7945 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
7946 struct page *page = rx_buffer->page;
7947
7948 /* avoid re-using remote pages */
7949 if (unlikely(igb_page_is_reserved(page)))
7950 return false;
7951
7952 #if (PAGE_SIZE < 8192)
7953 /* if we are only owner of page we can reuse it */
7954 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
7955 return false;
7956 #else
7957 #define IGB_LAST_OFFSET \
7958 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
7959
7960 if (rx_buffer->page_offset > IGB_LAST_OFFSET)
7961 return false;
7962 #endif
7963
7964 /* If we have drained the page fragment pool we need to update
7965 * the pagecnt_bias and page count so that we fully restock the
7966 * number of references the driver holds.
7967 */
7968 if (unlikely(!pagecnt_bias)) {
7969 page_ref_add(page, USHRT_MAX);
7970 rx_buffer->pagecnt_bias = USHRT_MAX;
7971 }
7972
7973 return true;
7974 }
7975
7976 /**
7977 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
7978 * @rx_ring: rx descriptor ring to transact packets on
7979 * @rx_buffer: buffer containing page to add
7980 * @skb: sk_buff to place the data into
7981 * @size: size of buffer to be added
7982 *
7983 * This function will add the data contained in rx_buffer->page to the skb.
7984 **/
igb_add_rx_frag(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)7985 static void igb_add_rx_frag(struct igb_ring *rx_ring,
7986 struct igb_rx_buffer *rx_buffer,
7987 struct sk_buff *skb,
7988 unsigned int size)
7989 {
7990 #if (PAGE_SIZE < 8192)
7991 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
7992 #else
7993 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
7994 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
7995 SKB_DATA_ALIGN(size);
7996 #endif
7997 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
7998 rx_buffer->page_offset, size, truesize);
7999 #if (PAGE_SIZE < 8192)
8000 rx_buffer->page_offset ^= truesize;
8001 #else
8002 rx_buffer->page_offset += truesize;
8003 #endif
8004 }
8005
igb_construct_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,union e1000_adv_rx_desc * rx_desc,unsigned int size)8006 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8007 struct igb_rx_buffer *rx_buffer,
8008 union e1000_adv_rx_desc *rx_desc,
8009 unsigned int size)
8010 {
8011 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8012 #if (PAGE_SIZE < 8192)
8013 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8014 #else
8015 unsigned int truesize = SKB_DATA_ALIGN(size);
8016 #endif
8017 unsigned int headlen;
8018 struct sk_buff *skb;
8019
8020 /* prefetch first cache line of first page */
8021 prefetch(va);
8022 #if L1_CACHE_BYTES < 128
8023 prefetch(va + L1_CACHE_BYTES);
8024 #endif
8025
8026 /* allocate a skb to store the frags */
8027 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8028 if (unlikely(!skb))
8029 return NULL;
8030
8031 if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
8032 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
8033 va += IGB_TS_HDR_LEN;
8034 size -= IGB_TS_HDR_LEN;
8035 }
8036
8037 /* Determine available headroom for copy */
8038 headlen = size;
8039 if (headlen > IGB_RX_HDR_LEN)
8040 headlen = eth_get_headlen(skb->dev, va, IGB_RX_HDR_LEN);
8041
8042 /* align pull length to size of long to optimize memcpy performance */
8043 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
8044
8045 /* update all of the pointers */
8046 size -= headlen;
8047 if (size) {
8048 skb_add_rx_frag(skb, 0, rx_buffer->page,
8049 (va + headlen) - page_address(rx_buffer->page),
8050 size, truesize);
8051 #if (PAGE_SIZE < 8192)
8052 rx_buffer->page_offset ^= truesize;
8053 #else
8054 rx_buffer->page_offset += truesize;
8055 #endif
8056 } else {
8057 rx_buffer->pagecnt_bias++;
8058 }
8059
8060 return skb;
8061 }
8062
igb_build_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,union e1000_adv_rx_desc * rx_desc,unsigned int size)8063 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8064 struct igb_rx_buffer *rx_buffer,
8065 union e1000_adv_rx_desc *rx_desc,
8066 unsigned int size)
8067 {
8068 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8069 #if (PAGE_SIZE < 8192)
8070 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8071 #else
8072 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8073 SKB_DATA_ALIGN(IGB_SKB_PAD + size);
8074 #endif
8075 struct sk_buff *skb;
8076
8077 /* prefetch first cache line of first page */
8078 prefetch(va);
8079 #if L1_CACHE_BYTES < 128
8080 prefetch(va + L1_CACHE_BYTES);
8081 #endif
8082
8083 /* build an skb around the page buffer */
8084 skb = build_skb(va - IGB_SKB_PAD, truesize);
8085 if (unlikely(!skb))
8086 return NULL;
8087
8088 /* update pointers within the skb to store the data */
8089 skb_reserve(skb, IGB_SKB_PAD);
8090 __skb_put(skb, size);
8091
8092 /* pull timestamp out of packet data */
8093 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8094 igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
8095 __skb_pull(skb, IGB_TS_HDR_LEN);
8096 }
8097
8098 /* update buffer offset */
8099 #if (PAGE_SIZE < 8192)
8100 rx_buffer->page_offset ^= truesize;
8101 #else
8102 rx_buffer->page_offset += truesize;
8103 #endif
8104
8105 return skb;
8106 }
8107
igb_rx_checksum(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8108 static inline void igb_rx_checksum(struct igb_ring *ring,
8109 union e1000_adv_rx_desc *rx_desc,
8110 struct sk_buff *skb)
8111 {
8112 skb_checksum_none_assert(skb);
8113
8114 /* Ignore Checksum bit is set */
8115 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8116 return;
8117
8118 /* Rx checksum disabled via ethtool */
8119 if (!(ring->netdev->features & NETIF_F_RXCSUM))
8120 return;
8121
8122 /* TCP/UDP checksum error bit is set */
8123 if (igb_test_staterr(rx_desc,
8124 E1000_RXDEXT_STATERR_TCPE |
8125 E1000_RXDEXT_STATERR_IPE)) {
8126 /* work around errata with sctp packets where the TCPE aka
8127 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8128 * packets, (aka let the stack check the crc32c)
8129 */
8130 if (!((skb->len == 60) &&
8131 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8132 u64_stats_update_begin(&ring->rx_syncp);
8133 ring->rx_stats.csum_err++;
8134 u64_stats_update_end(&ring->rx_syncp);
8135 }
8136 /* let the stack verify checksum errors */
8137 return;
8138 }
8139 /* It must be a TCP or UDP packet with a valid checksum */
8140 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8141 E1000_RXD_STAT_UDPCS))
8142 skb->ip_summed = CHECKSUM_UNNECESSARY;
8143
8144 dev_dbg(ring->dev, "cksum success: bits %08X\n",
8145 le32_to_cpu(rx_desc->wb.upper.status_error));
8146 }
8147
igb_rx_hash(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8148 static inline void igb_rx_hash(struct igb_ring *ring,
8149 union e1000_adv_rx_desc *rx_desc,
8150 struct sk_buff *skb)
8151 {
8152 if (ring->netdev->features & NETIF_F_RXHASH)
8153 skb_set_hash(skb,
8154 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8155 PKT_HASH_TYPE_L3);
8156 }
8157
8158 /**
8159 * igb_is_non_eop - process handling of non-EOP buffers
8160 * @rx_ring: Rx ring being processed
8161 * @rx_desc: Rx descriptor for current buffer
8162 * @skb: current socket buffer containing buffer in progress
8163 *
8164 * This function updates next to clean. If the buffer is an EOP buffer
8165 * this function exits returning false, otherwise it will place the
8166 * sk_buff in the next buffer to be chained and return true indicating
8167 * that this is in fact a non-EOP buffer.
