1 /***************************************************************************//**
2 * @file
3 * @brief Incremental Analog to Digital Converter (IADC) Peripheral API
4 *******************************************************************************
5 * # License
6 * <b>Copyright 2018 Silicon Laboratories Inc. www.silabs.com</b>
7 *******************************************************************************
8 *
9 * SPDX-License-Identifier: Zlib
10 *
11 * The licensor of this software is Silicon Laboratories Inc.
12 *
13 * This software is provided 'as-is', without any express or implied
14 * warranty. In no event will the authors be held liable for any damages
15 * arising from the use of this software.
16 *
17 * Permission is granted to anyone to use this software for any purpose,
18 * including commercial applications, and to alter it and redistribute it
19 * freely, subject to the following restrictions:
20 *
21 * 1. The origin of this software must not be misrepresented; you must not
22 * claim that you wrote the original software. If you use this software
23 * in a product, an acknowledgment in the product documentation would be
24 * appreciated but is not required.
25 * 2. Altered source versions must be plainly marked as such, and must not be
26 * misrepresented as being the original software.
27 * 3. This notice may not be removed or altered from any source distribution.
28 *
29 ******************************************************************************/
30
31 #include "em_iadc.h"
32
33 #if defined(IADC_COUNT) && (IADC_COUNT > 0)
34
35 #include "sl_assert.h"
36 #include "em_cmu.h"
37 #include "sl_common.h"
38 #include <stddef.h>
39
40 /***************************************************************************//**
41 * @addtogroup emlib
42 * @{
43 ******************************************************************************/
44
45 /***************************************************************************//**
46 * @addtogroup iadc IADC - Incremental ADC
47 * @brief Incremental Analog to Digital Converter (IADC) Peripheral API
48 * @details
49 * This module contains functions to control the IADC peripheral of Silicon
50 * Labs 32-bit MCUs and SoCs. The IADC is used to convert analog signals into a
51 * digital representation.
52 * @{
53 ******************************************************************************/
54
55 /*******************************************************************************
56 ******************************* DEFINES ***********************************
57 ******************************************************************************/
58
59 /** @cond DO_NOT_INCLUDE_WITH_DOXYGEN */
60
61 // Validation of IADC register block pointer reference for assert statements.
62 #if defined(IADC_NUM)
63 #define IADC_REF_VALID(ref) (IADC_NUM(ref) != -1)
64 #else
65 #if (IADC_COUNT == 1)
66 #define IADC_REF_VALID(ref) ((ref) == IADC0)
67 #define IADC_NUM(ref) (((ref) == IADC0) ? 0 : -1)
68 #elif (IADC_COUNT == 2)
69 #define IADC_REF_VALID(ref) (((ref) == IADC0) || ((ref) == IADC1))
70 #define IADC_NUM(ref) (((ref) == IADC0) ? 0 : ((ref) == IADC1) ? 1 : -1)
71 #endif
72 #endif
73
74 // Max IADC clock rates
75 #define IADC_CLK_MAX_FREQ 40000000UL
76 #define IADC_ANA_CLK_HIGH_SPEED_MAX_FREQ 20000000UL
77 #define IADC_ANA_CLK_NORMAL_MAX_FREQ 10000000UL
78 #define IADC_ANA_CLK_HIGH_ACCURACY_MAX_FREQ 5000000UL
79 #if defined (_IADC_CFG_ADCMODE_HIGHSPEED)
80 #define IADC_ANA_CLK_MAX_FREQ(adcMode) ( \
81 (adcMode) == iadcCfgModeNormal ? IADC_ANA_CLK_NORMAL_MAX_FREQ \
82 : ((adcMode) == iadcCfgModeHighSpeed \
83 ? IADC_ANA_CLK_HIGH_SPEED_MAX_FREQ \
84 : IADC_ANA_CLK_HIGH_ACCURACY_MAX_FREQ) \
85 )
86 #else
87 #define IADC_ANA_CLK_MAX_FREQ(adcMode) ( \
88 (adcMode) == iadcCfgModeNormal ? IADC_ANA_CLK_NORMAL_MAX_FREQ \
89 : IADC_ANA_CLK_HIGH_ACCURACY_MAX_FREQ \
90 )
91 #endif
92
93 #define IADC_ROUND_D2I(n) (int)((n) < 0.0f ? ((n) - 0.5f) : ((n) + 0.5f))
94
95 #define IADC0_SCANENTRIES IADC0_ENTRIES
96 #define IADC0_FIFOENTRIES 0x4UL
97
98 #define IADC1_SCANENTRIES IADC1_ENTRIES
99 #define IADC1_FIFOENTRIES 0x4UL
100
101 #if defined(IADC_ENTRIES)
102 #define IADC_SCANENTRIES(iadc) IADC_ENTRIES(IADC_NUM(iadc))
103 #else
104 #define IADC_SCANENTRIES(iadc) ( \
105 (iadc) == IADC0 ? IADC0_SCANENTRIES \
106 : 0UL)
107 #endif
108
109 #if !defined(IADC_CONFIGNUM)
110 #define IADC_CONFIGNUM(iadc) ( \
111 (iadc) == 0 ? IADC0_CONFIGNUM \
112 : 0UL)
113 #endif
114
115 #define IADC_FIFOENTRIES(iadc) ( \
116 (iadc) == IADC0 ? IADC0_FIFOENTRIES \
117 : 0UL)
118
119 #define IADC_CMU_CLOCK(iadc) ( \
120 (iadc) == IADC0 ? cmuClock_IADC0 \
121 : cmuClock_IADC0)
122
123 /** @endcond */
124
125 /*******************************************************************************
126 *************************** LOCAL FUNCTIONS *******************************
127 ******************************************************************************/
128
129 /** @cond DO_NOT_INCLUDE_WITH_DOXYGEN */
130
IADC_disable(IADC_TypeDef * iadc)131 static void IADC_disable(IADC_TypeDef *iadc)
132 {
133 #if defined(IADC_STATUS_SYNCBUSY)
134 while ((iadc->STATUS & IADC_STATUS_SYNCBUSY) != 0U) {
135 // Wait for synchronization to finish before disable
136 }
137 #endif
138 iadc->EN_CLR = IADC_EN_EN;
139 #if defined(_IADC_EN_DISABLING_MASK)
140 while (IADC0->EN & _IADC_EN_DISABLING_MASK) {
141 }
142 #endif
143 }
144
IADC_enable(IADC_TypeDef * iadc)145 static void IADC_enable(IADC_TypeDef *iadc)
146 {
147 iadc->EN_SET = IADC_EN_EN;
148 }
149
IADC_ConvertRawDataToResult(uint32_t rawData,IADC_Alignment_t alignment)150 static IADC_Result_t IADC_ConvertRawDataToResult(uint32_t rawData,
151 IADC_Alignment_t alignment)
152 {
153 IADC_Result_t result;
154
155 switch (alignment) {
156 case iadcAlignRight12:
157 #if defined(IADC_SINGLEFIFOCFG_ALIGNMENT_RIGHT16)
158 case iadcAlignRight16:
159 #endif
160 #if defined(IADC_SINGLEFIFOCFG_ALIGNMENT_RIGHT20)
161 case iadcAlignRight20:
162 #endif
163 // Mask out ID and replace with sign extension
164 result.data = (rawData & 0x00FFFFFFUL)
165 | ((rawData & 0x00800000UL) != 0x0UL ? 0xFF000000UL : 0x0UL);
166 // Mask out data and shift down
167 result.id = (uint8_t)((rawData & 0xFF000000UL) >> 24);
168 break;
169
170 case iadcAlignLeft12:
171 #if defined(IADC_SINGLEFIFOCFG_ALIGNMENT_RIGHT16)
172 case iadcAlignLeft16:
173 #endif
174 #if defined(IADC_SINGLEFIFOCFG_ALIGNMENT_RIGHT20)
175 case iadcAlignLeft20:
176 #endif
177 result.data = rawData & 0xFFFFFF00UL;
178 result.id = (uint8_t)(rawData & 0x000000FFUL);
179 break;
180 default:
181 break;
182 }
183 return result;
184 }
185
186 /** @endcond */
187
188 /*******************************************************************************
189 ************************** GLOBAL FUNCTIONS *******************************
190 ******************************************************************************/
191
192 /***************************************************************************//**
193 * @brief
194 * Initialize IADC.
