Lines Matching +full:memory +full:- +full:region

1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Procedures for maintaining information about logical memory blocks.
35 * Memblock is a method of managing memory regions during the early
36 * boot period when the usual kernel memory allocators are not up and
39 * Memblock views the system memory as collections of contiguous
42 * * ``memory`` - describes the physical memory available to the
43 * kernel; this may differ from the actual physical memory installed
44 * in the system, for instance when the memory is restricted with
46 * * ``reserved`` - describes the regions that were allocated
47 * * ``physmem`` - describes the actual physical memory available during
48 * boot regardless of the possible restrictions and memory hot(un)plug;
51 * Each region is represented by struct memblock_region that
52 * defines the region extents, its attributes and NUMA node id on NUMA
53 * systems. Every memory type is described by the struct memblock_type
54 * which contains an array of memory regions along with
55 * the allocator metadata. The "memory" and "reserved" types are nicely
57 * initialized at build time. The region arrays are initially sized to
58 * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
59 * for "reserved". The region array for "physmem" is initially sized to
61 * The memblock_allow_resize() enables automatic resizing of the region
63 * with care so that memory allocated for the region array will not
67 * memory layout is by using memblock_add() or memblock_add_node()
68 * functions. The first function does not assign the region to a NUMA
70 * use it on NUMA systems as well and assign the region to a NUMA node
74 * Once memblock is setup the memory can be allocated using one of the
77 * * memblock_phys_alloc*() - these functions return the **physical**
78 * address of the allocated memory
79 * * memblock_alloc*() - these functions return the **virtual** address
80 * of the allocated memory.
83 * memory ranges and the fallback methods. Consult the documentation
88 * function frees all the memory to the buddy page allocator.
112 .memory.regions = memblock_memory_init_regions,
113 .memory.cnt = 1, /* empty dummy entry */
114 .memory.max = INIT_MEMBLOCK_REGIONS,
115 .memory.name = "memory",
136 * keep a pointer to &memblock.memory in the text section to use it in
141 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
144 for (i = 0, rgn = &memblock_type->regions[0]; \
145 i < memblock_type->cnt; \
146 i++, rgn = &memblock_type->regions[i])
168 return *size = min(*size, PHYS_ADDR_MAX - base); in memblock_cap_size()
187 for (i = 0; i < type->cnt; i++) in memblock_overlaps_region()
188 if (memblock_addrs_overlap(base, size, type->regions[i].base, in memblock_overlaps_region()
189 type->regions[i].size)) in memblock_overlaps_region()
191 return i < type->cnt; in memblock_overlaps_region()
195 * __memblock_find_range_bottom_up - find free area utility in bottom-up
202 * @flags: pick from blocks based on memory attributes
204 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
222 if (cand < this_end && this_end - cand >= size) in __memblock_find_range_bottom_up()
230 * __memblock_find_range_top_down - find free area utility, in top-down
237 * @flags: pick from blocks based on memory attributes
239 * Utility called from memblock_find_in_range_node(), find free area top-down.
260 cand = round_down(this_end - size, align); in __memblock_find_range_top_down()
269 * memblock_find_in_range_node - find free area in given range and node
276 * @flags: pick from blocks based on memory attributes
306 * memblock_find_in_range - find free area in given range
330 pr_warn("Could not allocate %pap bytes of mirrored memory\n", in memblock_find_in_range()
341 type->total_size -= type->regions[r].size; in memblock_remove_region()
342 memmove(&type->regions[r], &type->regions[r + 1], in memblock_remove_region()
343 (type->cnt - (r + 1)) * sizeof(type->regions[r])); in memblock_remove_region()
344 type->cnt--; in memblock_remove_region()
347 if (type->cnt == 0) { in memblock_remove_region()
348 WARN_ON(type->total_size != 0); in memblock_remove_region()
349 type->cnt = 1; in memblock_remove_region()
350 type->regions[0].base = 0; in memblock_remove_region()
351 type->regions[0].size = 0; in memblock_remove_region()
352 type->regions[0].flags = 0; in memblock_remove_region()
353 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); in memblock_remove_region()
359 * memblock_discard - discard memory and reserved arrays if they were allocated
372 if (memblock.memory.regions != memblock_memory_init_regions) { in memblock_discard()
373 addr = __pa(memblock.memory.regions); in memblock_discard()
375 memblock.memory.max); in memblock_discard()
384 * memblock_double_array - double the size of the memblock regions array
386 * @new_area_start: starting address of memory range to avoid overlap with
387 * @new_area_size: size of memory range to avoid overlap with
390 * allocate memory for a new reserved regions array and there is a previously
391 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
392 * waiting to be reserved, ensure the memory used by the new array does
396 * 0 on success, -1 on failure.