8168 **/
igb_is_non_eop(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc)8169 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8170 union e1000_adv_rx_desc *rx_desc)
8171 {
8172 u32 ntc = rx_ring->next_to_clean + 1;
8173
8174 /* fetch, update, and store next to clean */
8175 ntc = (ntc < rx_ring->count) ? ntc : 0;
8176 rx_ring->next_to_clean = ntc;
8177
8178 prefetch(IGB_RX_DESC(rx_ring, ntc));
8179
8180 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8181 return false;
8182
8183 return true;
8184 }
8185
8186 /**
8187 * igb_cleanup_headers - Correct corrupted or empty headers
8188 * @rx_ring: rx descriptor ring packet is being transacted on
8189 * @rx_desc: pointer to the EOP Rx descriptor
8190 * @skb: pointer to current skb being fixed
8191 *
8192 * Address the case where we are pulling data in on pages only
8193 * and as such no data is present in the skb header.
8194 *
8195 * In addition if skb is not at least 60 bytes we need to pad it so that
8196 * it is large enough to qualify as a valid Ethernet frame.
8197 *
8198 * Returns true if an error was encountered and skb was freed.
8199 **/
igb_cleanup_headers(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8200 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8201 union e1000_adv_rx_desc *rx_desc,
8202 struct sk_buff *skb)
8203 {
8204 if (unlikely((igb_test_staterr(rx_desc,
8205 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8206 struct net_device *netdev = rx_ring->netdev;
8207 if (!(netdev->features & NETIF_F_RXALL)) {
8208 dev_kfree_skb_any(skb);
8209 return true;
8210 }
8211 }
8212
8213 /* if eth_skb_pad returns an error the skb was freed */
8214 if (eth_skb_pad(skb))
8215 return true;
8216
8217 return false;
8218 }
8219
8220 /**
8221 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
8222 * @rx_ring: rx descriptor ring packet is being transacted on
8223 * @rx_desc: pointer to the EOP Rx descriptor
8224 * @skb: pointer to current skb being populated
8225 *
8226 * This function checks the ring, descriptor, and packet information in
8227 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
8228 * other fields within the skb.
8229 **/
igb_process_skb_fields(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8230 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8231 union e1000_adv_rx_desc *rx_desc,
8232 struct sk_buff *skb)
8233 {
8234 struct net_device *dev = rx_ring->netdev;
8235
8236 igb_rx_hash(rx_ring, rx_desc, skb);
8237
8238 igb_rx_checksum(rx_ring, rx_desc, skb);
8239
8240 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8241 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8242 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8243
8244 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8245 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8246 u16 vid;
8247
8248 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8249 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8250 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
8251 else
8252 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8253
8254 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8255 }
8256
8257 skb_record_rx_queue(skb, rx_ring->queue_index);
8258
8259 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8260 }
8261
igb_get_rx_buffer(struct igb_ring * rx_ring,const unsigned int size)8262 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8263 const unsigned int size)
8264 {
8265 struct igb_rx_buffer *rx_buffer;
8266
8267 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8268 prefetchw(rx_buffer->page);
8269
8270 /* we are reusing so sync this buffer for CPU use */
8271 dma_sync_single_range_for_cpu(rx_ring->dev,
8272 rx_buffer->dma,
8273 rx_buffer->page_offset,
8274 size,
8275 DMA_FROM_DEVICE);
8276
8277 rx_buffer->pagecnt_bias--;
8278
8279 return rx_buffer;
8280 }
8281
igb_put_rx_buffer(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer)8282 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8283 struct igb_rx_buffer *rx_buffer)
8284 {
8285 if (igb_can_reuse_rx_page(rx_buffer)) {
8286 /* hand second half of page back to the ring */
8287 igb_reuse_rx_page(rx_ring, rx_buffer);
8288 } else {
8289 /* We are not reusing the buffer so unmap it and free
8290 * any references we are holding to it
8291 */
8292 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8293 igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8294 IGB_RX_DMA_ATTR);
8295 __page_frag_cache_drain(rx_buffer->page,
8296 rx_buffer->pagecnt_bias);
8297 }
8298
8299 /* clear contents of rx_buffer */
8300 rx_buffer->page = NULL;
8301 }
8302
igb_clean_rx_irq(struct igb_q_vector * q_vector,const int budget)8303 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8304 {
8305 struct igb_ring *rx_ring = q_vector->rx.ring;
8306 struct sk_buff *skb = rx_ring->skb;
8307 unsigned int total_bytes = 0, total_packets = 0;
8308 u16 cleaned_count = igb_desc_unused(rx_ring);
8309
8310 while (likely(total_packets < budget)) {
8311 union e1000_adv_rx_desc *rx_desc;
8312 struct igb_rx_buffer *rx_buffer;
8313 unsigned int size;
8314
8315 /* return some buffers to hardware, one at a time is too slow */
8316 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8317 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8318 cleaned_count = 0;
