1 /* 2 * FreeRTOS Kernel V10.6.2 3 * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. 4 * 5 * SPDX-License-Identifier: MIT 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy of 8 * this software and associated documentation files (the "Software"), to deal in 9 * the Software without restriction, including without limitation the rights to 10 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of 11 * the Software, and to permit persons to whom the Software is furnished to do so, 12 * subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in all 15 * copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS 19 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR 20 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER 21 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * https://www.FreeRTOS.org 25 * https://github.com/FreeRTOS 26 * 27 */ 28 29 #ifndef PORTMACRO_H 30 #define PORTMACRO_H 31 32 /* *INDENT-OFF* */ 33 #ifdef __cplusplus 34 extern "C" { 35 #endif 36 /* *INDENT-ON* */ 37 38 /* BSP includes. */ 39 #include <mb_interface.h> 40 #include <xparameters.h> 41 42 /*----------------------------------------------------------- 43 * Port specific definitions. 44 * 45 * The settings in this file configure FreeRTOS correctly for the 46 * given hardware and compiler. 47 * 48 * These settings should not be altered. 49 *----------------------------------------------------------- 50 */ 51 52 /* Type definitions. */ 53 #define portCHAR char 54 #define portFLOAT float 55 #define portDOUBLE double 56 #define portLONG long 57 #define portSHORT short 58 #define portSTACK_TYPE uint32_t 59 #define portBASE_TYPE long 60 61 typedef portSTACK_TYPE StackType_t; 62 typedef long BaseType_t; 63 typedef unsigned long UBaseType_t; 64 65 #if( configTICK_TYPE_WIDTH_IN_BITS == TICK_TYPE_WIDTH_16_BITS ) 66 typedef uint16_t TickType_t; 67 #define portMAX_DELAY ( TickType_t ) 0xffff 68 #elif ( configTICK_TYPE_WIDTH_IN_BITS == TICK_TYPE_WIDTH_32_BITS ) 69 typedef uint32_t TickType_t; 70 #define portMAX_DELAY ( TickType_t ) 0xffffffffUL 71 72 /* 32-bit tick type on a 32-bit architecture, so reads of the tick count do 73 not need to be guarded with a critical section. */ 74 #define portTICK_TYPE_IS_ATOMIC 1 75 #else 76 #error configTICK_TYPE_WIDTH_IN_BITS set to unsupported tick type width. 77 #endif 78 /*-----------------------------------------------------------*/ 79 80 /* Interrupt control macros and functions. */ 81 void microblaze_disable_interrupts( void ); 82 void microblaze_enable_interrupts( void ); 83 #define portDISABLE_INTERRUPTS() microblaze_disable_interrupts() 84 #define portENABLE_INTERRUPTS() microblaze_enable_interrupts() 85 /*-----------------------------------------------------------*/ 86 87 /* Critical section macros. */ 88 void vPortEnterCritical( void ); 89 void vPortExitCritical( void ); 90 #define portENTER_CRITICAL() { \ 91 extern volatile UBaseType_t uxCriticalNesting; \ 92 microblaze_disable_interrupts(); \ 93 uxCriticalNesting++; \ 94 } 95 96 #define portEXIT_CRITICAL() { \ 97 extern volatile UBaseType_t uxCriticalNesting; \ 98 /* Interrupts are disabled, so we can */ \ 99 /* access the variable directly. */ \ 100 uxCriticalNesting--; \ 101 if( uxCriticalNesting == 0 ) \ 102 { \ 103 /* The nesting has unwound and we \ 104 can enable interrupts again. */ \ 105 portENABLE_INTERRUPTS(); \ 106 } \ 107 } 108 109 /*-----------------------------------------------------------*/ 110 111 /* The yield macro maps directly to the vPortYield() function. */ 112 void vPortYield( void ); 113 #define portYIELD() vPortYield() 114 115 /* portYIELD_FROM_ISR() does not directly call vTaskSwitchContext(), but instead 116 sets a flag to say that a yield has been requested. The interrupt exit code 117 then checks this flag, and calls vTaskSwitchContext() before restoring a task 118 context, if the flag is not false. This is done to