195 *
196 * @details
197 * Initializes common parts for both single conversion and scan sequence.
198 * In addition, single and/or scan control configuration must be done, please
199 * refer to @ref IADC_initSingle() and @ref IADC_initScan() respectively.
200 *
201 * @note
202 * This function will stop any ongoing conversions.
203 *
204 * @param[in] iadc
205 * Pointer to IADC peripheral register block.
206 *
207 * @param[in] init
208 * Pointer to IADC initialization structure.
209 *
210 * @param[in] allConfigs
211 * Pointer to structure holding all configs.
212 ******************************************************************************/
IADC_init(IADC_TypeDef * iadc,const IADC_Init_t * init,const IADC_AllConfigs_t * allConfigs)213 void IADC_init(IADC_TypeDef *iadc,
214 const IADC_Init_t *init,
215 const IADC_AllConfigs_t *allConfigs)
216 {
217 uint32_t tmp;
218 uint32_t config;
219 uint16_t wantedPrescale;
220 uint8_t srcClkPrescale;
221 uint32_t adcClkPrescale;
222 uint8_t timebase;
223 unsigned uiAnaGain;
224 uint16_t uiGainCAna;
225 IADC_CfgAdcMode_t adcMode;
226 #if defined(_IADC_CFG_ADCMODE_HIGHACCURACY)
227 float anaGain;
228 int anaGainRound;
229 float offsetAna;
230 float offset2;
231 int offsetLong;
232 int offsetAna1HiAccInt;
233 uint8_t osrValue;
234 float offsetAnaBase;
235 float gainSysHiAcc;
236 float refVoltage = 0;
237 // Over sampling ratio for high accuracy conversions
238 const float osrHiAcc[6] = { 16.0, 32.0, 64.0, 92.0, 128.0, 256.0 };
239 #endif
240
241 EFM_ASSERT(IADC_REF_VALID(iadc));
242
243 // Calculate min allowed SRC_CLK prescaler setting
244 srcClkPrescale = IADC_calcSrcClkPrescale(iadc, IADC_CLK_MAX_FREQ, 0);
245
246 wantedPrescale = init->srcClkPrescale;
247 // Use wanted SRC_CLK prescaler setting instead if it is high enough
248 if (wantedPrescale >= srcClkPrescale) {
249 srcClkPrescale = wantedPrescale;
250 }
251
252 IADC_disable(iadc);
253
254 timebase = init->timebase;
255 if (timebase == 0) {
256 // CLK_SRC_ADC is derived from CLK_CMU_ADC, and must be no faster than 40 MHz. Therefore we set
257 // srcClkFreq's original value to CLK_CMU_ADC before evaluating the prescaling conditions.
258 uint32_t srcClkFreq = CMU_ClockFreqGet(cmuClock_IADC0);
259 // If srcClkFreq is greater than 40MHz, then divide by the prescaler HSCLKRATE to obtain valid frequency
260 if (srcClkFreq >= IADC_CLK_MAX_FREQ) {
261 srcClkFreq = srcClkFreq / srcClkPrescale;
262 }
263 // Calculate timebase based on CMU_IADCCLKCTRL
264 timebase = IADC_calcTimebase(iadc, srcClkFreq);
265 }
266
267 tmp = (((uint32_t)(init->warmup) << _IADC_CTRL_WARMUPMODE_SHIFT)
268 & _IADC_CTRL_WARMUPMODE_MASK)
269 | (((uint32_t)(timebase) << _IADC_CTRL_TIMEBASE_SHIFT)
270 & _IADC_CTRL_TIMEBASE_MASK)
271 | (((uint32_t)(srcClkPrescale) << _IADC_CTRL_HSCLKRATE_SHIFT)
272 & _IADC_CTRL_HSCLKRATE_MASK);
273
274 if (init->iadcClkSuspend0) {
275 tmp |= IADC_CTRL_ADCCLKSUSPEND0;
276 }
277 if (init->iadcClkSuspend1) {
278 tmp |= IADC_CTRL_ADCCLKSUSPEND1;
279 }
280 if (init->debugHalt) {
281 tmp |= IADC_CTRL_DBGHALT;
282 }
283 iadc->CTRL = tmp;
284
285 iadc->TIMER = ((uint32_t) (init->timerCycles) << _IADC_TIMER_TIMER_SHIFT)
286 & _IADC_TIMER_TIMER_MASK;
287
288 iadc->CMPTHR = (((uint32_t) (init->greaterThanEqualThres) << _IADC_CMPTHR_ADGT_SHIFT)
289 & _IADC_CMPTHR_ADGT_MASK)
290 | (((uint32_t) (init->lessThanEqualThres) << _IADC_CMPTHR_ADLT_SHIFT)
291 & _IADC_CMPTHR_ADLT_MASK);
292
293 // Write configurations
294 for (config = 0; config < IADC_CONFIGNUM(IADC_NUM(iadc)); config++) {
295 // Find min allowed ADC_CLK prescaler setting for given mode
296 adcMode = allConfigs->configs[config].adcMode;
297 wantedPrescale = allConfigs->configs[config].adcClkPrescale;
298 adcClkPrescale = IADC_calcAdcClkPrescale(iadc,
299 IADC_ANA_CLK_MAX_FREQ(adcMode),
300 0,
301 adcMode,
302 srcClkPrescale);
303
304 // Use wanted ADC_CLK prescaler setting instead if it is high enough
305 adcClkPrescale = SL_MAX(adcClkPrescale, wantedPrescale);
306
307 tmp = iadc->CFG[config].CFG & ~(_IADC_CFG_ADCMODE_MASK | _IADC_CFG_OSRHS_MASK
308 | _IADC_CFG_ANALOGGAIN_MASK | _IADC_CFG_REFSEL_MASK
309 #if defined(_IADC_CFG_DIGAVG_MASK)
310 | _IADC_CFG_DIGAVG_MASK
311 #endif
312 | _IADC_CFG_TWOSCOMPL_MASK
313 #if defined(_IADC_CFG_ADCMODE_HIGHACCURACY)
314 | _IADC_CFG_OSRHA_MASK
315 #endif
316 );
317 iadc->CFG[config].CFG = tmp
318 | (((uint32_t)(adcMode) << _IADC_CFG_ADCMODE_SHIFT) & _IADC_CFG_ADCMODE_MASK)