8319 }
8320
8321 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8322 size = le16_to_cpu(rx_desc->wb.upper.length);
8323 if (!size)
8324 break;
8325
8326 /* This memory barrier is needed to keep us from reading
8327 * any other fields out of the rx_desc until we know the
8328 * descriptor has been written back
8329 */
8330 dma_rmb();
8331
8332 rx_buffer = igb_get_rx_buffer(rx_ring, size);
8333
8334 /* retrieve a buffer from the ring */
8335 if (skb)
8336 igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8337 else if (ring_uses_build_skb(rx_ring))
8338 skb = igb_build_skb(rx_ring, rx_buffer, rx_desc, size);
8339 else
8340 skb = igb_construct_skb(rx_ring, rx_buffer,
8341 rx_desc, size);
8342
8343 /* exit if we failed to retrieve a buffer */
8344 if (!skb) {
8345 rx_ring->rx_stats.alloc_failed++;
8346 rx_buffer->pagecnt_bias++;
8347 break;
8348 }
8349
8350 igb_put_rx_buffer(rx_ring, rx_buffer);
8351 cleaned_count++;
8352
8353 /* fetch next buffer in frame if non-eop */
8354 if (igb_is_non_eop(rx_ring, rx_desc))
8355 continue;
8356
8357 /* verify the packet layout is correct */
8358 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8359 skb = NULL;
8360 continue;
8361 }
8362
8363 /* probably a little skewed due to removing CRC */
8364 total_bytes += skb->len;
8365
8366 /* populate checksum, timestamp, VLAN, and protocol */
8367 igb_process_skb_fields(rx_ring, rx_desc, skb);
8368
8369 napi_gro_receive(&q_vector->napi, skb);
8370
8371 /* reset skb pointer */
8372 skb = NULL;
8373
8374 /* update budget accounting */
8375 total_packets++;
8376 }
8377
8378 /* place incomplete frames back on ring for completion */
8379 rx_ring->skb = skb;
8380
8381 u64_stats_update_begin(&rx_ring->rx_syncp);
8382 rx_ring->rx_stats.packets += total_packets;
8383 rx_ring->rx_stats.bytes += total_bytes;
8384 u64_stats_update_end(&rx_ring->rx_syncp);
8385 q_vector->rx.total_packets += total_packets;
8386 q_vector->rx.total_bytes += total_bytes;
8387
8388 if (cleaned_count)
8389 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8390
8391 return total_packets;
8392 }
8393
igb_rx_offset(struct igb_ring * rx_ring)8394 static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8395 {
8396 return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8397 }
8398
igb_alloc_mapped_page(struct igb_ring * rx_ring,struct igb_rx_buffer * bi)8399 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8400 struct igb_rx_buffer *bi)
8401 {
8402 struct page *page = bi->page;
8403 dma_addr_t dma;
8404
8405 /* since we are recycling buffers we should seldom need to alloc */
8406 if (likely(page))
8407 return true;
8408
8409 /* alloc new page for storage */
8410 page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8411 if (unlikely(!page)) {
8412 rx_ring->rx_stats.alloc_failed++;
8413 return false;
8414 }
8415
8416 /* map page for use */
8417 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8418 igb_rx_pg_size(rx_ring),
8419 DMA_FROM_DEVICE,
8420 IGB_RX_DMA_ATTR);
8421
8422 /* if mapping failed free memory back to system since
8423 * there isn't much point in holding memory we can't use
8424 */
8425 if (dma_mapping_error(rx_ring->dev, dma)) {
8426 __free_pages(page, igb_rx_pg_order(rx_ring));
8427
8428 rx_ring->rx_stats.alloc_failed++;
8429 return false;
8430 }
8431
8432 bi->dma = dma;
8433 bi->page = page;
8434 bi->page_offset = igb_rx_offset(rx_ring);
8435 bi->pagecnt_bias = 1;
8436
8437 return true;
8438 }
8439
8440 /**
8441 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
8442 * @adapter: address of board private structure
8443 **/
igb_alloc_rx_buffers(struct igb_ring * rx_ring,u16 cleaned_count)8444 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8445 {
8446 union e1000_adv_rx_desc *rx_desc;
8447 struct igb_rx_buffer *bi;
8448 u16 i = rx_ring->next_to_use;
8449 u16 bufsz;
8450
8451 /* nothing to do */
8452 if (!cleaned_count)
8453 return;
8454
8455 rx_desc = IGB_RX_DESC(rx_ring, i);
8456 bi = &rx_ring->rx_buffer_info[i];
8457 i -= rx_ring->count;
8458
8459 bufsz = igb_rx_bufsz(rx_ring);
8460
8461 do {
8462 if (!igb_alloc_mapped_page(rx_ring, bi))
8463 break;
8464
8465 /* sync the buffer for use by the device */
8466 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8467 bi->page_offset, bufsz,
8468 DMA_FROM_DEVICE);
8469
8470 /* Refresh the desc even if buffer_addrs didn't change
8471 * because each write-back erases this info.
8472 */
8473 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8474
8475 rx_desc++;
8476 bi++;
8477 i++;
8478 if (unlikely(!i)) {
8479 rx_desc = IGB_RX_DESC(rx_ring, 0);
8480 bi = rx_ring->rx_buffer_info;
8481 i -= rx_ring->count;
8482 }
8483
8484 /* clear the length for the next_to_use descriptor */
8485 rx_desc->wb.upper.length = 0;
8486
8487 cleaned_count--;
8488 } while (cleaned_count);
8489
8490 i += rx_ring->count;
8491
8492 if (rx_ring->next_to_use != i) {
8493 /* record the next descriptor to use */
8494 rx_ring->next_to_use = i;
8495
8496 /* update next to alloc since we have filled the ring */
8497 rx_ring->next_to_alloc = i;
8498
8499 /* Force memory writes to complete before letting h/w
8500 * know there are new descriptors to fetch. (Only
8501 * applicable for weak-ordered memory model archs,
8502 * such as IA-64).