prevent multiple calls to 119 vTaskSwitchContext() being made from a single interrupt, as a single interrupt 120 can result in multiple peripherals being serviced. */ 121 extern volatile uint32_t ulTaskSwitchRequested; 122 #define portYIELD_FROM_ISR( x ) do { if( ( x ) != pdFALSE ) ulTaskSwitchRequested = 1; } while( 0 ) 123 124 #if( configUSE_PORT_OPTIMISED_TASK_SELECTION == 1 ) 125 126 /* Generic helper function. */ ucPortCountLeadingZeros(uint32_t ulBitmap)127 __attribute__( ( always_inline ) ) static inline uint8_t ucPortCountLeadingZeros( uint32_t ulBitmap ) 128 { 129 uint8_t ucReturn; 130 131 __asm volatile ( "clz %0, %1" : "=r" ( ucReturn ) : "r" ( ulBitmap ) ); 132 return ucReturn; 133 } 134 135 /* Check the configuration. */ 136 #if( configMAX_PRIORITIES > 32 ) 137 #error configUSE_PORT_OPTIMISED_TASK_SELECTION can only be set to 1 when configMAX_PRIORITIES is less than or equal to 32. It is very rare that a system requires more than 10 to 15 difference priorities as tasks that share a priority will time slice. 138 #endif 139 140 /* Store/clear the ready priorities in a bit map. */ 141 #define portRECORD_READY_PRIORITY( uxPriority, uxReadyPriorities ) ( uxReadyPriorities ) |= ( 1UL << ( uxPriority ) ) 142 #define portRESET_READY_PRIORITY( uxPriority, uxReadyPriorities ) ( uxReadyPriorities ) &= ~( 1UL << ( uxPriority ) ) 143 144 /*-----------------------------------------------------------*/ 145 146 #define portGET_HIGHEST_PRIORITY( uxTopPriority, uxReadyPriorities ) uxTopPriority = ( 31UL - ( uint32_t ) ucPortCountLeadingZeros( ( uxReadyPriorities ) ) ) 147 148 #endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */ 149 150 /*-----------------------------------------------------------*/ 151 152 /* Hardware specifics. */ 153 #define portBYTE_ALIGNMENT 4 154 #define portSTACK_GROWTH ( -1 ) 155 #define portTICK_PERIOD_MS ( ( TickType_t ) 1000 / configTICK_RATE_HZ ) 156 #define portNOP() asm volatile ( "NOP" ) 157 #define portMEMORY_BARRIER() asm volatile ( "" ::: "memory" ) 158 /*-----------------------------------------------------------*/ 159 160 #if( XPAR_MICROBLAZE_USE_STACK_PROTECTION ) 161 #define portHAS_STACK_OVERFLOW_CHECKING 1 162 #endif 163 /*-----------------------------------------------------------*/ 164 165 /* Task function macros as described on the FreeRTOS.org WEB site. */ 166 #define portTASK_FUNCTION_PROTO( vFunction, pvParameters ) void vFunction( void *pvParameters ) 167 #define portTASK_FUNCTION( vFunction, pvParameters ) void vFunction( void *pvParameters ) 168 /*-----------------------------------------------------------*/ 169 170 /* The following structure is used by the FreeRTOS exception handler. It is 171 filled with the MicroBlaze context as it was at the time the exception occurred. 172 This is done as an aid to debugging exception occurrences. */ 173 typedef struct PORT_REGISTER_DUMP 174 { 175 /* The following structure members hold the values of the MicroBlaze 176 registers at the time the exception was raised. */ 177 uint32_t ulR1_SP; 178 uint32_t ulR2_small_data_area; 179 uint32_t ulR3; 180 uint32_t ulR4; 181 uint32_t ulR5; 182 uint32_t ulR6; 183 uint32_t ulR7; 184 uint32_t ulR8; 185 uint32_t ulR9; 186 uint32_t ulR10; 187 uint32_t ulR11; 188 uint32_t ulR12; 189 uint32_t ulR13_read_write_small_data_area; 190 uint32_t ulR14_return_address_from_interrupt; 191 uint32_t ulR15_return_address_from_subroutine; 192 uint32_t ulR16_return_address_from_trap; 193 uint32_t ulR17_return_address_from_exceptions; /* The exception entry code will copy the BTR into R17 if the exception occurred in the delay slot of a branch instruction. */ 194 uint32_t ulR18; 195 uint32_t ulR19; 196 uint32_t ulR20; 197 uint32_t ulR21; 198 uint32_t ulR22; 199 uint32_t ulR23; 200 uint32_t ulR24; 201 uint32_t ulR25; 202 uint32_t ulR26; 203 uint32_t ulR27; 204 uint32_t ulR28; 205 uint32_t ulR29; 206 uint32_t ulR30; 