1 /* conn.c - Bluetooth connection handling */
2
3 /*
4 * Copyright (c) 2015-2016 Intel Corporation
5 *
6 * SPDX-License-Identifier: Apache-2.0
7 */
8
9 #include <zephyr/kernel.h>
10 #include <string.h>
11 #include <errno.h>
12 #include <stdbool.h>
13 #include <zephyr/sys/atomic.h>
14 #include <zephyr/sys/byteorder.h>
15 #include <zephyr/sys/check.h>
16 #include <zephyr/sys/iterable_sections.h>
17 #include <zephyr/sys/util.h>
18 #include <zephyr/sys/util_macro.h>
19 #include <zephyr/sys/slist.h>
20 #include <zephyr/debug/stack.h>
21 #include <zephyr/sys/__assert.h>
22
23 #include <zephyr/bluetooth/hci.h>
24 #include <zephyr/bluetooth/bluetooth.h>
25 #include <zephyr/bluetooth/direction.h>
26 #include <zephyr/bluetooth/conn.h>
27 #include <zephyr/drivers/bluetooth/hci_driver.h>
28 #include <zephyr/bluetooth/att.h>
29
30 #include "common/assert.h"
31 #include "common/bt_str.h"
32
33 #include "addr_internal.h"
34 #include "hci_core.h"
35 #include "id.h"
36 #include "adv.h"
37 #include "conn_internal.h"
38 #include "l2cap_internal.h"
39 #include "keys.h"
40 #include "smp.h"
41 #include "ssp.h"
42 #include "att_internal.h"
43 #include "iso_internal.h"
44 #include "direction_internal.h"
45
46 #define LOG_LEVEL CONFIG_BT_CONN_LOG_LEVEL
47 #include <zephyr/logging/log.h>
48 LOG_MODULE_REGISTER(bt_conn);
49
50 struct tx_meta {
51 struct bt_conn_tx *tx;
52 /* This flag indicates if the current buffer has already been partially
53 * sent to the controller (ie, the next fragments should be sent as
54 * continuations).
55 */
56 bool is_cont;
57 /* Indicates whether the ISO PDU contains a timestamp */
58 bool iso_has_ts;
59 };
60
61 BUILD_ASSERT(sizeof(struct tx_meta) == CONFIG_BT_CONN_TX_USER_DATA_SIZE,
62 "User data size is wrong!");
63
64 #define tx_data(buf) ((struct tx_meta *)net_buf_user_data(buf))
65 K_FIFO_DEFINE(free_tx);
66
67 static void tx_free(struct bt_conn_tx *tx);
68
conn_tx_destroy(struct bt_conn * conn,struct bt_conn_tx * tx)69 static void conn_tx_destroy(struct bt_conn *conn, struct bt_conn_tx *tx)
70 {
71 __ASSERT_NO_MSG(tx);
72
73 bt_conn_tx_cb_t cb = tx->cb;
74 void *user_data = tx->user_data;
75
76 /* Free up TX metadata before calling callback in case the callback
77 * tries to allocate metadata
78 */
79 tx_free(tx);
80
81 cb(conn, user_data, -ESHUTDOWN);
82 }
83
84 #if defined(CONFIG_BT_CONN_TX)
85 static void tx_complete_work(struct k_work *work);
86 #endif /* CONFIG_BT_CONN_TX */
87
88 static void notify_recycled_conn_slot(void);
89
90 /* Group Connected BT_CONN only in this */
91 #if defined(CONFIG_BT_CONN)
92 /* Peripheral timeout to initialize Connection Parameter Update procedure */
93 #define CONN_UPDATE_TIMEOUT K_MSEC(CONFIG_BT_CONN_PARAM_UPDATE_TIMEOUT)
94
95 static void deferred_work(struct k_work *work);
96 static void notify_connected(struct bt_conn *conn);
97
98 static struct bt_conn acl_conns[CONFIG_BT_MAX_CONN];
99 NET_BUF_POOL_DEFINE(acl_tx_pool, CONFIG_BT_L2CAP_TX_BUF_COUNT,
100 BT_L2CAP_BUF_SIZE(CONFIG_BT_L2CAP_TX_MTU),
101 CONFIG_BT_CONN_TX_USER_DATA_SIZE, NULL);
102
103 #if CONFIG_BT_L2CAP_TX_FRAG_COUNT > 0
104 /* Dedicated pool for fragment buffers in case queued up TX buffers don't
105 * fit the controllers buffer size. We can't use the acl_tx_pool for the
106 * fragmentation, since it's possible that pool is empty and all buffers
107 * are queued up in the TX queue. In such a situation, trying to allocate
108 * another buffer from the acl_tx_pool would result in a deadlock.
109 */
110 NET_BUF_POOL_FIXED_DEFINE(frag_pool, CONFIG_BT_L2CAP_TX_FRAG_COUNT,
111 BT_BUF_ACL_SIZE(CONFIG_BT_BUF_ACL_TX_SIZE),
112 CONFIG_BT_CONN_TX_USER_DATA_SIZE, NULL);
113
114 #endif /* CONFIG_BT_L2CAP_TX_FRAG_COUNT > 0 */
115
116 #if defined(CONFIG_BT_SMP) || defined(CONFIG_BT_BREDR)
117 const struct bt_conn_auth_cb *bt_auth;
118 sys_slist_t bt_auth_info_cbs = SYS_SLIST_STATIC_INIT(&bt_auth_info_cbs);
119 #endif /* CONFIG_BT_SMP || CONFIG_BT_BREDR */
120
121 static struct bt_conn_cb *callback_list;
122
123 static struct bt_conn_tx conn_tx[CONFIG_BT_CONN_TX_MAX];
124
125 #if defined(CONFIG_BT_BREDR)
126 static int bt_hci_connect_br_cancel(struct bt_conn *conn);
127
128 static struct bt_conn sco_conns[CONFIG_BT_MAX_SCO_CONN];
129 #endif /* CONFIG_BT_BREDR */
130 #endif /* CONFIG_BT_CONN */
131
132 #if defined(CONFIG_BT_ISO)
133 extern struct bt_conn iso_conns[CONFIG_BT_ISO_MAX_CHAN];
134
135 /* Callback TX buffers for ISO */
136 static struct bt_conn_tx iso_tx[CONFIG_BT_ISO_TX_BUF_COUNT];
137
bt_conn_iso_init(void)138 int bt_conn_iso_init(void)
139 {
140 for (size_t i = 0; i < ARRAY_SIZE(iso_tx); i++) {
141 k_fifo_put(&free_tx, &iso_tx[i]);
142 }
143
144 return 0;
145 }
146 #endif /* CONFIG_BT_ISO */
147
bt_conn_get_pkts(struct bt_conn * conn)148 struct k_sem *bt_conn_get_pkts(struct bt_conn *conn)
149 {
150 #if defined(CONFIG_BT_BREDR)
151 if (conn->type == BT_CONN_TYPE_BR || !bt_dev.le.acl_mtu) {
152 return &bt_dev.br.pkts;
153 }
154 #endif /* CONFIG_BT_BREDR */
155
156 #if defined(CONFIG_BT_ISO)
157 /* Use ISO pkts semaphore if LE Read Buffer Size command returned
158 * dedicated ISO buffers.
159 */
160 if (conn->type == BT_CONN_TYPE_ISO) {
161 if (bt_dev.le.iso_mtu && bt_dev.le.iso_limit != 0) {
162 return &bt_dev.le.iso_pkts;
163 }
164
165 return NULL;
166 }
167 #endif /* CONFIG_BT_ISO */
168
169 #if defined(CONFIG_BT_CONN)
170 if (bt_dev.le.acl_mtu) {
171 return &bt_dev.le.acl_pkts;
172 }
173 #endif /* CONFIG_BT_CONN */
174
175 return NULL;
176 }
177
state2str(bt_conn_state_t state)178 static inline const char *state2str(bt_conn_state_t state)
179 {
180 switch (state) {
181 case BT_CONN_DISCONNECTED:
182 return "disconnected";
183 case BT_CONN_DISCONNECT_COMPLETE:
184 return "disconnect-complete";
185 case BT_CONN_CONNECTING_SCAN:
186 return "connecting-scan";
187 case BT_CONN_CONNECTING_DIR_ADV:
188 return "connecting-dir-adv";
189 case BT_CONN_CONNECTING_ADV:
190 return "connecting-adv";
191 case BT_CONN_CONNECTING_AUTO:
192 return "connecting-auto";
193 case BT_CONN_CONNECTING:
194 return "connecting";
195 case BT_CONN_CONNECTED:
196 return "connected";
197 case BT_CONN_DISCONNECTING:
198 return "disconnecting";
199 default:
200 return "(unknown)";
201 }
202 }
203
tx_free(struct bt_conn_tx * tx)204 static void tx_free(struct bt_conn_tx *tx)
205 {
206 tx->cb = NULL;
207 tx->user_data = NULL;
208 tx->pending_no_cb = 0U;
209 k_fifo_put(&free_tx, tx);
210 }
211
tx_notify(struct bt_conn * conn)212 static void tx_notify(struct bt_conn *conn)
213 {
214 LOG_DBG("conn %p", conn);
215
216 while (1) {
217 struct bt_conn_tx *tx = NULL;
218 unsigned int key;
219 bt_conn_tx_cb_t cb;
220 void *user_data;
221
222 key = irq_lock();
223 if (!sys_slist_is_empty(&conn->tx_complete)) {
224 tx = CONTAINER_OF(sys_slist_get_not_empty(&conn->tx_complete),
225 struct bt_conn_tx, node);
226 }
227 irq_unlock(key);
228
229 if (!tx) {
230 return;
231 }
232
233 LOG_DBG("tx %p cb %p user_data %p", tx, tx->cb, tx->user_data);
234
235 /* Copy over the params */
236 cb = tx->cb;
237 user_data = tx->user_data;
238
239 /* Free up TX notify since there may be user waiting */
240 tx_free(tx);
241
242 /* Run the callback, at this point it should be safe to
243 * allocate new buffers since the TX should have been
244 * unblocked by tx_free.
