1 /*
2 * Copyright (c) 2015 Intel Corporation
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 #include <zephyr/ztest.h>
8 #include <zephyr/sys/atomic.h>
9
10 /* convenience macro - return either 64-bit or 32-bit value */
11 #define ATOMIC_WORD(val_if_64, val_if_32) \
12 ((atomic_t)((sizeof(void *) == sizeof(uint64_t)) ? (val_if_64) : (val_if_32)))
13
14 /* an example of the number of atomic bit in an array */
15 #define NUM_FLAG_BITS 100
16
17 /* set test_cycle 1000us * 20 = 20ms */
18 #define TEST_CYCLE 20
19
20 #define THREADS_NUM 2
21
22 #define STACK_SIZE (512 + CONFIG_TEST_EXTRA_STACK_SIZE)
23
24 static K_THREAD_STACK_ARRAY_DEFINE(stack, THREADS_NUM, STACK_SIZE);
25
26 static struct k_thread thread[THREADS_NUM];
27
28 atomic_t total_atomic;
29
30 /**
31 * @addtogroup kernel_common_tests
32 * @{
33 */
34
35 /**
36 * @brief Verify atomic functionalities
37 * @details
38 * Test Objective:
39 * - Test the function of the atomic operation API is correct.
40 *
41 * Test techniques:
42 * - Dynamic analysis and testing
43 * - Functional and black box testing
44 * - Interface testing
45 *
46 * Prerequisite Conditions:
47 * - N/A
48 *
49 * Input Specifications:
50 * - N/A
51 *
52 * Test Procedure:
53 * -# Call the API interface of the following atomic operations in turn,
54 * judge the change of function return value and target operands.
55 * - atomic_cas()
56 * - atomic_ptr_cas()
57 * - atomic_add()
58 * - atomic_sub()
59 * - atomic_inc()
60 * - atomic_dec()
61 * - atomic_get()
62 * - atomic_ptr_get()
63 * - atomic_set()
64 * - atomic_ptr_set()
65 * - atomic_clear()
66 * - atomic_ptr_clear()
67 * - atomic_or()
68 * - atomic_xor()
69 * - atomic_and()
70 * - atomic_nand()
71 * - atomic_test_bit()
72 * - atomic_test_and_clear_bit()
73 * - atomic_test_and_set_bit()
74 * - atomic_clear_bit()
75 * - atomic_set_bit()
76 * - atomic_set_bit_to()
77 * - ATOMIC_DEFINE
78 *
79 * Expected Test Result:
80 * - The change of function return value and target operands is correct.
81 *
82 * Pass/Fail Criteria:
83 * - Successful if check points in test procedure are all passed, otherwise failure.
84 *
85 * Assumptions and Constraints:
86 * - N/A
87 *
88 * @see atomic_cas(), atomic_add(), atomic_sub(),
89 * atomic_inc(), atomic_dec(), atomic_get(), atomic_set(),
90 * atomic_clear(), atomic_or(), atomic_and(), atomic_xor(),
91 * atomic_nand(), atomic_test_bit(), atomic_test_and_clear_bit(),
92 * atomic_test_and_set_bit(), atomic_clear_bit(), atomic_set_bit(),
93 * ATOMIC_DEFINE
94 *
95 * @ingroup kernel_common_tests
96 */
ZTEST_USER(atomic,test_atomic)97 ZTEST_USER(atomic, test_atomic)
98 {
99 int i;
100
101 atomic_t target, orig;
102 atomic_ptr_t ptr_target;
103 atomic_val_t value;
104 atomic_val_t oldvalue;
105 void *ptr_value, *old_ptr_value;
106
107 ATOMIC_DEFINE(flag_bits, NUM_FLAG_BITS) = {0};
108
109 zassert_equal(sizeof(atomic_t), ATOMIC_WORD(sizeof(uint64_t), sizeof(uint32_t)),
110 "sizeof(atomic_t)");
111
112 target = 4;
113 value = 5;
114 oldvalue = 6;
115
116 /* atomic_cas() */
117 zassert_false(atomic_cas(&target, oldvalue, value), "atomic_cas");
118 target = 6;
119 zassert_true(atomic_cas(&target, oldvalue, value), "atomic_cas");
120 zassert_true((target == value), "atomic_cas");
121
122 /* atomic_ptr_cas() */