319 | (((uint32_t)(allConfigs->configs[config].osrHighSpeed) << _IADC_CFG_OSRHS_SHIFT)
320 & _IADC_CFG_OSRHS_MASK)
321 #if defined(_IADC_CFG_ADCMODE_HIGHACCURACY)
322 | (((uint32_t)(allConfigs->configs[config].osrHighAccuracy) << _IADC_CFG_OSRHA_SHIFT)
323 & _IADC_CFG_OSRHA_MASK)
324 #endif
325 | (((uint32_t)(allConfigs->configs[config].analogGain) << _IADC_CFG_ANALOGGAIN_SHIFT)
326 & _IADC_CFG_ANALOGGAIN_MASK)
327 | (((uint32_t)(allConfigs->configs[config].reference) << _IADC_CFG_REFSEL_SHIFT)
328 & _IADC_CFG_REFSEL_MASK)
329 #if defined(_IADC_CFG_DIGAVG_MASK)
330 | (((uint32_t)(allConfigs->configs[config].digAvg) << _IADC_CFG_DIGAVG_SHIFT)
331 & _IADC_CFG_DIGAVG_MASK)
332 #endif
333 | (((uint32_t)(allConfigs->configs[config].twosComplement) << _IADC_CFG_TWOSCOMPL_SHIFT)
334 & _IADC_CFG_TWOSCOMPL_MASK);
335
336 uiAnaGain = (iadc->CFG[config].CFG & _IADC_CFG_ANALOGGAIN_MASK) >> _IADC_CFG_ANALOGGAIN_SHIFT;
337 switch (uiAnaGain) {
338 #if defined(_IADC_CFG_ANALOGGAIN_ANAGAIN0P25)
339 case iadcCfgAnalogGain0P25x: // 0.25x
340 #endif
341 case iadcCfgAnalogGain0P5x: // 0.5x
342 case iadcCfgAnalogGain1x: // 1x
343 uiGainCAna = (uint16_t)((DEVINFO->IADC0GAIN0 & _DEVINFO_IADC0GAIN0_GAINCANA1_MASK) >> _DEVINFO_IADC0GAIN0_GAINCANA1_SHIFT);
344 break;
345 case iadcCfgAnalogGain2x: // 2x
346 uiGainCAna = (uint16_t)((DEVINFO->IADC0GAIN0 & _DEVINFO_IADC0GAIN0_GAINCANA2_MASK) >> _DEVINFO_IADC0GAIN0_GAINCANA2_SHIFT);
347 break;
348 case iadcCfgAnalogGain3x: // 3x
349 uiGainCAna = (uint16_t)((DEVINFO->IADC0GAIN1 & _DEVINFO_IADC0GAIN1_GAINCANA3_MASK) >> _DEVINFO_IADC0GAIN1_GAINCANA3_SHIFT);
350 break;
351 case iadcCfgAnalogGain4x: // 4x
352 uiGainCAna = (uint16_t)((DEVINFO->IADC0GAIN1 & _DEVINFO_IADC0GAIN1_GAINCANA4_MASK) >> _DEVINFO_IADC0GAIN1_GAINCANA4_SHIFT);
353 break;
354 default: // 1x
355 uiGainCAna = (uint16_t)((DEVINFO->IADC0GAIN0 & _DEVINFO_IADC0GAIN0_GAINCANA1_MASK) >> _DEVINFO_IADC0GAIN0_GAINCANA1_SHIFT);
356 break;
357 }
358
359 // Gain and offset correction is applied according to adcMode and oversampling rate.
360 switch (adcMode) {
361 float offset;
362 uint32_t scale;
363 int iOffset, iOsr;
364 case iadcCfgModeNormal:
365 #if defined(_IADC_CFG_ADCMODE_HIGHSPEED)
366 case iadcCfgModeHighSpeed:
367 #endif
368 offset = 0.0f;
369 if (uiAnaGain == iadcCfgAnalogGain2x) {
370 if (adcMode == iadcCfgModeNormal) {
371 offset = (int16_t)(DEVINFO->IADC0NORMALOFFSETCAL0 >> _DEVINFO_IADC0NORMALOFFSETCAL0_OFFSETANA2NORM_SHIFT);
372 } else {
373 offset = (int16_t)(DEVINFO->IADC0HISPDOFFSETCAL0 >> _DEVINFO_IADC0HISPDOFFSETCAL0_OFFSETANA2HISPD_SHIFT);
374 }
375 } else if (uiAnaGain == iadcCfgAnalogGain3x) {
376 if (adcMode == iadcCfgModeNormal) {
377 offset = (int16_t)(DEVINFO->IADC0NORMALOFFSETCAL0 >> _DEVINFO_IADC0NORMALOFFSETCAL0_OFFSETANA2NORM_SHIFT) * 2;
378 } else {
379 offset = (int16_t)(DEVINFO->IADC0HISPDOFFSETCAL0 >> _DEVINFO_IADC0HISPDOFFSETCAL0_OFFSETANA2HISPD_SHIFT) * 2;
380 }
381 } else if (uiAnaGain == iadcCfgAnalogGain4x) {
382 if (adcMode == iadcCfgModeNormal) {
383 offset = (int16_t)(DEVINFO->IADC0NORMALOFFSETCAL0 >> _DEVINFO_IADC0NORMALOFFSETCAL0_OFFSETANA2NORM_SHIFT) * 3;
384 } else {
385 offset = (int16_t)(DEVINFO->IADC0HISPDOFFSETCAL0 >> _DEVINFO_IADC0HISPDOFFSETCAL0_OFFSETANA2HISPD_SHIFT) * 3;
386 }
387 }
388
389 // Set correct gain correction bitfields in scale variable.
390 tmp = (uint32_t)uiGainCAna & 0x9FFFU;
391 scale = tmp << _IADC_SCALE_GAIN13LSB_SHIFT;
392 if ((tmp & 0x8000U) != 0U) {
393 scale |= IADC_SCALE_GAIN3MSB;
394 }
395
396 // Adjust offset according to selected OSR.
397 iOsr = 1U << (((iadc->CFG[config].CFG & _IADC_CFG_OSRHS_MASK) >> _IADC_CFG_OSRHS_SHIFT) + 1U);
398 if (iOsr == 2) {
399 if (adcMode == iadcCfgModeNormal) {
400 offset += (int16_t)(DEVINFO->IADC0NORMALOFFSETCAL0 & _DEVINFO_IADC0NORMALOFFSETCAL0_OFFSETANA1NORM_MASK);
401 } else {
402 offset += (int16_t)(DEVINFO->IADC0HISPDOFFSETCAL0 & _DEVINFO_IADC0HISPDOFFSETCAL0_OFFSETANA1HISPD_MASK);
403 }
404 } else {
405 if (adcMode == iadcCfgModeNormal) {
406 offset = (int16_t)(DEVINFO->IADC0NORMALOFFSETCAL1 & _DEVINFO_IADC0NORMALOFFSETCAL1_OFFSETANA3NORM_MASK) - offset;
407 } else {
408 offset += (int16_t)(DEVINFO->IADC0HISPDOFFSETCAL1 & _DEVINFO_IADC0HISPDOFFSETCAL1_OFFSETANA3HISPD_MASK) - offset;
409 }
410 offset /= iOsr / 2.0f;
411 offset += (int16_t)(DEVINFO->IADC0OFFSETCAL0 & _DEVINFO_IADC0OFFSETCAL0_OFFSETANABASE_MASK);
412 }
413
414 // Compensate offset according to selected reference voltage.