245 */
246 cb(conn, user_data, 0);
247 }
248 }
249
bt_conn_new(struct bt_conn * conns,size_t size)250 struct bt_conn *bt_conn_new(struct bt_conn *conns, size_t size)
251 {
252 struct bt_conn *conn = NULL;
253 int i;
254
255 for (i = 0; i < size; i++) {
256 if (atomic_cas(&conns[i].ref, 0, 1)) {
257 conn = &conns[i];
258 break;
259 }
260 }
261
262 if (!conn) {
263 return NULL;
264 }
265
266 (void)memset(conn, 0, offsetof(struct bt_conn, ref));
267
268 #if defined(CONFIG_BT_CONN)
269 k_work_init_delayable(&conn->deferred_work, deferred_work);
270 #endif /* CONFIG_BT_CONN */
271 #if defined(CONFIG_BT_CONN_TX)
272 k_work_init(&conn->tx_complete_work, tx_complete_work);
273 #endif /* CONFIG_BT_CONN_TX */
274
275 return conn;
276 }
277
bt_conn_reset_rx_state(struct bt_conn * conn)278 void bt_conn_reset_rx_state(struct bt_conn *conn)
279 {
280 if (!conn->rx) {
281 return;
282 }
283
284 net_buf_unref(conn->rx);
285 conn->rx = NULL;
286 }
287
bt_acl_recv(struct bt_conn * conn,struct net_buf * buf,uint8_t flags)288 static void bt_acl_recv(struct bt_conn *conn, struct net_buf *buf,
289 uint8_t flags)
290 {
291 uint16_t acl_total_len;
292
293 /* Check packet boundary flags */
294 switch (flags) {
295 case BT_ACL_START:
296 if (conn->rx) {
297 LOG_ERR("Unexpected first L2CAP frame");
298 bt_conn_reset_rx_state(conn);
299 }
300
301 LOG_DBG("First, len %u final %u", buf->len,
302 (buf->len < sizeof(uint16_t)) ? 0 : sys_get_le16(buf->data));
303
304 conn->rx = buf;
305 break;
306 case BT_ACL_CONT:
307 if (!conn->rx) {
308 LOG_ERR("Unexpected L2CAP continuation");
309 bt_conn_reset_rx_state(conn);
310 net_buf_unref(buf);
311 return;
312 }
313
314 if (!buf->len) {
315 LOG_DBG("Empty ACL_CONT");
316 net_buf_unref(buf);
317 return;
318 }
319
320 if (buf->len > net_buf_tailroom(conn->rx)) {
321 LOG_ERR("Not enough buffer space for L2CAP data");
322
323 /* Frame is not complete but we still pass it to L2CAP
324 * so that it may handle error on protocol level
325 * eg disconnect channel.
326 */
327 bt_l2cap_recv(conn, conn->rx, false);
328 conn->rx = NULL;
329 net_buf_unref(buf);
330 return;
331 }
332
333 net_buf_add_mem(conn->rx, buf->data, buf->len);
334 net_buf_unref(buf);
335 break;
336 default:
337 /* BT_ACL_START_NO_FLUSH and BT_ACL_COMPLETE are not allowed on
338 * LE-U from Controller to Host.
339 * Only BT_ACL_POINT_TO_POINT is supported.
340 */
341 LOG_ERR("Unexpected ACL flags (0x%02x)", flags);
342 bt_conn_reset_rx_state(conn);
343 net_buf_unref(buf);
344 return;
345 }
346
347 if (conn->rx->len < sizeof(uint16_t)) {
348 /* Still not enough data received to retrieve the L2CAP header
349 * length field.
350 */
351 return;
352 }
353
354 acl_total_len = sys_get_le16(conn->rx->data) + sizeof(struct bt_l2cap_hdr);
355
356 if (conn->rx->len < acl_total_len) {
357 /* L2CAP frame not complete. */
358 return;
359 }
360
361 if (conn->rx->len > acl_total_len) {
362 LOG_ERR("ACL len mismatch (%u > %u)", conn->rx->len, acl_total_len);
363 bt_conn_reset_rx_state(conn);
364 return;
365 }
366
367 /* L2CAP frame complete. */
368 buf = conn->rx;
369 conn->rx = NULL;
370
371 LOG_DBG("Successfully parsed %u byte L2CAP packet", buf->len);
372 bt_l2cap_recv(conn, buf, true);
373 }
374
bt_conn_recv(struct bt_conn * conn,struct net_buf * buf,uint8_t flags)375 void bt_conn_recv(struct bt_conn *conn, struct net_buf *buf, uint8_t flags)
376 {
377 /* Make sure we notify any pending TX callbacks before processing
378 * new data for this connection.
379 */
380 tx_notify(conn);
381
382 LOG_DBG("handle %u len %u flags %02x", conn->handle, buf->len, flags);
383
384 if ((IS_ENABLED(CONFIG_BT_ISO_UNICAST) ||
385 IS_ENABLED(CONFIG_BT_ISO_SYNC_RECEIVER)) &&
386 conn->type == BT_CONN_TYPE_ISO) {
387 bt_iso_recv(conn, buf, flags);
388 return;
389 } else if (IS_ENABLED(CONFIG_BT_CONN)) {
390 bt_acl_recv(conn, buf, flags);
391 } else {
392 __ASSERT(false, "Invalid connection type %u", conn->type);
393 }
394 }
395
conn_tx_alloc(void)396 static struct bt_conn_tx *conn_tx_alloc(void)
397 {
398 /* The TX context always get freed in the system workqueue,
399 * so if we're in the same workqueue but there are no immediate
400 * contexts available, there's no chance we'll get one by waiting.
401 */
402 if (k_current_get() == &k_sys_work_q.thread) {
403 return k_fifo_get(&free_tx, K_NO_WAIT);
404 }
405
406 if (IS_ENABLED(CONFIG_BT_CONN_LOG_LEVEL_DBG)) {
407 struct bt_conn_tx *tx = k_fifo_get(&free_tx, K_NO_WAIT);
408
409 if (tx) {
410 return tx;
411 }
412
413 LOG_WRN("Unable to get an immediate free conn_tx");
414 }
415
416 return k_fifo_get(&free_tx, K_FOREVER);
417 }
418
bt_conn_send_iso_cb(struct bt_conn * conn,struct net_buf * buf,bt_conn_tx_cb_t cb,bool has_ts)419 int bt_conn_send_iso_cb(struct bt_conn *conn, struct net_buf *buf,
420 bt_conn_tx_cb_t cb, bool has_ts)
421 {
422 if (buf->user_data_size < CONFIG_BT_CONN_TX_USER_DATA_SIZE) {
423 LOG_ERR("not enough room in user_data %d < %d",
424 buf->user_data_size,
425 CONFIG_BT_CONN_TX_USER_DATA_SIZE);
426 return -EINVAL;
427 }
428
429 /* Necessary for setting the TS_Flag bit when we pop the buffer from the
430 * send queue. The flag needs to be set before adding the buffer to the queue.