123 ptr_target = ATOMIC_PTR_INIT((void *)4);
124 ptr_value = (atomic_ptr_val_t)5;
125 old_ptr_value = (atomic_ptr_val_t)6;
126 zassert_false(atomic_ptr_cas(&ptr_target, old_ptr_value, ptr_value),
127 "atomic_ptr_cas");
128 ptr_target = (atomic_ptr_val_t)6;
129 zassert_true(atomic_ptr_cas(&ptr_target, old_ptr_value, ptr_value),
130 "atomic_ptr_cas");
131 zassert_true((ptr_target == ptr_value), "atomic_ptr_cas");
132
133 /* atomic_add() */
134 target = 1;
135 value = 2;
136 zassert_true((atomic_add(&target, value) == 1), "atomic_add");
137 zassert_true((target == 3), "atomic_add");
138 /* Test the atomic_add() function parameters can be negative */
139 target = 2;
140 value = -4;
141 zassert_true((atomic_add(&target, value) == 2), "atomic_add");
142 zassert_true((target == -2), "atomic_add");
143
144 /* atomic_sub() */
145 target = 10;
146 value = 2;
147 zassert_true((atomic_sub(&target, value) == 10), "atomic_sub");
148 zassert_true((target == 8), "atomic_sub");
149 /* Test the atomic_sub() function parameters can be negative */
150 target = 5;
151 value = -4;
152 zassert_true((atomic_sub(&target, value) == 5), "atomic_sub");
153 zassert_true((target == 9), "atomic_sub");
154
155 /* atomic_inc() */
156 target = 5;
157 zassert_true((atomic_inc(&target) == 5), "atomic_inc");
158 zassert_true((target == 6), "atomic_inc");
159
160 /* atomic_dec() */
161 target = 2;
162 zassert_true((atomic_dec(&target) == 2), "atomic_dec");
163 zassert_true((target == 1), "atomic_dec");
164
165 /* atomic_get() */
166 target = 50;
167 zassert_true((atomic_get(&target) == 50), "atomic_get");
168
169 /* atomic_ptr_get() */
170 ptr_target = ATOMIC_PTR_INIT((void *)50);
171 zassert_true((atomic_ptr_get(&ptr_target) == (atomic_ptr_val_t)50),
172 "atomic_ptr_get");
173
174 /* atomic_set() */
175 target = 42;
176 value = 77;
177 zassert_true((atomic_set(&target, value) == 42), "atomic_set");
178 zassert_true((target == value), "atomic_set");
179
180 /* atomic_ptr_set() */
181 ptr_target = ATOMIC_PTR_INIT((void *)42);
182 ptr_value = (atomic_ptr_val_t)77;
183 zassert_true((atomic_ptr_set(&ptr_target, ptr_value) == (atomic_ptr_val_t)42),
184 "atomic_ptr_set");
185 zassert_true((ptr_target == ptr_value), "atomic_ptr_set");
186
187 /* atomic_clear() */
188 target = 100;
189 zassert_true((atomic_clear(&target) == 100), "atomic_clear");
190 zassert_true((target == 0), "atomic_clear");
191
192 /* atomic_ptr_clear() */
193 ptr_target = ATOMIC_PTR_INIT((void *)100);
194 zassert_true((atomic_ptr_clear(&ptr_target) == (atomic_ptr_val_t)100),
195 "atomic_ptr_clear");
196 zassert_true((ptr_target == NULL), "atomic_ptr_clear");
197
198 /* atomic_or() */
199 target = 0xFF00;
200 value = 0x0F0F;
201 zassert_true((atomic_or(&target, value) == 0xFF00), "atomic_or");
202 zassert_true((target == 0xFF0F), "atomic_or");
203
204 /* atomic_xor() */
205 target = 0xFF00;
206 value = 0x0F0F;
207 zassert_true((atomic_xor(&target, value) == 0xFF00), "atomic_xor");
208 zassert_true((target == 0xF00F), "atomic_xor");
209
210 /* atomic_and() */
211 target = 0xFF00;
212 value = 0x0F0F;
213 zassert_true((atomic_and(&target, value) == 0xFF00), "atomic_and");
214 zassert_true((target == 0x0F00), "atomic_and");
215
216
217 /* atomic_nand() */
218 target = 0xFF00;
219 value = 0x0F0F;