409 * of memory that aren't suitable for allocation in memblock_double_array()
412 return -1; in memblock_double_array()
415 old_size = type->max * sizeof(struct memblock_region); in memblock_double_array()
425 if (type == &memblock.memory) in memblock_double_array()
451 type->name, type->max, type->max * 2); in memblock_double_array()
452 return -1; in memblock_double_array()
455 new_end = addr + new_size - 1; in memblock_double_array()
456 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]", in memblock_double_array()
457 type->name, type->max * 2, &addr, &new_end); in memblock_double_array()
461 * reserved region since it may be our reserved array itself that is in memblock_double_array()
464 memcpy(new_array, type->regions, old_size); in memblock_double_array()
465 memset(new_array + type->max, 0, old_size); in memblock_double_array()
466 old_array = type->regions; in memblock_double_array()
467 type->regions = new_array; in memblock_double_array()
468 type->max <<= 1; in memblock_double_array()
491 * memblock_merge_regions - merge neighboring compatible regions
501 while (i < type->cnt - 1) { in memblock_merge_regions()
502 struct memblock_region *this = &type->regions[i]; in memblock_merge_regions()
503 struct memblock_region *next = &type->regions[i + 1]; in memblock_merge_regions()
505 if (this->base + this->size != next->base || in memblock_merge_regions()
508 this->flags != next->flags) { in memblock_merge_regions()
509 BUG_ON(this->base + this->size > next->base); in memblock_merge_regions()
514 this->size += next->size; in memblock_merge_regions()
516 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); in memblock_merge_regions()
517 type->cnt--; in memblock_merge_regions()
522 * memblock_insert_region - insert new memblock region
525 * @base: base address of the new region
526 * @size: size of the new region
527 * @nid: node id of the new region
528 * @flags: flags of the new region
530 * Insert new memblock region [@base, @base + @size) into @type at @idx.
531 * @type must already have extra room to accommodate the new region.
539 struct memblock_region *rgn = &type->regions[idx]; in memblock_insert_region()
541 BUG_ON(type->cnt >= type->max); in memblock_insert_region()
542 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); in memblock_insert_region()
543 rgn->base = base; in memblock_insert_region()
544 rgn->size = size; in memblock_insert_region()
545 rgn->flags = flags; in memblock_insert_region()
547 type->cnt++; in memblock_insert_region()
548 type->total_size += size; in memblock_insert_region()
552 * memblock_add_range - add new memblock region
553 * @type: memblock type to add new region into
554 * @base: base address of the new region
555 * @size: size of the new region
556 * @nid: nid of the new region
557 * @flags: flags of the new region
559 * Add new memblock region [@base, @base + @size) into @type. The new region
560 * is allowed to overlap with existing ones - overlaps don't affect already
565 * 0 on success, -errno on failure.
