1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * bcache setup/teardown code, and some metadata io - read a superblock and
4 * figure out what to do with it.
5 *
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
9
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "extents.h"
14 #include "request.h"
15 #include "writeback.h"
16 #include "features.h"
17
18 #include <linux/blkdev.h>
19 #include <linux/debugfs.h>
20 #include <linux/genhd.h>
21 #include <linux/idr.h>
22 #include <linux/kthread.h>
23 #include <linux/workqueue.h>
24 #include <linux/module.h>
25 #include <linux/random.h>
26 #include <linux/reboot.h>
27 #include <linux/sysfs.h>
28
29 unsigned int bch_cutoff_writeback;
30 unsigned int bch_cutoff_writeback_sync;
31
32 static const char bcache_magic[] = {
33 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
34 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
35 };
36
37 static const char invalid_uuid[] = {
38 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
39 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
40 };
41
42 static struct kobject *bcache_kobj;
43 struct mutex bch_register_lock;
44 bool bcache_is_reboot;
45 LIST_HEAD(bch_cache_sets);
46 static LIST_HEAD(uncached_devices);
47
48 static int bcache_major;
49 static DEFINE_IDA(bcache_device_idx);
50 static wait_queue_head_t unregister_wait;
51 struct workqueue_struct *bcache_wq;
52 struct workqueue_struct *bch_journal_wq;
53
54
55 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE)
56 /* limitation of partitions number on single bcache device */
57 #define BCACHE_MINORS 128
58 /* limitation of bcache devices number on single system */
59 #define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS)
60
61 /* Superblock */
62
get_bucket_size(struct cache_sb * sb,struct cache_sb_disk * s)63 static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s)
64 {
65 unsigned int bucket_size = le16_to_cpu(s->bucket_size);
66
67 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES &&
68 bch_has_feature_large_bucket(sb))
69 bucket_size |= le16_to_cpu(s->bucket_size_hi) << 16;
70
71 return bucket_size;
72 }
73
read_super_common(struct cache_sb * sb,struct block_device * bdev,struct cache_sb_disk * s)74 static const char *read_super_common(struct cache_sb *sb, struct block_device *bdev,
75 struct cache_sb_disk *s)
76 {
77 const char *err;
78 unsigned int i;
79
80 sb->first_bucket= le16_to_cpu(s->first_bucket);
81 sb->nbuckets = le64_to_cpu(s->nbuckets);
82 sb->bucket_size = get_bucket_size(sb, s);
83
84 sb->nr_in_set = le16_to_cpu(s->nr_in_set);
85 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
86
87 err = "Too many journal buckets";
88 if (sb->keys > SB_JOURNAL_BUCKETS)
89 goto err;
90
91 err = "Too many buckets";
92 if (sb->nbuckets > LONG_MAX)
93 goto err;
94
95 err = "Not enough buckets";
96 if (sb->nbuckets < 1 << 7)
97 goto err;
98
99 err = "Bad block size (not power of 2)";
100 if (!is_power_of_2(sb->block_size))
101 goto err;
102
103 err = "Bad block size (larger than page size)";
104 if (sb->block_size > PAGE_SECTORS)
105 goto err;
106
107 err = "Bad bucket size (not power of 2)";
108 if (!is_power_of_2(sb->bucket_size))
109 goto err;
110
111 err = "Bad bucket size (smaller than page size)";
112 if (sb->bucket_size < PAGE_SECTORS)
113 goto err;
114
115 err = "Invalid superblock: device too small";
116 if (get_capacity(bdev->bd_disk) <
117 sb->bucket_size * sb->nbuckets)
118 goto err;
119
120 err = "Bad UUID";
121 if (bch_is_zero(sb->set_uuid, 16))
122 goto err;
123
124 err = "Bad cache device number in set";
125 if (!sb->nr_in_set ||
126 sb->nr_in_set <= sb->nr_this_dev ||
127 sb->nr_in_set > MAX_CACHES_PER_SET)
128 goto err;
129
130 err = "Journal buckets not sequential";
131 for (i = 0; i < sb->keys; i++)
132 if (sb->d[i] != sb->first_bucket + i)
133 goto err;
134
135 err = "Too many journal buckets";
136 if (sb->first_bucket + sb->keys > sb->nbuckets)
137 goto err;
138
139 err = "Invalid superblock: first bucket comes before end of super";
140 if (sb->first_bucket * sb->bucket_size < 16)
141 goto err;
142
143 err = NULL;
144 err:
145 return err;
146 }
147
148
read_super(struct cache_sb * sb,struct block_device * bdev,struct cache_sb_disk ** res)149 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
150 struct cache_sb_disk **res)
151 {
152 const char *err;
153 struct cache_sb_disk *s;
154 struct page *page;
155 unsigned int i;
156
157 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
158 SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL);
159 if (IS_ERR(page))
160 return "IO error";
161 s = page_address(page) + offset_in_page(SB_OFFSET);
162
163 sb->offset = le64_to_cpu(s->offset);
164 sb->version = le64_to_cpu(s->version);
165
166 memcpy(sb->magic, s->magic, 16);
167 memcpy(sb->uuid, s->uuid, 16);
168 memcpy(sb->set_uuid, s->set_uuid, 16);
169 memcpy(sb->label, s->label, SB_LABEL_SIZE);
170
171 sb->flags = le64_to_cpu(s->flags);
172 sb->seq = le64_to_cpu(s->seq);
173 sb->last_mount = le32_to_cpu(s->last_mount);
174 sb->keys = le16_to_cpu(s->keys);
175
176 for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
177 sb->d[i] = le64_to_cpu(s->d[i]);
178
179 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n",
180 sb->version, sb->flags, sb->seq, sb->keys);
181
182 err = "Not a bcache superblock (bad offset)";
183 if (sb->offset != SB_SECTOR)
184 goto err;
185
186 err = "Not a bcache superblock (bad magic)";
187 if (memcmp(sb->magic, bcache_magic, 16))
188 goto err;
189
190 err = "Bad checksum";
191 if (s->csum != csum_set(s))
192 goto err;
193
194 err = "Bad UUID";
195 if (bch_is_zero(sb->uuid, 16))
196 goto err;
197
198 sb->block_size = le16_to_cpu(s->block_size);
199
200 err = "Superblock block size smaller than device block size";
201 if (sb->block_size << 9 < bdev_logical_block_size(bdev))
202 goto err;
203
204 switch (sb->version) {
205 case BCACHE_SB_VERSION_BDEV:
206 sb->data_offset = BDEV_DATA_START_DEFAULT;
207 break;
208 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
209 case BCACHE_SB_VERSION_BDEV_WITH_FEATURES:
210 sb->data_offset = le64_to_cpu(s->data_offset);
211
212 err = "Bad data offset";
213 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
214 goto err;
215
216 break;
217 case BCACHE_SB_VERSION_CDEV:
218 case BCACHE_SB_VERSION_CDEV_WITH_UUID:
219 err = read_super_common(sb, bdev, s);
220 if (err)
221 goto err;
222 break;
223 case BCACHE_SB_VERSION_CDEV_WITH_FEATURES:
224 /*
225 * Feature bits are needed in read_super_common(),
226 * convert them firstly.
227 */
228 sb->feature_compat = le64_to_cpu(s->feature_compat);
229 sb->feature_incompat = le64_to_cpu(s->feature_incompat);
230 sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat);
231 err = read_super_common(sb, bdev, s);
232 if (err)
233 goto err;
234 break;
235 default:
236 err = "Unsupported superblock version";
237 goto err;
238 }
239
240 sb->last_mount = (u32)ktime_get_real_seconds();
241 *res = s;
242 return NULL;
243 err:
244 put_page(page);
245 return err;
246 }
247
write_bdev_super_endio(struct bio * bio)248 static void write_bdev_super_endio(struct bio *bio)
249 {
250 struct cached_dev *dc = bio->bi_private;
251
252 if (bio->bi_status)
253 bch_count_backing_io_errors(dc, bio);
254
255 closure_put(&dc->sb_write);
256 }
257
__write_super(struct cache_sb * sb,struct cache_sb_disk * out,struct bio * bio)258 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out,
259 struct bio *bio)
260 {
261 unsigned int i;
262
263 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META;
264 bio->bi_iter.bi_sector = SB_SECTOR;
265 __bio_add_page(bio, virt_to_page(out), SB_SIZE,
266 offset_in_page(out));
267
268 out->offset = cpu_to_le64(sb->offset);
269
270 memcpy(out->uuid, sb->uuid, 16);
271 memcpy(out->set_uuid, sb->set_uuid, 16);
272 memcpy(out->label, sb->label, SB_LABEL_SIZE);
273
274 out->flags = cpu_to_le64(sb->flags);
275 out->seq = cpu_to_le64(sb->seq);
276
277 out->last_mount = cpu_to_le32(sb->last_mount);
278 out->first_bucket = cpu_to_le16(sb->first_bucket);
279 out->keys = cpu_to_le16(sb->keys);
280
281 for (i = 0; i < sb->keys; i++)
282 out->d[i] = cpu_to_le64(sb->d[i]);
283
284 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
285 out->feature_compat = cpu_to_le64(sb->feature_compat);
286 out->feature_incompat = cpu_to_le64(sb->feature_incompat);
287 out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat);
288 }
289
290 out->version = cpu_to_le64(sb->version);
291 out->csum = csum_set(out);
292
293 pr_debug("ver %llu, flags %llu, seq %llu\n",
294 sb->version, sb->flags, sb->seq);
295
296 submit_bio(bio);
297 }
298
bch_write_bdev_super_unlock(struct closure * cl)299 static void bch_write_bdev_super_unlock(struct closure *cl)
300 {
301 struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
302
303 up(&dc->sb_write_mutex);
304 }
305
bch_write_bdev_super(struct cached_dev * dc,struct closure * parent)306 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
307 {
308 struct closure *cl = &dc->sb_write;
309 struct bio *bio = &dc->sb_bio;
310
311 down(&dc->sb_write_mutex);
312 closure_init(cl, parent);
313
314 bio_init(bio, dc->sb_bv, 1);
315 bio_set_dev(bio, dc->bdev);
316 bio->bi_end_io = write_bdev_super_endio;
317 bio->bi_private = dc;
318
319 closure_get(cl);
320 /* I/O request sent to backing device */
321 __write_super(&dc->sb, dc->sb_disk, bio);
322
323 closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
324 }
325
write_super_endio(struct bio * bio)326 static void write_super_endio(struct bio *bio)
327 {
328 struct cache *ca = bio->bi_private;
329
330 /* is_read = 0 */
331 bch_count_io_errors(ca, bio->bi_status, 0,
332 "writing superblock");
333 closure_put(&ca->set->sb_write);
334 }
335
bcache_write_super_unlock(struct closure * cl)336 static void bcache_write_super_unlock(struct closure *cl)
337 {
338 struct cache_set *c = container_of(cl, struct cache_set, sb_write);
339
340 up(&c->sb_write_mutex);
341 }
342
bcache_write_super(struct cache_set * c)343 void bcache_write_super(struct cache_set *c)
344 {
345 struct closure *cl = &c->sb_write;
346 struct cache *ca = c->cache;
347 struct bio *bio = &ca->sb_bio;
348 unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
349
350 down(&c->sb_write_mutex);
351 closure_init(cl, &c->cl);
352
353 ca->sb.seq++;
354
355 if (ca->sb.version < version)
356 ca->sb.version = version;
357
358 bio_init(bio, ca->sb_bv, 1);
359 bio_set_dev(bio, ca->bdev);
360 bio->bi_end_io = write_super_endio;
361 bio->bi_private = ca;
362
363 closure_get(cl);
364 __write_super(&ca->sb, ca->sb_disk, bio);
365
366 closure_return_with_destructor(cl, bcache_write_super_unlock);