415 if (allConfigs->configs[config].reference == iadcCfgReferenceInt1V2) {
416 // Internal reference voltage (VBGR) depends on the chip revision.
417 offset *= 1.25f / (IADC_getReferenceVoltage(allConfigs->configs[config].reference) / 1000.0f);
418 } else {
419 offset *= 1.25f / (allConfigs->configs[config].vRef / 1000.0f);
420 }
421
422 // Compensate offset for systematic offset.
423 offset = (offset * 4.0f) + (640.0f * (256.0f / iOsr));
424
425 // Apply gain error correction.
426 if (scale != 0x80000000U) {
427 offset = (uiGainCAna / 32768.0f) * (offset + 524288.0f) - 524288.0f;
428 }
429
430 iOffset = IADC_ROUND_D2I(-offset);
431 // We only have 18 bits available for OFFSET in SCALE register.
432 // OFFSET is a 2nd complement number.
433 if (iOffset > 131071) { // Positive overflow at 0x0001FFFF ?
434 scale |= 0x1FFFFU;
435 } else if (iOffset < -131072) { // Negative overflow at 0xFFFE0000 ?
436 scale |= 0x20000U;
437 } else {
438 scale |= (uint32_t)iOffset & 0x3FFFFU;
439 }
440 iadc->CFG[config].SCALE = scale;
441 break;
442
443 #if defined(_IADC_CFG_ADCMODE_HIGHACCURACY)
444 case iadcCfgModeHighAccuracy:
445 // Get reference voltage in volts
446 refVoltage = IADC_getReferenceVoltage(allConfigs->configs[config].reference) / 1000.0f;
447
448 // Get OSR from config register
449 osrValue = (iadc->CFG[config].CFG & _IADC_CFG_OSRHA_MASK) >> _IADC_CFG_OSRHA_SHIFT;
450
451 // 1. Calculate gain correction
452 if ((uint32_t)osrHiAcc[osrValue] == 92U) {
453 // for OSR = 92, gainSysHiAcc = 0.957457
454 gainSysHiAcc = 0.957457;
455 } else {
456 // for OSR != 92, gainSysHiAcc = OSR/(OSR + 1)
457 gainSysHiAcc = osrHiAcc[osrValue] / (osrHiAcc[osrValue] + 1.0f);
458 }
459 anaGain = (float) uiGainCAna / 32768.0f * gainSysHiAcc;
460 anaGainRound = IADC_ROUND_D2I(32768.0f * anaGain);
461 IADC0->CFG[config].SCALE &= ~_IADC_SCALE_MASK;
462
463 // Write GAIN3MSB
464 if ((uint32_t)anaGainRound & 0x8000) {
465 IADC0->CFG[config].SCALE |= IADC_SCALE_GAIN3MSB_GAIN100;
466 } else {
467 IADC0->CFG[config].SCALE |= IADC_SCALE_GAIN3MSB_GAIN011;
468 }
469 // Write GAIN13LSB
470 IADC0->CFG[config].SCALE |= ((uint32_t)anaGainRound & 0x1FFF) << _IADC_SCALE_GAIN13LSB_SHIFT;
471
472 // Get offset value for high accuracy mode from DEVINFO
473 offsetAna1HiAccInt = (uint16_t)(DEVINFO->IADC0OFFSETCAL0 & _DEVINFO_IADC0OFFSETCAL0_OFFSETANA1HIACC_MASK)
474 >> _DEVINFO_IADC0OFFSETCAL0_OFFSETANA1HIACC_SHIFT;
475
476 // 2. OSR adjustment
477 // Get offset from DEVINFO
478 offsetAnaBase = (int16_t)(DEVINFO->IADC0OFFSETCAL0 & _DEVINFO_IADC0OFFSETCAL0_OFFSETANABASE_MASK)
479 >> _DEVINFO_IADC0OFFSETCAL0_OFFSETANABASE_SHIFT;
480 // 1 << osrValue is the same as pow(2, osrValue)
481 offsetAna = offsetAnaBase + (offsetAna1HiAccInt) / (1 << osrValue);
482
483 // 3. Reference voltage adjustment
484 offsetAna = (offsetAna) * (1.25f / refVoltage);
485
486 // 4. Calculate final offset
487 offset2 = 262144.0f / osrHiAcc[osrValue] / (osrHiAcc[osrValue] + 1.0f) + offsetAna * 4.0f + 524288.0f;
488 offset2 = (uiGainCAna / 32768.0f * (-1.0f)) * offset2 + 524288.0f;
489 offsetLong = IADC_ROUND_D2I(offset2);
490
491 // 5. Write offset to scale register
492 IADC0->CFG[config].SCALE |= (uint32_t)(offsetLong & _IADC_SCALE_OFFSET_MASK);
493 break;
494 #endif
495 default:
496 // Mode not supported.
497 EFM_ASSERT(false);
498 break;
499 }
500 iadc->CFG[config].SCHED = ((adcClkPrescale << _IADC_SCHED_PRESCALE_SHIFT)
501 & _IADC_SCHED_PRESCALE_MASK);
502 }
503 IADC_enable(iadc);
504 }
505
506 /***************************************************************************//**
507 * @brief
508 * Initialize IADC scan sequence.
509 *
510 * @details
511 * This function will configure scan mode and set up entries in the scan
512 * table. The scan table mask can be updated by calling IADC_updateScanMask.
513 *
514 * @note
515 * This function will stop any ongoing conversions.
516 *
517 * @note If an even numbered pin is selected for the positive input, the
518 * negative input must use an odd numbered pin and vice versa.
519 *
520 * @param[in] iadc
521 * Pointer to IADC peripheral register block.
522 *
523 * @param[in] init
524 * Pointer to IADC initialization structure.
525 *
526 * @param[in] scanTable
527 * Pointer to IADC scan table structure.
528 ******************************************************************************/
IADC_initScan(IADC_TypeDef * iadc,const IADC_InitScan_t * init,const IADC_ScanTable_t * scanTable)529 void IADC_initScan(IADC_TypeDef *iadc,
530 const IADC_InitScan_t *init,
531 const IADC_ScanTable_t *scanTable)
532 {
533 uint32_t i;
534 uint32_t tmp;
535 EFM_ASSERT(IADC_REF_VALID(iadc));
536 #if defined(_SILICON_LABS_32B_SERIES_2_CONFIG_3)
537 // Errata IADC_E305. Makes sure that DVL is equal or less than 7 entries.