581 if (type->regions[0].size == 0) { in memblock_add_range()
582 WARN_ON(type->cnt != 1 || type->total_size); in memblock_add_range()
583 type->regions[0].base = base; in memblock_add_range()
584 type->regions[0].size = size; in memblock_add_range()
585 type->regions[0].flags = flags; in memblock_add_range()
586 memblock_set_region_node(&type->regions[0], nid); in memblock_add_range()
587 type->total_size = size; in memblock_add_range()
600 phys_addr_t rbase = rgn->base; in memblock_add_range()
601 phys_addr_t rend = rbase + rgn->size; in memblock_add_range()
615 WARN_ON(flags != rgn->flags); in memblock_add_range()
619 rbase - base, nid, in memblock_add_range()
630 memblock_insert_region(type, idx, base, end - base, in memblock_add_range()
642 while (type->cnt + nr_new > type->max) in memblock_add_range()
644 return -ENOMEM; in memblock_add_range()
654 * memblock_add_node - add new memblock region within a NUMA node
655 * @base: base address of the new region
656 * @size: size of the new region
657 * @nid: nid of the new region
659 * Add new memblock region [@base, @base + @size) to the "memory"
663 * 0 on success, -errno on failure.
668 phys_addr_t end = base + size - 1; in memblock_add_node()
670 memblock_dbg("%s: [%pa-%pa] nid=%d %pS\n", __func__, in memblock_add_node()
673 return memblock_add_range(&memblock.memory, base, size, nid, 0); in memblock_add_node()
677 * memblock_add - add new memblock region
678 * @base: base address of the new region
679 * @size: size of the new region
681 * Add new memblock region [@base, @base + @size) to the "memory"
685 * 0 on success, -errno on failure.
689 phys_addr_t end = base + size - 1; in memblock_add()
691 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, in memblock_add()
694 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0); in memblock_add()
698 * memblock_isolate_range - isolate given range into disjoint memblocks
702 * @start_rgn: out parameter for the start of isolated region
703 * @end_rgn: out parameter for the end of isolated region
708 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
711 * 0 on success, -errno on failure.
727 while (type->cnt + 2 > type->max) in memblock_isolate_range()
729 return -ENOMEM; in memblock_isolate_range()
732 phys_addr_t rbase = rgn->base; in memblock_isolate_range()
733 phys_addr_t rend = rbase + rgn->size; in memblock_isolate_range()
743 * to process the next region - the new top half. in memblock_isolate_range()
745 rgn->base = base; in memblock_isolate_range()
746 rgn->size -= base - rbase; in memblock_isolate_range()
747 type->total_size -= base - rbase; in memblock_isolate_range()
748 memblock_insert_region(type, idx, rbase, base - rbase, in memblock_isolate_range()
750 rgn->flags); in memblock_isolate_range()
754 * current region - the new bottom half. in memblock_isolate_range()
756 rgn->base = end; in memblock_isolate_range()
757 rgn->size -= end - rbase; in memblock_isolate_range()
758 type->total_size -= end - rbase; in memblock_isolate_range()
759 memblock_insert_region(type, idx--, rbase, end - rbase, in memblock_isolate_range()
761 rgn->flags); in memblock_isolate_range()
783 for (i = end_rgn - 1; i >= start_rgn; i--) in memblock_remove_range()
790 phys_addr_t end = base + size - 1; in memblock_remove()
792 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, in memblock_remove()
795 return memblock_remove_range(&memblock.memory, base, size); in memblock_remove()
799 * memblock_free_ptr - free boot memory allocation
800 * @ptr: starting address of the boot memory allocation
801 * @size: size of the boot memory block in bytes
803 * Free boot memory block previously allocated by memblock_alloc_xx() API.
804 * The freeing memory will not be released to the buddy allocator.
813 * memblock_free - free boot memory block
814 * @base: phys starting address of the boot memory block
815 * @size: size of the boot memory block in bytes
817 * Free boot memory block previously allocated by memblock_alloc_xx() API.
818 * The freeing memory will not be released to the buddy allocator.
822 phys_addr_t end = base + size - 1; in memblock_free()
824 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, in memblock_free()
833 phys_addr_t end = base + size - 1; in memblock_reserve()
835 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, in memblock_reserve()
844 phys_addr_t end = base + size - 1; in memblock_physmem_add()
846 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, in memblock_physmem_add()
854 * memblock_setclr_flag - set or clear flag for a memory region
855 * @base: base address of the region
856 * @size: size of the region
860 * This function isolates region [@base, @base + @size), and sets/clears flag
862 * Return: 0 on success, -errno on failure.
