1 /* 2 * FreeRTOS Kernel V11.1.0 3 * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. 4 * 5 * SPDX-License-Identifier: MIT 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy of 8 * this software and associated documentation files (the "Software"), to deal in 9 * the Software without restriction, including without limitation the rights to 10 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of 11 * the Software, and to permit persons to whom the Software is furnished to do so, 12 * subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in all 15 * copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS 19 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR 20 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER 21 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * https://www.FreeRTOS.org 25 * https://github.com/FreeRTOS 26 * 27 */ 28 29 #ifndef PORTMACRO_H 30 #define PORTMACRO_H 31 32 /* *INDENT-OFF* */ 33 #ifdef __cplusplus 34 extern "C" { 35 #endif 36 /* *INDENT-ON* */ 37 38 /* BSP includes. */ 39 #include <mb_interface.h> 40 #include <xparameters.h> 41 42 /*----------------------------------------------------------- 43 * Port specific definitions. 44 * 45 * The settings in this file configure FreeRTOS correctly for the 46 * given hardware and compiler. 47 * 48 * These settings should not be altered. 49 *----------------------------------------------------------- 50 */ 51 52 /* Type definitions. */ 53 #define portCHAR char 54 #define portFLOAT float 55 #define portDOUBLE double 56 #define portLONG long 57 #define portSHORT short 58 #ifdef __arch64__ 59 #define portSTACK_TYPE size_t 60 typedef uint64_t UBaseType_t; 61 #else 62 #define portSTACK_TYPE uint32_t 63 typedef unsigned long UBaseType_t; 64 #endif 65 #define portBASE_TYPE long 66 67 typedef portSTACK_TYPE StackType_t; 68 typedef long BaseType_t; 69 70 71 #if ( configTICK_TYPE_WIDTH_IN_BITS == TICK_TYPE_WIDTH_16_BITS ) 72 typedef uint16_t TickType_t; 73 #define portMAX_DELAY ( TickType_t ) 0xffff 74 #elif ( configTICK_TYPE_WIDTH_IN_BITS == TICK_TYPE_WIDTH_32_BITS ) 75 typedef uint32_t TickType_t; 76 #define portMAX_DELAY ( TickType_t ) 0xffffffffUL 77 78 /* 32-bit tick type on a 32-bit architecture, so reads of the tick count do 79 * not need to be guarded with a critical section. */ 80 #define portTICK_TYPE_IS_ATOMIC 1 81 #else 82 #error configTICK_TYPE_WIDTH_IN_BITS set to unsupported tick type width. 83 #endif 84 /*-----------------------------------------------------------*/ 85 86 /* Interrupt control macros and functions. */ 87 void microblaze_disable_interrupts( void ); 88 void microblaze_enable_interrupts( void ); 89 #define portDISABLE_INTERRUPTS() microblaze_disable_interrupts() 90 #define portENABLE_INTERRUPTS() microblaze_enable_interrupts() 91 /*-----------------------------------------------------------*/ 92 93 /* Critical section macros. */ 94 void vPortEnterCritical( void ); 95 void vPortExitCritical( void ); 96 #define portENTER_CRITICAL() \ 97 { \ 98 extern volatile UBaseType_t uxCriticalNesting; \ 99 microblaze_disable_interrupts(); \ 100 uxCriticalNesting++; \ 101 } 102 103 #define portEXIT_CRITICAL() \ 104 { \ 105 extern volatile UBaseType_t uxCriticalNesting; \ 106 /* Interrupts are disabled, so we can */ \ 107 /* access the variable directly. */ \ 108 uxCriticalNesting--; \ 109 if( uxCriticalNesting == 0 ) \ 110 { \ 111 /* The nesting has unwound and we \ 112 * can enable interrupts again. */ \ 113 portENABLE_INTERRUPTS(); \ 114 } \ 115 } 116 117 /*-----------------------------------------------------------*/ 118 119 /* The yield macro maps directly to the vPortYield() function. */ 120 void vPortYield( void ); 121 #define portYIELD() vPortYield() 122 123 /* portYIELD_FROM_ISR() does not directly call vTaskSwitchContext(), but instead 124 * sets a flag to say that a yield has been requested. The interrupt exit code 125 * then checks this flag, and calls vTaskSwitchContext() before