538 EFM_ASSERT(init->dataValidLevel <= iadcFifoCfgDvl7);
539 #endif
540
541 IADC_disable(iadc);
542
543 iadc->SCANFIFOCFG = (((uint32_t) (init->alignment) << _IADC_SCANFIFOCFG_ALIGNMENT_SHIFT)
544 & _IADC_SCANFIFOCFG_ALIGNMENT_MASK)
545 | (init->showId ? IADC_SCANFIFOCFG_SHOWID : 0UL)
546 | (((uint32_t) (init->dataValidLevel) << _IADC_SCANFIFOCFG_DVL_SHIFT)
547 & _IADC_SCANFIFOCFG_DVL_MASK)
548 | (init->fifoDmaWakeup ? IADC_SCANFIFOCFG_DMAWUFIFOSCAN : 0UL);
549
550 // Clear bitfields for scan conversion in IADCn->TRIGGER and set new values
551 iadc->TRIGGER = (iadc->TRIGGER & ~(_IADC_TRIGGER_SCANTRIGSEL_MASK
552 | _IADC_TRIGGER_SCANTRIGACTION_MASK))
553 | (((uint32_t) (init->triggerSelect) << _IADC_TRIGGER_SCANTRIGSEL_SHIFT)
554 & _IADC_TRIGGER_SCANTRIGSEL_MASK)
555 | (((uint32_t) (init->triggerAction) << _IADC_TRIGGER_SCANTRIGACTION_SHIFT)
556 & _IADC_TRIGGER_SCANTRIGACTION_MASK);
557
558 // Write scan table
559 for (i = 0; i < IADC_SCANENTRIES(iadc); i++) {
560 iadc->SCANTABLE[i].SCAN = (((uint32_t) (scanTable->entries[i].negInput) << _IADC_SCAN_PINNEG_SHIFT)
561 & (_IADC_SCAN_PORTNEG_MASK | _IADC_SCAN_PINNEG_MASK))
562 | (((uint32_t) (scanTable->entries[i].posInput) << _IADC_SCAN_PINPOS_SHIFT)
563 & (_IADC_SCAN_PORTPOS_MASK | _IADC_SCAN_PINPOS_MASK))
564 | (((uint32_t) (scanTable->entries[i].configId) << _IADC_SCAN_CFG_SHIFT)
565 & _IADC_SCAN_CFG_MASK)
566 | (scanTable->entries[i].compare ? IADC_SCAN_CMP : 0UL);
567 }
568
569 IADC_enable(iadc);
570
571 // Set scan mask
572 tmp = 0;
573 for (i = 0; i < IADC_SCANENTRIES(iadc); i++) {
574 if (scanTable->entries[i].includeInScan) {
575 tmp |= (1UL << i) << _IADC_MASKREQ_MASKREQ_SHIFT;
576 }
577 }
578 iadc->MASKREQ = tmp;
579
580 if (init->start) {
581 IADC_command(iadc, iadcCmdStartScan);
582 }
583 }
584
585 /***************************************************************************//**
586 * @brief
587 * Initialize single IADC conversion.
588 *
589 * @details
590 * This function will initialize the single conversion and configure the
591 * single input selection.
592 *
593 * @note
594 * This function will stop any ongoing conversions.
595 *
596 * @note If an even numbered pin is selected for the positive input, the
597 * negative input must use an odd numbered pin and vice versa.
598 *
599 * @param[in] iadc
600 * Pointer to IADC peripheral register block.
601 *
602 * @param[in] init
603 * Pointer to IADC single initialization structure.
604 *
605 * @param[in] input
606 * Pointer to IADC single input selection initialization structure.
607 ******************************************************************************/
IADC_initSingle(IADC_TypeDef * iadc,const IADC_InitSingle_t * init,const IADC_SingleInput_t * input)608 void IADC_initSingle(IADC_TypeDef *iadc,
609 const IADC_InitSingle_t *init,
610 const IADC_SingleInput_t *input)
611 {
612 EFM_ASSERT(IADC_REF_VALID(iadc));
613 #if defined(_SILICON_LABS_32B_SERIES_2_CONFIG_3)
614 // Errata IADC_E305. Makes sure that DVL is equal or less than 7 entries.
615 EFM_ASSERT(init->dataValidLevel <= iadcFifoCfgDvl7);
616 #endif
617 IADC_disable(iadc);
618
619 iadc->SINGLEFIFOCFG = (((uint32_t) (init->alignment) << _IADC_SINGLEFIFOCFG_ALIGNMENT_SHIFT)
620 & _IADC_SINGLEFIFOCFG_ALIGNMENT_MASK)
621 | (init->showId ? IADC_SINGLEFIFOCFG_SHOWID : 0UL)
622 | (((uint32_t) (init->dataValidLevel) << _IADC_SINGLEFIFOCFG_DVL_SHIFT)
623 & _IADC_SINGLEFIFOCFG_DVL_MASK)
624 | (init->fifoDmaWakeup ? IADC_SINGLEFIFOCFG_DMAWUFIFOSINGLE : 0UL);
625
626 // Clear bitfields for single conversion in IADCn->TRIGGER and set new values
627 iadc->TRIGGER = (iadc->TRIGGER & ~(_IADC_TRIGGER_SINGLETRIGSEL_MASK
628 | _IADC_TRIGGER_SINGLETRIGACTION_MASK
629 | _IADC_TRIGGER_SINGLETAILGATE_MASK))
630 | (((uint32_t) (init->triggerSelect) << _IADC_TRIGGER_SINGLETRIGSEL_SHIFT)
631 & _IADC_TRIGGER_SINGLETRIGSEL_MASK)
632 | (((uint32_t) (init->triggerAction) << _IADC_TRIGGER_SINGLETRIGACTION_SHIFT)
633 & _IADC_TRIGGER_SINGLETRIGACTION_MASK)
634 | (init->singleTailgate ? IADC_TRIGGER_SINGLETAILGATE : 0UL);
635
636 IADC_updateSingleInput(iadc, input);
637
638 IADC_enable(iadc);
639
640 if (init->start) {
641 IADC_command(iadc, iadcCmdStartSingle);
642 }
643 }
644
645 /***************************************************************************//**
646 * @brief
647 * Update IADC single input selection.
648 *
649 * @details
650 * This function updates the single input selection. The function can be
651 * called while single and/or scan conversions are ongoing and the new input
652 * configuration will take place on the next single conversion.
653 *
654 * @note If an even numbered pin is selected for the positive input, the
655 * negative input must use an odd numbered pin and vice versa.
656 *
657 * @param[in] iadc
658 * Pointer to IADC peripheral register block.
659 *
660 * @param[in] input
661 * Pointer to single input selection structure.
662 ******************************************************************************/
IADC_updateSingleInput(IADC_TypeDef * iadc,const IADC_SingleInput_t * input)663 void IADC_updateSingleInput(IADC_TypeDef *iadc,
664 const IADC_SingleInput_t *input)
665 {
666 bool enabled;
667
668 EFM_ASSERT(IADC_REF_VALID(iadc));
669
670 enabled = (iadc->EN & IADC_EN_EN) != 0UL;
671
672 // IADCn->SINGLE has WSYNC type and can only be written while enabled
673 IADC_enable(iadc);
674
675 iadc->SINGLE = (((uint32_t) (input->negInput) << _IADC_SINGLE_PINNEG_SHIFT)
676 & (_IADC_SINGLE_PORTNEG_MASK | _IADC_SINGLE_PINNEG_MASK))
677 | (((uint32_t) (input->posInput) << _IADC_SINGLE_PINPOS_SHIFT)
678 & (_IADC_SINGLE_PORTPOS_MASK | _IADC_SINGLE_PINPOS_MASK))
679 | (((uint32_t) (input->configId) << _IADC_SINGLE_CFG_SHIFT)
680 & _IADC_SINGLE_CFG_MASK)
681 | (input->compare ? IADC_SINGLE_CMP : 0UL);
682
683 // Restore enabled state
684 if (!enabled) {
685 IADC_disable(iadc);
686 }
687 }
688
689 /***************************************************************************//**
690 * @brief
691 * Set mask of IADC scan table entries to include in scan.