8503 */
8504 dma_wmb();
8505 writel(i, rx_ring->tail);
8506 }
8507 }
8508
8509 /**
8510 * igb_mii_ioctl -
8511 * @netdev:
8512 * @ifreq:
8513 * @cmd:
8514 **/
igb_mii_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)8515 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8516 {
8517 struct igb_adapter *adapter = netdev_priv(netdev);
8518 struct mii_ioctl_data *data = if_mii(ifr);
8519
8520 if (adapter->hw.phy.media_type != e1000_media_type_copper)
8521 return -EOPNOTSUPP;
8522
8523 switch (cmd) {
8524 case SIOCGMIIPHY:
8525 data->phy_id = adapter->hw.phy.addr;
8526 break;
8527 case SIOCGMIIREG:
8528 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8529 &data->val_out))
8530 return -EIO;
8531 break;
8532 case SIOCSMIIREG:
8533 default:
8534 return -EOPNOTSUPP;
8535 }
8536 return 0;
8537 }
8538
8539 /**
8540 * igb_ioctl -
8541 * @netdev:
8542 * @ifreq:
8543 * @cmd:
8544 **/
igb_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)8545 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8546 {
8547 switch (cmd) {
8548 case SIOCGMIIPHY:
8549 case SIOCGMIIREG:
8550 case SIOCSMIIREG:
8551 return igb_mii_ioctl(netdev, ifr, cmd);
8552 case SIOCGHWTSTAMP:
8553 return igb_ptp_get_ts_config(netdev, ifr);
8554 case SIOCSHWTSTAMP:
8555 return igb_ptp_set_ts_config(netdev, ifr);
8556 default:
8557 return -EOPNOTSUPP;
8558 }
8559 }
8560
igb_read_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)8561 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8562 {
8563 struct igb_adapter *adapter = hw->back;
8564
8565 pci_read_config_word(adapter->pdev, reg, value);
8566 }
8567
igb_write_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)8568 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8569 {
8570 struct igb_adapter *adapter = hw->back;
8571
8572 pci_write_config_word(adapter->pdev, reg, *value);
8573 }
8574
igb_read_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)8575 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8576 {
8577 struct igb_adapter *adapter = hw->back;
8578
8579 if (pcie_capability_read_word(adapter->pdev, reg, value))
8580 return -E1000_ERR_CONFIG;
8581
8582 return 0;
8583 }
8584
igb_write_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)8585 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8586 {
8587 struct igb_adapter *adapter = hw->back;
8588
8589 if (pcie_capability_write_word(adapter->pdev, reg, *value))
8590 return -E1000_ERR_CONFIG;
8591
8592 return 0;
8593 }
8594
igb_vlan_mode(struct net_device * netdev,netdev_features_t features)8595 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
8596 {
8597 struct igb_adapter *adapter = netdev_priv(netdev);
8598 struct e1000_hw *hw = &adapter->hw;
8599 u32 ctrl, rctl;
8600 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
8601
8602 if (enable) {
8603 /* enable VLAN tag insert/strip */
8604 ctrl = rd32(E1000_CTRL);
8605 ctrl |= E1000_CTRL_VME;
8606 wr32(E1000_CTRL, ctrl);
8607
8608 /* Disable CFI check */
8609 rctl = rd32(E1000_RCTL);
8610 rctl &= ~E1000_RCTL_CFIEN;
8611 wr32(E1000_RCTL, rctl);
8612 } else {
8613 /* disable VLAN tag insert/strip */
8614 ctrl = rd32(E1000_CTRL);
8615 ctrl &= ~E1000_CTRL_VME;
8616 wr32(E1000_CTRL, ctrl);
8617 }
8618
8619 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
8620 }
8621
igb_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)8622 static int igb_vlan_rx_add_vid(struct net_device *netdev,
8623 __be16 proto, u16 vid)
8624 {
8625 struct igb_adapter *adapter = netdev_priv(netdev);
8626 struct e1000_hw *hw = &adapter->hw;
8627 int pf_id = adapter->vfs_allocated_count;
8628
8629 /* add the filter since PF can receive vlans w/o entry in vlvf */
8630 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8631 igb_vfta_set(hw, vid, pf_id, true, !!vid);
8632
8633 set_bit(vid, adapter->active_vlans);
8634
8635 return 0;
8636 }
8637
igb_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)8638 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
8639 __be16 proto, u16 vid)
8640 {
8641 struct igb_adapter *adapter = netdev_priv(netdev);
8642 int pf_id = adapter->vfs_allocated_count;
8643 struct e1000_hw *hw = &adapter->hw;
8644
8645 /* remove VID from filter table */
8646 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8647 igb_vfta_set(hw, vid, pf_id, false, true);
8648
8649 clear_bit(vid, adapter->active_vlans);
8650
8651 return 0;
8652 }
8653
igb_restore_vlan(struct igb_adapter * adapter)8654 static void igb_restore_vlan(struct igb_adapter *adapter)
8655 {
8656 u16 vid = 1;
8657
8658 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
8659 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
8660
8661 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
8662 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
8663 }
8664
igb_set_spd_dplx(struct igb_adapter * adapter,u32 spd,u8 dplx)8665 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
8666 {
8667 struct pci_dev *pdev = adapter->pdev;
8668 struct e1000_mac_info *mac = &adapter->hw.mac;
8669
8670 mac->autoneg = 0;
8671
8672 /* Make sure dplx is at most 1 bit and lsb of speed is not set
8673 * for the switch() below to work
8674 */
8675 if ((spd & 1) || (dplx & ~1))
8676 goto err_inval;
8677
8678 /* Fiber NIC's only allow 1000 gbps Full duplex
8679 * and 100Mbps Full duplex for 100baseFx sfp
8680 */
8681 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
8682 switch (spd + dplx) {
8683 case SPEED_10 + DUPLEX_HALF:
8684 case SPEED_10 + DUPLEX_FULL:
8685 case SPEED_100 + DUPLEX_HALF:
8686 goto err_inval;
8687 default:
8688 break;
8689 }
8690 }
8691
8692 switch (spd + dplx) {
8693 case SPEED_10 + DUPLEX_HALF:
8694 mac->forced_speed_duplex = ADVERTISE_10_HALF;
8695 break;
8696 case SPEED_10 + DUPLEX_FULL:
8697 mac->forced_speed_duplex = ADVERTISE_10_FULL;
8698 break;
8699 case SPEED_100 + DUPLEX_HALF:
8700 mac->forced_speed_duplex = ADVERTISE_100_HALF;
8701 break;
8702 case SPEED_100 + DUPLEX_FULL:
8703 mac->forced_speed_duplex = ADVERTISE_100_FULL;
8704 break;
8705 case SPEED_1000 + DUPLEX_FULL:
8706 mac->autoneg = 1;
8707 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
8708 break;
8709 case SPEED_1000 + DUPLEX_HALF: /* not supported */
8710 default:
8711 goto err_inval;
8712 }
8713
8714 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
8715 adapter->hw.phy.mdix = AUTO_ALL_MODES;
8716
8717 return 0;
8718
8719 err_inval:
8720 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
8721 return -EINVAL;
8722 }
8723
__igb_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)8724 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
8725 bool runtime)
8726 {
8727 struct net_device *netdev = pci_get_drvdata(pdev);
8728 struct igb_adapter *adapter = netdev_priv(netdev);
8729 struct e1000_hw *hw = &adapter->hw;
8730 u32 ctrl, rctl, status;
8731 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
8732 bool wake;
8733
8734 rtnl_lock();
8735 netif_device_detach(netdev);
8736
8737 if (netif_running(netdev))
8738 __igb_close(netdev, true);
8739
8740 igb_ptp_suspend(adapter);
8741
8742 igb_clear_interrupt_scheme(adapter);
8743 rtnl_unlock();
8744
8745 status = rd32(E1000_STATUS);
8746 if (status & E1000_STATUS_LU)
8747 wufc &= ~E1000_WUFC_LNKC;
8748
8749 if (wufc) {
8750 igb_setup_rctl(adapter);
8751 igb_set_rx_mode(netdev);
8752
8753 /* turn on all-multi mode if wake on multicast is enabled */
8754 if (wufc & E1000_WUFC_MC) {
8755 rctl = rd32(E1000_RCTL);
8756 rctl |= E1000_RCTL_MPE;
8757 wr32(E1000_RCTL, rctl);
8758 }
8759
8760 ctrl = rd32(E1000_CTRL);
8761 ctrl |= E1000_CTRL_ADVD3WUC;
8762 wr32(E1000_CTRL, ctrl);
8763
8764 /* Allow time for pending master requests to run */
8765 igb_disable_pcie_master(hw);
8766
8767 wr32(E1000_WUC, E1000_WUC_PME_EN);
8768 wr32(E1000_WUFC, wufc);
8769 } else {
8770 wr32(E1000_WUC, 0);
8771 wr32(E1000_WUFC, 0);
8772 }
8773
8774 wake = wufc || adapter->en_mng_pt;
8775 if (!wake)
8776 igb_power_down_link(adapter);
8777 else
8778 igb_power_up_link(adapter);
8779
8780 if (enable_wake)
8781 *enable_wake = wake;
8782
8783 /* Release control of h/w to f/w. If f/w is AMT enabled, this
8784 * would have already happened in close and is redundant.