431 */
432 tx_data(buf)->iso_has_ts = has_ts;
433
434 int err = bt_conn_send_cb(conn, buf, cb, NULL);
435
436 if (err) {
437 return err;
438 }
439
440 return 0;
441 }
442
bt_conn_send_cb(struct bt_conn * conn,struct net_buf * buf,bt_conn_tx_cb_t cb,void * user_data)443 int bt_conn_send_cb(struct bt_conn *conn, struct net_buf *buf,
444 bt_conn_tx_cb_t cb, void *user_data)
445 {
446 struct bt_conn_tx *tx;
447
448 LOG_DBG("conn handle %u buf len %u cb %p user_data %p", conn->handle, buf->len, cb,
449 user_data);
450
451 if (buf->user_data_size < CONFIG_BT_CONN_TX_USER_DATA_SIZE) {
452 LOG_ERR("not enough room in user_data %d < %d pool %u",
453 buf->user_data_size,
454 CONFIG_BT_CONN_TX_USER_DATA_SIZE,
455 buf->pool_id);
456 return -EINVAL;
457 }
458
459 if (conn->state != BT_CONN_CONNECTED) {
460 LOG_ERR("not connected!");
461 return -ENOTCONN;
462 }
463
464 if (cb) {
465 tx = conn_tx_alloc();
466 if (!tx) {
467 LOG_DBG("Unable to allocate TX context");
468 return -ENOBUFS;
469 }
470
471 /* Verify that we're still connected after blocking */
472 if (conn->state != BT_CONN_CONNECTED) {
473 LOG_WRN("Disconnected while allocating context");
474 tx_free(tx);
475 return -ENOTCONN;
476 }
477
478 tx->cb = cb;
479 tx->user_data = user_data;
480 tx->pending_no_cb = 0U;
481
482 tx_data(buf)->tx = tx;
483 } else {
484 tx_data(buf)->tx = NULL;
485 }
486
487 tx_data(buf)->is_cont = false;
488
489 net_buf_put(&conn->tx_queue, buf);
490 return 0;
491 }
492
493 enum {
494 FRAG_START,
495 FRAG_CONT,
496 FRAG_SINGLE,
497 FRAG_END
498 };
499
send_acl(struct bt_conn * conn,struct net_buf * buf,uint8_t flags)500 static int send_acl(struct bt_conn *conn, struct net_buf *buf, uint8_t flags)
501 {
502 struct bt_hci_acl_hdr *hdr;
503
504 switch (flags) {
505 case FRAG_START:
506 case FRAG_SINGLE:
507 flags = BT_ACL_START_NO_FLUSH;
508 break;
509 case FRAG_CONT:
510 case FRAG_END:
511 flags = BT_ACL_CONT;
512 break;
513 default:
514 return -EINVAL;
515 }
516
517 hdr = net_buf_push(buf, sizeof(*hdr));
518 hdr->handle = sys_cpu_to_le16(bt_acl_handle_pack(conn->handle, flags));
519 hdr->len = sys_cpu_to_le16(buf->len - sizeof(*hdr));
520
521 bt_buf_set_type(buf, BT_BUF_ACL_OUT);
522
523 return bt_send(buf);
524 }
525
send_iso(struct bt_conn * conn,struct net_buf * buf,uint8_t flags)526 static int send_iso(struct bt_conn *conn, struct net_buf *buf, uint8_t flags)
527 {
528 struct bt_hci_iso_hdr *hdr;
529 bool ts;
530
531 switch (flags) {
532 case FRAG_START:
533 flags = BT_ISO_START;
534 break;
535 case FRAG_CONT:
536 flags = BT_ISO_CONT;
537 break;
538 case FRAG_SINGLE:
539 flags = BT_ISO_SINGLE;
540 break;
541 case FRAG_END:
542 flags = BT_ISO_END;
543 break;
544 default:
545 return -EINVAL;
546 }
547
548 hdr = net_buf_push(buf, sizeof(*hdr));
549
550 ts = tx_data(buf)->iso_has_ts &&
551 (flags == BT_ISO_START || flags == BT_ISO_SINGLE);
552
553 hdr->handle = sys_cpu_to_le16(bt_iso_handle_pack(conn->handle, flags, ts));
554
555 hdr->len = sys_cpu_to_le16(buf->len - sizeof(*hdr));
556
557 bt_buf_set_type(buf, BT_BUF_ISO_OUT);
558
559 return bt_send(buf);
560 }
561
conn_mtu(struct bt_conn * conn)562 static inline uint16_t conn_mtu(struct bt_conn *conn)
563 {
564 #if defined(CONFIG_BT_BREDR)
565 if (conn->type == BT_CONN_TYPE_BR ||
566 (conn->type != BT_CONN_TYPE_ISO && !bt_dev.le.acl_mtu)) {
567 return bt_dev.br.mtu;
568 }
569 #endif /* CONFIG_BT_BREDR */
570 #if defined(CONFIG_BT_ISO)
571 if (conn->type == BT_CONN_TYPE_ISO) {
572 return bt_dev.le.iso_mtu;
573 }
574 #endif /* CONFIG_BT_ISO */
575 #if defined(CONFIG_BT_CONN)
576 return bt_dev.le.acl_mtu;
577 #else
578 return 0;
579 #endif /* CONFIG_BT_CONN */
580 }
581
do_send_frag(struct bt_conn * conn,struct net_buf * buf,uint8_t flags)582 static int do_send_frag(struct bt_conn *conn, struct net_buf *buf, uint8_t flags)
583 {
584 struct bt_conn_tx *tx = tx_data(buf)->tx;
585 uint32_t *pending_no_cb = NULL;
586 unsigned int key;
587 int err = 0;
588
589 LOG_DBG("conn %p buf %p len %u flags 0x%02x", conn, buf, buf->len,
590 flags);
591
592 /* Add to pending, it must be done before bt_buf_set_type */
593 key = irq_lock();
594 if (tx) {
595 sys_slist_append(&conn->tx_pending, &tx->node);
596 } else {
597 struct bt_conn_tx *tail_tx;
598
599 tail_tx = (void *)sys_slist_peek_tail(&conn->tx_pending);
600 if (tail_tx) {
601 pending_no_cb = &tail_tx->pending_no_cb;
602 } else {
603 pending_no_cb = &conn->pending_no_cb;
604 }
605
606 (*pending_no_cb)++;
607 }
608 irq_unlock(key);
609
610 if (IS_ENABLED(CONFIG_BT_ISO) && conn->type == BT_CONN_TYPE_ISO) {
611 err = send_iso(conn, buf, flags);
612 } else if (IS_ENABLED(CONFIG_BT_CONN)) {
613 err = send_acl(conn, buf, flags);
614 } else {
615 __ASSERT(false, "Invalid connection type %u", conn->type);
616 }
617
618 if (err) {
619 LOG_ERR("Unable to send to driver (err %d)", err);
620 key = irq_lock();
621 /* Roll back the pending TX info */
622 if (tx) {
623 sys_slist_find_and_remove(&conn->tx_pending, &tx->node);
624 } else {
625 __ASSERT_NO_MSG(*pending_no_cb > 0);
626 (*pending_no_cb)--;
627 }
628 irq_unlock(key);
629
630 /* We don't want to end up in a situation where send_acl/iso
631 * returns the same error code as when we don't get a buffer in
632 * time.
633 */
634 err = -EIO;
635 goto fail;
636 }
637
638 return 0;
639
640 fail:
641 /* If we get here, something has seriously gone wrong:
642 * We also need to destroy the `parent` buf.
643 */
644 k_sem_give(bt_conn_get_pkts(conn));
645 if (tx) {
646 /* `buf` might not get destroyed, and its `tx` pointer will still be reachable.
647 * Make sure that we don't try to use the destroyed context later.
648 */
649 tx_data(buf)->tx = NULL;
650 conn_tx_destroy(conn, tx);
651 }
652
653 return err;
654 }
655
send_frag(struct bt_conn * conn,struct net_buf * buf,struct net_buf * frag,uint8_t flags)656 static int send_frag(struct bt_conn *conn,
657 struct net_buf *buf, struct net_buf *frag,
658 uint8_t flags)
659 {
660 /* Check if the controller can accept ACL packets */
661 if (k_sem_take(bt_conn_get_pkts(conn), K_NO_WAIT)) {
662 LOG_DBG("no controller bufs");
663 return -ENOBUFS;
664 }
665
666 /* Check for disconnection. It can't be done higher up (ie `send_buf`)
667 * as `create_frag` blocks with K_FOREVER and the connection could
668 * change state after waiting.
669 */
670 if (conn->state != BT_CONN_CONNECTED) {
671 return -ENOTCONN;
672 }
673
674 /* Add the data to the buffer */
675 if (frag) {
676 uint16_t frag_len = MIN(conn_mtu(conn), net_buf_tailroom(frag));
677
678 net_buf_add_mem(frag, buf->data, frag_len);
679 net_buf_pull(buf, frag_len);
680 } else {
681 /* De-queue the buffer now that we know we can send it.
682 * Only applies if the buffer to be sent is the original buffer,
683 * and not one of its fragments.
684 * This buffer was fetched from the FIFO using a peek operation.
685 */
686 buf = net_buf_get(&conn->tx_queue, K_NO_WAIT);
687 frag = buf;
688 }
689
690 return do_send_frag(conn, frag, flags);
691 }
692
create_frag(struct bt_conn * conn,struct net_buf * buf)693 static struct net_buf *create_frag(struct bt_conn *conn, struct net_buf *buf)
694 {
695 struct net_buf *frag;
696
697 switch (conn->type) {
698 #if defined(CONFIG_BT_ISO)
699 case BT_CONN_TYPE_ISO:
700 frag = bt_iso_create_frag(0);
701 break;
702 #endif
703 default:
704 #if defined(CONFIG_BT_CONN)
705 frag = bt_conn_create_frag(0);
706 #else
707 return NULL;
708 #endif /* CONFIG_BT_CONN */
709
710 }
711
712 if (conn->state != BT_CONN_CONNECTED) {
713 net_buf_unref(frag);
714 return NULL;
715 }
716
717 /* Fragments never have a TX completion callback */
718 tx_data(frag)->tx = NULL;
719 tx_data(frag)->is_cont = false;
720 tx_data(frag)->iso_has_ts = tx_data(buf)->iso_has_ts;
721
722 return frag;
723 }
724
725 /* Tentatively send a buffer to the HCI driver.
726 *
727 * This is designed to be async, as in most failures due to lack of resources
728 * are not fatal. The caller should call `send_buf()` again later.
729 *
730 * Return values:
731 *
732 * - 0: `buf` sent. `buf` ownership transferred to lower layers.
733 *
734 * - -EIO: buffer failed to send due to HCI error. `buf` ownership returned to
735 * caller BUT `buf` is popped from the TX queue. The caller shall destroy
736 * `buf` and its TX context.
737 *
738 * - Any other error: buffer failed to send. `buf` ownership returned to caller
739 * and `buf` is still the head of the TX queue
740 *
741 */
send_buf(struct bt_conn * conn,struct net_buf * buf)742 static int send_buf(struct bt_conn *conn, struct net_buf *buf)
743 {
744 struct net_buf *frag;
745 uint8_t flags;
746 int err;
747
748 LOG_DBG("conn %p buf %p len %u", conn, buf, buf->len);
749
750 /* Send directly if the packet fits the ACL MTU */
751 if (buf->len <= conn_mtu(conn) && !tx_data(buf)->is_cont) {
752 LOG_DBG("send single");
753 return send_frag(conn, buf, NULL, FRAG_SINGLE);
754 }
755
756 LOG_DBG("start fragmenting");
757 /*
758 * Send the fragments. For the last one simply use the original
759 * buffer (which works since we've used net_buf_pull on it).