restoring a task 126 * context, if the flag is not false. This is done to prevent multiple calls to 127 * vTaskSwitchContext() being made from a single interrupt, as a single interrupt 128 * can result in multiple peripherals being serviced. */ 129 extern volatile uint32_t ulTaskSwitchRequested; 130 #define portYIELD_FROM_ISR( x ) \ 131 do { if( ( x ) != pdFALSE ) ulTaskSwitchRequested = 1; } \ 132 while( 0 ) 133 134 #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 1 ) 135 136 /* Generic helper function. */ ucPortCountLeadingZeros(uint32_t ulBitmap)137 __attribute__( ( always_inline ) ) static inline uint8_t ucPortCountLeadingZeros( uint32_t ulBitmap ) 138 { 139 uint8_t ucReturn; 140 141 __asm volatile ( "clz %0, %1" : "=r" ( ucReturn ) : "r" ( ulBitmap ) ); 142 143 return ucReturn; 144 } 145 146 /* Check the configuration. */ 147 #if ( configMAX_PRIORITIES > 32 ) 148 #error configUSE_PORT_OPTIMISED_TASK_SELECTION can only be set to 1 when configMAX_PRIORITIES is less than or equal to 32. It is very rare that a system requires more than 10 to 15 difference priorities as tasks that share a priority will time slice. 149 #endif 150 151 /* Store/clear the ready priorities in a bit map. */ 152 #define portRECORD_READY_PRIORITY( uxPriority, uxReadyPriorities ) ( uxReadyPriorities ) |= ( 1UL << ( uxPriority ) ) 153 #define portRESET_READY_PRIORITY( uxPriority, uxReadyPriorities ) ( uxReadyPriorities ) &= ~( 1UL << ( uxPriority ) ) 154 155 /*-----------------------------------------------------------*/ 156 157 #define portGET_HIGHEST_PRIORITY( uxTopPriority, uxReadyPriorities ) uxTopPriority = ( 31UL - ( uint32_t ) ucPortCountLeadingZeros( ( uxReadyPriorities ) ) ) 158 159 #endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */ 160 161 /*-----------------------------------------------------------*/ 162 163 /* Hardware specifics. */ 164 #ifdef __arch64__ 165 #define portBYTE_ALIGNMENT 8 166 #else 167 #define portBYTE_ALIGNMENT 4 168 #endif 169 #define portSTACK_GROWTH ( -1 ) 170 #define portTICK_PERIOD_MS ( ( TickType_t ) 1000 / configTICK_RATE_HZ ) 171 #define portNOP() asm volatile ( "NOP" ) 172 #define portMEMORY_BARRIER() asm volatile ( "" ::: "memory" ) 173 /*-----------------------------------------------------------*/ 174 175 #if ( XPAR_MICROBLAZE_USE_STACK_PROTECTION ) 176 #define portHAS_STACK_OVERFLOW_CHECKING 1 177 #endif 178 /*-----------------------------------------------------------*/ 179 180 /* Task function macros as described on the FreeRTOS.org WEB site. */ 181 #define portTASK_FUNCTION_PROTO( vFunction, pvParameters ) void vFunction( void * pvParameters ) 182 #define portTASK_FUNCTION( vFunction, pvParameters ) void vFunction( void * pvParameters ) 183 /*-----------------------------------------------------------*/ 184 185 /* The following structure is used by the FreeRTOS exception handler. It is 186 * filled with the MicroBlaze context as it was at the time the exception occurred. 187 * This is done as an aid to debugging exception occurrences. */ 188 typedef struct PORT_REGISTER_DUMP 189 { 190 /* The following structure members hold the values of the MicroBlaze 191 * registers at the time the exception was raised. */ 192 UINTPTR ulR1_SP; 193 UINTPTR ulR2_small_data_area; 194 UINTPTR ulR3; 195 UINTPTR ulR4; 196 UINTPTR ulR5; 197 UINTPTR ulR6; 198 UINTPTR ulR7; 199 UINTPTR ulR8; 200 UINTPTR ulR9; 201 UINTPTR ulR10; 202 UINTPTR ulR11; 203 UINTPTR ulR12; 204 UINTPTR ulR13_read_write_small_data_area; 205 UINTPTR ulR14_return_address_from_interrupt; 206 UINTPTR ulR15_return_address_from_subroutine; 207 UINTPTR ulR16_return_address_from_trap; 208 UINTPTR ulR17_return_address_from_exceptions; /* The exception entry code will copy the BTR into R17 if the exception occurred in the delay slot of a branch instruction. */ 209 UINTPTR ulR18; 210 UINTPTR ulR19; 211 UINTPTR ulR20; 212 UINTPTR ulR21; 213 UINTPTR ulR22; 214 UINTPTR ulR23; 215 UINTPTR ulR24; 216 