8785 */
8786 igb_release_hw_control(adapter);
8787
8788 pci_disable_device(pdev);
8789
8790 return 0;
8791 }
8792
igb_deliver_wake_packet(struct net_device * netdev)8793 static void igb_deliver_wake_packet(struct net_device *netdev)
8794 {
8795 struct igb_adapter *adapter = netdev_priv(netdev);
8796 struct e1000_hw *hw = &adapter->hw;
8797 struct sk_buff *skb;
8798 u32 wupl;
8799
8800 wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
8801
8802 /* WUPM stores only the first 128 bytes of the wake packet.
8803 * Read the packet only if we have the whole thing.
8804 */
8805 if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
8806 return;
8807
8808 skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
8809 if (!skb)
8810 return;
8811
8812 skb_put(skb, wupl);
8813
8814 /* Ensure reads are 32-bit aligned */
8815 wupl = roundup(wupl, 4);
8816
8817 memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
8818
8819 skb->protocol = eth_type_trans(skb, netdev);
8820 netif_rx(skb);
8821 }
8822
igb_suspend(struct device * dev)8823 static int __maybe_unused igb_suspend(struct device *dev)
8824 {
8825 return __igb_shutdown(to_pci_dev(dev), NULL, 0);
8826 }
8827
igb_resume(struct device * dev)8828 static int __maybe_unused igb_resume(struct device *dev)
8829 {
8830 struct pci_dev *pdev = to_pci_dev(dev);
8831 struct net_device *netdev = pci_get_drvdata(pdev);
8832 struct igb_adapter *adapter = netdev_priv(netdev);
8833 struct e1000_hw *hw = &adapter->hw;
8834 u32 err, val;
8835
8836 pci_set_power_state(pdev, PCI_D0);
8837 pci_restore_state(pdev);
8838 pci_save_state(pdev);
8839
8840 if (!pci_device_is_present(pdev))
8841 return -ENODEV;
8842 err = pci_enable_device_mem(pdev);
8843 if (err) {
8844 dev_err(&pdev->dev,
8845 "igb: Cannot enable PCI device from suspend\n");
8846 return err;
8847 }
8848 pci_set_master(pdev);
8849
8850 pci_enable_wake(pdev, PCI_D3hot, 0);
8851 pci_enable_wake(pdev, PCI_D3cold, 0);
8852
8853 if (igb_init_interrupt_scheme(adapter, true)) {
8854 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8855 return -ENOMEM;
8856 }
8857
8858 igb_reset(adapter);
8859
8860 /* let the f/w know that the h/w is now under the control of the
8861 * driver.
8862 */
8863 igb_get_hw_control(adapter);
8864
8865 val = rd32(E1000_WUS);
8866 if (val & WAKE_PKT_WUS)
8867 igb_deliver_wake_packet(netdev);
8868
8869 wr32(E1000_WUS, ~0);
8870
8871 rtnl_lock();
8872 if (!err && netif_running(netdev))
8873 err = __igb_open(netdev, true);
8874
8875 if (!err)
8876 netif_device_attach(netdev);
8877 rtnl_unlock();
8878
8879 return err;
8880 }
8881
igb_runtime_idle(struct device * dev)8882 static int __maybe_unused igb_runtime_idle(struct device *dev)
8883 {
8884 struct net_device *netdev = dev_get_drvdata(dev);
8885 struct igb_adapter *adapter = netdev_priv(netdev);
8886
8887 if (!igb_has_link(adapter))
8888 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
8889
8890 return -EBUSY;
8891 }
8892
igb_runtime_suspend(struct device * dev)8893 static int __maybe_unused igb_runtime_suspend(struct device *dev)
8894 {
8895 return __igb_shutdown(to_pci_dev(dev), NULL, 1);
8896 }
8897
igb_runtime_resume(struct device * dev)8898 static int __maybe_unused igb_runtime_resume(struct device *dev)
8899 {
8900 return igb_resume(dev);
8901 }
8902
igb_shutdown(struct pci_dev * pdev)8903 static void igb_shutdown(struct pci_dev *pdev)
8904 {
8905 bool wake;
8906
8907 __igb_shutdown(pdev, &wake, 0);
8908
8909 if (system_state == SYSTEM_POWER_OFF) {
8910 pci_wake_from_d3(pdev, wake);
8911 pci_set_power_state(pdev, PCI_D3hot);
8912 }
8913 }
8914
8915 #ifdef CONFIG_PCI_IOV
igb_sriov_reinit(struct pci_dev * dev)8916 static int igb_sriov_reinit(struct pci_dev *dev)
8917 {
8918 struct net_device *netdev = pci_get_drvdata(dev);
8919 struct igb_adapter *adapter = netdev_priv(netdev);
8920 struct pci_dev *pdev = adapter->pdev;
8921
8922 rtnl_lock();
8923
8924 if (netif_running(netdev))
8925 igb_close(netdev);
8926 else
8927 igb_reset(adapter);
8928
8929 igb_clear_interrupt_scheme(adapter);
8930
8931 igb_init_queue_configuration(adapter);
8932
8933 if (igb_init_interrupt_scheme(adapter, true)) {
8934 rtnl_unlock();
8935 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8936 return -ENOMEM;
8937 }
8938
8939 if (netif_running(netdev))
8940 igb_open(netdev);
8941
8942 rtnl_unlock();
8943
8944 return 0;
8945 }
8946
igb_pci_disable_sriov(struct pci_dev * dev)8947 static int igb_pci_disable_sriov(struct pci_dev *dev)
8948 {
8949 int err = igb_disable_sriov(dev);
8950
8951 if (!err)
8952 err = igb_sriov_reinit(dev);
8953
8954 return err;
8955 }
8956
igb_pci_enable_sriov(struct pci_dev * dev,int num_vfs)8957 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
8958 {
8959 int err = igb_enable_sriov(dev, num_vfs);
8960
8961 if (err)
8962 goto out;
8963
8964 err = igb_sriov_reinit(dev);
8965 if (!err)
8966 return num_vfs;
8967
8968 out:
8969 return err;
8970 }
8971
8972 #endif
igb_pci_sriov_configure(struct pci_dev * dev,int num_vfs)8973 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
8974 {
8975 #ifdef CONFIG_PCI_IOV
8976 if (num_vfs == 0)
8977 return igb_pci_disable_sriov(dev);
8978 else
8979 return igb_pci_enable_sriov(dev, num_vfs);
8980 #endif
8981 return 0;
8982 }
8983
8984 /**
8985 * igb_io_error_detected - called when PCI error is detected
8986 * @pdev: Pointer to PCI device
8987 * @state: The current pci connection state
8988 *
8989 * This function is called after a PCI bus error affecting
8990 * this device has been detected.