760 */
761 flags = FRAG_START;
762 if (tx_data(buf)->is_cont) {
763 flags = FRAG_CONT;
764 }
765
766 while (buf->len > conn_mtu(conn)) {
767 frag = create_frag(conn, buf);
768 if (!frag) {
769 return -ENOMEM;
770 }
771
772 err = send_frag(conn, buf, frag, flags);
773 if (err) {
774 LOG_DBG("%p failed, mark as existing frag", buf);
775 tx_data(buf)->is_cont = flags != FRAG_START;
776 net_buf_unref(frag);
777 return err;
778 }
779
780 flags = FRAG_CONT;
781 }
782
783 LOG_DBG("last frag");
784 tx_data(buf)->is_cont = true;
785 return send_frag(conn, buf, NULL, FRAG_END);
786 }
787
788 static struct k_poll_signal conn_change =
789 K_POLL_SIGNAL_INITIALIZER(conn_change);
790
conn_cleanup(struct bt_conn * conn)791 static void conn_cleanup(struct bt_conn *conn)
792 {
793 struct net_buf *buf;
794
795 /* Give back any allocated buffers */
796 while ((buf = net_buf_get(&conn->tx_queue, K_NO_WAIT))) {
797 struct bt_conn_tx *tx = tx_data(buf)->tx;
798
799 tx_data(buf)->tx = NULL;
800
801 /* destroy the buffer */
802 net_buf_unref(buf);
803
804 /* destroy the tx context (and any associated meta-data) */
805 if (tx) {
806 conn_tx_destroy(conn, tx);
807 }
808 }
809
810 __ASSERT(sys_slist_is_empty(&conn->tx_pending), "Pending TX packets");
811 __ASSERT_NO_MSG(conn->pending_no_cb == 0);
812
813 bt_conn_reset_rx_state(conn);
814
815 k_work_reschedule(&conn->deferred_work, K_NO_WAIT);
816 }
817
conn_destroy(struct bt_conn * conn,void * data)818 static void conn_destroy(struct bt_conn *conn, void *data)
819 {
820 if (conn->state == BT_CONN_CONNECTED ||
821 conn->state == BT_CONN_DISCONNECTING) {
822 bt_conn_set_state(conn, BT_CONN_DISCONNECT_COMPLETE);
823 }
824
825 bt_conn_set_state(conn, BT_CONN_DISCONNECTED);
826 }
827
bt_conn_cleanup_all(void)828 void bt_conn_cleanup_all(void)
829 {
830 bt_conn_foreach(BT_CONN_TYPE_ALL, conn_destroy, NULL);
831 }
832
conn_prepare_events(struct bt_conn * conn,struct k_poll_event * events)833 static int conn_prepare_events(struct bt_conn *conn,
834 struct k_poll_event *events)
835 {
836 if (!atomic_get(&conn->ref)) {
837 return -ENOTCONN;
838 }
839
840 if (conn->state == BT_CONN_DISCONNECTED &&
841 atomic_test_and_clear_bit(conn->flags, BT_CONN_CLEANUP)) {
842 conn_cleanup(conn);
843 return -ENOTCONN;
844 }
845
846 if (conn->state != BT_CONN_CONNECTED) {
847 return -ENOTCONN;
848 }
849
850 LOG_DBG("Adding conn %p to poll list", conn);
851
852 /* ISO Synchronized Receiver only builds do not transmit and hence
853 * may not have any tx buffers allocated in a Controller.
854 */
855 struct k_sem *conn_pkts = bt_conn_get_pkts(conn);
856
857 if (!conn_pkts) {
858 return -ENOTCONN;
859 }
860
861 bool buffers_available = k_sem_count_get(conn_pkts) > 0;
862 bool packets_waiting = !k_fifo_is_empty(&conn->tx_queue);
863
864 if (packets_waiting && !buffers_available) {
865 /* Only resume sending when the controller has buffer space
866 * available for this connection.
867 */
868 LOG_DBG("wait on ctlr buffers");
869 k_poll_event_init(&events[0],
870 K_POLL_TYPE_SEM_AVAILABLE,
871 K_POLL_MODE_NOTIFY_ONLY,
872 conn_pkts);
873 } else {
874 /* Wait until there is more data to send. */
875 LOG_DBG("wait on host fifo");
876 k_poll_event_init(&events[0],
877 K_POLL_TYPE_FIFO_DATA_AVAILABLE,
878 K_POLL_MODE_NOTIFY_ONLY,
879 &conn->tx_queue);
880 }
881 events[0].tag = BT_EVENT_CONN_TX_QUEUE;
882
883 return 0;
884 }
885
bt_conn_prepare_events(struct k_poll_event events[])886 int bt_conn_prepare_events(struct k_poll_event events[])
887 {
888 int i, ev_count = 0;
889 struct bt_conn *conn;
890
891 LOG_DBG("");
892
893 k_poll_signal_init(&conn_change);
894
895 k_poll_event_init(&events[ev_count++], K_POLL_TYPE_SIGNAL,
896 K_POLL_MODE_NOTIFY_ONLY, &conn_change);
897
898 #if defined(CONFIG_BT_CONN)
899 for (i = 0; i < ARRAY_SIZE(acl_conns); i++) {
900 conn = &acl_conns[i];
901
902 if (!conn_prepare_events(conn, &events[ev_count])) {
903 ev_count++;
904 }
905 }
906 #endif /* CONFIG_BT_CONN */
907
908 #if defined(CONFIG_BT_ISO)
909 for (i = 0; i < ARRAY_SIZE(iso_conns); i++) {
910 conn = &iso_conns[i];
911
912 if (!conn_prepare_events(conn, &events[ev_count])) {
913 ev_count++;
914 }
915 }
916 #endif
917
918 return ev_count;
919 }
920
bt_conn_process_tx(struct bt_conn * conn)921 void bt_conn_process_tx(struct bt_conn *conn)
922 {
923 struct net_buf *buf;
924 int err;
925
926 LOG_DBG("conn %p", conn);
927
928 if (conn->state == BT_CONN_DISCONNECTED &&
929 atomic_test_and_clear_bit(conn->flags, BT_CONN_CLEANUP)) {
930 LOG_DBG("handle %u disconnected - cleaning up", conn->handle);
931 conn_cleanup(conn);
932 return;
933 }
934
935 /* Get next ACL packet for connection. The buffer will only get dequeued
936 * if there is a free controller buffer to put it in.
937 *
938 * Important: no operations should be done on `buf` until it is properly
939 * dequeued from the FIFO, using the `net_buf_get()` API.
940 */
941 buf = k_fifo_peek_head(&conn->tx_queue);
942 BT_ASSERT(buf);
943
944 /* Since we used `peek`, the queue still owns the reference to the
945 * buffer, so we need to take an explicit additional reference here.
946 */
947 buf = net_buf_ref(buf);
948 err = send_buf(conn, buf);
949 net_buf_unref(buf);
950
951 /* HCI driver error. `buf` may have been popped from `tx_queue` and
952 * should be destroyed.
953 *
954 * TODO: In that case we might want to disable Bluetooth or at the very
955 * least tear down the connection.
956 */
957 if (err == -EIO) {
958 struct bt_conn_tx *tx = tx_data(buf)->tx;
959
960 tx_data(buf)->tx = NULL;
961
962 /* destroy the buffer */
963 net_buf_unref(buf);
964
965 /* destroy the tx context (and any associated meta-data) */
966 if (tx) {
967 conn_tx_destroy(conn, tx);
968 }
969 }
970 }
971
process_unack_tx(struct bt_conn * conn)972 static void process_unack_tx(struct bt_conn *conn)
973 {
974 /* Return any unacknowledged packets */
975 while (1) {
976 struct bt_conn_tx *tx;
977 sys_snode_t *node;
978 unsigned int key;
979
980 key = irq_lock();
981
982 if (conn->pending_no_cb) {
983 conn->pending_no_cb--;
984 irq_unlock(key);
985 k_sem_give(bt_conn_get_pkts(conn));
986 continue;
987 }
988
989 node = sys_slist_get(&conn->tx_pending);
990 irq_unlock(key);
991
992 if (!node) {
993 break;
994 }
995
996 tx = CONTAINER_OF(node, struct bt_conn_tx, node);
997
998 key = irq_lock();
999 conn->pending_no_cb = tx->pending_no_cb;
1000 tx->pending_no_cb = 0U;
1001 irq_unlock(key);
1002
1003 conn_tx_destroy(conn, tx);
1004
1005 k_sem_give(bt_conn_get_pkts(conn));
1006 }
1007 }
1008
conn_lookup_handle(struct bt_conn * conns,size_t size,uint16_t handle)1009 struct bt_conn *conn_lookup_handle(struct bt_conn *conns, size_t size,
1010 uint16_t handle)
1011 {
1012 int i;
1013
1014 for (i = 0; i < size; i++) {
1015 struct bt_conn *conn = bt_conn_ref(&conns[i]);
1016
1017 if (!conn) {
1018 continue;
1019 }
1020
1021 /* We only care about connections with a valid handle */
1022 if (!bt_conn_is_handle_valid(conn)) {
1023 bt_conn_unref(conn);
1024 continue;
1025 }
1026
1027 if (conn->handle != handle) {
1028 bt_conn_unref(conn);
1029 continue;
1030 }
1031
1032 return conn;
1033 }
1034
1035 return NULL;
1036 }
1037
bt_conn_set_state(struct bt_conn * conn,bt_conn_state_t state)1038 void bt_conn_set_state(struct bt_conn *conn, bt_conn_state_t state)
1039 {
1040 bt_conn_state_t old_state;
1041
1042 LOG_DBG("%s -> %s", state2str(conn->state), state2str(state));
1043
1044 if (conn->state == state) {
1045 LOG_WRN("no transition %s", state2str(state));
1046 return;
1047 }
1048
1049 old_state = conn->state;
1050 conn->state = state;
1051
1052 /* Actions needed for exiting the old state */
1053 switch (old_state) {
1054 case BT_CONN_DISCONNECTED:
1055 /* Take a reference for the first state transition after
1056 * bt_conn_add_le() and keep it until reaching DISCONNECTED
1057 * again.
