README.md
1# Hello World
2
3Building embedded applications is tricky in part because of the huge
4number of configuration settings necessary to get something that
5works. This example shows how to use the installed version of
6picolibc, and uses 'make' instead of 'meson' to try and make the
7operations as clear as possible. Here's our fine program:
8
9 #include <stdio.h>
10
11 int
12 main(void)
13 {
14 printf("hello, world\n");
15 return 0;
16 }
17
18## Selecting picolibc headers and C library
19
20Picolibc provides a GCC '.specs' file _(generated from
21picolibc.specs.in)_ which sets the search path for
22header files and picolibc libraries.
23
24 gcc -specs=picolibc.specs
25
26## Semihosting
27
28Our example program wants to display a string to stdout; because there
29aren't drivers for the serial ports emulated by qemu provided, the
30example uses Picolibc's semihosting support (`--oslib=semihost`) to
31direct stdout to the QEMU console:
32
33 gcc -specs=picolibc.specs --oslib=semihost
34
35## Target processor
36
37For ARM, QEMU emulates a "mps2-an385" board which has a Cortex-M3
38processor:
39
40 arm-none-eabi-gcc -specs=picolibc.specs --oslib=semihost -mcpu=cortex-m3
41
4264-bit ARM (aarch64) processors are pretty much the same, so the
43default target code will run fine on a cortex-a57 processor as
44supported by QEMU:
45
46 aarch64-linux-gnu-gcc -specs=picolibc.specs --oslib-semihost
47
48For RISC-V, QEMU lets you specify which CPU core you want, so we'll
49use something that looks like a SiFive E31 chip. That's a 32-bit
50processor with the 'imac' options (integer, multiply, atomics,
51compressed) and uses the 'ilp32' ABI (32-bit integer, long and
52pointer)
53
54 riscv64-unknown-elf-gcc -specs=picolibc.specs
55 --oslib-semihost -march=rv32imac -mabi=ilp32
56
57## Target Memory Layout
58
59The application needs to be linked at addresses which correspond to
60where the target memories are addressed. The default linker script
61provided with picolibc, `picolibc.ld`, assumes that the target device
62will have two kinds of memory, one for code and read-only data and
63another kind for read-write data. However, the linker script has no
64idea where those memories are placed in the address space. The example
65specifies those by setting a few values before including
66`picolibc.ld`.
67
68The mps2-an385 has at least 16kB of flash starting at 0. Picolibc
69places a small interrupt vector there which points at the first
70instruction of _start. The mps2-an385 also has 64kB of RAM starting
71at 0x20000000, so arm.ld looks like this:
72
73 __flash = 0x00000000;
74 __flash_size = 0x00004000;
75 __ram = 0x20000000;
76 __ram_size = 0x00010000;
77 __stack_size = 1k;
78
79 INCLUDE picolibc.ld
80
81The aarch64 virt model lets you define whatever memory spaces you
82like,so we'll just stick things at 0x40000000 (aarch64.ld):
83
84 __flash = 0x40000000;
85 __flash_size = 0x00400000;
86 __ram = 0x40400000;
87 __ram_size = 0x00200000;
88 __stack_size = 8k;
89
90 INCLUDE picolibc.ld
91
92For the RISC-V 'spike' model, you can have as much memory as you like,
93but execution starts at 0x80000000 so the first instruction in the
94application needs to land there. Picolibc on RISC-V puts _start at the
95first location in read-only memory, so we set things up like this
96(this is riscv.ld):
97
98 __flash = 0x80000000;
99 __flash_size = 0x00080000;
100 __ram = 0x80080000;
101 __ram_size = 0x40000;
102 __stack_size = 1k;
103
104 INCLUDE picolibc.ld
105
106The `-T` flag is used to specify the linker script in the compile
107line:
108
109 arm-none-eabi-gcc -specs=picolibc.specs --oslib=semihost
110 -mcpu=cortex-m3 -Tarm.ld
111
112 aarch64-linux-gnu-gcc -specs=picolibc.specs --oslib=semihost
113 -Taarch64.ld
114
115
116## Final Commands
117
118The rest of the command line tells GCC what file to compile
119(hello-world.c) and where to put the output (hello-world-riscv.elf and
120hello-world-arm.elf):
121
122 riscv64-unknown-elf-gcc --specs=picolibc.specs --oslib=semihost
123 -march=rv32imac -mabi=ilp32 -Thello-world-riscv.ld -o
124 hello-world-riscv.elf hello-world.c
125
126 arm-none-eabi-gcc --specs=picolibc.specs --oslib=semihost
127 -mcpu=cortex-m3 -Thello-world-arm.ld -o hello-world-arm.elf
128 hello-world.c
129
130## Running Under QEMU
131
132To run the hello-world example under qemu, we need to construct a
133virtual machine suitable for this. That means enabling semihosting
134(`-semihosting-config enable=on`), disabling the monitor interface
135(-monitor none), the emulated UART (-serial none) and the graphical
136interface (`-nographic).
137
138For arm, we're using the mps2-an385
139
140 qemu-system-arm -semihosting-config enable=on -monitor none
141 -serial none -nographic
142 -machine mps2-an385,accel=tcg
143 -kernel hello-world-arm.elf
144
145On aarch64, we use the 'virt' machine, which lets us plug in any
146processor we want. In this case, we'll use the cortex-a57:
147
148 qemu-system-aarch64 -semihosting-config enable=on -monitor none
149 -serial none -nographic
150 -machine virt -cpu cortex-a57
151 -kernel hello-world-aarch64.elf
152
153Risc-V is similar to aarch64 in providing a virtual host into which
154you can install any virtual processor you want, in our case, an rv32:
155
156 qemu-system-riscv32 -semihosting-config enable=on -monitor none
157 -serial none -nographic
158 -machine virt,accel=tcg -cpu rv32 -bios none
159 -kernel hello-world-riscv.elf
160
161