867 struct memblock_type *type = &memblock.memory; in memblock_setclr_flag()
875 struct memblock_region *r = &type->regions[i]; in memblock_setclr_flag()
878 r->flags |= flag; in memblock_setclr_flag()
880 r->flags &= ~flag; in memblock_setclr_flag()
888 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
889 * @base: the base phys addr of the region
890 * @size: the size of the region
892 * Return: 0 on success, -errno on failure.
900 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
901 * @base: the base phys addr of the region
902 * @size: the size of the region
904 * Return: 0 on success, -errno on failure.
912 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
913 * @base: the base phys addr of the region
914 * @size: the size of the region
916 * Return: 0 on success, -errno on failure.
926 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
927 * @base: the base phys addr of the region
928 * @size: the size of the region
930 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
931 * direct mapping of the physical memory. These regions will still be
932 * covered by the memory map. The struct page representing NOMAP memory
933 * frames in the memory map will be PageReserved()
935 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
936 * memblock, the caller must inform kmemleak to ignore that memory
938 * Return: 0 on success, -errno on failure.
946 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
947 * @base: the base phys addr of the region
948 * @size: the size of the region
950 * Return: 0 on success, -errno on failure.
967 /* only memory regions are associated with nodes, check it */ in should_skip_region()
971 /* skip hotpluggable memory regions if needed */ in should_skip_region()
976 /* if we want mirror memory skip non-mirror memory regions */ in should_skip_region()
980 /* skip nomap memory unless we were asked for it explicitly */ in should_skip_region()
988 * __next_mem_range - next function for for_each_free_mem_range() etc.
991 * @flags: pick from blocks based on memory attributes
993 * @type_b: pointer to memblock_type which excludes memory from being taken
1001 * areas before each region in type_b. For example, if type_b regions
1004 * 0:[0-16), 1:[32-48), 2:[128-130)
1008 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1010 * As both region arrays are sorted, the function advances the two indices
1025 for (; idx_a < type_a->cnt; idx_a++) { in __next_mem_range()
1026 struct memblock_region *m = &type_a->regions[idx_a]; in __next_mem_range()
1028 phys_addr_t m_start = m->base; in __next_mem_range()
1029 phys_addr_t m_end = m->base + m->size; in __next_mem_range()
1048 for (; idx_b < type_b->cnt + 1; idx_b++) { in __next_mem_range()
1053 r = &type_b->regions[idx_b]; in __next_mem_range()
1054 r_start = idx_b ? r[-1].base + r[-1].size : 0; in __next_mem_range()
1055 r_end = idx_b < type_b->cnt ? in __next_mem_range()
1056 r->base : PHYS_ADDR_MAX; in __next_mem_range()
1074 * The region which ends first is in __next_mem_range()
1092 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1096 * @flags: pick from blocks based on memory attributes
1098 * @type_b: pointer to memblock_type which excludes memory from being taken
1122 idx_a = type_a->cnt - 1; in __next_mem_range_rev()
1124 idx_b = type_b->cnt; in __next_mem_range_rev()
1129 for (; idx_a >= 0; idx_a--) { in __next_mem_range_rev()
1130 struct memblock_region *m = &type_a->regions[idx_a]; in __next_mem_range_rev()
1132 phys_addr_t m_start = m->base; in __next_mem_range_rev()
1133 phys_addr_t m_end = m->base + m->size; in __next_mem_range_rev()
1146 idx_a--; in __next_mem_range_rev()
1152 for (; idx_b >= 0; idx_b--) { in __next_mem_range_rev()
1157 r = &type_b->regions[idx_b]; in __next_mem_range_rev()
1158 r_start = idx_b ? r[-1].base + r[-1].size : 0; in __next_mem_range_rev()
1159 r_end = idx_b < type_b->cnt ? in __next_mem_range_rev()
1160 r->base : PHYS_ADDR_MAX; in __next_mem_range_rev()
1177 idx_a--; in __next_mem_range_rev()
1179 idx_b--; in __next_mem_range_rev()
1196 struct memblock_type *type = &memblock.memory; in __next_mem_pfn_range()
1200 while (++*idx < type->cnt) { in __next_mem_pfn_range()
1201 r = &type->regions[*idx]; in __next_mem_pfn_range()
1204 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) in __next_mem_pfn_range()
1209 if (*idx >= type->cnt) { in __next_mem_pfn_range()
1210 *idx = -1; in __next_mem_pfn_range()
1215 *out_start_pfn = PFN_UP(r->base); in __next_mem_pfn_range()
1217 *out_end_pfn = PFN_DOWN(r->base + r->size); in __next_mem_pfn_range()
1223 * memblock_set_node - set node ID on memblock regions
1233 * 0 on success, -errno on failure.