UINTPTR ulR25; 217 UINTPTR ulR26; 218 UINTPTR ulR27; 219 UINTPTR ulR28; 220 UINTPTR ulR29; 221 UINTPTR ulR30; 222 UINTPTR ulR31; 223 UINTPTR ulPC; 224 UINTPTR ulESR; 225 UINTPTR ulMSR; 226 UINTPTR ulEAR; 227 UINTPTR ulFSR; 228 UINTPTR ulEDR; 229 230 /* A human readable description of the exception cause. The strings used 231 * are the same as the #define constant names found in the 232 * microblaze_exceptions_i.h header file */ 233 int8_t * pcExceptionCause; 234 235 /* The human readable name of the task that was running at the time the 236 * exception occurred. This is the name that was given to the task when the 237 * task was created using the FreeRTOS xTaskCreate() API function. */ 238 char * pcCurrentTaskName; 239 240 /* The handle of the task that was running a the time the exception 241 * occurred. */ 242 void * xCurrentTaskHandle; 243 } xPortRegisterDump; 244 245 246 /* 247 * Installs pxHandler as the interrupt handler for the peripheral specified by 248 * the ucInterruptID parameter. 249 * 250 * ucInterruptID: 251 * 252 * The ID of the peripheral that will have pxHandler assigned as its interrupt 253 * handler. Peripheral IDs are defined in the xparameters.h header file, which 254 * is itself part of the BSP project. For example, in the official demo 255 * application for this port, xparameters.h defines the following IDs for the 256 * four possible interrupt sources: 257 * 258 * XPAR_INTC_0_UARTLITE_1_VEC_ID - for the UARTlite peripheral. 259 * XPAR_INTC_0_TMRCTR_0_VEC_ID - for the AXI Timer 0 peripheral. 260 * XPAR_INTC_0_EMACLITE_0_VEC_ID - for the Ethernet lite peripheral. 261 * XPAR_INTC_0_GPIO_1_VEC_ID - for the button inputs. 262 * 263 * 264 * pxHandler: 265 * 266 * A pointer to the interrupt handler function itself. This must be a void 267 * function that takes a (void *) parameter. 268 * 269 * 270 * pvCallBackRef: 271 * 272 * The parameter passed into the handler function. In many cases this will not 273 * be used and can be NULL. Some times it is used to pass in a reference to 274 * the peripheral instance variable, so it can be accessed from inside the 275 * handler function. 276 * 277 * 278 * pdPASS is returned if the function executes successfully. Any other value 279 * being returned indicates that the function did not execute correctly. 280 */ 281 BaseType_t xPortInstallInterruptHandler( uint8_t ucInterruptID, 282 XInterruptHandler pxHandler, 283 void * pvCallBackRef ); 284 285 286 /* 287 * Enables the interrupt, within the interrupt controller, for the peripheral 288 * specified by the ucInterruptID parameter. 289 * 290 * ucInterruptID: 291 * 292 * The ID of the peripheral that will have its interrupt enabled in the 293 * interrupt controller. Peripheral IDs are defined in the xparameters.h header 294 * file, which is itself part of the BSP project. For example, in the official 295 * demo application for this port, xparameters.h defines the following IDs for 296 * the four possible interrupt sources: 297 * 298 * XPAR_INTC_0_UARTLITE_1_VEC_ID - for the UARTlite peripheral. 299 * XPAR_INTC_0_TMRCTR_0_VEC_ID - for the AXI Timer 0 peripheral. 300 * XPAR_INTC_0_EMACLITE_0_VEC_ID - for the Ethernet lite peripheral. 301 * XPAR_INTC_0_GPIO_1_VEC_ID - for the button inputs. 302 * 303 */ 304 void vPortEnableInterrupt( uint8_t ucInterruptID ); 305 306 /* 307 * Disables the interrupt, within the interrupt controller, for the peripheral 308 * specified by the ucInterruptID parameter. 309 * 310 * ucInterruptID: 311 * 312 * The ID of the peripheral that will have its interrupt disabled in the 313 * interrupt controller. Peripheral IDs are defined in the xparameters.h header 314 * file, which is itself part of the BSP project. For example, in the official 315 * demo application for this port, xparameters.h defines the following IDs for 316 * the four possible interrupt sources: 317 * 318 * XPAR_INTC_0_UARTLITE_1_VEC_ID - for the UARTlite peripheral. 