1058 */
1059 if (conn->type != BT_CONN_TYPE_ISO) {
1060 bt_conn_ref(conn);
1061 }
1062 break;
1063 case BT_CONN_CONNECTING:
1064 if (IS_ENABLED(CONFIG_BT_CENTRAL) &&
1065 conn->type == BT_CONN_TYPE_LE) {
1066 k_work_cancel_delayable(&conn->deferred_work);
1067 }
1068 break;
1069 default:
1070 break;
1071 }
1072
1073 /* Actions needed for entering the new state */
1074 switch (conn->state) {
1075 case BT_CONN_CONNECTED:
1076 if (conn->type == BT_CONN_TYPE_SCO) {
1077 /* TODO: Notify sco connected */
1078 break;
1079 }
1080 k_fifo_init(&conn->tx_queue);
1081 k_poll_signal_raise(&conn_change, 0);
1082
1083 if (IS_ENABLED(CONFIG_BT_ISO) &&
1084 conn->type == BT_CONN_TYPE_ISO) {
1085 bt_iso_connected(conn);
1086 break;
1087 }
1088
1089 #if defined(CONFIG_BT_CONN)
1090 sys_slist_init(&conn->channels);
1091
1092 if (IS_ENABLED(CONFIG_BT_PERIPHERAL) &&
1093 conn->role == BT_CONN_ROLE_PERIPHERAL) {
1094
1095 #if defined(CONFIG_BT_GAP_AUTO_UPDATE_CONN_PARAMS)
1096 if (conn->type == BT_CONN_TYPE_LE) {
1097 conn->le.conn_param_retry_countdown =
1098 CONFIG_BT_CONN_PARAM_RETRY_COUNT;
1099 }
1100 #endif /* CONFIG_BT_GAP_AUTO_UPDATE_CONN_PARAMS */
1101
1102 k_work_schedule(&conn->deferred_work,
1103 CONN_UPDATE_TIMEOUT);
1104 }
1105 #endif /* CONFIG_BT_CONN */
1106
1107 break;
1108 case BT_CONN_DISCONNECTED:
1109 #if defined(CONFIG_BT_CONN)
1110 if (conn->type == BT_CONN_TYPE_SCO) {
1111 /* TODO: Notify sco disconnected */
1112 bt_conn_unref(conn);
1113 break;
1114 }
1115
1116 /* Notify disconnection and queue a dummy buffer to wake
1117 * up and stop the tx thread for states where it was
1118 * running.
1119 */
1120 switch (old_state) {
1121 case BT_CONN_DISCONNECT_COMPLETE:
1122 tx_notify(conn);
1123
1124 /* Cancel Connection Update if it is pending */
1125 if ((conn->type == BT_CONN_TYPE_LE) &&
1126 (k_work_delayable_busy_get(&conn->deferred_work) &
1127 (K_WORK_QUEUED | K_WORK_DELAYED))) {
1128 k_work_cancel_delayable(&conn->deferred_work);
1129 }
1130
1131 atomic_set_bit(conn->flags, BT_CONN_CLEANUP);
1132 k_poll_signal_raise(&conn_change, 0);
1133 /* The last ref will be dropped during cleanup */
1134 break;
1135 case BT_CONN_CONNECTING:
1136 /* LE Create Connection command failed. This might be
1137 * directly from the API, don't notify application in
1138 * this case.
1139 */
1140 if (conn->err) {
1141 notify_connected(conn);
1142 }
1143
1144 bt_conn_unref(conn);
1145 break;
1146 case BT_CONN_CONNECTING_SCAN:
1147 /* this indicate LE Create Connection with peer address
1148 * has been stopped. This could either be triggered by
1149 * the application through bt_conn_disconnect or by
1150 * timeout set by bt_conn_le_create_param.timeout.
1151 */
1152 if (conn->err) {
1153 notify_connected(conn);
1154 }
1155
1156 bt_conn_unref(conn);
1157 break;
1158 case BT_CONN_CONNECTING_DIR_ADV:
1159 /* this indicate Directed advertising stopped */
1160 if (conn->err) {
1161 notify_connected(conn);
1162 }
1163
1164 bt_conn_unref(conn);
1165 break;
1166 case BT_CONN_CONNECTING_AUTO:
1167 /* this indicates LE Create Connection with filter
1168 * policy has been stopped. This can only be triggered
1169 * by the application, so don't notify.
1170 */
1171 bt_conn_unref(conn);
1172 break;
1173 case BT_CONN_CONNECTING_ADV:
1174 /* This can only happen when application stops the
1175 * advertiser, conn->err is never set in this case.
1176 */
1177 bt_conn_unref(conn);
1178 break;
1179 case BT_CONN_CONNECTED:
1180 case BT_CONN_DISCONNECTING:
1181 case BT_CONN_DISCONNECTED:
1182 /* Cannot happen. */
1183 LOG_WRN("Invalid (%u) old state", state);
1184 break;
1185 }
1186 break;
1187 case BT_CONN_CONNECTING_AUTO:
1188 break;
1189 case BT_CONN_CONNECTING_ADV:
1190 break;
1191 case BT_CONN_CONNECTING_SCAN:
1192 break;
1193 case BT_CONN_CONNECTING_DIR_ADV:
1194 break;
1195 case BT_CONN_CONNECTING:
1196 if (conn->type == BT_CONN_TYPE_SCO) {
1197 break;
1198 }
1199 /*
1200 * Timer is needed only for LE. For other link types controller
1201 * will handle connection timeout.
1202 */
1203 if (IS_ENABLED(CONFIG_BT_CENTRAL) &&
1204 conn->type == BT_CONN_TYPE_LE &&
1205 bt_dev.create_param.timeout != 0) {
1206 k_work_schedule(&conn->deferred_work,
1207 K_MSEC(10 * bt_dev.create_param.timeout));
1208 }
1209
1210 break;
1211 case BT_CONN_DISCONNECTING:
1212 break;
1213 #endif /* CONFIG_BT_CONN */
1214 case BT_CONN_DISCONNECT_COMPLETE:
1215 process_unack_tx(conn);
1216 break;
1217 default:
1218 LOG_WRN("no valid (%u) state was set", state);
1219
1220 break;
1221 }
1222 }
1223
bt_conn_lookup_handle(uint16_t handle,enum bt_conn_type type)1224 struct bt_conn *bt_conn_lookup_handle(uint16_t handle, enum bt_conn_type type)
1225 {
1226 struct bt_conn *conn;
1227
1228 #if defined(CONFIG_BT_CONN)
1229 conn = conn_lookup_handle(acl_conns, ARRAY_SIZE(acl_conns), handle);
1230 if (conn) {
1231 goto found;
1232 }
1233 #endif /* CONFIG_BT_CONN */
1234
1235 #if defined(CONFIG_BT_ISO)
1236 conn = conn_lookup_handle(iso_conns, ARRAY_SIZE(iso_conns), handle);
1237 if (conn) {
1238 goto found;
1239 }
1240 #endif
1241
1242 #if defined(CONFIG_BT_BREDR)
1243 conn = conn_lookup_handle(sco_conns, ARRAY_SIZE(sco_conns), handle);
1244 if (conn) {
1245 goto found;
1246 }
1247 #endif
1248
1249 found:
1250 if (conn) {
1251 if (type & conn->type) {
1252 return conn;
1253 }
1254 LOG_WRN("incompatible handle %u", handle);
1255 bt_conn_unref(conn);
1256 }
1257 return NULL;
1258 }
1259
bt_conn_foreach(enum bt_conn_type type,void (* func)(struct bt_conn * conn,void * data),void * data)1260 void bt_conn_foreach(enum bt_conn_type type,
1261 void (*func)(struct bt_conn *conn, void *data),
1262 void *data)
1263 {
1264 int i;
1265
1266 #if defined(CONFIG_BT_CONN)
1267 for (i = 0; i < ARRAY_SIZE(acl_conns); i++) {
1268 struct bt_conn *conn = bt_conn_ref(&acl_conns[i]);
1269
1270 if (!conn) {
1271 continue;
1272 }
1273
1274 if (!(conn->type & type)) {
1275 bt_conn_unref(conn);
1276 continue;
1277 }
1278
1279 func(conn, data);
1280 bt_conn_unref(conn);
1281 }
1282 #if defined(CONFIG_BT_BREDR)
1283 if (type & BT_CONN_TYPE_SCO) {
1284 for (i = 0; i < ARRAY_SIZE(sco_conns); i++) {
1285 struct bt_conn *conn = bt_conn_ref(&sco_conns[i]);
1286
1287 if (!conn) {
1288 continue;
1289 }
1290
1291 func(conn, data);
1292 bt_conn_unref(conn);
1293 }
1294 }
1295 #endif /* defined(CONFIG_BT_BREDR) */
1296 #endif /* CONFIG_BT_CONN */
1297
1298 #if defined(CONFIG_BT_ISO)
1299 if (type & BT_CONN_TYPE_ISO) {
1300 for (i = 0; i < ARRAY_SIZE(iso_conns); i++) {
1301 struct bt_conn *conn = bt_conn_ref(&iso_conns[i]);
1302
1303 if (!conn) {
1304 continue;
1305 }
1306
1307 func(conn, data);
1308 bt_conn_unref(conn);
1309 }
1310 }
1311 #endif /* defined(CONFIG_BT_ISO) */
1312 }
1313
bt_conn_ref(struct bt_conn * conn)1314 struct bt_conn *bt_conn_ref(struct bt_conn *conn)
1315 {
1316 atomic_val_t old;
1317
1318 __ASSERT_NO_MSG(conn);
1319
1320 /* Reference counter must be checked to avoid incrementing ref from
1321 * zero, then we should return NULL instead.
1322 * Loop on clear-and-set in case someone has modified the reference
1323 * count since the read, and start over again when that happens.