692 *
693 * @details
694 * Set mask of scan table entries to include in next scan. This function
695 * can be called while scan conversions are ongoing, but the new scan mask
696 * will take effect once the ongoing scan is completed.
697 *
698 * @param[in] iadc
699 * Pointer to IADC peripheral register block.
700 *
701 * @param[in] mask
702 * Mask of scan table entries to include in scan.
703 ******************************************************************************/
IADC_setScanMask(IADC_TypeDef * iadc,uint32_t mask)704 void IADC_setScanMask(IADC_TypeDef *iadc, uint32_t mask)
705 {
706 bool enabled;
707
708 EFM_ASSERT(IADC_REF_VALID(iadc));
709
710 EFM_ASSERT(mask <= ((1UL << IADC_SCANENTRIES(iadc)) - 1UL));
711
712 enabled = (iadc->EN & IADC_EN_EN) != 0UL;
713
714 // IADC must be enabled to update scan table mask
715 IADC_enable(iadc);
716
717 iadc->MASKREQ = (mask << _IADC_MASKREQ_MASKREQ_SHIFT)
718 & _IADC_MASKREQ_MASKREQ_MASK;
719
720 // Restore enabled state
721 if (!enabled) {
722 IADC_disable(iadc);
723 }
724 }
725
726 /***************************************************************************//**
727 * @brief
728 * Add/update entry in scan table.
729 *
730 * @details
731 * This function will update or add an entry in the scan table with a specific
732 * ID.
733 *
734 * @note
735 * This function will stop any ongoing conversions.
736 *
737 * @param[in] iadc
738 * Pointer to IADC peripheral register block.
739 *
740 * @param[in] id
741 * ID of scan table entry to add.
742 *
743 * @param[in] entry
744 * Pointer to scan table entry structure.
745 ******************************************************************************/
IADC_updateScanEntry(IADC_TypeDef * iadc,uint8_t id,IADC_ScanTableEntry_t * entry)746 void IADC_updateScanEntry(IADC_TypeDef *iadc,
747 uint8_t id,
748 IADC_ScanTableEntry_t *entry)
749 {
750 bool enabled;
751
752 EFM_ASSERT(IADC_REF_VALID(iadc));
753
754 enabled = (iadc->EN & IADC_EN_EN) != 0UL;
755
756 // IADC must be disabled to update scan table
757 IADC_disable(iadc);
758
759 // Update entry in scan table
760 iadc->SCANTABLE[id].SCAN = (((uint32_t) (entry->negInput) << _IADC_SCAN_PINNEG_SHIFT)
761 & (_IADC_SCAN_PORTNEG_MASK | _IADC_SCAN_PINNEG_MASK))
762 | (((uint32_t) (entry->posInput) << _IADC_SCAN_PINPOS_SHIFT)
763 & (_IADC_SCAN_PORTPOS_MASK | _IADC_SCAN_PINPOS_MASK))
764 | (((uint32_t) (entry->configId) << _IADC_SCAN_CFG_SHIFT)
765 & _IADC_SCAN_CFG_MASK)
766 | (entry->compare ? IADC_SCAN_CMP : 0UL);
767
768 // IADC must be enabled to update scan table mask
769 IADC_enable(iadc);
770
771 if (entry->includeInScan) {
772 iadc->MASKREQ_SET = (1UL << (id & 0x1FUL)) << _IADC_MASKREQ_MASKREQ_SHIFT;
773 } else {
774 iadc->MASKREQ_CLR = (1UL << (id & 0x1FUL)) << _IADC_MASKREQ_MASKREQ_SHIFT;
775 }
776
777 // Restore enabled state
778 if (!enabled) {
779 IADC_disable(iadc);
780 }
781 }
782
783 /***************************************************************************//**
784 * @brief
785 * Reset IADC to same state as after a HW reset.
786 *
787 * @param[in] iadc
788 * Pointer to IADC peripheral register block.
789 ******************************************************************************/
IADC_reset(IADC_TypeDef * iadc)790 void IADC_reset(IADC_TypeDef *iadc)
791 {
792 uint32_t i;
793 EFM_ASSERT(IADC_REF_VALID(iadc));
794
795 // Write all WSYNC registers to reset value while enabled
796 IADC_enable(iadc);
797
798 // Stop conversions and timer, before resetting other registers.
799 iadc->CMD = IADC_CMD_SINGLESTOP | IADC_CMD_SCANSTOP | IADC_CMD_TIMERDIS;
800
801 // Wait for all IADC operations to stop
802 while ((iadc->STATUS & (IADC_STATUS_CONVERTING
803 | IADC_STATUS_SCANQUEUEPENDING
804 | IADC_STATUS_SINGLEQUEUEPENDING
805 | IADC_STATUS_TIMERACTIVE))
806 != 0UL) {
807 }
808
809 // Reset all WSYNC registers
810 iadc->MASKREQ = _IADC_MASKREQ_RESETVALUE;
811 iadc->SINGLE = _IADC_SINGLE_RESETVALUE;
812
813 // Wait for SINGLE and MASQREQ writes to propagate to working registers
814 while ((iadc->STATUS & (IADC_STATUS_MASKREQWRITEPENDING
815 | IADC_STATUS_SINGLEWRITEPENDING))
816 != 0UL) {
817 }
818
819 // Pull from FIFOs until they are empty
820
821 // Errata IADC_E305: Check SINGLEFIFOSTAT to make sure that SINGLEFIFO is getting emptied in case
822 // where STATUS register is incorrect.
823 while (((iadc->STATUS & IADC_STATUS_SINGLEFIFODV) != 0UL) || (iadc->SINGLEFIFOSTAT > 0)) {
824 (void) IADC_pullSingleFifoData(iadc);
825 }
826
827 // Errata IADC_E305: check SCANFIFOSTAT to make sure that SCANFIFO is getting emptied in case
828 // where STATUS register is incorrect.
829 while (((iadc->STATUS & IADC_STATUS_SCANFIFODV) != 0UL) || (iadc->SCANFIFOSTAT > 0)) {
830 (void) IADC_pullScanFifoData(iadc);
831 }
832
833 // Read data registers to clear data valid flags
834 (void) IADC_readSingleData(iadc);
835 (void) IADC_readScanData(iadc);
836
837 // Write all WSTATIC registers to reset value while disabled
838 IADC_disable(iadc);
839
840 // Reset all WSTATIC registers
841 iadc->CTRL = _IADC_CTRL_RESETVALUE;
842 iadc->TIMER = _IADC_TIMER_RESETVALUE;
843 iadc->TRIGGER = _IADC_TRIGGER_RESETVALUE;
844
845 iadc->CMPTHR = _IADC_CMPTHR_RESETVALUE;
846 iadc->SINGLEFIFOCFG = _IADC_SINGLEFIFOCFG_RESETVALUE;
847 iadc->SCANFIFOCFG = _IADC_SCANFIFOCFG_RESETVALUE;
848
849 for (i = 0; i < IADC_CONFIGNUM(IADC_NUM(iadc)); i++) {
850 iadc->CFG[i].CFG = _IADC_CFG_RESETVALUE;
851 iadc->CFG[i].SCALE = _IADC_SCALE_RESETVALUE;
852 iadc->CFG[i].SCHED = _IADC_SCHED_RESETVALUE;
853 }
854
855 for (i = 0; i < IADC_SCANENTRIES(iadc); i++) {
856 iadc->SCANTABLE[i].SCAN = _IADC_SCAN_RESETVALUE;
857 }
858
859 // Clear interrupt flags and disable interrupts
860 IADC_clearInt(iadc, _IADC_IF_MASK);
861 IADC_disableInt(iadc, _IADC_IEN_MASK);
862 }
863
864 /***************************************************************************//**
865 * @brief
866 * Calculate timebase value in order to get a timebase providing at least 1us.
