1 /*
2  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  *
6  * Licensed under the Apache License, Version 2.0 (the License); you may
7  * not use this file except in compliance with the License.
8  * You may obtain a copy of the License at
9  *
10  * www.apache.org/licenses/LICENSE-2.0
11  *
12  * Unless required by applicable law or agreed to in writing, software
13  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
14  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15  * See the License for the specific language governing permissions and
16  * limitations under the License.
17  */
18 
19 /* ----------------------------------------------------------------------
20  * Project:      CMSIS NN Library
21  * Title:        arm_softmax_q15.c
22  * Description:  Q15 softmax function
23  *
24  * $Date:        09. October 2020
25  * $Revision:    V.1.0.1
26  *
27  * Target Processor:  Cortex-M cores
28  *
29  * -------------------------------------------------------------------- */
30 
31 #include "arm_nnfunctions.h"
32 
33 /**
34  *  @ingroup groupNN
35  */
36 
37 /**
38  * @addtogroup Softmax
39  * @{
40  */
41 
42 /**
43  * @brief Q15 softmax function
44  * @param[in]       vec_in      pointer to input vector
45  * @param[in]       dim_vec     input vector dimention
46  * @param[out]      p_out       pointer to output vector
47  *
48  * @details
49  *
50  *  Here, instead of typical e based softmax, we use
51  *  2-based softmax, i.e.,:
52  *
53  *  y_i = 2^(x_i) / sum(2^x_j)
54  *
55  *  The relative output will be different here.
56  *  But mathematically, the gradient will be the same
57  *  with a log(2) scaling factor.
58  *
59  */
60 
arm_softmax_q15(const q15_t * vec_in,const uint16_t dim_vec,q15_t * p_out)61 void arm_softmax_q15(const q15_t *vec_in, const uint16_t dim_vec, q15_t *p_out)
62 {
63     q31_t sum;
64     int16_t i;
65     uint8_t shift;
66     q31_t base;
67     base = -1 * 0x100000;
68     for (i = 0; i < dim_vec; i++)
69     {
70         if (vec_in[i] > base)
71         {
72             base = vec_in[i];
73         }
74     }
75 
76     /* we ignore really small values
77      * anyway, they will be 0 after shrinking
78      * to q15_t
79      */
80     base = base - 16;
81 
82     sum = 0;
83 
84     for (i = 0; i < dim_vec; i++)
85     {
86         if (vec_in[i] > base)
87         {
88             shift = (uint8_t)__USAT(vec_in[i] - base, 5);
89             sum += 0x1 << shift;
90         }
91     }
92 
93     /* This is effectively (0x1 << 32) / sum */
94     int64_t div_base = 0x100000000LL;
95     int output_base = (int32_t)(div_base / sum);
96 
97     /* Final confidence will be output_base >> ( 17 - (vec_in[i] - base) )
98      * so 32768 (0x1<<15) -> 100% confidence when sum = 0x1 << 16, output_base = 0x1 << 16
99      * and vec_in[i]-base = 16
100      */
101     for (i = 0; i < dim_vec; i++)
102     {
103         if (vec_in[i] > base)
104         {
105             /* Here minimum value of 17+base-vec[i] will be 1 */
106             shift = (uint8_t)__USAT(17 + base - vec_in[i], 5);
107             p_out[i] = (q15_t)__SSAT((output_base >> shift), 16);
108         }
109         else
110         {
111             p_out[i] = 0;
112         }
113     }
114 }
115 
116 /**
117  * @} end of Softmax group
118  */
119