1324 */
1325 do {
1326 old = atomic_get(&conn->ref);
1327
1328 if (!old) {
1329 return NULL;
1330 }
1331 } while (!atomic_cas(&conn->ref, old, old + 1));
1332
1333 LOG_DBG("handle %u ref %ld -> %ld", conn->handle, old, old + 1);
1334
1335 return conn;
1336 }
1337
bt_conn_unref(struct bt_conn * conn)1338 void bt_conn_unref(struct bt_conn *conn)
1339 {
1340 atomic_val_t old;
1341 bool deallocated;
1342 enum bt_conn_type conn_type;
1343 uint8_t conn_role;
1344 uint16_t conn_handle;
1345
1346 __ASSERT(conn, "Invalid connection reference");
1347
1348 /* Storing parameters of interest so we don't access the object
1349 * after decrementing its ref-count
1350 */
1351 conn_type = conn->type;
1352 conn_role = conn->role;
1353 conn_handle = conn->handle;
1354
1355 old = atomic_dec(&conn->ref);
1356 /* Prevent from accessing connection object */
1357 conn = NULL;
1358 deallocated = (atomic_get(&old) == 1);
1359
1360 LOG_DBG("handle %u ref %ld -> %ld", conn_handle, old, (old - 1));
1361
1362 __ASSERT(old > 0, "Conn reference counter is 0");
1363
1364 /* Slot has been freed and can be taken. No guarantees are made on requests
1365 * to claim connection object as only the first claim will be served.
1366 */
1367 if (deallocated) {
1368 notify_recycled_conn_slot();
1369 }
1370
1371 if (IS_ENABLED(CONFIG_BT_PERIPHERAL) && conn_type == BT_CONN_TYPE_LE &&
1372 conn_role == BT_CONN_ROLE_PERIPHERAL && deallocated) {
1373 bt_le_adv_resume();
1374 }
1375 }
1376
bt_conn_index(const struct bt_conn * conn)1377 uint8_t bt_conn_index(const struct bt_conn *conn)
1378 {
1379 ptrdiff_t index = 0;
1380
1381 switch (conn->type) {
1382 #if defined(CONFIG_BT_ISO)
1383 case BT_CONN_TYPE_ISO:
1384 index = conn - iso_conns;
1385 __ASSERT(index >= 0 && index < ARRAY_SIZE(iso_conns),
1386 "Invalid bt_conn pointer");
1387 break;
1388 #endif
1389 #if defined(CONFIG_BT_BREDR)
1390 case BT_CONN_TYPE_SCO:
1391 index = conn - sco_conns;
1392 __ASSERT(index >= 0 && index < ARRAY_SIZE(sco_conns),
1393 "Invalid bt_conn pointer");
1394 break;
1395 #endif
1396 default:
1397 #if defined(CONFIG_BT_CONN)
1398 index = conn - acl_conns;
1399 __ASSERT(index >= 0 && index < ARRAY_SIZE(acl_conns),
1400 "Invalid bt_conn pointer");
1401 #else
1402 __ASSERT(false, "Invalid connection type %u", conn->type);
1403 #endif /* CONFIG_BT_CONN */
1404 break;
1405 }
1406
1407 return (uint8_t)index;
1408 }
1409
1410
1411 #if defined(CONFIG_NET_BUF_LOG)
bt_conn_create_pdu_timeout_debug(struct net_buf_pool * pool,size_t reserve,k_timeout_t timeout,const char * func,int line)1412 struct net_buf *bt_conn_create_pdu_timeout_debug(struct net_buf_pool *pool,
1413 size_t reserve,
1414 k_timeout_t timeout,
1415 const char *func, int line)
1416 #else
1417 struct net_buf *bt_conn_create_pdu_timeout(struct net_buf_pool *pool,
1418 size_t reserve, k_timeout_t timeout)
1419 #endif
1420 {
1421 struct net_buf *buf;
1422
1423 /*
1424 * PDU must not be allocated from ISR as we block with 'K_FOREVER'
1425 * during the allocation
1426 */
1427 __ASSERT_NO_MSG(!k_is_in_isr());
1428
1429 if (!pool) {
1430 #if defined(CONFIG_BT_CONN)
1431 pool = &acl_tx_pool;
1432 #else
1433 return NULL;
1434 #endif /* CONFIG_BT_CONN */
1435 }
1436
1437 if (IS_ENABLED(CONFIG_BT_CONN_LOG_LEVEL_DBG)) {
1438 #if defined(CONFIG_NET_BUF_LOG)
1439 buf = net_buf_alloc_fixed_debug(pool, K_NO_WAIT, func, line);
1440 #else
1441 buf = net_buf_alloc(pool, K_NO_WAIT);
1442 #endif
1443 if (!buf) {
1444 LOG_WRN("Unable to allocate buffer with K_NO_WAIT");
1445 #if defined(CONFIG_NET_BUF_LOG)
1446 buf = net_buf_alloc_fixed_debug(pool, timeout, func,
1447 line);
1448 #else
1449 buf = net_buf_alloc(pool, timeout);
1450 #endif
1451 }
1452 } else {
1453 #if defined(CONFIG_NET_BUF_LOG)
1454 buf = net_buf_alloc_fixed_debug(pool, timeout, func,
1455 line);
1456 #else
1457 buf = net_buf_alloc(pool, timeout);
1458 #endif
1459 }
1460
1461 if (!buf) {
1462 LOG_WRN("Unable to allocate buffer within timeout");
1463 return NULL;
1464 }
1465
1466 reserve += sizeof(struct bt_hci_acl_hdr) + BT_BUF_RESERVE;
1467 net_buf_reserve(buf, reserve);
1468
1469 return buf;
1470 }
1471
1472 #if defined(CONFIG_BT_CONN_TX)
tx_complete_work(struct k_work * work)1473 static void tx_complete_work(struct k_work *work)
1474 {
1475 struct bt_conn *conn = CONTAINER_OF(work, struct bt_conn,
1476 tx_complete_work);
1477
1478 LOG_DBG("conn %p", conn);
1479
1480 tx_notify(conn);
1481 }
1482 #endif /* CONFIG_BT_CONN_TX */
1483
notify_recycled_conn_slot(void)1484 static void notify_recycled_conn_slot(void)
1485 {
1486 #if defined(CONFIG_BT_CONN)
1487 for (struct bt_conn_cb *cb = callback_list; cb; cb = cb->_next) {
1488 if (cb->recycled) {
1489 cb->recycled();
1490 }
1491 }
1492
1493 STRUCT_SECTION_FOREACH(bt_conn_cb, cb) {
1494 if (cb->recycled) {
1495 cb->recycled();
1496 }
1497 }
1498 #endif
1499 }
1500
1501 /* Group Connected BT_CONN only in this */
1502 #if defined(CONFIG_BT_CONN)
1503
bt_conn_connected(struct bt_conn * conn)1504 void bt_conn_connected(struct bt_conn *conn)
1505 {
1506 bt_l2cap_connected(conn);
1507 notify_connected(conn);
1508 }
1509
conn_disconnect(struct bt_conn * conn,uint8_t reason)1510 static int conn_disconnect(struct bt_conn *conn, uint8_t reason)
1511 {
1512 int err;
1513
1514 err = bt_hci_disconnect(conn->handle, reason);
1515 if (err) {
1516 return err;
1517 }
1518
1519 if (conn->state == BT_CONN_CONNECTED) {
1520 bt_conn_set_state(conn, BT_CONN_DISCONNECTING);
1521 }
1522
1523 return 0;
1524 }
1525
bt_conn_disconnect(struct bt_conn * conn,uint8_t reason)1526 int bt_conn_disconnect(struct bt_conn *conn, uint8_t reason)
1527 {
1528 /* Disconnection is initiated by us, so auto connection shall
1529 * be disabled. Otherwise the passive scan would be enabled
1530 * and we could send LE Create Connection as soon as the remote
1531 * starts advertising.