220 zassert_true((atomic_nand(&target, value) == 0xFF00), "atomic_nand");
221 zassert_true((target == ATOMIC_WORD(0xFFFFFFFFFFFFF0FF, 0xFFFFF0FF)), "atomic_nand");
222
223 /* atomic_test_bit() */
224 for (i = 0; i < ATOMIC_BITS; i++) {
225 target = ATOMIC_WORD(0x0F0F0F0F0F0F0F0F, 0x0F0F0F0F);
226 zassert_true(!!(atomic_test_bit(&target, i) == !!(target & BIT(i))),
227 "atomic_test_bit");
228 }
229
230 /* atomic_test_and_clear_bit() */
231 for (i = 0; i < ATOMIC_BITS; i++) {
232 orig = ATOMIC_WORD(0x0F0F0F0F0F0F0F0F, 0x0F0F0F0F);
233 target = orig;
234 zassert_true(!!(atomic_test_and_clear_bit(&target, i)) == !!(orig & BIT(i)),
235 "atomic_test_and_clear_bit");
236 zassert_true(target == (orig & ~BIT(i)), "atomic_test_and_clear_bit");
237 }
238
239 /* atomic_test_and_set_bit() */
240 for (i = 0; i < ATOMIC_BITS; i++) {
241 orig = ATOMIC_WORD(0x0F0F0F0F0F0F0F0F, 0x0F0F0F0F);
242 target = orig;
243 zassert_true(!!(atomic_test_and_set_bit(&target, i)) == !!(orig & BIT(i)),
244 "atomic_test_and_set_bit");
245 zassert_true(target == (orig | BIT(i)), "atomic_test_and_set_bit");
246 }
247
248 /* atomic_clear_bit() */
249 for (i = 0; i < ATOMIC_BITS; i++) {
250 orig = ATOMIC_WORD(0x0F0F0F0F0F0F0F0F, 0x0F0F0F0F);
251 target = orig;
252 atomic_clear_bit(&target, i);
253 zassert_true(target == (orig & ~BIT(i)), "atomic_clear_bit");
254 }
255
256 /* atomic_set_bit() */
257 for (i = 0; i < ATOMIC_BITS; i++) {
258 orig = ATOMIC_WORD(0x0F0F0F0F0F0F0F0F, 0x0F0F0F0F);
259 target = orig;
260 atomic_set_bit(&target, i);
261 zassert_true(target == (orig | BIT(i)), "atomic_set_bit");
262 }
263
264 /* atomic_set_bit_to(&target, i, false) */
265 for (i = 0; i < ATOMIC_BITS; i++) {
266 orig = ATOMIC_WORD(0x0F0F0F0F0F0F0F0F, 0x0F0F0F0F);
267 target = orig;
268 atomic_set_bit_to(&target, i, false);
269 zassert_true(target == (orig & ~BIT(i)), "atomic_set_bit_to");
270 }
271
272 /* atomic_set_bit_to(&target, i, true) */
273 for (i = 0; i < ATOMIC_BITS; i++) {
274 orig = ATOMIC_WORD(0x0F0F0F0F0F0F0F0F, 0x0F0F0F0F);
275 target = orig;
276 atomic_set_bit_to(&target, i, true);
277 zassert_true(target == (orig | BIT(i)), "atomic_set_bit_to");
278 }
279
280 /* ATOMIC_DEFINE */
281 for (i = 0; i < NUM_FLAG_BITS; i++) {
282 atomic_set_bit(flag_bits, i);
283 zassert_true(!!atomic_test_bit(flag_bits, i) == !!(1),
284 "Failed to set a single bit in an array of atomic variables");
285 atomic_clear_bit(flag_bits, i);
286 zassert_true(!!atomic_test_bit(flag_bits, i) == !!(0),
287 "Failed to clear a single bit in an array of atomic variables");
288 }
289 }
290
291 /* This helper function will run more the one slice */
atomic_handler(void * p1,void * p2,void * p3)292 void atomic_handler(void *p1, void *p2, void *p3)
293 {
294 ARG_UNUSED(p1);
295 ARG_UNUSED(p2);
296 ARG_UNUSED(p3);
297
298 for (int i = 0; i < TEST_CYCLE; i++) {
299 atomic_inc(&total_atomic);
300 /* Do 1000us busywait to longer the handler execute time */
301 k_busy_wait(1000);
302 }
303 }
304
305 /**
306 * @brief Verify atomic operation with threads
307 *
308 * @details Creat two preempt threads with equal priority to
309 * atomically access the same atomic value. Because these preempt
310 * threads are of equal priority, so enable time slice to make
311 * them scheduled. The thread will execute for some time.