367 }
368
369 /* UUID io */
370
uuid_endio(struct bio * bio)371 static void uuid_endio(struct bio *bio)
372 {
373 struct closure *cl = bio->bi_private;
374 struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
375
376 cache_set_err_on(bio->bi_status, c, "accessing uuids");
377 bch_bbio_free(bio, c);
378 closure_put(cl);
379 }
380
uuid_io_unlock(struct closure * cl)381 static void uuid_io_unlock(struct closure *cl)
382 {
383 struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
384
385 up(&c->uuid_write_mutex);
386 }
387
uuid_io(struct cache_set * c,int op,unsigned long op_flags,struct bkey * k,struct closure * parent)388 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
389 struct bkey *k, struct closure *parent)
390 {
391 struct closure *cl = &c->uuid_write;
392 struct uuid_entry *u;
393 unsigned int i;
394 char buf[80];
395
396 BUG_ON(!parent);
397 down(&c->uuid_write_mutex);
398 closure_init(cl, parent);
399
400 for (i = 0; i < KEY_PTRS(k); i++) {
401 struct bio *bio = bch_bbio_alloc(c);
402
403 bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
404 bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
405
406 bio->bi_end_io = uuid_endio;
407 bio->bi_private = cl;
408 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
409 bch_bio_map(bio, c->uuids);
410
411 bch_submit_bbio(bio, c, k, i);
412
413 if (op != REQ_OP_WRITE)
414 break;
415 }
416
417 bch_extent_to_text(buf, sizeof(buf), k);
418 pr_debug("%s UUIDs at %s\n", op == REQ_OP_WRITE ? "wrote" : "read", buf);
419
420 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
421 if (!bch_is_zero(u->uuid, 16))
422 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n",
423 u - c->uuids, u->uuid, u->label,
424 u->first_reg, u->last_reg, u->invalidated);
425
426 closure_return_with_destructor(cl, uuid_io_unlock);
427 }
428
uuid_read(struct cache_set * c,struct jset * j,struct closure * cl)429 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
430 {
431 struct bkey *k = &j->uuid_bucket;
432
433 if (__bch_btree_ptr_invalid(c, k))
434 return "bad uuid pointer";
435
436 bkey_copy(&c->uuid_bucket, k);
437 uuid_io(c, REQ_OP_READ, 0, k, cl);
438
439 if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
440 struct uuid_entry_v0 *u0 = (void *) c->uuids;
441 struct uuid_entry *u1 = (void *) c->uuids;
442 int i;
443
444 closure_sync(cl);
445
446 /*
447 * Since the new uuid entry is bigger than the old, we have to
448 * convert starting at the highest memory address and work down
449 * in order to do it in place
450 */
451
452 for (i = c->nr_uuids - 1;
453 i >= 0;
454 --i) {
455 memcpy(u1[i].uuid, u0[i].uuid, 16);
456 memcpy(u1[i].label, u0[i].label, 32);
457
458 u1[i].first_reg = u0[i].first_reg;
459 u1[i].last_reg = u0[i].last_reg;
460 u1[i].invalidated = u0[i].invalidated;
461
462 u1[i].flags = 0;
463 u1[i].sectors = 0;
464 }
465 }
466
467 return NULL;
468 }
469
__uuid_write(struct cache_set * c)470 static int __uuid_write(struct cache_set *c)
471 {
472 BKEY_PADDED(key) k;
473 struct closure cl;
474 struct cache *ca = c->cache;
475 unsigned int size;
476
477 closure_init_stack(&cl);
478 lockdep_assert_held(&bch_register_lock);
479
480 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true))
481 return 1;
482
483 size = meta_bucket_pages(&ca->sb) * PAGE_SECTORS;
484 SET_KEY_SIZE(&k.key, size);
485 uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
486 closure_sync(&cl);
487
488 /* Only one bucket used for uuid write */
489 atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
490
491 bkey_copy(&c->uuid_bucket, &k.key);
492 bkey_put(c, &k.key);
493 return 0;
494 }
495
bch_uuid_write(struct cache_set * c)496 int bch_uuid_write(struct cache_set *c)
497 {
498 int ret = __uuid_write(c);
499
500 if (!ret)
501 bch_journal_meta(c, NULL);
502
503 return ret;
504 }
505
uuid_find(struct cache_set * c,const char * uuid)506 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
507 {
508 struct uuid_entry *u;
509
510 for (u = c->uuids;
511 u < c->uuids + c->nr_uuids; u++)
512 if (!memcmp(u->uuid, uuid, 16))
513 return u;
514
515 return NULL;
516 }
517
uuid_find_empty(struct cache_set * c)518 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
519 {
520 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
521
522 return uuid_find(c, zero_uuid);
523 }
524
525 /*
526 * Bucket priorities/gens:
527 *
528 * For each bucket, we store on disk its
529 * 8 bit gen
530 * 16 bit priority
531 *
532 * See alloc.c for an explanation of the gen. The priority is used to implement
533 * lru (and in the future other) cache replacement policies; for most purposes
534 * it's just an opaque integer.
535 *
536 * The gens and the priorities don't have a whole lot to do with each other, and
537 * it's actually the gens that must be written out at specific times - it's no
538 * big deal if the priorities don't get written, if we lose them we just reuse
539 * buckets in suboptimal order.
540 *
541 * On disk they're stored in a packed array, and in as many buckets are required
542 * to fit them all. The buckets we use to store them form a list; the journal
543 * header points to the first bucket, the first bucket points to the second
544 * bucket, et cetera.
545 *
546 * This code is used by the allocation code; periodically (whenever it runs out
547 * of buckets to allocate from) the allocation code will invalidate some
548 * buckets, but it can't use those buckets until their new gens are safely on
549 * disk.
550 */
551
prio_endio(struct bio * bio)552 static void prio_endio(struct bio *bio)
553 {
554 struct cache *ca = bio->bi_private;
555
556 cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
557 bch_bbio_free(bio, ca->set);
558 closure_put(&ca->prio);
559 }
560
prio_io(struct cache * ca,uint64_t bucket,int op,unsigned long op_flags)561 static void prio_io(struct cache *ca, uint64_t bucket, int op,
562 unsigned long op_flags)
563 {
564 struct closure *cl = &ca->prio;
565 struct bio *bio = bch_bbio_alloc(ca->set);
566
567 closure_init_stack(cl);
568
569 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size;
570 bio_set_dev(bio, ca->bdev);
571 bio->bi_iter.bi_size = meta_bucket_bytes(&ca->sb);
572
573 bio->bi_end_io = prio_endio;
574 bio->bi_private = ca;
575 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
576 bch_bio_map(bio, ca->disk_buckets);
577
578 closure_bio_submit(ca->set, bio, &ca->prio);
579 closure_sync(cl);
580 }
581
bch_prio_write(struct cache * ca,bool wait)582 int bch_prio_write(struct cache *ca, bool wait)
583 {
584 int i;
585 struct bucket *b;
586 struct closure cl;
587
588 pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n",
589 fifo_used(&ca->free[RESERVE_PRIO]),
590 fifo_used(&ca->free[RESERVE_NONE]),
591 fifo_used(&ca->free_inc));
592
593 /*
594 * Pre-check if there are enough free buckets. In the non-blocking
595 * scenario it's better to fail early rather than starting to allocate
596 * buckets and do a cleanup later in case of failure.
597 */
598 if (!wait) {
599 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) +
600 fifo_used(&ca->free[RESERVE_NONE]);
601 if (prio_buckets(ca) > avail)
602 return -ENOMEM;
603 }
604
605 closure_init_stack(&cl);
606
607 lockdep_assert_held(&ca->set->bucket_lock);
608
609 ca->disk_buckets->seq++;
610
611 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
612 &ca->meta_sectors_written);
613
614 for (i = prio_buckets(ca) - 1; i >= 0; --i) {
615 long bucket;
616 struct prio_set *p = ca->disk_buckets;
617 struct bucket_disk *d = p->data;
618 struct bucket_disk *end = d + prios_per_bucket(ca);
619
620 for (b = ca->buckets + i * prios_per_bucket(ca);
621 b < ca->buckets + ca->sb.nbuckets && d < end;
622 b++, d++) {
623 d->prio = cpu_to_le16(b->prio);
624 d->gen = b->gen;
625 }
626
627 p->next_bucket = ca->prio_buckets[i + 1];
628 p->magic = pset_magic(&ca->sb);
629 p->csum = bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8);
630
631 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait);
632 BUG_ON(bucket == -1);
633
634 mutex_unlock(&ca->set->bucket_lock);
635 prio_io(ca, bucket, REQ_OP_WRITE, 0);
636 mutex_lock(&ca->set->bucket_lock);
637
638 ca->prio_buckets[i] = bucket;
639 atomic_dec_bug(&ca->buckets[bucket].pin);
640 }
641
642 mutex_unlock(&ca->set->bucket_lock);
643
644 bch_journal_meta(ca->set, &cl);
645 closure_sync(&cl);
646
647 mutex_lock(&ca->set->bucket_lock);
648
649 /*
650 * Don't want the old priorities to get garbage collected until after we
651 * finish writing the new ones, and they're journalled
652 */
653 for (i = 0; i < prio_buckets(ca); i++) {
654 if (ca->prio_last_buckets[i])
655 __bch_bucket_free(ca,
656 &ca->buckets[ca->prio_last_buckets[i]]);
657
658 ca->prio_last_buckets[i] = ca->prio_buckets[i];
659 }
660 return 0;
661 }
662
prio_read(struct cache * ca,uint64_t bucket)663 static int prio_read(struct cache *ca, uint64_t bucket)
664 {
665 struct prio_set *p = ca->disk_buckets;
666 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
667 struct bucket *b;
668 unsigned int bucket_nr = 0;
669 int ret = -EIO;
670
671 for (b = ca->buckets;
672 b < ca->buckets + ca->sb.nbuckets;
673 b++, d++) {
674 if (d == end) {
675 ca->prio_buckets[bucket_nr] = bucket;
676 ca->prio_last_buckets[bucket_nr] = bucket;
677 bucket_nr++;
678
679 prio_io(ca, bucket, REQ_OP_READ, 0);
680
681 if (p->csum !=
682 bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) {
683 pr_warn("bad csum reading priorities\n");
684 goto out;
685 }
686
687 if (p->magic != pset_magic(&ca->sb)) {
688 pr_warn("bad magic reading priorities\n");
689 goto out;
690 }
691
692 bucket = p->next_bucket;
693 d = p->data;
694 }
695
696 b->prio = le16_to_cpu(d->prio);
697 b->gen = b->last_gc = d->gen;
698 }
699
700 ret = 0;
701 out:
702 return ret;
703 }
704
705 /* Bcache device */
706
open_dev(struct block_device * b,fmode_t mode)707 static int open_dev(struct block_device *b, fmode_t mode)
708 {
709 struct bcache_device *d = b->bd_disk->private_data;
710
711 if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
712 return -ENXIO;
713
714 closure_get(&d->cl);
715 return 0;
716 }
717
release_dev(struct gendisk * b,fmode_t mode)718 static void release_dev(struct gendisk *b, fmode_t mode)
719 {
720 struct bcache_device *d = b->private_data;
721
722 closure_put(&d->cl);
723 }
724
ioctl_dev(struct block_device * b,fmode_t mode,unsigned int cmd,unsigned long arg)725 static int ioctl_dev(struct block_device *b, fmode_t mode,
726 unsigned int cmd, unsigned long arg)
727 {
728 struct bcache_device *d = b->bd_disk->private_data;
729
730 return d->ioctl(d, mode, cmd, arg);
731 }
732