8991 **/
igb_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)8992 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
8993 pci_channel_state_t state)
8994 {
8995 struct net_device *netdev = pci_get_drvdata(pdev);
8996 struct igb_adapter *adapter = netdev_priv(netdev);
8997
8998 netif_device_detach(netdev);
8999
9000 if (state == pci_channel_io_perm_failure)
9001 return PCI_ERS_RESULT_DISCONNECT;
9002
9003 if (netif_running(netdev))
9004 igb_down(adapter);
9005 pci_disable_device(pdev);
9006
9007 /* Request a slot slot reset. */
9008 return PCI_ERS_RESULT_NEED_RESET;
9009 }
9010
9011 /**
9012 * igb_io_slot_reset - called after the pci bus has been reset.
9013 * @pdev: Pointer to PCI device
9014 *
9015 * Restart the card from scratch, as if from a cold-boot. Implementation
9016 * resembles the first-half of the igb_resume routine.
9017 **/
igb_io_slot_reset(struct pci_dev * pdev)9018 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9019 {
9020 struct net_device *netdev = pci_get_drvdata(pdev);
9021 struct igb_adapter *adapter = netdev_priv(netdev);
9022 struct e1000_hw *hw = &adapter->hw;
9023 pci_ers_result_t result;
9024
9025 if (pci_enable_device_mem(pdev)) {
9026 dev_err(&pdev->dev,
9027 "Cannot re-enable PCI device after reset.\n");
9028 result = PCI_ERS_RESULT_DISCONNECT;
9029 } else {
9030 pci_set_master(pdev);
9031 pci_restore_state(pdev);
9032 pci_save_state(pdev);
9033
9034 pci_enable_wake(pdev, PCI_D3hot, 0);
9035 pci_enable_wake(pdev, PCI_D3cold, 0);
9036
9037 /* In case of PCI error, adapter lose its HW address
9038 * so we should re-assign it here.
9039 */
9040 hw->hw_addr = adapter->io_addr;
9041
9042 igb_reset(adapter);
9043 wr32(E1000_WUS, ~0);
9044 result = PCI_ERS_RESULT_RECOVERED;
9045 }
9046
9047 return result;
9048 }
9049
9050 /**
9051 * igb_io_resume - called when traffic can start flowing again.
9052 * @pdev: Pointer to PCI device
9053 *
9054 * This callback is called when the error recovery driver tells us that
9055 * its OK to resume normal operation. Implementation resembles the
9056 * second-half of the igb_resume routine.
9057 */
igb_io_resume(struct pci_dev * pdev)9058 static void igb_io_resume(struct pci_dev *pdev)
9059 {
9060 struct net_device *netdev = pci_get_drvdata(pdev);
9061 struct igb_adapter *adapter = netdev_priv(netdev);
9062
9063 if (netif_running(netdev)) {
9064 if (igb_up(adapter)) {
9065 dev_err(&pdev->dev, "igb_up failed after reset\n");
9066 return;
9067 }
9068 }
9069
9070 netif_device_attach(netdev);
9071
9072 /* let the f/w know that the h/w is now under the control of the
9073 * driver.
9074 */
9075 igb_get_hw_control(adapter);
9076 }
9077
9078 /**
9079 * igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9080 * @adapter: Pointer to adapter structure
9081 * @index: Index of the RAR entry which need to be synced with MAC table
9082 **/
igb_rar_set_index(struct igb_adapter * adapter,u32 index)9083 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9084 {
9085 struct e1000_hw *hw = &adapter->hw;
9086 u32 rar_low, rar_high;
9087 u8 *addr = adapter->mac_table[index].addr;
9088
9089 /* HW expects these to be in network order when they are plugged
9090 * into the registers which are little endian. In order to guarantee
9091 * that ordering we need to do an leXX_to_cpup here in order to be
9092 * ready for the byteswap that occurs with writel
9093 */
9094 rar_low = le32_to_cpup((__le32 *)(addr));
9095 rar_high = le16_to_cpup((__le16 *)(addr + 4));
9096
9097 /* Indicate to hardware the Address is Valid. */
9098 if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9099 if (is_valid_ether_addr(addr))
9100 rar_high |= E1000_RAH_AV;
9101
9102 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9103 rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9104
9105 switch (hw->mac.type) {
9106 case e1000_82575:
9107 case e1000_i210:
9108 if (adapter->mac_table[index].state &
9109 IGB_MAC_STATE_QUEUE_STEERING)
9110 rar_high |= E1000_RAH_QSEL_ENABLE;
9111
9112 rar_high |= E1000_RAH_POOL_1 *
9113 adapter->mac_table[index].queue;
9114 break;
9115 default:
9116 rar_high |= E1000_RAH_POOL_1 <<
9117 adapter->mac_table[index].queue;
9118 break;
9119 }
9120 }
9121
9122 wr32(E1000_RAL(index), rar_low);
9123 wrfl();
9124 wr32(E1000_RAH(index), rar_high);
9125 wrfl();
9126 }
9127
igb_set_vf_mac(struct igb_adapter * adapter,int vf,unsigned char * mac_addr)9128 static int igb_set_vf_mac(struct igb_adapter *adapter,
9129 int vf, unsigned char *mac_addr)
9130 {
9131 struct e1000_hw *hw = &adapter->hw;
9132 /* VF MAC addresses start at end of receive addresses and moves
9133 * towards the first, as a result a collision should not be possible
9134 */
9135 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9136 unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9137
9138 ether_addr_copy(vf_mac_addr, mac_addr);
9139 ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9140 adapter->mac_table[rar_entry].queue = vf;
9141 adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9142 igb_rar_set_index(adapter, rar_entry);
9143
9144 return 0;
9145 }
9146
igb_ndo_set_vf_mac(struct net_device * netdev,int vf,u8 * mac)9147 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9148 {
9149 struct igb_adapter *adapter = netdev_priv(netdev);
9150
9151 if (vf >= adapter->vfs_allocated_count)
9152 return -EINVAL;
9153
9154 /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9155 * flag and allows to overwrite the MAC via VF netdev. This
9156 * is necessary to allow libvirt a way to restore the original
9157 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9158 * down a VM.