207 uint32_t ulR31; 208 uint32_t ulPC; 209 uint32_t ulESR; 210 uint32_t ulMSR; 211 uint32_t ulEAR; 212 uint32_t ulFSR; 213 uint32_t ulEDR; 214 215 /* A human readable description of the exception cause. The strings used 216 are the same as the #define constant names found in the 217 microblaze_exceptions_i.h header file */ 218 int8_t *pcExceptionCause; 219 220 /* The human readable name of the task that was running at the time the 221 exception occurred. This is the name that was given to the task when the 222 task was created using the FreeRTOS xTaskCreate() API function. */ 223 char *pcCurrentTaskName; 224 225 /* The handle of the task that was running a the time the exception 226 occurred. */ 227 void * xCurrentTaskHandle; 228 229 } xPortRegisterDump; 230 231 232 /* 233 * Installs pxHandler as the interrupt handler for the peripheral specified by 234 * the ucInterruptID parameter. 235 * 236 * ucInterruptID: 237 * 238 * The ID of the peripheral that will have pxHandler assigned as its interrupt 239 * handler. Peripheral IDs are defined in the xparameters.h header file, which 240 * is itself part of the BSP project. For example, in the official demo 241 * application for this port, xparameters.h defines the following IDs for the 242 * four possible interrupt sources: 243 * 244 * XPAR_INTC_0_UARTLITE_1_VEC_ID - for the UARTlite peripheral. 245 * XPAR_INTC_0_TMRCTR_0_VEC_ID - for the AXI Timer 0 peripheral. 246 * XPAR_INTC_0_EMACLITE_0_VEC_ID - for the Ethernet lite peripheral. 247 * XPAR_INTC_0_GPIO_1_VEC_ID - for the button inputs. 248 * 249 * 250 * pxHandler: 251 * 252 * A pointer to the interrupt handler function itself. This must be a void 253 * function that takes a (void *) parameter. 254 * 255 * 256 * pvCallBackRef: 257 * 258 * The parameter passed into the handler function. In many cases this will not 259 * be used and can be NULL. Some times it is used to pass in a reference to 260 * the peripheral instance variable, so it can be accessed from inside the 261 * handler function. 262 * 263 * 264 * pdPASS is returned if the function executes successfully. Any other value 265 * being returned indicates that the function did not execute correctly. 266 */ 267 BaseType_t xPortInstallInterruptHandler( uint8_t ucInterruptID, XInterruptHandler pxHandler, void *pvCallBackRef ); 268 269 270 /* 271 * Enables the interrupt, within the interrupt controller, for the peripheral 272 * specified by the ucInterruptID parameter. 273 * 274 * ucInterruptID: 275 * 276 * The ID of the peripheral that will have its interrupt enabled in the 277 * interrupt controller. Peripheral IDs are defined in the xparameters.h header 278 * file, which is itself part of the BSP project. For example, in the official 279 * demo application for this port, xparameters.h defines the following IDs for 280 * the four possible interrupt sources: 281 * 282 * XPAR_INTC_0_UARTLITE_1_VEC_ID - for the UARTlite peripheral. 283 * XPAR_INTC_0_TMRCTR_0_VEC_ID - for the AXI Timer 0 peripheral. 284 * XPAR_INTC_0_EMACLITE_0_VEC_ID - for the Ethernet lite peripheral. 285 * XPAR_INTC_0_GPIO_1_VEC_ID - for the button inputs. 286 * 287 */ 288 void vPortEnableInterrupt( uint8_t ucInterruptID ); 289 290 /* 291 * Disables the interrupt, within the interrupt controller, for the peripheral 292 * specified by the ucInterruptID parameter. 293 * 294 * ucInterruptID: 295 * 296 * The ID of the peripheral that will have its interrupt disabled in the 297 * interrupt controller. Peripheral IDs are defined in the xparameters.h header 298 * file, which is itself part of the BSP project. For example, in the official 299 * demo application for this port, xparameters.h defines the following IDs for 300 * the four possible interrupt sources: 301 * 302 * XPAR_INTC_0_UARTLITE_1_VEC_ID - for the UARTlite peripheral. 303 * XPAR_INTC_0_TMRCTR_0_VEC_ID - for the AXI Timer 0 peripheral. 