733 static const struct block_device_operations bcache_cached_ops = {
734 .submit_bio = cached_dev_submit_bio,
735 .open = open_dev,
736 .release = release_dev,
737 .ioctl = ioctl_dev,
738 .owner = THIS_MODULE,
739 };
740
741 static const struct block_device_operations bcache_flash_ops = {
742 .submit_bio = flash_dev_submit_bio,
743 .open = open_dev,
744 .release = release_dev,
745 .ioctl = ioctl_dev,
746 .owner = THIS_MODULE,
747 };
748
bcache_device_stop(struct bcache_device * d)749 void bcache_device_stop(struct bcache_device *d)
750 {
751 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
752 /*
753 * closure_fn set to
754 * - cached device: cached_dev_flush()
755 * - flash dev: flash_dev_flush()
756 */
757 closure_queue(&d->cl);
758 }
759
bcache_device_unlink(struct bcache_device * d)760 static void bcache_device_unlink(struct bcache_device *d)
761 {
762 lockdep_assert_held(&bch_register_lock);
763
764 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
765 struct cache *ca = d->c->cache;
766
767 sysfs_remove_link(&d->c->kobj, d->name);
768 sysfs_remove_link(&d->kobj, "cache");
769
770 bd_unlink_disk_holder(ca->bdev, d->disk);
771 }
772 }
773
bcache_device_link(struct bcache_device * d,struct cache_set * c,const char * name)774 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
775 const char *name)
776 {
777 struct cache *ca = c->cache;
778 int ret;
779
780 bd_link_disk_holder(ca->bdev, d->disk);
781
782 snprintf(d->name, BCACHEDEVNAME_SIZE,
783 "%s%u", name, d->id);
784
785 ret = sysfs_create_link(&d->kobj, &c->kobj, "cache");
786 if (ret < 0)
787 pr_err("Couldn't create device -> cache set symlink\n");
788
789 ret = sysfs_create_link(&c->kobj, &d->kobj, d->name);
790 if (ret < 0)
791 pr_err("Couldn't create cache set -> device symlink\n");
792
793 clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
794 }
795
bcache_device_detach(struct bcache_device * d)796 static void bcache_device_detach(struct bcache_device *d)
797 {
798 lockdep_assert_held(&bch_register_lock);
799
800 atomic_dec(&d->c->attached_dev_nr);
801
802 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
803 struct uuid_entry *u = d->c->uuids + d->id;
804
805 SET_UUID_FLASH_ONLY(u, 0);
806 memcpy(u->uuid, invalid_uuid, 16);
807 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
808 bch_uuid_write(d->c);
809 }
810
811 bcache_device_unlink(d);
812
813 d->c->devices[d->id] = NULL;
814 closure_put(&d->c->caching);
815 d->c = NULL;
816 }
817
bcache_device_attach(struct bcache_device * d,struct cache_set * c,unsigned int id)818 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
819 unsigned int id)
820 {
821 d->id = id;
822 d->c = c;
823 c->devices[id] = d;
824
825 if (id >= c->devices_max_used)
826 c->devices_max_used = id + 1;
827
828 closure_get(&c->caching);
829 }
830
first_minor_to_idx(int first_minor)831 static inline int first_minor_to_idx(int first_minor)
832 {
833 return (first_minor/BCACHE_MINORS);
834 }
835
idx_to_first_minor(int idx)836 static inline int idx_to_first_minor(int idx)
837 {
838 return (idx * BCACHE_MINORS);
839 }
840
bcache_device_free(struct bcache_device * d)841 static void bcache_device_free(struct bcache_device *d)
842 {
843 struct gendisk *disk = d->disk;
844
845 lockdep_assert_held(&bch_register_lock);
846
847 if (disk)
848 pr_info("%s stopped\n", disk->disk_name);
849 else
850 pr_err("bcache device (NULL gendisk) stopped\n");
851
852 if (d->c)
853 bcache_device_detach(d);
854
855 if (disk) {
856 bool disk_added = (disk->flags & GENHD_FL_UP) != 0;
857
858 if (disk_added)
859 del_gendisk(disk);
860
861 if (disk->queue)
862 blk_cleanup_queue(disk->queue);
863
864 ida_simple_remove(&bcache_device_idx,
865 first_minor_to_idx(disk->first_minor));
866 if (disk_added)
867 put_disk(disk);
868 }
869
870 bioset_exit(&d->bio_split);
871 kvfree(d->full_dirty_stripes);
872 kvfree(d->stripe_sectors_dirty);
873
874 closure_debug_destroy(&d->cl);
875 }
876
bcache_device_init(struct bcache_device * d,unsigned int block_size,sector_t sectors,struct block_device * cached_bdev,const struct block_device_operations * ops)877 static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
878 sector_t sectors, struct block_device *cached_bdev,
879 const struct block_device_operations *ops)
880 {
881 struct request_queue *q;
882 const size_t max_stripes = min_t(size_t, INT_MAX,
883 SIZE_MAX / sizeof(atomic_t));
884 uint64_t n;
885 int idx;
886
887 if (!d->stripe_size)
888 d->stripe_size = 1 << 31;
889
890 n = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
891 if (!n || n > max_stripes) {
892 pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n",
893 n);
894 return -ENOMEM;
895 }
896 d->nr_stripes = n;
897
898 n = d->nr_stripes * sizeof(atomic_t);
899 d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
900 if (!d->stripe_sectors_dirty)
901 return -ENOMEM;
902
903 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
904 d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
905 if (!d->full_dirty_stripes)
906 return -ENOMEM;
907
908 idx = ida_simple_get(&bcache_device_idx, 0,
909 BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
910 if (idx < 0)
911 return idx;
912
913 if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
914 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
915 goto err;
916
917 d->disk = alloc_disk(BCACHE_MINORS);
918 if (!d->disk)
919 goto err;
920
921 set_capacity(d->disk, sectors);
922 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
923
924 d->disk->major = bcache_major;
925 d->disk->first_minor = idx_to_first_minor(idx);
926 d->disk->fops = ops;
927 d->disk->private_data = d;
928
929 q = blk_alloc_queue(NUMA_NO_NODE);
930 if (!q)
931 return -ENOMEM;
932
933 d->disk->queue = q;
934 q->limits.max_hw_sectors = UINT_MAX;
935 q->limits.max_sectors = UINT_MAX;
936 q->limits.max_segment_size = UINT_MAX;
937 q->limits.max_segments = BIO_MAX_PAGES;
938 blk_queue_max_discard_sectors(q, UINT_MAX);
939 q->limits.discard_granularity = 512;
940 q->limits.io_min = block_size;
941 q->limits.logical_block_size = block_size;
942 q->limits.physical_block_size = block_size;
943
944 if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) {
945 /*
946 * This should only happen with BCACHE_SB_VERSION_BDEV.
947 * Block/page size is checked for BCACHE_SB_VERSION_CDEV.
948 */
949 pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n",
950 d->disk->disk_name, q->limits.logical_block_size,
951 PAGE_SIZE, bdev_logical_block_size(cached_bdev));
952
953 /* This also adjusts physical block size/min io size if needed */
954 blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev));
955 }
956
957 blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
958 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue);
959 blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue);
960
961 blk_queue_write_cache(q, true, true);
962
963 return 0;
964
965 err:
966 ida_simple_remove(&bcache_device_idx, idx);
967 return -ENOMEM;
968
969 }
970
971 /* Cached device */
972
calc_cached_dev_sectors(struct cache_set * c)973 static void calc_cached_dev_sectors(struct cache_set *c)
974 {
975 uint64_t sectors = 0;
976 struct cached_dev *dc;
977
978 list_for_each_entry(dc, &c->cached_devs, list)
979 sectors += bdev_sectors(dc->bdev);
980
981 c->cached_dev_sectors = sectors;
982 }
983
984 #define BACKING_DEV_OFFLINE_TIMEOUT 5
cached_dev_status_update(void * arg)985 static int cached_dev_status_update(void *arg)
986 {
987 struct cached_dev *dc = arg;
988 struct request_queue *q;
989
990 /*
991 * If this delayed worker is stopping outside, directly quit here.
992 * dc->io_disable might be set via sysfs interface, so check it
993 * here too.
994 */
995 while (!kthread_should_stop() && !dc->io_disable) {
996 q = bdev_get_queue(dc->bdev);
997 if (blk_queue_dying(q))
998 dc->offline_seconds++;
999 else
1000 dc->offline_seconds = 0;
1001
1002 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
1003 pr_err("%s: device offline for %d seconds\n",
1004 dc->backing_dev_name,
1005 BACKING_DEV_OFFLINE_TIMEOUT);
1006 pr_err("%s: disable I/O request due to backing device offline\n",
1007 dc->disk.name);
1008 dc->io_disable = true;
1009 /* let others know earlier that io_disable is true */
1010 smp_mb();
1011 bcache_device_stop(&dc->disk);
1012 break;
1013 }
1014 schedule_timeout_interruptible(HZ);
1015 }
1016
1017 wait_for_kthread_stop();
1018 return 0;
1019 }
1020
1021
bch_cached_dev_run(struct cached_dev * dc)1022 int bch_cached_dev_run(struct cached_dev *dc)
1023 {
1024 struct bcache_device *d = &dc->disk;
1025 char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
1026 char *env[] = {
1027 "DRIVER=bcache",
1028 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
1029 kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""),
1030 NULL,
1031 };
1032
1033 if (dc->io_disable) {
1034 pr_err("I/O disabled on cached dev %s\n",
1035 dc->backing_dev_name);
1036 kfree(env[1]);
1037 kfree(env[2]);
1038 kfree(buf);
1039 return -EIO;
1040 }
1041
1042 if (atomic_xchg(&dc->running, 1)) {
1043 kfree(env[1]);
1044 kfree(env[2]);
1045 kfree(buf);
1046 pr_info("cached dev %s is running already\n",
1047 dc->backing_dev_name);
1048 return -EBUSY;
1049 }
1050
1051 if (!d->c &&
1052 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
1053 struct closure cl;
1054
1055 closure_init_stack(&cl);
1056
1057 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
1058 bch_write_bdev_super(dc, &cl);
1059 closure_sync(&cl);
1060 }
1061
1062 add_disk(d->disk);
1063 bd_link_disk_holder(dc->bdev, dc->disk.disk);
1064 /*
1065 * won't show up in the uevent file, use udevadm monitor -e instead
1066 * only class / kset properties are persistent
1067 */
1068 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
1069 kfree(env[1]);
1070 kfree(env[2]);
1071 kfree(buf);
1072
1073 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
1074 sysfs_create_link(&disk_to_dev(d->disk)->kobj,
1075 &d->kobj, "bcache")) {
1076 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n");
1077 return -ENOMEM;
1078 }
1079
1080 dc->status_update_thread = kthread_run(cached_dev_status_update,
1081 dc, "bcache_status_update");
1082 if (IS_ERR(dc->status_update_thread)) {
1083 pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n");
1084 }
1085
1086 return 0;
1087 }
1088
1089 /*
1090 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
1091 * work dc->writeback_rate_update is running. Wait until the routine
1092 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
1093 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
1094 * seconds, give up waiting here and continue to cancel it too.