9159 */
9160 if (is_zero_ether_addr(mac)) {
9161 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9162 dev_info(&adapter->pdev->dev,
9163 "remove administratively set MAC on VF %d\n",
9164 vf);
9165 } else if (is_valid_ether_addr(mac)) {
9166 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9167 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9168 mac, vf);
9169 dev_info(&adapter->pdev->dev,
9170 "Reload the VF driver to make this change effective.");
9171 /* Generate additional warning if PF is down */
9172 if (test_bit(__IGB_DOWN, &adapter->state)) {
9173 dev_warn(&adapter->pdev->dev,
9174 "The VF MAC address has been set, but the PF device is not up.\n");
9175 dev_warn(&adapter->pdev->dev,
9176 "Bring the PF device up before attempting to use the VF device.\n");
9177 }
9178 } else {
9179 return -EINVAL;
9180 }
9181 return igb_set_vf_mac(adapter, vf, mac);
9182 }
9183
igb_link_mbps(int internal_link_speed)9184 static int igb_link_mbps(int internal_link_speed)
9185 {
9186 switch (internal_link_speed) {
9187 case SPEED_100:
9188 return 100;
9189 case SPEED_1000:
9190 return 1000;
9191 default:
9192 return 0;
9193 }
9194 }
9195
igb_set_vf_rate_limit(struct e1000_hw * hw,int vf,int tx_rate,int link_speed)9196 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9197 int link_speed)
9198 {
9199 int rf_dec, rf_int;
9200 u32 bcnrc_val;
9201
9202 if (tx_rate != 0) {
9203 /* Calculate the rate factor values to set */
9204 rf_int = link_speed / tx_rate;
9205 rf_dec = (link_speed - (rf_int * tx_rate));
9206 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9207 tx_rate;
9208
9209 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9210 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9211 E1000_RTTBCNRC_RF_INT_MASK);
9212 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9213 } else {
9214 bcnrc_val = 0;
9215 }
9216
9217 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9218 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9219 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9220 */
9221 wr32(E1000_RTTBCNRM, 0x14);
9222 wr32(E1000_RTTBCNRC, bcnrc_val);
9223 }
9224
igb_check_vf_rate_limit(struct igb_adapter * adapter)9225 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9226 {
9227 int actual_link_speed, i;
9228 bool reset_rate = false;
9229
9230 /* VF TX rate limit was not set or not supported */
9231 if ((adapter->vf_rate_link_speed == 0) ||
9232 (adapter->hw.mac.type != e1000_82576))
9233 return;
9234
9235 actual_link_speed = igb_link_mbps(adapter->link_speed);
9236 if (actual_link_speed != adapter->vf_rate_link_speed) {
9237 reset_rate = true;
9238 adapter->vf_rate_link_speed = 0;
9239 dev_info(&adapter->pdev->dev,
9240 "Link speed has been changed. VF Transmit rate is disabled\n");
9241 }
9242
9243 for (i = 0; i < adapter->vfs_allocated_count; i++) {
9244 if (reset_rate)
9245 adapter->vf_data[i].tx_rate = 0;
9246
9247 igb_set_vf_rate_limit(&adapter->hw, i,
9248 adapter->vf_data[i].tx_rate,
9249 actual_link_speed);
9250 }
9251 }
9252
igb_ndo_set_vf_bw(struct net_device * netdev,int vf,int min_tx_rate,int max_tx_rate)9253 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9254 int min_tx_rate, int max_tx_rate)
9255 {
9256 struct igb_adapter *adapter = netdev_priv(netdev);
9257 struct e1000_hw *hw = &adapter->hw;
9258 int actual_link_speed;
9259
9260 if (hw->mac.type != e1000_82576)
9261 return -EOPNOTSUPP;
9262
9263 if (min_tx_rate)
9264 return -EINVAL;
9265
9266 actual_link_speed = igb_link_mbps(adapter->link_speed);
9267 if ((vf >= adapter->vfs_allocated_count) ||
9268 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9269 (max_tx_rate < 0) ||
9270 (max_tx_rate > actual_link_speed))
9271 return -EINVAL;
9272
9273 adapter->vf_rate_link_speed = actual_link_speed;
9274 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9275 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9276
9277 return 0;
9278 }
9279
igb_ndo_set_vf_spoofchk(struct net_device * netdev,int vf,bool setting)9280 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9281 bool setting)
9282 {
9283 struct igb_adapter *adapter = netdev_priv(netdev);
9284 struct e1000_hw *hw = &adapter->hw;
9285 u32 reg_val, reg_offset;
9286
9287 if (!adapter->vfs_allocated_count)
9288 return -EOPNOTSUPP;
9289
9290 if (vf >= adapter->vfs_allocated_count)
9291 return -EINVAL;
9292
9293 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9294 reg_val = rd32(reg_offset);
9295 if (setting)
9296 reg_val |= (BIT(vf) |
9297 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9298 else
9299 reg_val &= ~(BIT(vf) |
9300 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9301 wr32(reg_offset, reg_val);
9302
9303 adapter->vf_data[vf].spoofchk_enabled = setting;
9304 return 0;
9305 }
9306
igb_ndo_set_vf_trust(struct net_device * netdev,int vf,bool setting)9307 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9308 {
9309 struct igb_adapter *adapter = netdev_priv(netdev);
9310
9311 if (vf >= adapter->vfs_allocated_count)
9312 return -EINVAL;
9313 if (adapter->vf_data[vf].trusted == setting)
9314 return 0;
9315
9316 adapter->vf_data[vf].trusted = setting;
9317
9318 dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9319 vf, setting ? "" : "not ");
9320 return 0;
9321 }
9322
igb_ndo_get_vf_config(struct net_device * netdev,int vf,struct ifla_vf_info * ivi)9323 static int igb_ndo_get_vf_config(struct net_device *netdev,
9324 int vf, struct ifla_vf_info *ivi)
9325 {
9326 struct igb_adapter *adapter = netdev_priv(netdev);
9327 if (vf >= adapter->vfs_allocated_count)
9328 return -EINVAL;
9329 ivi->vf = vf;
9330 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9331 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9332 ivi->min_tx_rate = 0;
9333 ivi->vlan = adapter->vf_data[vf].pf_vlan;
9334 ivi->qos = adapter->vf_data[vf].pf_qos;
9335 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9336 ivi->trusted = adapter->vf_data[vf].trusted;
9337 return 0;
9338 }
9339
igb_vmm_control(struct igb_adapter * adapter)9340 static void igb_vmm_control(struct igb_adapter *adapter)
9341 {
9342 struct e1000_hw *hw = &adapter->hw;
9343 u32 reg;
9344
9345 switch (hw->mac.type) {
9346 case e1000_82575:
9347 case e1000_i210:
9348 case e1000_i211:
9349 case e1000_i354:
9350 default:
9351 /* replication is not supported for 82575 */
9352 return;
9353 case e1000_82576:
9354 /* notify HW that the MAC is adding vlan tags */
9355 reg = rd32(E1000_DTXCTL);
9356 reg |= E1000_DTXCTL_VLAN_ADDED;
9357 wr32(E1000_DTXCTL, reg);
9358 /* Fall through */
9359 case e1000_82580:
9360 /* enable replication vlan tag stripping */
9361 reg = rd32(E1000_RPLOLR);
9362 reg |= E1000_RPLOLR_STRVLAN;
9363 wr32(E1000_RPLOLR, reg);
9364 /* Fall through */
9365 case e1000_i350:
9366 /* none of the above registers are supported by i350 */
9367 break;
9368 }
9369
9370 if (adapter->vfs_allocated_count) {
9371 igb_vmdq_set_loopback_pf(hw, true);
9372 igb_vmdq_set_replication_pf(hw, true);
9373 igb_vmdq_set_anti_spoofing_pf(hw, true,
9374 adapter->vfs_allocated_count);
9375 } else {
9376 igb_vmdq_set_loopback_pf(hw, false);
9377 igb_vmdq_set_replication_pf(hw, false);
9378 }
9379 }
9380
igb_init_dmac(struct igb_adapter * adapter,u32 pba)9381 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9382 {
9383 struct e1000_hw *hw = &adapter->hw;
9384 u32 dmac_thr;
9385 u16 hwm;
9386
9387 if (hw->mac.type > e1000_82580) {
9388 if (adapter->flags & IGB_FLAG_DMAC) {
9389 u32 reg;
9390
9391 /* force threshold to 0. */
9392 wr32(E1000_DMCTXTH, 0);
9393
9394 /* DMA Coalescing high water mark needs to be greater
9395 * than the Rx threshold. Set hwm to PBA - max frame
9396 * size in 16B units, capping it at PBA - 6KB.