304 * XPAR_INTC_0_EMACLITE_0_VEC_ID - for the Ethernet lite peripheral. 305 * XPAR_INTC_0_GPIO_1_VEC_ID - for the button inputs. 306 * 307 */ 308 void vPortDisableInterrupt( uint8_t ucInterruptID ); 309 310 /* 311 * This is an application defined callback function used to install the tick 312 * interrupt handler. It is provided as an application callback because the 313 * kernel will run on lots of different MicroBlaze and FPGA configurations - not 314 * all of which will have the same timer peripherals defined or available. This 315 * example uses the AXI Timer 0. If that is available on your hardware platform 316 * then this example callback implementation should not require modification. 317 * The name of the interrupt handler that should be installed is vPortTickISR(), 318 * which the function below declares as an extern. 319 */ 320 void vApplicationSetupTimerInterrupt( void ); 321 322 /* 323 * This is an application defined callback function used to clear whichever 324 * interrupt was installed by the the vApplicationSetupTimerInterrupt() callback 325 * function - in this case the interrupt generated by the AXI timer. It is 326 * provided as an application callback because the kernel will run on lots of 327 * different MicroBlaze and FPGA configurations - not all of which will have the 328 * same timer peripherals defined or available. This example uses the AXI Timer 0. 329 * If that is available on your hardware platform then this example callback 330 * implementation should not require modification provided the example definition 331 * of vApplicationSetupTimerInterrupt() is also not modified. 332 */ 333 void vApplicationClearTimerInterrupt( void ); 334 335 /* 336 * vPortExceptionsInstallHandlers() is only available when the MicroBlaze 337 * is configured to include exception functionality, and 338 * configINSTALL_EXCEPTION_HANDLERS is set to 1 in FreeRTOSConfig.h. 339 * 340 * vPortExceptionsInstallHandlers() installs the FreeRTOS exception handler 341 * for every possible exception cause. 342 * 343 * vPortExceptionsInstallHandlers() can be called explicitly from application 344 * code. After that is done, the default FreeRTOS exception handler that will 345 * have been installed can be replaced for any specific exception cause by using 346 * the standard Xilinx library function microblaze_register_exception_handler(). 347 * 348 * If vPortExceptionsInstallHandlers() is not called explicitly by the 349 * application, it will be called automatically by the kernel the first time 350 * xPortInstallInterruptHandler() is called. At that time, any exception 351 * handlers that may have already been installed will be replaced. 352 * 353 * See the description of vApplicationExceptionRegisterDump() for information 354 * on the processing performed by the FreeRTOS exception handler. 355 */ 356 void vPortExceptionsInstallHandlers( void ); 357 358 /* 359 * The FreeRTOS exception handler fills an xPortRegisterDump structure (defined 360 * in portmacro.h) with the MicroBlaze context, as it was at the time the 361 * exception occurred. The exception handler then calls 362 * vApplicationExceptionRegisterDump(), passing in the completed 363 * xPortRegisterDump structure as its parameter. 364 * 365 * The FreeRTOS kernel provides its own implementation of 366 * vApplicationExceptionRegisterDump(), but the kernel provided implementation 367 * is declared as being 'weak'. The weak definition allows the application 368 * writer to provide their own implementation, should they wish to use the 369 * register dump information. For example, an implementation could be provided 370 * that wrote the register dump data to a display, or a UART port. 371 */ 372 void vApplicationExceptionRegisterDump( xPortRegisterDump *xRegisterDump ); 373 374 375 /* *INDENT-OFF* */ 376 #ifdef __cplusplus 377 } 378 #endif 379 /* *INDENT-ON* */ 380 381 #endif /* PORTMACRO_H */ 382