1532 */
1533 #if !defined(CONFIG_BT_FILTER_ACCEPT_LIST)
1534 if (IS_ENABLED(CONFIG_BT_CENTRAL) &&
1535 conn->type == BT_CONN_TYPE_LE) {
1536 bt_le_set_auto_conn(&conn->le.dst, NULL);
1537 }
1538 #endif /* !defined(CONFIG_BT_FILTER_ACCEPT_LIST) */
1539
1540 switch (conn->state) {
1541 case BT_CONN_CONNECTING_SCAN:
1542 conn->err = reason;
1543 bt_conn_set_state(conn, BT_CONN_DISCONNECTED);
1544 if (IS_ENABLED(CONFIG_BT_CENTRAL)) {
1545 bt_le_scan_update(false);
1546 }
1547 return 0;
1548 case BT_CONN_CONNECTING:
1549 if (conn->type == BT_CONN_TYPE_LE) {
1550 if (IS_ENABLED(CONFIG_BT_CENTRAL)) {
1551 k_work_cancel_delayable(&conn->deferred_work);
1552 return bt_le_create_conn_cancel();
1553 }
1554 }
1555 #if defined(CONFIG_BT_ISO)
1556 else if (conn->type == BT_CONN_TYPE_ISO) {
1557 return conn_disconnect(conn, reason);
1558 }
1559 #endif /* CONFIG_BT_ISO */
1560 #if defined(CONFIG_BT_BREDR)
1561 else if (conn->type == BT_CONN_TYPE_BR) {
1562 return bt_hci_connect_br_cancel(conn);
1563 }
1564 #endif /* CONFIG_BT_BREDR */
1565 else {
1566 __ASSERT(false, "Invalid conn type %u", conn->type);
1567 }
1568
1569 return 0;
1570 case BT_CONN_CONNECTED:
1571 return conn_disconnect(conn, reason);
1572 case BT_CONN_DISCONNECTING:
1573 return 0;
1574 case BT_CONN_DISCONNECTED:
1575 default:
1576 return -ENOTCONN;
1577 }
1578 }
1579
notify_connected(struct bt_conn * conn)1580 static void notify_connected(struct bt_conn *conn)
1581 {
1582 for (struct bt_conn_cb *cb = callback_list; cb; cb = cb->_next) {
1583 if (cb->connected) {
1584 cb->connected(conn, conn->err);
1585 }
1586 }
1587
1588 STRUCT_SECTION_FOREACH(bt_conn_cb, cb) {
1589 if (cb->connected) {
1590 cb->connected(conn, conn->err);
1591 }
1592 }
1593 }
1594
notify_disconnected(struct bt_conn * conn)1595 static void notify_disconnected(struct bt_conn *conn)
1596 {
1597 for (struct bt_conn_cb *cb = callback_list; cb; cb = cb->_next) {
1598 if (cb->disconnected) {
1599 cb->disconnected(conn, conn->err);
1600 }
1601 }
1602
1603 STRUCT_SECTION_FOREACH(bt_conn_cb, cb) {
1604 if (cb->disconnected) {
1605 cb->disconnected(conn, conn->err);
1606 }
1607 }
1608 }
1609
1610 #if defined(CONFIG_BT_REMOTE_INFO)
notify_remote_info(struct bt_conn * conn)1611 void notify_remote_info(struct bt_conn *conn)
1612 {
1613 struct bt_conn_remote_info remote_info;
1614 int err;
1615
1616 err = bt_conn_get_remote_info(conn, &remote_info);
1617 if (err) {
1618 LOG_DBG("Notify remote info failed %d", err);
1619 return;
1620 }
1621
1622 for (struct bt_conn_cb *cb = callback_list; cb; cb = cb->_next) {
1623 if (cb->remote_info_available) {
1624 cb->remote_info_available(conn, &remote_info);
1625 }
1626 }
1627
1628 STRUCT_SECTION_FOREACH(bt_conn_cb, cb) {
1629 if (cb->remote_info_available) {
1630 cb->remote_info_available(conn, &remote_info);
1631 }
1632 }
1633 }
1634 #endif /* defined(CONFIG_BT_REMOTE_INFO) */
1635
notify_le_param_updated(struct bt_conn * conn)1636 void notify_le_param_updated(struct bt_conn *conn)
1637 {
1638 /* If new connection parameters meet requirement of pending
1639 * parameters don't send peripheral conn param request anymore on timeout
1640 */
1641 if (atomic_test_bit(conn->flags, BT_CONN_PERIPHERAL_PARAM_SET) &&
1642 conn->le.interval >= conn->le.interval_min &&
1643 conn->le.interval <= conn->le.interval_max &&
1644 conn->le.latency == conn->le.pending_latency &&
1645 conn->le.timeout == conn->le.pending_timeout) {
1646 atomic_clear_bit(conn->flags, BT_CONN_PERIPHERAL_PARAM_SET);
1647 }
1648
1649 for (struct bt_conn_cb *cb = callback_list; cb; cb = cb->_next) {
1650 if (cb->le_param_updated) {
1651 cb->le_param_updated(conn, conn->le.interval,
1652 conn->le.latency,
1653 conn->le.timeout);
1654 }
1655 }
1656
1657 STRUCT_SECTION_FOREACH(bt_conn_cb, cb) {
1658 if (cb->le_param_updated) {
1659 cb->le_param_updated(conn, conn->le.interval,
1660 conn->le.latency,
1661 conn->le.timeout);
1662 }
1663 }
1664 }
1665
1666 #if defined(CONFIG_BT_USER_DATA_LEN_UPDATE)
notify_le_data_len_updated(struct bt_conn * conn)1667 void notify_le_data_len_updated(struct bt_conn *conn)
1668 {
1669 for (struct bt_conn_cb *cb = callback_list; cb; cb = cb->_next) {
1670 if (cb->le_data_len_updated) {
1671 cb->le_data_len_updated(conn, &conn->le.data_len);
1672 }
1673 }
1674
1675 STRUCT_SECTION_FOREACH(bt_conn_cb, cb) {
1676 if (cb->le_data_len_updated) {
1677 cb->le_data_len_updated(conn, &conn->le.data_len);
1678 }
1679 }
1680 }
1681 #endif
1682
1683 #if defined(CONFIG_BT_USER_PHY_UPDATE)
notify_le_phy_updated(struct bt_conn * conn)1684 void notify_le_phy_updated(struct bt_conn *conn)
1685 {
1686 for (struct bt_conn_cb *cb = callback_list; cb; cb = cb->_next) {
1687 if (cb->le_phy_updated) {
1688 cb->le_phy_updated(conn, &conn->le.phy);
1689 }
1690 }
1691
1692 STRUCT_SECTION_FOREACH(bt_conn_cb, cb) {
1693 if (cb->le_phy_updated) {
1694 cb->le_phy_updated(conn, &conn->le.phy);
1695 }
1696 }
1697 }
1698 #endif
1699
le_param_req(struct bt_conn * conn,struct bt_le_conn_param * param)1700 bool le_param_req(struct bt_conn *conn, struct bt_le_conn_param *param)
1701 {
1702 if (!bt_le_conn_params_valid(param)) {
1703 return false;
1704 }
1705
1706 for (struct bt_conn_cb *cb = callback_list; cb; cb = cb->_next) {
1707 if (!cb->le_param_req) {
1708 continue;
1709 }
1710
1711 if (!cb->le_param_req(conn, param)) {
1712 return false;
1713 }
1714
1715 /* The callback may modify the parameters so we need to
1716 * double-check that it returned valid parameters.
1717 */
1718 if (!bt_le_conn_params_valid(param)) {
1719 return false;
1720 }
1721 }
1722
1723 STRUCT_SECTION_FOREACH(bt_conn_cb, cb) {
1724 if (!cb->le_param_req) {
1725 continue;
1726 }
1727
1728 if (!cb->le_param_req(conn, param)) {
1729 return false;
1730 }
1731
1732 /* The callback may modify the parameters so we need to
1733 * double-check that it returned valid parameters.
1734 */
1735 if (!bt_le_conn_params_valid(param)) {
1736 return false;
1737 }
1738 }
1739
1740 /* Default to accepting if there's no app callback */
1741 return true;
1742 }
1743
send_conn_le_param_update(struct bt_conn * conn,const struct bt_le_conn_param * param)1744 static int send_conn_le_param_update(struct bt_conn *conn,
1745 const struct bt_le_conn_param *param)
1746 {
1747 LOG_DBG("conn %p features 0x%02x params (%d-%d %d %d)", conn, conn->le.features[0],
1748 param->interval_min, param->interval_max, param->latency, param->timeout);
1749
1750 /* Proceed only if connection parameters contains valid values*/
1751 if (!bt_le_conn_params_valid(param)) {
1752 return -EINVAL;
1753 }
1754
1755 /* Use LE connection parameter request if both local and remote support
1756 * it; or if local role is central then use LE connection update.
1757 */
1758 if ((BT_FEAT_LE_CONN_PARAM_REQ_PROC(bt_dev.le.features) &&
1759 BT_FEAT_LE_CONN_PARAM_REQ_PROC(conn->le.features) &&
1760 !atomic_test_bit(conn->flags, BT_CONN_PERIPHERAL_PARAM_L2CAP)) ||
1761 (conn->role == BT_HCI_ROLE_CENTRAL)) {
1762 int rc;
1763
1764 rc = bt_conn_le_conn_update(conn, param);
1765
1766 /* store those in case of fallback to L2CAP */
1767 if (rc == 0) {
1768 conn->le.interval_min = param->interval_min;
1769 conn->le.interval_max = param->interval_max;
1770 conn->le.pending_latency = param->latency;
1771 conn->le.pending_timeout = param->timeout;
1772 }
1773
1774 return rc;
1775 }
1776
1777 /* If remote central does not support LL Connection Parameters Request
1778 * Procedure
1779 */
1780 return bt_l2cap_update_conn_param(conn, param);
1781 }
1782
1783 #if defined(CONFIG_BT_ISO_UNICAST)
conn_lookup_iso(struct bt_conn * conn)1784 static struct bt_conn *conn_lookup_iso(struct bt_conn *conn)
1785 {
1786 int i;
1787
1788 for (i = 0; i < ARRAY_SIZE(iso_conns); i++) {
1789 struct bt_conn *iso = bt_conn_ref(&iso_conns[i]);
1790
1791 if (iso == NULL) {
1792 continue;
1793 }
1794
1795 if (iso->iso.acl == conn) {
1796 return iso;
1797 }
1798
1799 bt_conn_unref(iso);
1800 }
1801
1802 return NULL;
1803 }
1804 #endif /* CONFIG_BT_ISO */
1805
deferred_work(struct k_work * work)1806 static void deferred_work(struct k_work *work)
1807 {
1808 struct k_work_delayable *dwork = k_work_delayable_from_work(work);
1809 struct bt_conn *conn = CONTAINER_OF(dwork, struct bt_conn, deferred_work);
1810 const struct bt_le_conn_param *param;
1811
1812 LOG_DBG("conn %p", conn);
1813
1814 if (conn->state == BT_CONN_DISCONNECTED) {
1815 #if defined(CONFIG_BT_ISO_UNICAST)
1816 struct bt_conn *iso;
1817
1818 if (conn->type == BT_CONN_TYPE_ISO) {
1819 /* bt_iso_disconnected is responsible for unref'ing the
1820 * connection pointer, as it is conditional on whether
1821 * the connection is a central or peripheral.