1095 */
cancel_writeback_rate_update_dwork(struct cached_dev * dc)1096 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
1097 {
1098 int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
1099
1100 do {
1101 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
1102 &dc->disk.flags))
1103 break;
1104 time_out--;
1105 schedule_timeout_interruptible(1);
1106 } while (time_out > 0);
1107
1108 if (time_out == 0)
1109 pr_warn("give up waiting for dc->writeback_write_update to quit\n");
1110
1111 cancel_delayed_work_sync(&dc->writeback_rate_update);
1112 }
1113
cached_dev_detach_finish(struct work_struct * w)1114 static void cached_dev_detach_finish(struct work_struct *w)
1115 {
1116 struct cached_dev *dc = container_of(w, struct cached_dev, detach);
1117 struct closure cl;
1118
1119 closure_init_stack(&cl);
1120
1121 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
1122 BUG_ON(refcount_read(&dc->count));
1123
1124
1125 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1126 cancel_writeback_rate_update_dwork(dc);
1127
1128 if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
1129 kthread_stop(dc->writeback_thread);
1130 dc->writeback_thread = NULL;
1131 }
1132
1133 memset(&dc->sb.set_uuid, 0, 16);
1134 SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
1135
1136 bch_write_bdev_super(dc, &cl);
1137 closure_sync(&cl);
1138
1139 mutex_lock(&bch_register_lock);
1140
1141 calc_cached_dev_sectors(dc->disk.c);
1142 bcache_device_detach(&dc->disk);
1143 list_move(&dc->list, &uncached_devices);
1144
1145 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
1146 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
1147
1148 mutex_unlock(&bch_register_lock);
1149
1150 pr_info("Caching disabled for %s\n", dc->backing_dev_name);
1151
1152 /* Drop ref we took in cached_dev_detach() */
1153 closure_put(&dc->disk.cl);
1154 }
1155
bch_cached_dev_detach(struct cached_dev * dc)1156 void bch_cached_dev_detach(struct cached_dev *dc)
1157 {
1158 lockdep_assert_held(&bch_register_lock);
1159
1160 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1161 return;
1162
1163 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1164 return;
1165
1166 /*
1167 * Block the device from being closed and freed until we're finished
1168 * detaching
1169 */
1170 closure_get(&dc->disk.cl);
1171
1172 bch_writeback_queue(dc);
1173
1174 cached_dev_put(dc);
1175 }
1176
bch_cached_dev_attach(struct cached_dev * dc,struct cache_set * c,uint8_t * set_uuid)1177 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1178 uint8_t *set_uuid)
1179 {
1180 uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1181 struct uuid_entry *u;
1182 struct cached_dev *exist_dc, *t;
1183 int ret = 0;
1184
1185 if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) ||
1186 (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16)))
1187 return -ENOENT;
1188
1189 if (dc->disk.c) {
1190 pr_err("Can't attach %s: already attached\n",
1191 dc->backing_dev_name);
1192 return -EINVAL;
1193 }
1194
1195 if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1196 pr_err("Can't attach %s: shutting down\n",
1197 dc->backing_dev_name);
1198 return -EINVAL;
1199 }
1200
1201 if (dc->sb.block_size < c->cache->sb.block_size) {
1202 /* Will die */
1203 pr_err("Couldn't attach %s: block size less than set's block size\n",
1204 dc->backing_dev_name);
1205 return -EINVAL;
1206 }
1207
1208 /* Check whether already attached */
1209 list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1210 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1211 pr_err("Tried to attach %s but duplicate UUID already attached\n",
1212 dc->backing_dev_name);
1213
1214 return -EINVAL;
1215 }
1216 }
1217
1218 u = uuid_find(c, dc->sb.uuid);
1219
1220 if (u &&
1221 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1222 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1223 memcpy(u->uuid, invalid_uuid, 16);
1224 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1225 u = NULL;
1226 }
1227
1228 if (!u) {
1229 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1230 pr_err("Couldn't find uuid for %s in set\n",
1231 dc->backing_dev_name);
1232 return -ENOENT;
1233 }
1234
1235 u = uuid_find_empty(c);
1236 if (!u) {
1237 pr_err("Not caching %s, no room for UUID\n",
1238 dc->backing_dev_name);
1239 return -EINVAL;
1240 }
1241 }
1242
1243 /*
1244 * Deadlocks since we're called via sysfs...
1245 * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1246 */
1247
1248 if (bch_is_zero(u->uuid, 16)) {
1249 struct closure cl;
1250
1251 closure_init_stack(&cl);
1252
1253 memcpy(u->uuid, dc->sb.uuid, 16);
1254 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1255 u->first_reg = u->last_reg = rtime;
1256 bch_uuid_write(c);
1257
1258 memcpy(dc->sb.set_uuid, c->set_uuid, 16);
1259 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1260
1261 bch_write_bdev_super(dc, &cl);
1262 closure_sync(&cl);
1263 } else {
1264 u->last_reg = rtime;
1265 bch_uuid_write(c);
1266 }
1267
1268 bcache_device_attach(&dc->disk, c, u - c->uuids);
1269 list_move(&dc->list, &c->cached_devs);
1270 calc_cached_dev_sectors(c);
1271
1272 /*
1273 * dc->c must be set before dc->count != 0 - paired with the mb in
1274 * cached_dev_get()
1275 */
1276 smp_wmb();
1277 refcount_set(&dc->count, 1);
1278
1279 /* Block writeback thread, but spawn it */
1280 down_write(&dc->writeback_lock);
1281 if (bch_cached_dev_writeback_start(dc)) {
1282 up_write(&dc->writeback_lock);
1283 pr_err("Couldn't start writeback facilities for %s\n",
1284 dc->disk.disk->disk_name);
1285 return -ENOMEM;
1286 }
1287
1288 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1289 atomic_set(&dc->has_dirty, 1);
1290 bch_writeback_queue(dc);
1291 }
1292
1293 bch_sectors_dirty_init(&dc->disk);
1294
1295 ret = bch_cached_dev_run(dc);
1296 if (ret && (ret != -EBUSY)) {
1297 up_write(&dc->writeback_lock);
1298 /*
1299 * bch_register_lock is held, bcache_device_stop() is not
1300 * able to be directly called. The kthread and kworker
1301 * created previously in bch_cached_dev_writeback_start()
1302 * have to be stopped manually here.
1303 */
1304 kthread_stop(dc->writeback_thread);
1305 cancel_writeback_rate_update_dwork(dc);
1306 pr_err("Couldn't run cached device %s\n",
1307 dc->backing_dev_name);
1308 return ret;
1309 }
1310
1311 bcache_device_link(&dc->disk, c, "bdev");
1312 atomic_inc(&c->attached_dev_nr);
1313
1314 /* Allow the writeback thread to proceed */
1315 up_write(&dc->writeback_lock);
1316
1317 pr_info("Caching %s as %s on set %pU\n",
1318 dc->backing_dev_name,
1319 dc->disk.disk->disk_name,
1320 dc->disk.c->set_uuid);
1321 return 0;
1322 }
1323
1324 /* when dc->disk.kobj released */
bch_cached_dev_release(struct kobject * kobj)1325 void bch_cached_dev_release(struct kobject *kobj)
1326 {
1327 struct cached_dev *dc = container_of(kobj, struct cached_dev,
1328 disk.kobj);
1329 kfree(dc);
1330 module_put(THIS_MODULE);
1331 }
1332
cached_dev_free(struct closure * cl)1333 static void cached_dev_free(struct closure *cl)
1334 {
1335 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1336
1337 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1338 cancel_writeback_rate_update_dwork(dc);
1339
1340 if (!IS_ERR_OR_NULL(dc->writeback_thread))
1341 kthread_stop(dc->writeback_thread);
1342 if (!IS_ERR_OR_NULL(dc->status_update_thread))
1343 kthread_stop(dc->status_update_thread);
1344
1345 mutex_lock(&bch_register_lock);
1346
1347 if (atomic_read(&dc->running))
1348 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1349 bcache_device_free(&dc->disk);
1350 list_del(&dc->list);
1351
1352 mutex_unlock(&bch_register_lock);
1353
1354 if (dc->sb_disk)
1355 put_page(virt_to_page(dc->sb_disk));
1356
1357 if (!IS_ERR_OR_NULL(dc->bdev))
1358 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1359
1360 wake_up(&unregister_wait);
1361
1362 kobject_put(&dc->disk.kobj);
1363 }
1364
cached_dev_flush(struct closure * cl)1365 static void cached_dev_flush(struct closure *cl)
1366 {
1367 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1368 struct bcache_device *d = &dc->disk;
1369
1370 mutex_lock(&bch_register_lock);
1371 bcache_device_unlink(d);
1372 mutex_unlock(&bch_register_lock);
1373
1374 bch_cache_accounting_destroy(&dc->accounting);
1375 kobject_del(&d->kobj);
1376
1377 continue_at(cl, cached_dev_free, system_wq);
1378 }
1379
cached_dev_init(struct cached_dev * dc,unsigned int block_size)1380 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1381 {
1382 int ret;
1383 struct io *io;
1384 struct request_queue *q = bdev_get_queue(dc->bdev);
1385
1386 __module_get(THIS_MODULE);
1387 INIT_LIST_HEAD(&dc->list);
1388 closure_init(&dc->disk.cl, NULL);
1389 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1390 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1391 INIT_WORK(&dc->detach, cached_dev_detach_finish);
1392 sema_init(&dc->sb_write_mutex, 1);
1393 INIT_LIST_HEAD(&dc->io_lru);
1394 spin_lock_init(&dc->io_lock);
1395 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1396
1397 dc->sequential_cutoff = 4 << 20;
1398
1399 for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1400 list_add(&io->lru, &dc->io_lru);
1401 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1402 }
1403
1404 dc->disk.stripe_size = q->limits.io_opt >> 9;
1405
1406 if (dc->disk.stripe_size)
1407 dc->partial_stripes_expensive =
1408 q->limits.raid_partial_stripes_expensive;
1409
1410 ret = bcache_device_init(&dc->disk, block_size,
1411 dc->bdev->bd_part->nr_sects - dc->sb.data_offset,
1412 dc->bdev, &bcache_cached_ops);
1413 if (ret)
1414 return ret;
1415
1416 blk_queue_io_opt(dc->disk.disk->queue,
1417 max(queue_io_opt(dc->disk.disk->queue), queue_io_opt(q)));
1418
1419 atomic_set(&dc->io_errors, 0);
1420 dc->io_disable = false;
1421 dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1422 /* default to auto */
1423 dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1424
1425 bch_cached_dev_request_init(dc);
1426 bch_cached_dev_writeback_init(dc);
1427 return 0;
1428 }
1429
1430 /* Cached device - bcache superblock */
1431