319 * XPAR_INTC_0_TMRCTR_0_VEC_ID - for the AXI Timer 0 peripheral. 320 * XPAR_INTC_0_EMACLITE_0_VEC_ID - for the Ethernet lite peripheral. 321 * XPAR_INTC_0_GPIO_1_VEC_ID - for the button inputs. 322 * 323 */ 324 void vPortDisableInterrupt( uint8_t ucInterruptID ); 325 326 /* 327 * This is an application defined callback function used to install the tick 328 * interrupt handler. It is provided as an application callback because the 329 * kernel will run on lots of different MicroBlaze and FPGA configurations - not 330 * all of which will have the same timer peripherals defined or available. This 331 * example uses the AXI Timer 0. If that is available on your hardware platform 332 * then this example callback implementation should not require modification. 333 * The name of the interrupt handler that should be installed is vPortTickISR(), 334 * which the function below declares as an extern. 335 */ 336 void vApplicationSetupTimerInterrupt( void ); 337 338 /* 339 * This is an application defined callback function used to clear whichever 340 * interrupt was installed by the the vApplicationSetupTimerInterrupt() callback 341 * function - in this case the interrupt generated by the AXI timer. It is 342 * provided as an application callback because the kernel will run on lots of 343 * different MicroBlaze and FPGA configurations - not all of which will have the 344 * same timer peripherals defined or available. This example uses the AXI Timer 0. 345 * If that is available on your hardware platform then this example callback 346 * implementation should not require modification provided the example definition 347 * of vApplicationSetupTimerInterrupt() is also not modified. 348 */ 349 void vApplicationClearTimerInterrupt( void ); 350 351 /* 352 * vPortExceptionsInstallHandlers() is only available when the MicroBlaze 353 * is configured to include exception functionality, and 354 * configINSTALL_EXCEPTION_HANDLERS is set to 1 in FreeRTOSConfig.h. 355 * 356 * vPortExceptionsInstallHandlers() installs the FreeRTOS exception handler 357 * for every possible exception cause. 358 * 359 * vPortExceptionsInstallHandlers() can be called explicitly from application 360 * code. After that is done, the default FreeRTOS exception handler that will 361 * have been installed can be replaced for any specific exception cause by using 362 * the standard Xilinx library function microblaze_register_exception_handler(). 363 * 364 * If vPortExceptionsInstallHandlers() is not called explicitly by the 365 * application, it will be called automatically by the kernel the first time 366 * xPortInstallInterruptHandler() is called. At that time, any exception 367 * handlers that may have already been installed will be replaced. 368 * 369 * See the description of vApplicationExceptionRegisterDump() for information 370 * on the processing performed by the FreeRTOS exception handler. 371 */ 372 void vPortExceptionsInstallHandlers( void ); 373 374 /* 375 * The FreeRTOS exception handler fills an xPortRegisterDump structure (defined 376 * in portmacro.h) with the MicroBlaze context, as it was at the time the 377 * exception occurred. The exception handler then calls 378 * vApplicationExceptionRegisterDump(), passing in the completed 379 * xPortRegisterDump structure as its parameter. 380 * 381 * The FreeRTOS kernel provides its own implementation of 382 * vApplicationExceptionRegisterDump(), but the kernel provided implementation 383 * is declared as being 'weak'. The weak definition allows the application 384 * writer to provide their own implementation, should they wish to use the 385 * register dump information. For example, an implementation could be provided 386 * that wrote the register dump data to a display, or a UART port. 387 */ 388 void vApplicationExceptionRegisterDump( xPortRegisterDump * xRegisterDump ); 389 390 391 /* *INDENT-OFF* */ 392 #ifdef __cplusplus 393 } 394 #endif 395 /* *INDENT-ON* */ 396 397 #endif /* PORTMACRO_H */