1247 memblock_set_region_node(&type->regions[i], nid); in memblock_set_node()
1256 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1259 * @zone: zone in which all of the memory blocks reside
1265 * deferred memory init routines and as such we were duplicating much of
1279 &memblock.memory, &memblock.reserved, in __next_mem_pfn_range_in_zone()
1290 if (zone->zone_start_pfn < epfn && spfn < epfn) { in __next_mem_pfn_range_in_zone()
1298 *out_spfn = max(zone->zone_start_pfn, spfn); in __next_mem_pfn_range_in_zone()
1306 &memblock.memory, &memblock.reserved, in __next_mem_pfn_range_in_zone()
1320 * memblock_alloc_range_nid - allocate boot memory block
1321 * @size: size of memory block to be allocated in bytes
1322 * @align: alignment of the region and block's size
1323 * @start: the lower bound of the memory region to allocate (phys address)
1324 * @end: the upper bound of the memory region to allocate (phys address)
1328 * The allocation is performed from memory region limited by
1331 * If the specified node can not hold the requested memory and @exact_nid
1334 * For systems with memory mirroring, the allocation is attempted first
1336 * memory region.
1339 * allocated boot memory block, so that it is never reported as leaks.
1342 * Physical address of allocated memory block on success, %0 on failure.
1377 pr_warn("Could not allocate %pap bytes of mirrored memory\n", in memblock_alloc_range_nid()
1399 * memblock_phys_alloc_range - allocate a memory block inside specified range
1400 * @size: size of memory block to be allocated in bytes
1401 * @align: alignment of the region and block's size
1402 * @start: the lower bound of the memory region to allocate (physical address)
1403 * @end: the upper bound of the memory region to allocate (physical address)
1407 * Return: physical address of the allocated memory block on success,
1423 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1424 * @size: size of memory block to be allocated in bytes
1425 * @align: alignment of the region and block's size
1428 * Allocates memory block from the specified NUMA node. If the node
1429 * has no available memory, attempts to allocated from any node in the
1432 * Return: physical address of the allocated memory block on success,
1442 * memblock_alloc_internal - allocate boot memory block
1443 * @size: size of memory block to be allocated in bytes
1444 * @align: alignment of the region and block's size
1445 * @min_addr: the lower bound of the memory region to allocate (phys address)
1446 * @max_addr: the upper bound of the memory region to allocate (phys address)
1450 * Allocates memory block using memblock_alloc_range_nid() and
1454 * will fall back to memory below @min_addr. Other constraints, such
1455 * as node and mirrored memory will be handled again in
1459 * Virtual address of allocated memory block on success, NULL on failure.
1494 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1495 * without zeroing memory
1496 * @size: size of memory block to be allocated in bytes
1497 * @align: alignment of the region and block's size
1498 * @min_addr: the lower bound of the memory region from where the allocation
1500 * @max_addr: the upper bound of the memory region from where the allocation
1502 * allocate only from memory limited by memblock.current_limit value
1506 * info), if enabled. Does not zero allocated memory.
1509 * Virtual address of allocated memory block on success, NULL on failure.