register_bdev(struct cache_sb * sb,struct cache_sb_disk * sb_disk,struct block_device * bdev,struct cached_dev * dc)1432 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
1433 struct block_device *bdev,
1434 struct cached_dev *dc)
1435 {
1436 const char *err = "cannot allocate memory";
1437 struct cache_set *c;
1438 int ret = -ENOMEM;
1439
1440 bdevname(bdev, dc->backing_dev_name);
1441 memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1442 dc->bdev = bdev;
1443 dc->bdev->bd_holder = dc;
1444 dc->sb_disk = sb_disk;
1445
1446 if (cached_dev_init(dc, sb->block_size << 9))
1447 goto err;
1448
1449 err = "error creating kobject";
1450 if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1451 "bcache"))
1452 goto err;
1453 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1454 goto err;
1455
1456 pr_info("registered backing device %s\n", dc->backing_dev_name);
1457
1458 list_add(&dc->list, &uncached_devices);
1459 /* attach to a matched cache set if it exists */
1460 list_for_each_entry(c, &bch_cache_sets, list)
1461 bch_cached_dev_attach(dc, c, NULL);
1462
1463 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1464 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) {
1465 err = "failed to run cached device";
1466 ret = bch_cached_dev_run(dc);
1467 if (ret)
1468 goto err;
1469 }
1470
1471 return 0;
1472 err:
1473 pr_notice("error %s: %s\n", dc->backing_dev_name, err);
1474 bcache_device_stop(&dc->disk);
1475 return ret;
1476 }
1477
1478 /* Flash only volumes */
1479
1480 /* When d->kobj released */
bch_flash_dev_release(struct kobject * kobj)1481 void bch_flash_dev_release(struct kobject *kobj)
1482 {
1483 struct bcache_device *d = container_of(kobj, struct bcache_device,
1484 kobj);
1485 kfree(d);
1486 }
1487
flash_dev_free(struct closure * cl)1488 static void flash_dev_free(struct closure *cl)
1489 {
1490 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1491
1492 mutex_lock(&bch_register_lock);
1493 atomic_long_sub(bcache_dev_sectors_dirty(d),
1494 &d->c->flash_dev_dirty_sectors);
1495 bcache_device_free(d);
1496 mutex_unlock(&bch_register_lock);
1497 kobject_put(&d->kobj);
1498 }
1499
flash_dev_flush(struct closure * cl)1500 static void flash_dev_flush(struct closure *cl)
1501 {
1502 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1503
1504 mutex_lock(&bch_register_lock);
1505 bcache_device_unlink(d);
1506 mutex_unlock(&bch_register_lock);
1507 kobject_del(&d->kobj);
1508 continue_at(cl, flash_dev_free, system_wq);
1509 }
1510
flash_dev_run(struct cache_set * c,struct uuid_entry * u)1511 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1512 {
1513 struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1514 GFP_KERNEL);
1515 if (!d)
1516 return -ENOMEM;
1517
1518 closure_init(&d->cl, NULL);
1519 set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1520
1521 kobject_init(&d->kobj, &bch_flash_dev_ktype);
1522
1523 if (bcache_device_init(d, block_bytes(c->cache), u->sectors,
1524 NULL, &bcache_flash_ops))
1525 goto err;
1526
1527 bcache_device_attach(d, c, u - c->uuids);
1528 bch_sectors_dirty_init(d);
1529 bch_flash_dev_request_init(d);
1530 add_disk(d->disk);
1531
1532 if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1533 goto err;
1534
1535 bcache_device_link(d, c, "volume");
1536
1537 return 0;
1538 err:
1539 kobject_put(&d->kobj);
1540 return -ENOMEM;
1541 }
1542
flash_devs_run(struct cache_set * c)1543 static int flash_devs_run(struct cache_set *c)
1544 {
1545 int ret = 0;
1546 struct uuid_entry *u;
1547
1548 for (u = c->uuids;
1549 u < c->uuids + c->nr_uuids && !ret;
1550 u++)
1551 if (UUID_FLASH_ONLY(u))
1552 ret = flash_dev_run(c, u);
1553
1554 return ret;
1555 }
1556
bch_flash_dev_create(struct cache_set * c,uint64_t size)1557 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1558 {
1559 struct uuid_entry *u;
1560
1561 if (test_bit(CACHE_SET_STOPPING, &c->flags))
1562 return -EINTR;
1563
1564 if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1565 return -EPERM;
1566
1567 u = uuid_find_empty(c);
1568 if (!u) {
1569 pr_err("Can't create volume, no room for UUID\n");
1570 return -EINVAL;
1571 }
1572
1573 get_random_bytes(u->uuid, 16);
1574 memset(u->label, 0, 32);
1575 u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1576
1577 SET_UUID_FLASH_ONLY(u, 1);
1578 u->sectors = size >> 9;
1579
1580 bch_uuid_write(c);
1581
1582 return flash_dev_run(c, u);
1583 }
1584
bch_cached_dev_error(struct cached_dev * dc)1585 bool bch_cached_dev_error(struct cached_dev *dc)
1586 {
1587 if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1588 return false;
1589
1590 dc->io_disable = true;
1591 /* make others know io_disable is true earlier */
1592 smp_mb();
1593
1594 pr_err("stop %s: too many IO errors on backing device %s\n",
1595 dc->disk.disk->disk_name, dc->backing_dev_name);
1596
1597 bcache_device_stop(&dc->disk);
1598 return true;
1599 }
1600
1601 /* Cache set */
1602
1603 __printf(2, 3)
bch_cache_set_error(struct cache_set * c,const char * fmt,...)1604 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1605 {
1606 struct va_format vaf;
1607 va_list args;
1608
1609 if (c->on_error != ON_ERROR_PANIC &&
1610 test_bit(CACHE_SET_STOPPING, &c->flags))
1611 return false;
1612
1613 if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1614 pr_info("CACHE_SET_IO_DISABLE already set\n");
1615
1616 /*
1617 * XXX: we can be called from atomic context
1618 * acquire_console_sem();
1619 */
1620
1621 va_start(args, fmt);
1622
1623 vaf.fmt = fmt;
1624 vaf.va = &args;
1625
1626 pr_err("error on %pU: %pV, disabling caching\n",
1627 c->set_uuid, &vaf);
1628
1629 va_end(args);
1630
1631 if (c->on_error == ON_ERROR_PANIC)
1632 panic("panic forced after error\n");
1633
1634 bch_cache_set_unregister(c);
1635 return true;
1636 }
1637
1638 /* When c->kobj released */
bch_cache_set_release(struct kobject * kobj)1639 void bch_cache_set_release(struct kobject *kobj)
1640 {
1641 struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1642
1643 kfree(c);
1644 module_put(THIS_MODULE);
1645 }
1646
cache_set_free(struct closure * cl)1647 static void cache_set_free(struct closure *cl)
1648 {
1649 struct cache_set *c = container_of(cl, struct cache_set, cl);
1650 struct cache *ca;
1651
1652 debugfs_remove(c->debug);
1653
1654 bch_open_buckets_free(c);
1655 bch_btree_cache_free(c);
1656 bch_journal_free(c);
1657
1658 mutex_lock(&bch_register_lock);
1659 bch_bset_sort_state_free(&c->sort);
1660 free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb)));
1661
1662 ca = c->cache;
1663 if (ca) {
1664 ca->set = NULL;
1665 c->cache = NULL;
1666 kobject_put(&ca->kobj);
1667 }
1668
1669
1670 if (c->moving_gc_wq)
1671 destroy_workqueue(c->moving_gc_wq);
1672 bioset_exit(&c->bio_split);
1673 mempool_exit(&c->fill_iter);
1674 mempool_exit(&c->bio_meta);
1675 mempool_exit(&c->search);
1676 kfree(c->devices);
1677
1678 list_del(&c->list);
1679 mutex_unlock(&bch_register_lock);
1680
1681 pr_info("Cache set %pU unregistered\n", c->set_uuid);
1682 wake_up(&unregister_wait);
1683
1684 closure_debug_destroy(&c->cl);
1685 kobject_put(&c->kobj);
1686 }
1687
cache_set_flush(struct closure * cl)1688 static void cache_set_flush(struct closure *cl)
1689 {
1690 struct cache_set *c = container_of(cl, struct cache_set, caching);
1691 struct cache *ca = c->cache;
1692 struct btree *b;
1693
1694 bch_cache_accounting_destroy(&c->accounting);
1695
1696 kobject_put(&c->internal);
1697 kobject_del(&c->kobj);
1698
1699 if (!IS_ERR_OR_NULL(c->gc_thread))
1700 kthread_stop(c->gc_thread);
1701
1702 if (!IS_ERR_OR_NULL(c->root))
1703 list_add(&c->root->list, &c->btree_cache);
1704
1705 /*
1706 * Avoid flushing cached nodes if cache set is retiring
1707 * due to too many I/O errors detected.
1708 */
1709 if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1710 list_for_each_entry(b, &c->btree_cache, list) {
1711 mutex_lock(&b->write_lock);
1712 if (btree_node_dirty(b))
1713 __bch_btree_node_write(b, NULL);
1714 mutex_unlock(&b->write_lock);
1715 }
1716
1717 if (ca->alloc_thread)
1718 kthread_stop(ca->alloc_thread);
1719
1720 if (c->journal.cur) {
1721 cancel_delayed_work_sync(&c->journal.work);
1722 /* flush last journal entry if needed */
1723 c->journal.work.work.func(&c->journal.work.work);
1724 }
1725
1726 closure_return(cl);
1727 }
1728
1729 /*
1730 * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1731 * cache set is unregistering due to too many I/O errors. In this condition,
1732 * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1733 * value and whether the broken cache has dirty data:
1734 *
1735 * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device
1736 * BCH_CACHED_STOP_AUTO 0 NO
1737 * BCH_CACHED_STOP_AUTO 1 YES
1738 * BCH_CACHED_DEV_STOP_ALWAYS 0 YES
1739 * BCH_CACHED_DEV_STOP_ALWAYS 1 YES
1740 *
1741 * The expected behavior is, if stop_when_cache_set_failed is configured to
1742 * "auto" via sysfs interface, the bcache device will not be stopped if the
1743 * backing device is clean on the broken cache device.
1744 */
conditional_stop_bcache_device(struct cache_set * c,struct bcache_device * d,struct cached_dev * dc)1745 static void conditional_stop_bcache_device(struct cache_set *c,
1746 struct bcache_device *d,
1747 struct cached_dev *dc)
1748 {
1749 if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1750 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n",
1751 d->disk->disk_name, c->set_uuid);
1752 bcache_device_stop(d);
1753 } else if (atomic_read(&dc->has_dirty)) {
1754 /*
1755 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1756 * and dc->has_dirty == 1
1757 */
1758 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n",
1759 d->disk->disk_name);
1760 /*
1761 * There might be a small time gap that cache set is
1762 * released but bcache device is not. Inside this time
1763 * gap, regular I/O requests will directly go into
1764 * backing device as no cache set attached to. This
1765 * behavior may also introduce potential inconsistence
1766 * data in writeback mode while cache is dirty.
1767 * Therefore before calling bcache_device_stop() due
1768 * to a broken cache device, dc->io_disable should be
1769 * explicitly set to true.