9397 */
9398 hwm = 64 * (pba - 6);
9399 reg = rd32(E1000_FCRTC);
9400 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9401 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9402 & E1000_FCRTC_RTH_COAL_MASK);
9403 wr32(E1000_FCRTC, reg);
9404
9405 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9406 * frame size, capping it at PBA - 10KB.
9407 */
9408 dmac_thr = pba - 10;
9409 reg = rd32(E1000_DMACR);
9410 reg &= ~E1000_DMACR_DMACTHR_MASK;
9411 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9412 & E1000_DMACR_DMACTHR_MASK);
9413
9414 /* transition to L0x or L1 if available..*/
9415 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9416
9417 /* watchdog timer= +-1000 usec in 32usec intervals */
9418 reg |= (1000 >> 5);
9419
9420 /* Disable BMC-to-OS Watchdog Enable */
9421 if (hw->mac.type != e1000_i354)
9422 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9423
9424 wr32(E1000_DMACR, reg);
9425
9426 /* no lower threshold to disable
9427 * coalescing(smart fifb)-UTRESH=0
9428 */
9429 wr32(E1000_DMCRTRH, 0);
9430
9431 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9432
9433 wr32(E1000_DMCTLX, reg);
9434
9435 /* free space in tx packet buffer to wake from
9436 * DMA coal
9437 */
9438 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9439 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9440
9441 /* make low power state decision controlled
9442 * by DMA coal
9443 */
9444 reg = rd32(E1000_PCIEMISC);
9445 reg &= ~E1000_PCIEMISC_LX_DECISION;
9446 wr32(E1000_PCIEMISC, reg);
9447 } /* endif adapter->dmac is not disabled */
9448 } else if (hw->mac.type == e1000_82580) {
9449 u32 reg = rd32(E1000_PCIEMISC);
9450
9451 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9452 wr32(E1000_DMACR, 0);
9453 }
9454 }
9455
9456 /**
9457 * igb_read_i2c_byte - Reads 8 bit word over I2C
9458 * @hw: pointer to hardware structure
9459 * @byte_offset: byte offset to read
9460 * @dev_addr: device address
9461 * @data: value read
9462 *
9463 * Performs byte read operation over I2C interface at
9464 * a specified device address.
9465 **/
igb_read_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 * data)9466 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9467 u8 dev_addr, u8 *data)
9468 {
9469 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9470 struct i2c_client *this_client = adapter->i2c_client;
9471 s32 status;
9472 u16 swfw_mask = 0;
9473
9474 if (!this_client)
9475 return E1000_ERR_I2C;
9476
9477 swfw_mask = E1000_SWFW_PHY0_SM;
9478
9479 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9480 return E1000_ERR_SWFW_SYNC;
9481
9482 status = i2c_smbus_read_byte_data(this_client, byte_offset);
9483 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9484
9485 if (status < 0)
9486 return E1000_ERR_I2C;
9487 else {
9488 *data = status;
9489 return 0;
9490 }
9491 }
9492
9493 /**
9494 * igb_write_i2c_byte - Writes 8 bit word over I2C
9495 * @hw: pointer to hardware structure
9496 * @byte_offset: byte offset to write
9497 * @dev_addr: device address
9498 * @data: value to write
9499 *
9500 * Performs byte write operation over I2C interface at
9501 * a specified device address.
9502 **/
igb_write_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 data)9503 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9504 u8 dev_addr, u8 data)
9505 {
9506 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9507 struct i2c_client *this_client = adapter->i2c_client;
9508 s32 status;
9509 u16 swfw_mask = E1000_SWFW_PHY0_SM;
9510
9511 if (!this_client)
9512 return E1000_ERR_I2C;
9513
9514 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9515 return E1000_ERR_SWFW_SYNC;
9516 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9517 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9518
9519 if (status)
9520 return E1000_ERR_I2C;
9521 else
9522 return 0;
9523
9524 }
9525
igb_reinit_queues(struct igb_adapter * adapter)9526 int igb_reinit_queues(struct igb_adapter *adapter)
9527 {
9528 struct net_device *netdev = adapter->netdev;
9529 struct pci_dev *pdev = adapter->pdev;
9530 int err = 0;
9531
9532 if (netif_running(netdev))
9533 igb_close(netdev);
9534
9535 igb_reset_interrupt_capability(adapter);
9536
9537 if (igb_init_interrupt_scheme(adapter, true)) {
9538 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9539 return -ENOMEM;
9540 }
9541
9542 if (netif_running(netdev))
9543 err = igb_open(netdev);
9544
9545 return err;
9546 }
9547
igb_nfc_filter_exit(struct igb_adapter * adapter)9548 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9549 {
9550 struct igb_nfc_filter *rule;
9551
9552 spin_lock(&adapter->nfc_lock);
9553
9554 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9555 igb_erase_filter(adapter, rule);
9556
9557 hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
9558 igb_erase_filter(adapter, rule);
9559
9560 spin_unlock(&adapter->nfc_lock);
9561 }
9562
igb_nfc_filter_restore(struct igb_adapter * adapter)9563 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
9564 {
9565 struct igb_nfc_filter *rule;
9566
9567 spin_lock(&adapter->nfc_lock);
9568
9569 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9570 igb_add_filter(adapter, rule);
9571
9572 spin_unlock(&adapter->nfc_lock);
9573 }
9574 /* igb_main.c */
9575