1525 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1526 * memory and without panicking
1527 * @size: size of memory block to be allocated in bytes
1528 * @align: alignment of the region and block's size
1529 * @min_addr: the lower bound of the memory region from where the allocation
1531 * @max_addr: the upper bound of the memory region from where the allocation
1533 * allocate only from memory limited by memblock.current_limit value
1537 * info), if enabled. Does not zero allocated memory, does not panic if request
1541 * Virtual address of allocated memory block on success, NULL on failure.
1557 * memblock_alloc_try_nid - allocate boot memory block
1558 * @size: size of memory block to be allocated in bytes
1559 * @align: alignment of the region and block's size
1560 * @min_addr: the lower bound of the memory region from where the allocation
1562 * @max_addr: the upper bound of the memory region from where the allocation
1564 * allocate only from memory limited by memblock.current_limit value
1568 * info), if enabled. This function zeroes the allocated memory.
1571 * Virtual address of allocated memory block on success, NULL on failure.
1592 * __memblock_free_late - free pages directly to buddy allocator
1593 * @base: phys starting address of the boot memory block
1594 * @size: size of the boot memory block in bytes
1604 end = base + size - 1; in __memblock_free_late()
1605 memblock_dbg("%s: [%pa-%pa] %pS\n", in __memblock_free_late()
1623 return memblock.memory.total_size; in memblock_phys_mem_size()
1634 return memblock.memory.regions[0].base; in memblock_start_of_DRAM()
1639 int idx = memblock.memory.cnt - 1; in memblock_end_of_DRAM()
1641 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); in memblock_end_of_DRAM()
1650 * translate the memory @limit size into the max address within one of in __find_max_addr()
1651 * the memory memblock regions, if the @limit exceeds the total size in __find_max_addr()
1655 if (limit <= r->size) { in __find_max_addr()
1656 max_addr = r->base + limit; in __find_max_addr()
1659 limit -= r->size; in __find_max_addr()
1674 /* @limit exceeds the total size of the memory, do nothing */ in memblock_enforce_memory_limit()
1678 /* truncate both memory and reserved regions */ in memblock_enforce_memory_limit()
1679 memblock_remove_range(&memblock.memory, max_addr, in memblock_enforce_memory_limit()
1693 if (!memblock_memory->total_size) { in memblock_cap_memory_range()
1694 pr_warn("%s: No memory registered yet\n", __func__); in memblock_cap_memory_range()
1698 ret = memblock_isolate_range(&memblock.memory, base, size, in memblock_cap_memory_range()
1704 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--) in memblock_cap_memory_range()
1705 if (!memblock_is_nomap(&memblock.memory.regions[i])) in memblock_cap_memory_range()
1706 memblock_remove_region(&memblock.memory, i); in memblock_cap_memory_range()
1708 for (i = start_rgn - 1; i >= 0; i--) in memblock_cap_memory_range()
1709 if (!memblock_is_nomap(&memblock.memory.regions[i])) in memblock_cap_memory_range()
1710 memblock_remove_region(&memblock.memory, i); in memblock_cap_memory_range()
1727 /* @limit exceeds the total size of the memory, do nothing */ in memblock_mem_limit_remove_map()
1736 unsigned int left = 0, right = type->cnt; in memblock_search()
1741 if (addr < type->regions[mid].base) in memblock_search()
1743 else if (addr >= (type->regions[mid].base + in memblock_search()
1744 type->regions[mid].size)) in memblock_search()
1749 return -1; in memblock_search()
1754 return memblock_search(&memblock.reserved, addr) != -1; in memblock_is_reserved()
1759 return memblock_search(&memblock.memory, addr) != -1; in memblock_is_memory()
1764 int i = memblock_search(&memblock.memory, addr); in memblock_is_map_memory()
1766 if (i == -1) in memblock_is_map_memory()
1768 return !memblock_is_nomap(&memblock.memory.regions[i]); in memblock_is_map_memory()
1774 struct memblock_type *type = &memblock.memory; in memblock_search_pfn_nid()
1777 if (mid == -1) in memblock_search_pfn_nid()
1778 return -1; in memblock_search_pfn_nid()
1780 *start_pfn = PFN_DOWN(type->regions[mid].base); in memblock_search_pfn_nid()
1781 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); in memblock_search_pfn_nid()
1783 return memblock_get_region_node(&type->regions[mid]); in memblock_search_pfn_nid()
1787 * memblock_is_region_memory - check if a region is a subset of memory
1788 * @base: base of region to check
1789 * @size: size of region to check
1791 * Check if the region [@base, @base + @size) is a subset of a memory block.