1770 */
1771 dc->io_disable = true;
1772 /* make others know io_disable is true earlier */
1773 smp_mb();
1774 bcache_device_stop(d);
1775 } else {
1776 /*
1777 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1778 * and dc->has_dirty == 0
1779 */
1780 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n",
1781 d->disk->disk_name);
1782 }
1783 }
1784
__cache_set_unregister(struct closure * cl)1785 static void __cache_set_unregister(struct closure *cl)
1786 {
1787 struct cache_set *c = container_of(cl, struct cache_set, caching);
1788 struct cached_dev *dc;
1789 struct bcache_device *d;
1790 size_t i;
1791
1792 mutex_lock(&bch_register_lock);
1793
1794 for (i = 0; i < c->devices_max_used; i++) {
1795 d = c->devices[i];
1796 if (!d)
1797 continue;
1798
1799 if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1800 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1801 dc = container_of(d, struct cached_dev, disk);
1802 bch_cached_dev_detach(dc);
1803 if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1804 conditional_stop_bcache_device(c, d, dc);
1805 } else {
1806 bcache_device_stop(d);
1807 }
1808 }
1809
1810 mutex_unlock(&bch_register_lock);
1811
1812 continue_at(cl, cache_set_flush, system_wq);
1813 }
1814
bch_cache_set_stop(struct cache_set * c)1815 void bch_cache_set_stop(struct cache_set *c)
1816 {
1817 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1818 /* closure_fn set to __cache_set_unregister() */
1819 closure_queue(&c->caching);
1820 }
1821
bch_cache_set_unregister(struct cache_set * c)1822 void bch_cache_set_unregister(struct cache_set *c)
1823 {
1824 set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1825 bch_cache_set_stop(c);
1826 }
1827
1828 #define alloc_meta_bucket_pages(gfp, sb) \
1829 ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb))))
1830
bch_cache_set_alloc(struct cache_sb * sb)1831 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1832 {
1833 int iter_size;
1834 struct cache *ca = container_of(sb, struct cache, sb);
1835 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1836
1837 if (!c)
1838 return NULL;
1839
1840 __module_get(THIS_MODULE);
1841 closure_init(&c->cl, NULL);
1842 set_closure_fn(&c->cl, cache_set_free, system_wq);
1843
1844 closure_init(&c->caching, &c->cl);
1845 set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1846
1847 /* Maybe create continue_at_noreturn() and use it here? */
1848 closure_set_stopped(&c->cl);
1849 closure_put(&c->cl);
1850
1851 kobject_init(&c->kobj, &bch_cache_set_ktype);
1852 kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1853
1854 bch_cache_accounting_init(&c->accounting, &c->cl);
1855
1856 memcpy(c->set_uuid, sb->set_uuid, 16);
1857
1858 c->cache = ca;
1859 c->cache->set = c;
1860 c->bucket_bits = ilog2(sb->bucket_size);
1861 c->block_bits = ilog2(sb->block_size);
1862 c->nr_uuids = meta_bucket_bytes(sb) / sizeof(struct uuid_entry);
1863 c->devices_max_used = 0;
1864 atomic_set(&c->attached_dev_nr, 0);
1865 c->btree_pages = meta_bucket_pages(sb);
1866 if (c->btree_pages > BTREE_MAX_PAGES)
1867 c->btree_pages = max_t(int, c->btree_pages / 4,
1868 BTREE_MAX_PAGES);
1869
1870 sema_init(&c->sb_write_mutex, 1);
1871 mutex_init(&c->bucket_lock);
1872 init_waitqueue_head(&c->btree_cache_wait);
1873 spin_lock_init(&c->btree_cannibalize_lock);
1874 init_waitqueue_head(&c->bucket_wait);
1875 init_waitqueue_head(&c->gc_wait);
1876 sema_init(&c->uuid_write_mutex, 1);
1877
1878 spin_lock_init(&c->btree_gc_time.lock);
1879 spin_lock_init(&c->btree_split_time.lock);
1880 spin_lock_init(&c->btree_read_time.lock);
1881
1882 bch_moving_init_cache_set(c);
1883
1884 INIT_LIST_HEAD(&c->list);
1885 INIT_LIST_HEAD(&c->cached_devs);
1886 INIT_LIST_HEAD(&c->btree_cache);
1887 INIT_LIST_HEAD(&c->btree_cache_freeable);
1888 INIT_LIST_HEAD(&c->btree_cache_freed);
1889 INIT_LIST_HEAD(&c->data_buckets);
1890
1891 iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size + 1) *
1892 sizeof(struct btree_iter_set);
1893
1894 c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL);
1895 if (!c->devices)
1896 goto err;
1897
1898 if (mempool_init_slab_pool(&c->search, 32, bch_search_cache))
1899 goto err;
1900
1901 if (mempool_init_kmalloc_pool(&c->bio_meta, 2,
1902 sizeof(struct bbio) +
1903 sizeof(struct bio_vec) * meta_bucket_pages(sb)))
1904 goto err;
1905
1906 if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size))
1907 goto err;
1908
1909 if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1910 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
1911 goto err;
1912
1913 c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb);
1914 if (!c->uuids)
1915 goto err;
1916
1917 c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0);
1918 if (!c->moving_gc_wq)
1919 goto err;
1920
1921 if (bch_journal_alloc(c))
1922 goto err;
1923
1924 if (bch_btree_cache_alloc(c))
1925 goto err;
1926
1927 if (bch_open_buckets_alloc(c))
1928 goto err;
1929
1930 if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1931 goto err;
1932
1933 c->congested_read_threshold_us = 2000;
1934 c->congested_write_threshold_us = 20000;
1935 c->error_limit = DEFAULT_IO_ERROR_LIMIT;
1936 c->idle_max_writeback_rate_enabled = 1;
1937 WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1938
1939 return c;
1940 err:
1941 bch_cache_set_unregister(c);
1942 return NULL;
1943 }
1944
run_cache_set(struct cache_set * c)1945 static int run_cache_set(struct cache_set *c)
1946 {
1947 const char *err = "cannot allocate memory";
1948 struct cached_dev *dc, *t;
1949 struct cache *ca = c->cache;
1950 struct closure cl;
1951 LIST_HEAD(journal);
1952 struct journal_replay *l;
1953
1954 closure_init_stack(&cl);
1955
1956 c->nbuckets = ca->sb.nbuckets;
1957 set_gc_sectors(c);
1958
1959 if (CACHE_SYNC(&c->cache->sb)) {
1960 struct bkey *k;
1961 struct jset *j;
1962
1963 err = "cannot allocate memory for journal";
1964 if (bch_journal_read(c, &journal))
1965 goto err;
1966
1967 pr_debug("btree_journal_read() done\n");
1968
1969 err = "no journal entries found";
1970 if (list_empty(&journal))
1971 goto err;
1972
1973 j = &list_entry(journal.prev, struct journal_replay, list)->j;
1974
1975 err = "IO error reading priorities";
1976 if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]))
1977 goto err;
1978
1979 /*
1980 * If prio_read() fails it'll call cache_set_error and we'll
1981 * tear everything down right away, but if we perhaps checked
1982 * sooner we could avoid journal replay.
1983 */
1984
1985 k = &j->btree_root;
1986
1987 err = "bad btree root";
1988 if (__bch_btree_ptr_invalid(c, k))
1989 goto err;
1990
1991 err = "error reading btree root";
1992 c->root = bch_btree_node_get(c, NULL, k,
1993 j->btree_level,
1994 true, NULL);
1995 if (IS_ERR_OR_NULL(c->root))
1996 goto err;
1997
1998 list_del_init(&c->root->list);
1999 rw_unlock(true, c->root);
2000
2001 err = uuid_read(c, j, &cl);
2002 if (err)
2003 goto err;
2004
2005 err = "error in recovery";
2006 if (bch_btree_check(c))
2007 goto err;
2008
2009 bch_journal_mark(c, &journal);
2010 bch_initial_gc_finish(c);
2011 pr_debug("btree_check() done\n");
2012
2013 /*
2014 * bcache_journal_next() can't happen sooner, or
2015 * btree_gc_finish() will give spurious errors about last_gc >
2016 * gc_gen - this is a hack but oh well.
2017 */
2018 bch_journal_next(&c->journal);
2019
2020 err = "error starting allocator thread";
2021 if (bch_cache_allocator_start(ca))
2022 goto err;
2023
2024 /*
2025 * First place it's safe to allocate: btree_check() and
2026 * btree_gc_finish() have to run before we have buckets to
2027 * allocate, and bch_bucket_alloc_set() might cause a journal
2028 * entry to be written so bcache_journal_next() has to be called
2029 * first.
2030 *
2031 * If the uuids were in the old format we have to rewrite them
2032 * before the next journal entry is written:
2033 */
2034 if (j->version < BCACHE_JSET_VERSION_UUID)
2035 __uuid_write(c);
2036
2037 err = "bcache: replay journal failed";
2038 if (bch_journal_replay(c, &journal))
2039 goto err;
2040 } else {
2041 unsigned int j;
2042
2043 pr_notice("invalidating existing data\n");
2044 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
2045 2, SB_JOURNAL_BUCKETS);
2046
2047 for (j = 0; j < ca->sb.keys; j++)
2048 ca->sb.d[j] = ca->sb.first_bucket + j;
2049
2050 bch_initial_gc_finish(c);
2051
2052 err = "error starting allocator thread";
2053 if (bch_cache_allocator_start(ca))
2054 goto err;
2055
2056 mutex_lock(&c->bucket_lock);
2057 bch_prio_write(ca, true);
2058 mutex_unlock(&c->bucket_lock);
2059
2060 err = "cannot allocate new UUID bucket";
2061 if (__uuid_write(c))
2062 goto err;
2063
2064 err = "cannot allocate new btree root";
2065 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
2066 if (IS_ERR_OR_NULL(c->root))
2067 goto err;
2068
2069 mutex_lock(&c->root->write_lock);
2070 bkey_copy_key(&c->root->key, &MAX_KEY);
2071 bch_btree_node_write(c->root, &cl);
2072 mutex_unlock(&c->root->write_lock);
2073
2074 bch_btree_set_root(c->root);
2075 rw_unlock(true, c->root);
2076
2077 /*
2078 * We don't want to write the first journal entry until
2079 * everything is set up - fortunately journal entries won't be
2080 * written until the SET_CACHE_SYNC() here:
2081 */
2082 SET_CACHE_SYNC(&c->cache->sb, true);
2083
2084 bch_journal_next(&c->journal);
2085 bch_journal_meta(c, &cl);
2086 }
2087
2088 err = "error starting gc thread";
2089 if (bch_gc_thread_start(c))
2090 goto err;
2091
2092 closure_sync(&cl);
2093 c->cache->sb.last_mount = (u32)ktime_get_real_seconds();
2094 bcache_write_super(c);
2095
2096 list_for_each_entry_safe(dc, t, &uncached_devices, list)
2097 bch_cached_dev_attach(dc, c, NULL);
2098
2099 flash_devs_run(c);
2100
2101 set_bit(CACHE_SET_RUNNING, &c->flags);
2102 return 0;
2103 err:
2104 while (!list_empty(&journal)) {
2105 l = list_first_entry(&journal, struct journal_replay, list);
2106 list_del(&l->list);
2107 kfree(l);
2108 }
2109
2110 closure_sync(&cl);
2111
2112 bch_cache_set_error(c, "%s", err);
2113
2114 return -EIO;
2115 }
2116
register_cache_set(struct cache * ca)2117 static const char *register_cache_set(struct cache *ca)
2118 {
2119 char buf[12];
2120 const char *err = "cannot allocate memory";
2121 struct cache_set *c;
2122
2123 list_for_each_entry(c, &bch_cache_sets, list)
2124 if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) {
2125 if (c->cache)
2126 return "duplicate cache set member";
2127
2128 goto found;
2129 }
2130
2131 c = bch_cache_set_alloc(&ca->sb);
2132 if (!c)
2133 return err;
2134
2135 err = "error creating kobject";
2136 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) ||