312 * In this time, the two sub threads will be scheduled separately
313 * according to the time slice.
314 *
315 * @ingroup kernel_common_tests
316 */
ZTEST(atomic,test_threads_access_atomic)317 ZTEST(atomic, test_threads_access_atomic)
318 {
319 k_tid_t tid[THREADS_NUM];
320
321 /* enable time slice 1ms at priority 10 */
322 k_sched_time_slice_set(1, K_PRIO_PREEMPT(10));
323
324 for (int i = 0; i < THREADS_NUM; i++) {
325 tid[i] = k_thread_create(&thread[i], stack[i], STACK_SIZE,
326 atomic_handler, NULL, NULL, NULL,
327 K_PRIO_PREEMPT(10), 0, K_NO_WAIT);
328 }
329
330 for (int i = 0; i < THREADS_NUM; i++) {
331 k_thread_join(tid[i], K_FOREVER);
332 }
333
334 /* disable time slice */
335 k_sched_time_slice_set(0, K_PRIO_PREEMPT(10));
336
337 zassert_true(total_atomic == (TEST_CYCLE * THREADS_NUM),
338 "atomic counting failure");
339 }
340
341 /**
342 * @brief Checks that the value of atomic_t will be the same in case of overflow
343 * if incremented in atomic and non-atomic manner
344 *
345 * @details According to C standard the value of a signed variable
346 * is undefined in case of overflow. This test checks that the value
347 * of atomic_t will be the same in case of overflow if incremented in atomic
348 * and non-atomic manner. This allows us to increment an atomic variable
349 * in a non-atomic manner (as long as it is logically safe)
350 * and expect its value to match the result of the similar atomic increment.
351 *
352 * @ingroup kernel_common_tests
353 */
ZTEST(atomic,test_atomic_overflow)354 ZTEST(atomic, test_atomic_overflow)
355 {
356 /* Check overflow over max signed value */
357 uint64_t overflowed_value = (uint64_t)1 << (ATOMIC_BITS - 1);
358 atomic_val_t atomic_value = overflowed_value - 1;
359 atomic_t atomic_var = ATOMIC_INIT(atomic_value);
360
361 atomic_value++;
362 atomic_inc(&atomic_var);
363
364 zassert_true(atomic_value == atomic_get(&atomic_var),
365 "max signed overflow mismatch: %lx/%lx",
366 atomic_value, atomic_get(&atomic_var));
367 zassert_true(atomic_value == (atomic_val_t)overflowed_value,
368 "unexpected value after overflow: %lx, expected: %lx",
369 atomic_value, (atomic_val_t)overflowed_value);
370
371 /* Check overflow over max unsigned value */
372 atomic_value = -1;
373 atomic_var = ATOMIC_INIT(atomic_value);
374
375 atomic_value++;
376 atomic_inc(&atomic_var);
377
378 zassert_true(atomic_value == atomic_get(&atomic_var),
379 "max unsigned overflow mismatch: %lx/%lx",
380 atomic_value, atomic_get(&atomic_var));
381 zassert_true(atomic_value == 0,
382 "unexpected value after overflow: %lx, expected: 0",
383 atomic_value);
384 }
385
386 extern void *common_setup(void);
387 ZTEST_SUITE(atomic, NULL, common_setup, NULL, NULL, NULL);
388 /**
389 * @}
390 */
391