1794 * 0 if false, non-zero if true
1798 int idx = memblock_search(&memblock.memory, base); in memblock_is_region_memory()
1801 if (idx == -1) in memblock_is_region_memory()
1803 return (memblock.memory.regions[idx].base + in memblock_is_region_memory()
1804 memblock.memory.regions[idx].size) >= end; in memblock_is_region_memory()
1808 * memblock_is_region_reserved - check if a region intersects reserved memory
1809 * @base: base of region to check
1810 * @size: size of region to check
1812 * Check if the region [@base, @base + @size) intersects a reserved
1813 * memory block.
1829 orig_start = r->base; in memblock_trim_memory()
1830 orig_end = r->base + r->size; in memblock_trim_memory()
1838 r->base = start; in memblock_trim_memory()
1839 r->size = end - start; in memblock_trim_memory()
1841 memblock_remove_region(&memblock.memory, in memblock_trim_memory()
1842 r - memblock.memory.regions); in memblock_trim_memory()
1843 r--; in memblock_trim_memory()
1865 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt); in memblock_dump()
1870 base = rgn->base; in memblock_dump()
1871 size = rgn->size; in memblock_dump()
1872 end = base + size - 1; in memblock_dump()
1873 flags = rgn->flags; in memblock_dump()
1879 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n", in memblock_dump()
1880 type->name, idx, &base, &end, &size, nid_buf, flags); in memblock_dump()
1887 pr_info(" memory size = %pa reserved size = %pa\n", in __memblock_dump_all()
1888 &memblock.memory.total_size, in __memblock_dump_all()
1891 memblock_dump(&memblock.memory); in __memblock_dump_all()
1925 start_pg = pfn_to_page(start_pfn - 1) + 1; in free_memmap()
1926 end_pg = pfn_to_page(end_pfn - 1) + 1; in free_memmap()
1940 memblock_free(pg, pgend - pg); in free_memmap()
1944 * The mem_map array can get very big. Free the unused area of the memory map.
1969 * presume that there are no holes in the memory map inside in free_unused_memmap()
1983 * presume that there are no holes in the memory map inside in free_unused_memmap()
2002 order = min(MAX_ORDER - 1UL, __ffs(start)); in __free_pages_memory()
2005 order--; in __free_pages_memory()
2025 return end_pfn - start_pfn; in __free_memory_core()
2030 struct memblock_region *region; in memmap_init_reserved_pages() local
2039 for_each_mem_region(region) { in memmap_init_reserved_pages()
2040 if (memblock_is_nomap(region)) { in memmap_init_reserved_pages()
2041 start = region->base; in memmap_init_reserved_pages()
2042 end = start + region->size; in memmap_init_reserved_pages()
2054 memblock_clear_hotplug(0, -1); in free_low_memory_core_early()
2059 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id in free_low_memory_core_early()
2076 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) in reset_node_managed_pages()
2077 atomic_long_set(&z->managed_pages, 0); in reset_node_managed_pages()
2094 * memblock_free_all - release free pages to the buddy allocator
2111 struct memblock_type *type = m->private; in memblock_debug_show()
2116 for (i = 0; i < type->cnt; i++) { in memblock_debug_show()
2117 reg = &type->regions[i]; in memblock_debug_show()
2118 end = reg->base + reg->size - 1; in memblock_debug_show()
2121 seq_printf(m, "%pa..%pa\n", &reg->base, &end); in memblock_debug_show()
2131 debugfs_create_file("memory", 0444, root, in memblock_init_debugfs()
2132 &memblock.memory, &memblock_debug_fops); in memblock_init_debugfs()