867 *
868 * @param[in] iadc
869 * Pointer to IADC peripheral register block.
870 *
871 * @param[in] srcClkFreq Frequency in Hz of reference CLK_SRC_ADC clock. Set to 0 to
872 * derive srcClkFreq from CLK_CMU_ADC and prescaler HSCLKRATE.
873 *
874 * @return
875 * Timebase value to use for IADC in order to achieve at least 1 us.
876 ******************************************************************************/
IADC_calcTimebase(IADC_TypeDef * iadc,uint32_t srcClkFreq)877 uint8_t IADC_calcTimebase(IADC_TypeDef *iadc, uint32_t srcClkFreq)
878 {
879 EFM_ASSERT(IADC_REF_VALID(iadc));
880
881 if (srcClkFreq == 0UL) {
882 // CLK_SRC_ADC is derived from CLK_CMU_ADC, and must be no faster than 40 MHz. Therefore we set
883 // srcClkFreq's original value to CLK_CMU_ADC before evaluating the prescaling conditions.
884 srcClkFreq = CMU_ClockFreqGet(cmuClock_IADC0);
885
886 // Just in case, make sure we get non-zero frequency for below calculation
887 if (srcClkFreq == 0UL) {
888 srcClkFreq = 1;
889 }
890 // If srcClkFreq is greater than 40MHz, then divide by the prescaler HSCLKRATE
891 if (srcClkFreq > IADC_CLK_MAX_FREQ) {
892 uint32_t prescaler = (uint32_t)(IADC0->CTRL & _IADC_CTRL_HSCLKRATE_MASK) >> _IADC_CTRL_HSCLKRATE_SHIFT;
893 srcClkFreq /= (prescaler + 1);
894 }
895 }
896
897 // Determine number of ADCCLK cycle >= 1us
898 srcClkFreq += 999999UL;
899 srcClkFreq /= 1000000UL;
900
901 // Convert to N+1 format
902 srcClkFreq -= 1UL;
903
904 // Limit to max allowed register setting
905 srcClkFreq = SL_MIN(srcClkFreq, (_IADC_CTRL_TIMEBASE_MASK >> _IADC_CTRL_TIMEBASE_SHIFT));
906
907 // Return timebase value
908 return (uint8_t) srcClkFreq;
909 }
910
911 /***************************************************************************//**
912 * @brief
913 * Calculate prescaler for CLK_SRC_ADC high speed clock
914 *
915 * @details
916 * The IADC high speed clock is given by: CLK_SRC_ADC / (srcClkPrescaler + 1).
917 *
918 * @param[in] iadc
919 * Pointer to IADC peripheral register block.
920 *
921 * @param[in] srcClkFreq CLK_SRC_ADC frequency wanted. The frequency will
922 * automatically be adjusted to be within valid range according to reference
923 * manual.
924 *
925 * @param[in] cmuClkFreq Frequency in Hz of reference CLK_CMU_ADC. Set to 0
926 * to use currently defined CMU clock setting for the IADC.
927 *
928 * @return
929 * Divider value to use for IADC in order to achieve a high speed clock value
930 * <= @p srcClkFreq.
931 ******************************************************************************/
IADC_calcSrcClkPrescale(IADC_TypeDef * iadc,uint32_t srcClkFreq,uint32_t cmuClkFreq)932 uint8_t IADC_calcSrcClkPrescale(IADC_TypeDef *iadc,
933 uint32_t srcClkFreq,
934 uint32_t cmuClkFreq)
935 {
936 uint32_t ret;
937
938 EFM_ASSERT(IADC_REF_VALID(iadc));
939 EFM_ASSERT(srcClkFreq);
940
941 // Make sure wanted CLK_SRC_ADC clock is below max allowed frequency
942 srcClkFreq = SL_MIN(srcClkFreq, IADC_CLK_MAX_FREQ);
943
944 // Use current CLK_CMU_ADC frequency?
945 if (cmuClkFreq == 0UL) {
946 cmuClkFreq = CMU_ClockFreqGet(IADC_CMU_CLOCK(iadc));
947 }
948
949 ret = (cmuClkFreq + srcClkFreq - 1UL) / srcClkFreq;
950 if (ret != 0UL) {
951 ret--;
952 }
953
954 // Limit to max allowed register setting
955 if (ret > _IADC_CTRL_HSCLKRATE_DIV4) {
956 ret = _IADC_CTRL_HSCLKRATE_DIV4;
957 }
958
959 return (uint8_t)ret;
960 }
961
962 /***************************************************************************//**
963 * @brief
964 * Calculate prescaler for ADC_CLK clock.
965 *
966 * @details
967 * The ADC_CLK is given by: CLK_SRC_ADC / (adcClkprescale + 1).
968 *
969 * @param[in] iadc
970 * Pointer to IADC peripheral register block.
971 *
972 * @param[in] adcClkFreq ADC_CLK frequency wanted. The frequency will
973 * automatically be adjusted to be within valid range according to reference
974 * manual.
975 *
976 * @param[in] cmuClkFreq Frequency in Hz of CLK_CMU_ADC Set to 0 to
977 * use currently defined IADC clock setting (in CMU).
978 *
979 * @param[in] adcMode Mode for IADC config.
980 *
981 * @param[in] srcClkPrescaler Precaler setting for ADC_CLK
982 *
983 * @return
984 * Divider value to use for IADC in order to achieve a ADC_CLK frequency
985 * <= @p adcClkFreq.
986 ******************************************************************************/
IADC_calcAdcClkPrescale(IADC_TypeDef * iadc,uint32_t adcClkFreq,uint32_t cmuClkFreq,IADC_CfgAdcMode_t adcMode,uint8_t srcClkPrescaler)987 uint32_t IADC_calcAdcClkPrescale(IADC_TypeDef *iadc,
988 uint32_t adcClkFreq,
989 uint32_t cmuClkFreq,
990 IADC_CfgAdcMode_t adcMode,
991 uint8_t srcClkPrescaler)
992 {
993 uint32_t ret;
994 uint32_t resFreq;
995
996 EFM_ASSERT(IADC_REF_VALID(iadc));
997 EFM_ASSERT(adcClkFreq);
998
999 // Make sure wanted analog clock is below max allowed frequency for the given
1000 // mode.
1001 if (adcClkFreq > IADC_ANA_CLK_MAX_FREQ(adcMode)) {
1002 adcClkFreq = IADC_ANA_CLK_MAX_FREQ(adcMode);
1003 }
1004
1005 // Use current CLK_CMU_ADC frequency?