2137 kobject_add(&c->internal, &c->kobj, "internal"))
2138 goto err;
2139
2140 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
2141 goto err;
2142
2143 bch_debug_init_cache_set(c);
2144
2145 list_add(&c->list, &bch_cache_sets);
2146 found:
2147 sprintf(buf, "cache%i", ca->sb.nr_this_dev);
2148 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
2149 sysfs_create_link(&c->kobj, &ca->kobj, buf))
2150 goto err;
2151
2152 kobject_get(&ca->kobj);
2153 ca->set = c;
2154 ca->set->cache = ca;
2155
2156 err = "failed to run cache set";
2157 if (run_cache_set(c) < 0)
2158 goto err;
2159
2160 return NULL;
2161 err:
2162 bch_cache_set_unregister(c);
2163 return err;
2164 }
2165
2166 /* Cache device */
2167
2168 /* When ca->kobj released */
bch_cache_release(struct kobject * kobj)2169 void bch_cache_release(struct kobject *kobj)
2170 {
2171 struct cache *ca = container_of(kobj, struct cache, kobj);
2172 unsigned int i;
2173
2174 if (ca->set) {
2175 BUG_ON(ca->set->cache != ca);
2176 ca->set->cache = NULL;
2177 }
2178
2179 free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb)));
2180 kfree(ca->prio_buckets);
2181 vfree(ca->buckets);
2182
2183 free_heap(&ca->heap);
2184 free_fifo(&ca->free_inc);
2185
2186 for (i = 0; i < RESERVE_NR; i++)
2187 free_fifo(&ca->free[i]);
2188
2189 if (ca->sb_disk)
2190 put_page(virt_to_page(ca->sb_disk));
2191
2192 if (!IS_ERR_OR_NULL(ca->bdev))
2193 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2194
2195 kfree(ca);
2196 module_put(THIS_MODULE);
2197 }
2198
cache_alloc(struct cache * ca)2199 static int cache_alloc(struct cache *ca)
2200 {
2201 size_t free;
2202 size_t btree_buckets;
2203 struct bucket *b;
2204 int ret = -ENOMEM;
2205 const char *err = NULL;
2206
2207 __module_get(THIS_MODULE);
2208 kobject_init(&ca->kobj, &bch_cache_ktype);
2209
2210 bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
2211
2212 /*
2213 * when ca->sb.njournal_buckets is not zero, journal exists,
2214 * and in bch_journal_replay(), tree node may split,
2215 * so bucket of RESERVE_BTREE type is needed,
2216 * the worst situation is all journal buckets are valid journal,
2217 * and all the keys need to replay,
2218 * so the number of RESERVE_BTREE type buckets should be as much
2219 * as journal buckets
2220 */
2221 btree_buckets = ca->sb.njournal_buckets ?: 8;
2222 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2223 if (!free) {
2224 ret = -EPERM;
2225 err = "ca->sb.nbuckets is too small";
2226 goto err_free;
2227 }
2228
2229 if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
2230 GFP_KERNEL)) {
2231 err = "ca->free[RESERVE_BTREE] alloc failed";
2232 goto err_btree_alloc;
2233 }
2234
2235 if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
2236 GFP_KERNEL)) {
2237 err = "ca->free[RESERVE_PRIO] alloc failed";
2238 goto err_prio_alloc;
2239 }
2240
2241 if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
2242 err = "ca->free[RESERVE_MOVINGGC] alloc failed";
2243 goto err_movinggc_alloc;
2244 }
2245
2246 if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
2247 err = "ca->free[RESERVE_NONE] alloc failed";
2248 goto err_none_alloc;
2249 }
2250
2251 if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
2252 err = "ca->free_inc alloc failed";
2253 goto err_free_inc_alloc;
2254 }
2255
2256 if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
2257 err = "ca->heap alloc failed";
2258 goto err_heap_alloc;
2259 }
2260
2261 ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2262 ca->sb.nbuckets));
2263 if (!ca->buckets) {
2264 err = "ca->buckets alloc failed";
2265 goto err_buckets_alloc;
2266 }
2267
2268 ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2269 prio_buckets(ca), 2),
2270 GFP_KERNEL);
2271 if (!ca->prio_buckets) {
2272 err = "ca->prio_buckets alloc failed";
2273 goto err_prio_buckets_alloc;
2274 }
2275
2276 ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb);
2277 if (!ca->disk_buckets) {
2278 err = "ca->disk_buckets alloc failed";
2279 goto err_disk_buckets_alloc;
2280 }
2281
2282 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2283
2284 for_each_bucket(b, ca)
2285 atomic_set(&b->pin, 0);
2286 return 0;
2287
2288 err_disk_buckets_alloc:
2289 kfree(ca->prio_buckets);
2290 err_prio_buckets_alloc:
2291 vfree(ca->buckets);
2292 err_buckets_alloc:
2293 free_heap(&ca->heap);
2294 err_heap_alloc:
2295 free_fifo(&ca->free_inc);
2296 err_free_inc_alloc:
2297 free_fifo(&ca->free[RESERVE_NONE]);
2298 err_none_alloc:
2299 free_fifo(&ca->free[RESERVE_MOVINGGC]);
2300 err_movinggc_alloc:
2301 free_fifo(&ca->free[RESERVE_PRIO]);
2302 err_prio_alloc:
2303 free_fifo(&ca->free[RESERVE_BTREE]);
2304 err_btree_alloc:
2305 err_free:
2306 module_put(THIS_MODULE);
2307 if (err)
2308 pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2309 return ret;
2310 }
2311
register_cache(struct cache_sb * sb,struct cache_sb_disk * sb_disk,struct block_device * bdev,struct cache * ca)2312 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
2313 struct block_device *bdev, struct cache *ca)
2314 {
2315 const char *err = NULL; /* must be set for any error case */
2316 int ret = 0;
2317
2318 bdevname(bdev, ca->cache_dev_name);
2319 memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2320 ca->bdev = bdev;
2321 ca->bdev->bd_holder = ca;
2322 ca->sb_disk = sb_disk;
2323
2324 if (blk_queue_discard(bdev_get_queue(bdev)))
2325 ca->discard = CACHE_DISCARD(&ca->sb);
2326
2327 ret = cache_alloc(ca);
2328 if (ret != 0) {
2329 /*
2330 * If we failed here, it means ca->kobj is not initialized yet,
2331 * kobject_put() won't be called and there is no chance to
2332 * call blkdev_put() to bdev in bch_cache_release(). So we
2333 * explicitly call blkdev_put() here.
2334 */
2335 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2336 if (ret == -ENOMEM)
2337 err = "cache_alloc(): -ENOMEM";
2338 else if (ret == -EPERM)
2339 err = "cache_alloc(): cache device is too small";
2340 else
2341 err = "cache_alloc(): unknown error";
2342 goto err;
2343 }
2344
2345 if (kobject_add(&ca->kobj,
2346 &part_to_dev(bdev->bd_part)->kobj,
2347 "bcache")) {
2348 err = "error calling kobject_add";
2349 ret = -ENOMEM;
2350 goto out;
2351 }
2352
2353 mutex_lock(&bch_register_lock);
2354 err = register_cache_set(ca);
2355 mutex_unlock(&bch_register_lock);
2356
2357 if (err) {
2358 ret = -ENODEV;
2359 goto out;
2360 }
2361
2362 pr_info("registered cache device %s\n", ca->cache_dev_name);
2363
2364 out:
2365 kobject_put(&ca->kobj);
2366
2367 err:
2368 if (err)
2369 pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2370
2371 return ret;
2372 }
2373
2374 /* Global interfaces/init */
2375
2376 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2377 const char *buffer, size_t size);
2378 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2379 struct kobj_attribute *attr,
2380 const char *buffer, size_t size);
2381
2382 kobj_attribute_write(register, register_bcache);
2383 kobj_attribute_write(register_quiet, register_bcache);
2384 kobj_attribute_write(pendings_cleanup, bch_pending_bdevs_cleanup);
2385
bch_is_open_backing(struct block_device * bdev)2386 static bool bch_is_open_backing(struct block_device *bdev)
2387 {
2388 struct cache_set *c, *tc;
2389 struct cached_dev *dc, *t;
2390
2391 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2392 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2393 if (dc->bdev == bdev)
2394 return true;
2395 list_for_each_entry_safe(dc, t, &uncached_devices, list)
2396 if (dc->bdev == bdev)
2397 return true;
2398 return false;
2399 }
2400
bch_is_open_cache(struct block_device * bdev)2401 static bool bch_is_open_cache(struct block_device *bdev)
2402 {
2403 struct cache_set *c, *tc;
2404
2405 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2406 struct cache *ca = c->cache;
2407
2408 if (ca->bdev == bdev)
2409 return true;
2410 }
2411
2412 return false;
2413 }
2414
bch_is_open(struct block_device * bdev)2415 static bool bch_is_open(struct block_device *bdev)
2416 {
2417 return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
2418 }
2419
2420 struct async_reg_args {
2421 struct delayed_work reg_work;
2422 char *path;
2423 struct cache_sb *sb;
2424 struct cache_sb_disk *sb_disk;
2425 struct block_device *bdev;
2426 };
2427
register_bdev_worker(struct work_struct * work)2428 static void register_bdev_worker(struct work_struct *work)
2429 {
2430 int fail = false;
2431 struct async_reg_args *args =
2432 container_of(work, struct async_reg_args, reg_work.work);
2433 struct cached_dev *dc;
2434
2435 dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2436 if (!dc) {
2437 fail = true;
2438 put_page(virt_to_page(args->sb_disk));
2439 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2440 goto out;
2441 }
2442
2443 mutex_lock(&bch_register_lock);
2444 if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0)
2445 fail = true;
2446 mutex_unlock(&bch_register_lock);
2447
2448 out:
2449 if (fail)
2450 pr_info("error %s: fail to register backing device\n",
2451 args->path);
2452 kfree(args->sb);
2453 kfree(args->path);
2454 kfree(args);
2455 module_put(THIS_MODULE);
2456 }
2457
register_cache_worker(struct work_struct * work)2458 static void register_cache_worker(struct work_struct *work)
2459 {
2460 int fail = false;
2461 struct async_reg_args *args =
2462 container_of(work, struct async_reg_args, reg_work.work);
2463 struct cache *ca;
2464
2465 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2466 if (!ca) {
2467 fail = true;
2468 put_page(virt_to_page(args->sb_disk));
2469 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2470 goto out;
2471 }
2472
2473 /* blkdev_put() will be called in bch_cache_release() */
2474 if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0)
2475 fail = true;
2476
2477 out:
2478 if (fail)
2479 pr_info("error %s: fail to register cache device\n",
2480 args->path);
2481 kfree(args->sb);
2482 kfree(args->path);
2483 kfree(args);
2484 module_put(THIS_MODULE);
2485 }
2486
register_device_aync(struct async_reg_args * args)2487 static void register_device_aync(struct async_reg_args *args)
2488 {
2489 if (SB_IS_BDEV(args->sb))
2490 INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker);
2491 else
2492 INIT_DELAYED_WORK(&args->reg_work, register_cache_worker);
2493
2494 /* 10 jiffies is enough for a delay */
2495 queue_delayed_work(system_wq, &args->reg_work, 10);
2496 }
2497
register_bcache(struct kobject * k,struct kobj_attribute * attr,const char * buffer,size_t size)2498 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2499 const char *buffer, size_t size)
2500 {