1006 if (cmuClkFreq == 0UL) {
1007 resFreq = CMU_ClockFreqGet(IADC_CMU_CLOCK(iadc));
1008 } else {
1009 resFreq = cmuClkFreq;
1010 }
1011
1012 // Apply CLK_SRC_ADC prescaler
1013 resFreq /= srcClkPrescaler + 1UL;
1014
1015 ret = (resFreq + adcClkFreq - 1UL) / adcClkFreq;
1016 if (ret != 0UL) {
1017 ret--;
1018 }
1019
1020 // Limit to max allowed register setting
1021 ret = SL_MIN(ret, (_IADC_SCHED_PRESCALE_MASK >> _IADC_SCHED_PRESCALE_SHIFT));
1022
1023 return (uint16_t)ret;
1024 }
1025
1026 /***************************************************************************//**
1027 * @brief
1028 * Pull result from single data FIFO. The result struct includes both the data
1029 * and the ID (0x20) if showId was set when initializing single mode.
1030 *
1031 * @note
1032 * Check data valid flag before calling this function.
1033 *
1034 * @param[in] iadc
1035 * Pointer to IADC peripheral register block.
1036 *
1037 * @return
1038 * Single conversion result struct holding data and id.
1039 ******************************************************************************/
IADC_pullSingleFifoResult(IADC_TypeDef * iadc)1040 IADC_Result_t IADC_pullSingleFifoResult(IADC_TypeDef *iadc)
1041 {
1042 uint32_t alignment = (iadc->SINGLEFIFOCFG & _IADC_SINGLEFIFOCFG_ALIGNMENT_MASK)
1043 >> _IADC_SINGLEFIFOCFG_ALIGNMENT_SHIFT;
1044 return IADC_ConvertRawDataToResult(iadc->SINGLEFIFODATA,
1045 (IADC_Alignment_t) alignment);
1046 }
1047
1048 /***************************************************************************//**
1049 * @brief
1050 * Read most recent single conversion result. The result struct includes both
1051 * the data and the ID (0x20) if showId was set when initializing single mode.
1052 * Calling this function will not affect the state of the single data FIFO.
1053 *
1054 * @note
1055 * Check data valid flag before calling this function.
1056 *
1057 * @param[in] iadc
1058 * Pointer to IADC peripheral register block.
1059 *
1060 * @return
1061 * Single conversion result struct holding data and id.
1062 ******************************************************************************/
IADC_readSingleResult(IADC_TypeDef * iadc)1063 IADC_Result_t IADC_readSingleResult(IADC_TypeDef *iadc)
1064 {
1065 uint32_t alignment = (iadc->SINGLEFIFOCFG & _IADC_SINGLEFIFOCFG_ALIGNMENT_MASK)
1066 >> _IADC_SINGLEFIFOCFG_ALIGNMENT_SHIFT;
1067 return IADC_ConvertRawDataToResult(iadc->SINGLEDATA,
1068 (IADC_Alignment_t) alignment);
1069 }
1070
1071 /***************************************************************************//**
1072 * @brief
1073 * Pull result from scan data FIFO. The result struct includes both the data
1074 * and the ID (0x20) if showId was set when initializing scan entry.
1075 *
1076 * @note
1077 * Check data valid flag before calling this function.
1078 *
1079 * @param[in] iadc
1080 * Pointer to IADC peripheral register block.
1081 *
1082 * @return
1083 * Scan conversion result struct holding data and id.
1084 ******************************************************************************/
IADC_pullScanFifoResult(IADC_TypeDef * iadc)1085 IADC_Result_t IADC_pullScanFifoResult(IADC_TypeDef *iadc)
1086 {
1087 uint32_t alignment = (iadc->SCANFIFOCFG & _IADC_SCANFIFOCFG_ALIGNMENT_MASK)
1088 >> _IADC_SCANFIFOCFG_ALIGNMENT_SHIFT;
1089 return IADC_ConvertRawDataToResult(iadc->SCANFIFODATA,
1090 (IADC_Alignment_t) alignment);
1091 }
1092
1093 /***************************************************************************//**
1094 * @brief
1095 * Read most recent scan conversion result. The result struct includes both
1096 * the data and the ID (0x20) if showId was set when initializing scan entry.
1097 * Calling this function will not affect the state of the scan data FIFO.
1098 *
1099 * @note
1100 * Check data valid flag before calling this function.
1101 *
1102 * @param[in] iadc
1103 * Pointer to IADC peripheral register block.
1104 *
1105 * @return
1106 * Scan conversion result struct holding data and id.
1107 ******************************************************************************/
IADC_readScanResult(IADC_TypeDef * iadc)1108 IADC_Result_t IADC_readScanResult(IADC_TypeDef *iadc)
1109 {
1110 uint32_t alignment = (iadc->SCANFIFOCFG & _IADC_SCANFIFOCFG_ALIGNMENT_MASK)
1111 >> _IADC_SCANFIFOCFG_ALIGNMENT_SHIFT;
1112 return IADC_ConvertRawDataToResult(iadc->SCANDATA,
1113 (IADC_Alignment_t) alignment);
1114 }
1115
1116 /***************************************************************************//**
1117 * @brief
1118 * Get reference voltage selection.
1119 *
1120 * @param[in] reference
1121 * IADC Reference selection.
1122 *
1123 * @return
1124 * IADC reference voltage in millivolts.
1125 ******************************************************************************/
IADC_getReferenceVoltage(IADC_CfgReference_t reference)1126 uint32_t IADC_getReferenceVoltage(IADC_CfgReference_t reference)
1127 {
1128 uint32_t refVoltage = 0;
1129 // Get chip revision
1130 SYSTEM_ChipRevision_TypeDef chipRev;
1131 SYSTEM_ChipRevisionGet(&chipRev);
1132 switch (reference) {
1133 case iadcCfgReferenceInt1V2:
1134 #if defined(_SILICON_LABS_32B_SERIES_2_CONFIG_1)
1135 if (chipRev.major == 1UL) {
1136 refVoltage = 1210;
1137 } else {
1138 refVoltage = 1180;
1139 }
1140 #else
1141 refVoltage = 1210;
1142 #endif
1143 break;
1144 case iadcCfgReferenceExt1V25:
1145 refVoltage = 1250;
1146 break;
1147 #if defined(_IADC_CFG_REFSEL_VREF2P5)
1148 case iadcCfgReferenceExt2V5:
1149 refVoltage = 2500;
1150 break;
1151 #endif
1152 case iadcCfgReferenceVddx:
1153 refVoltage = 3000;
1154 break;
1155 case iadcCfgReferenceVddX0P8Buf:
1156 refVoltage = 2400;
1157 break;
1158 #if defined(_IADC_CFG_REFSEL_VREFBUF)
1159 case iadcCfgReferenceBuf:
1160 refVoltage = 12500;
1161 break;
1162 #endif
1163 #if defined(_IADC_CFG_REFSEL_VREF0P8BUF)
1164 case iadcCfgReference0P8Buf:
1165 refVoltage = 1000;
1166 break;
1167 #endif
1168 default:
1169 EFM_ASSERT(false);
1170 break;
1171 }
1172
1173 return refVoltage;
1174 }
1175
1176 /** @} (end addtogroup iadc) */
1177 /** @} (end addtogroup emlib) */
1178 #endif /* defined(IADC_COUNT) && (IADC_COUNT > 0) */
1179