2501 const char *err;
2502 char *path = NULL;
2503 struct cache_sb *sb;
2504 struct cache_sb_disk *sb_disk;
2505 struct block_device *bdev;
2506 ssize_t ret;
2507 bool async_registration = false;
2508
2509 #ifdef CONFIG_BCACHE_ASYNC_REGISTRATION
2510 async_registration = true;
2511 #endif
2512
2513 ret = -EBUSY;
2514 err = "failed to reference bcache module";
2515 if (!try_module_get(THIS_MODULE))
2516 goto out;
2517
2518 /* For latest state of bcache_is_reboot */
2519 smp_mb();
2520 err = "bcache is in reboot";
2521 if (bcache_is_reboot)
2522 goto out_module_put;
2523
2524 ret = -ENOMEM;
2525 err = "cannot allocate memory";
2526 path = kstrndup(buffer, size, GFP_KERNEL);
2527 if (!path)
2528 goto out_module_put;
2529
2530 sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
2531 if (!sb)
2532 goto out_free_path;
2533
2534 ret = -EINVAL;
2535 err = "failed to open device";
2536 bdev = blkdev_get_by_path(strim(path),
2537 FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2538 sb);
2539 if (IS_ERR(bdev)) {
2540 if (bdev == ERR_PTR(-EBUSY)) {
2541 bdev = lookup_bdev(strim(path));
2542 mutex_lock(&bch_register_lock);
2543 if (!IS_ERR(bdev) && bch_is_open(bdev))
2544 err = "device already registered";
2545 else
2546 err = "device busy";
2547 mutex_unlock(&bch_register_lock);
2548 if (!IS_ERR(bdev))
2549 bdput(bdev);
2550 if (attr == &ksysfs_register_quiet)
2551 goto done;
2552 }
2553 goto out_free_sb;
2554 }
2555
2556 err = "failed to set blocksize";
2557 if (set_blocksize(bdev, 4096))
2558 goto out_blkdev_put;
2559
2560 err = read_super(sb, bdev, &sb_disk);
2561 if (err)
2562 goto out_blkdev_put;
2563
2564 err = "failed to register device";
2565
2566 if (async_registration) {
2567 /* register in asynchronous way */
2568 struct async_reg_args *args =
2569 kzalloc(sizeof(struct async_reg_args), GFP_KERNEL);
2570
2571 if (!args) {
2572 ret = -ENOMEM;
2573 err = "cannot allocate memory";
2574 goto out_put_sb_page;
2575 }
2576
2577 args->path = path;
2578 args->sb = sb;
2579 args->sb_disk = sb_disk;
2580 args->bdev = bdev;
2581 register_device_aync(args);
2582 /* No wait and returns to user space */
2583 goto async_done;
2584 }
2585
2586 if (SB_IS_BDEV(sb)) {
2587 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2588
2589 if (!dc)
2590 goto out_put_sb_page;
2591
2592 mutex_lock(&bch_register_lock);
2593 ret = register_bdev(sb, sb_disk, bdev, dc);
2594 mutex_unlock(&bch_register_lock);
2595 /* blkdev_put() will be called in cached_dev_free() */
2596 if (ret < 0)
2597 goto out_free_sb;
2598 } else {
2599 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2600
2601 if (!ca)
2602 goto out_put_sb_page;
2603
2604 /* blkdev_put() will be called in bch_cache_release() */
2605 if (register_cache(sb, sb_disk, bdev, ca) != 0)
2606 goto out_free_sb;
2607 }
2608
2609 done:
2610 kfree(sb);
2611 kfree(path);
2612 module_put(THIS_MODULE);
2613 async_done:
2614 return size;
2615
2616 out_put_sb_page:
2617 put_page(virt_to_page(sb_disk));
2618 out_blkdev_put:
2619 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2620 out_free_sb:
2621 kfree(sb);
2622 out_free_path:
2623 kfree(path);
2624 path = NULL;
2625 out_module_put:
2626 module_put(THIS_MODULE);
2627 out:
2628 pr_info("error %s: %s\n", path?path:"", err);
2629 return ret;
2630 }
2631
2632
2633 struct pdev {
2634 struct list_head list;
2635 struct cached_dev *dc;
2636 };
2637
bch_pending_bdevs_cleanup(struct kobject * k,struct kobj_attribute * attr,const char * buffer,size_t size)2638 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2639 struct kobj_attribute *attr,
2640 const char *buffer,
2641 size_t size)
2642 {
2643 LIST_HEAD(pending_devs);
2644 ssize_t ret = size;
2645 struct cached_dev *dc, *tdc;
2646 struct pdev *pdev, *tpdev;
2647 struct cache_set *c, *tc;
2648
2649 mutex_lock(&bch_register_lock);
2650 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) {
2651 pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL);
2652 if (!pdev)
2653 break;
2654 pdev->dc = dc;
2655 list_add(&pdev->list, &pending_devs);
2656 }
2657
2658 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2659 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2660 char *pdev_set_uuid = pdev->dc->sb.set_uuid;
2661 char *set_uuid = c->set_uuid;
2662
2663 if (!memcmp(pdev_set_uuid, set_uuid, 16)) {
2664 list_del(&pdev->list);
2665 kfree(pdev);
2666 break;
2667 }
2668 }
2669 }
2670 mutex_unlock(&bch_register_lock);
2671
2672 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2673 pr_info("delete pdev %p\n", pdev);
2674 list_del(&pdev->list);
2675 bcache_device_stop(&pdev->dc->disk);
2676 kfree(pdev);
2677 }
2678
2679 return ret;
2680 }
2681
bcache_reboot(struct notifier_block * n,unsigned long code,void * x)2682 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2683 {
2684 if (bcache_is_reboot)
2685 return NOTIFY_DONE;
2686
2687 if (code == SYS_DOWN ||
2688 code == SYS_HALT ||
2689 code == SYS_POWER_OFF) {
2690 DEFINE_WAIT(wait);
2691 unsigned long start = jiffies;
2692 bool stopped = false;
2693
2694 struct cache_set *c, *tc;
2695 struct cached_dev *dc, *tdc;
2696
2697 mutex_lock(&bch_register_lock);
2698
2699 if (bcache_is_reboot)
2700 goto out;
2701
2702 /* New registration is rejected since now */
2703 bcache_is_reboot = true;
2704 /*
2705 * Make registering caller (if there is) on other CPU
2706 * core know bcache_is_reboot set to true earlier
2707 */
2708 smp_mb();
2709
2710 if (list_empty(&bch_cache_sets) &&
2711 list_empty(&uncached_devices))
2712 goto out;
2713
2714 mutex_unlock(&bch_register_lock);
2715
2716 pr_info("Stopping all devices:\n");
2717
2718 /*
2719 * The reason bch_register_lock is not held to call
2720 * bch_cache_set_stop() and bcache_device_stop() is to
2721 * avoid potential deadlock during reboot, because cache
2722 * set or bcache device stopping process will acqurie
2723 * bch_register_lock too.
2724 *
2725 * We are safe here because bcache_is_reboot sets to
2726 * true already, register_bcache() will reject new
2727 * registration now. bcache_is_reboot also makes sure
2728 * bcache_reboot() won't be re-entered on by other thread,
2729 * so there is no race in following list iteration by
2730 * list_for_each_entry_safe().
2731 */
2732 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2733 bch_cache_set_stop(c);
2734
2735 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2736 bcache_device_stop(&dc->disk);
2737
2738
2739 /*
2740 * Give an early chance for other kthreads and
2741 * kworkers to stop themselves
2742 */
2743 schedule();
2744
2745 /* What's a condition variable? */
2746 while (1) {
2747 long timeout = start + 10 * HZ - jiffies;
2748
2749 mutex_lock(&bch_register_lock);
2750 stopped = list_empty(&bch_cache_sets) &&
2751 list_empty(&uncached_devices);
2752
2753 if (timeout < 0 || stopped)
2754 break;
2755
2756 prepare_to_wait(&unregister_wait, &wait,
2757 TASK_UNINTERRUPTIBLE);
2758
2759 mutex_unlock(&bch_register_lock);
2760 schedule_timeout(timeout);
2761 }
2762
2763 finish_wait(&unregister_wait, &wait);
2764
2765 if (stopped)
2766 pr_info("All devices stopped\n");
2767 else
2768 pr_notice("Timeout waiting for devices to be closed\n");
2769 out:
2770 mutex_unlock(&bch_register_lock);
2771 }
2772
2773 return NOTIFY_DONE;
2774 }
2775
2776 static struct notifier_block reboot = {
2777 .notifier_call = bcache_reboot,
2778 .priority = INT_MAX, /* before any real devices */
2779 };
2780
bcache_exit(void)2781 static void bcache_exit(void)
2782 {
2783 bch_debug_exit();
2784 bch_request_exit();
2785 if (bcache_kobj)
2786 kobject_put(bcache_kobj);
2787 if (bcache_wq)
2788 destroy_workqueue(bcache_wq);
2789 if (bch_journal_wq)
2790 destroy_workqueue(bch_journal_wq);
2791
2792 if (bcache_major)
2793 unregister_blkdev(bcache_major, "bcache");
2794 unregister_reboot_notifier(&reboot);
2795 mutex_destroy(&bch_register_lock);
2796 }
2797
2798 /* Check and fixup module parameters */
check_module_parameters(void)2799 static void check_module_parameters(void)
2800 {
2801 if (bch_cutoff_writeback_sync == 0)
2802 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
2803 else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
2804 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n",
2805 bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
2806 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
2807 }
2808
2809 if (bch_cutoff_writeback == 0)
2810 bch_cutoff_writeback = CUTOFF_WRITEBACK;
2811 else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
2812 pr_warn("set bch_cutoff_writeback (%u) to max value %u\n",
2813 bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
2814 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
2815 }
2816
2817 if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
2818 pr_warn("set bch_cutoff_writeback (%u) to %u\n",
2819 bch_cutoff_writeback, bch_cutoff_writeback_sync);
2820 bch_cutoff_writeback = bch_cutoff_writeback_sync;
2821 }
2822 }
2823
bcache_init(void)2824 static int __init bcache_init(void)
2825 {
2826 static const struct attribute *files[] = {
2827 &ksysfs_register.attr,
2828 &ksysfs_register_quiet.attr,
2829 &ksysfs_pendings_cleanup.attr,
2830 NULL
2831 };
2832
2833 check_module_parameters();
2834
2835 mutex_init(&bch_register_lock);
2836 init_waitqueue_head(&unregister_wait);
2837 register_reboot_notifier(&reboot);
2838
2839 bcache_major = register_blkdev(0, "bcache");
2840 if (bcache_major < 0) {
2841 unregister_reboot_notifier(&reboot);
2842 mutex_destroy(&bch_register_lock);
2843 return bcache_major;
2844 }
2845
2846 bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
2847 if (!bcache_wq)
2848 goto err;
2849
2850 bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
2851 if (!bch_journal_wq)
2852 goto err;
2853
2854 bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
2855 if (!bcache_kobj)
2856 goto err;
2857
2858 if (bch_request_init() ||
2859 sysfs_create_files(bcache_kobj, files))
2860 goto err;
2861
2862 bch_debug_init();
2863 closure_debug_init();
2864
2865 bcache_is_reboot = false;
2866
2867 return 0;
2868 err:
2869 bcache_exit();
2870 return -ENOMEM;
2871 }
2872
2873 /*
2874 * Module hooks
2875 */
2876 module_exit(bcache_exit);
2877 module_init(bcache_init);
2878
2879 module_param(bch_cutoff_writeback, uint, 0);
2880 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
2881
2882 module_param(bch_cutoff_writeback_sync, uint, 0);
2883 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
2884
2885 MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2886 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2887 MODULE_LICENSE("GPL");
2888