1822 */
1823 bt_iso_disconnected(conn);
1824 return;
1825 }
1826
1827 /* Mark all ISO channels associated
1828 * with ACL conn as not connected, and
1829 * remove ACL reference
1830 */
1831 iso = conn_lookup_iso(conn);
1832 while (iso != NULL) {
1833 struct bt_iso_chan *chan = iso->iso.chan;
1834
1835 if (chan != NULL) {
1836 bt_iso_chan_set_state(chan,
1837 BT_ISO_STATE_DISCONNECTING);
1838 }
1839
1840 bt_iso_cleanup_acl(iso);
1841
1842 bt_conn_unref(iso);
1843 iso = conn_lookup_iso(conn);
1844 }
1845 #endif
1846
1847 bt_l2cap_disconnected(conn);
1848 notify_disconnected(conn);
1849
1850 /* Release the reference we took for the very first
1851 * state transition.
1852 */
1853 bt_conn_unref(conn);
1854 return;
1855 }
1856
1857 if (conn->type != BT_CONN_TYPE_LE) {
1858 return;
1859 }
1860
1861 if (IS_ENABLED(CONFIG_BT_CENTRAL) &&
1862 conn->role == BT_CONN_ROLE_CENTRAL) {
1863 /* we don't call bt_conn_disconnect as it would also clear
1864 * auto connect flag if it was set, instead just cancel
1865 * connection directly
1866 */
1867 bt_le_create_conn_cancel();
1868 return;
1869 }
1870
1871 /* if application set own params use those, otherwise use defaults. */
1872 if (atomic_test_and_clear_bit(conn->flags,
1873 BT_CONN_PERIPHERAL_PARAM_SET)) {
1874 int err;
1875
1876 param = BT_LE_CONN_PARAM(conn->le.interval_min,
1877 conn->le.interval_max,
1878 conn->le.pending_latency,
1879 conn->le.pending_timeout);
1880
1881 err = send_conn_le_param_update(conn, param);
1882 if (!err) {
1883 atomic_clear_bit(conn->flags,
1884 BT_CONN_PERIPHERAL_PARAM_AUTO_UPDATE);
1885 } else {
1886 LOG_WRN("Send LE param update failed (err %d)", err);
1887 }
1888 } else if (IS_ENABLED(CONFIG_BT_GAP_AUTO_UPDATE_CONN_PARAMS)) {
1889 #if defined(CONFIG_BT_GAP_PERIPHERAL_PREF_PARAMS)
1890 int err;
1891
1892 param = BT_LE_CONN_PARAM(
1893 CONFIG_BT_PERIPHERAL_PREF_MIN_INT,
1894 CONFIG_BT_PERIPHERAL_PREF_MAX_INT,
1895 CONFIG_BT_PERIPHERAL_PREF_LATENCY,
1896 CONFIG_BT_PERIPHERAL_PREF_TIMEOUT);
1897
1898 err = send_conn_le_param_update(conn, param);
1899 if (!err) {
1900 atomic_set_bit(conn->flags,
1901 BT_CONN_PERIPHERAL_PARAM_AUTO_UPDATE);
1902 } else {
1903 LOG_WRN("Send auto LE param update failed (err %d)",
1904 err);
1905 }
1906 #endif
1907 }
1908
1909 atomic_set_bit(conn->flags, BT_CONN_PERIPHERAL_PARAM_UPDATE);
1910 }
1911
acl_conn_new(void)1912 static struct bt_conn *acl_conn_new(void)
1913 {
1914 return bt_conn_new(acl_conns, ARRAY_SIZE(acl_conns));
1915 }
1916
1917 #if defined(CONFIG_BT_BREDR)
bt_sco_cleanup(struct bt_conn * sco_conn)1918 void bt_sco_cleanup(struct bt_conn *sco_conn)
1919 {
1920 bt_conn_unref(sco_conn->sco.acl);
1921 sco_conn->sco.acl = NULL;
1922 bt_conn_unref(sco_conn);
1923 }
1924
sco_conn_new(void)1925 static struct bt_conn *sco_conn_new(void)
1926 {
1927 return bt_conn_new(sco_conns, ARRAY_SIZE(sco_conns));
1928 }
1929
bt_conn_create_br(const bt_addr_t * peer,const struct bt_br_conn_param * param)1930 struct bt_conn *bt_conn_create_br(const bt_addr_t *peer,
1931 const struct bt_br_conn_param *param)
1932 {
1933 struct bt_hci_cp_connect *cp;
1934 struct bt_conn *conn;
1935 struct net_buf *buf;
1936
1937 conn = bt_conn_lookup_addr_br(peer);
1938 if (conn) {
1939 switch (conn->state) {
1940 case BT_CONN_CONNECTING:
1941 case BT_CONN_CONNECTED:
1942 return conn;
1943 default:
1944 bt_conn_unref(conn);
1945 return NULL;
1946 }
1947 }
1948
1949 conn = bt_conn_add_br(peer);
1950 if (!conn) {
1951 return NULL;
1952 }
1953
1954 buf = bt_hci_cmd_create(BT_HCI_OP_CONNECT, sizeof(*cp));
1955 if (!buf) {
1956 bt_conn_unref(conn);
1957 return NULL;
1958 }
1959
1960 cp = net_buf_add(buf, sizeof(*cp));
1961
1962 (void)memset(cp, 0, sizeof(*cp));
1963
1964 memcpy(&cp->bdaddr, peer, sizeof(cp->bdaddr));
1965 cp->packet_type = sys_cpu_to_le16(0xcc18); /* DM1 DH1 DM3 DH5 DM5 DH5 */
1966 cp->pscan_rep_mode = 0x02; /* R2 */
1967 cp->allow_role_switch = param->allow_role_switch ? 0x01 : 0x00;
1968 cp->clock_offset = 0x0000; /* TODO used cached clock offset */
1969
1970 if (bt_hci_cmd_send_sync(BT_HCI_OP_CONNECT, buf, NULL) < 0) {
1971 bt_conn_unref(conn);
1972 return NULL;
1973 }
1974
1975 bt_conn_set_state(conn, BT_CONN_CONNECTING);
1976 conn->role = BT_CONN_ROLE_CENTRAL;
1977
1978 return conn;
1979 }
1980
bt_conn_create_sco(const bt_addr_t * peer)1981 struct bt_conn *bt_conn_create_sco(const bt_addr_t *peer)
1982 {
1983 struct bt_hci_cp_setup_sync_conn *cp;
1984 struct bt_conn *sco_conn;
1985 struct net_buf *buf;
1986 int link_type;
1987
1988 sco_conn = bt_conn_lookup_addr_sco(peer);
1989 if (sco_conn) {
1990 switch (sco_conn->state) {
1991 case BT_CONN_CONNECTING:
1992 case BT_CONN_CONNECTED:
1993 return sco_conn;
1994 default:
1995 bt_conn_unref(sco_conn);
1996 return NULL;
1997 }
1998 }
1999
2000 if (BT_FEAT_LMP_ESCO_CAPABLE(bt_dev.features)) {
2001 link_type = BT_HCI_ESCO;
2002 } else {
2003 link_type = BT_HCI_SCO;
2004 }
2005
2006 sco_conn = bt_conn_add_sco(peer, link_type);
2007 if (!sco_conn) {
2008 return NULL;
2009 }
2010
2011 buf = bt_hci_cmd_create(BT_HCI_OP_SETUP_SYNC_CONN, sizeof(*cp));
2012 if (!buf) {
2013 bt_sco_cleanup(sco_conn);
2014 return NULL;
2015 }
2016
2017 cp = net_buf_add(buf, sizeof(*cp));
2018
2019 (void)memset(cp, 0, sizeof(*cp));
2020
2021 LOG_ERR("handle : %x", sco_conn->sco.acl->handle);
2022
2023 cp->handle = sco_conn->sco.acl->handle;
2024 cp->pkt_type = sco_conn->sco.pkt_type;
2025 cp->tx_bandwidth = 0x00001f40;
2026 cp->rx_bandwidth = 0x00001f40;
2027 cp->max_latency = 0x0007;
2028 cp->retrans_effort = 0x01;
2029 cp->content_format = BT_VOICE_CVSD_16BIT;
2030
2031 if (bt_hci_cmd_send_sync(BT_HCI_OP_SETUP_SYNC_CONN, buf,
2032 NULL) < 0) {
2033 bt_sco_cleanup(sco_conn);
2034 return NULL;
2035 }
2036
2037 bt_conn_set_state(sco_conn, BT_CONN_CONNECTING);
2038
2039 return sco_conn;
2040 }
2041
bt_conn_lookup_addr_sco(const bt_addr_t * peer)2042 struct bt_conn *bt_conn_lookup_addr_sco(const bt_addr_t *peer)
2043 {
2044 int i;
2045
2046 for (i = 0; i < ARRAY_SIZE(sco_conns); i++) {
2047 struct bt_conn *conn = bt_conn_ref(&sco_conns[i]);
2048
2049 if (!conn) {
2050 continue;
2051 }
2052
2053 if (conn->type != BT_CONN_TYPE_SCO) {
2054 bt_conn_unref(conn);
2055 continue;
2056 }
2057
2058 if (!bt_addr_eq(peer, &conn->sco.acl->br.dst)) {
2059 bt_conn_unref(conn);
2060 continue;
2061 }
2062
2063 return conn;
2064 }
2065
2066 return NULL;
2067 }
2068
bt_conn_lookup_addr_br(const bt_addr_t * peer)2069 struct bt_conn *bt_conn_lookup_addr_br(const bt_addr_t *peer)
2070 {
2071 int i;
2072
2073 for (i = 0; i < ARRAY_SIZE(acl_conns); i++) {
2074 struct bt_conn *conn = bt_conn_ref(&acl_conns[i]);
2075
2076 if (!conn) {
2077 continue;
2078 }
2079
2080 if (conn->type != BT_CONN_TYPE_BR) {
2081 bt_conn_unref(conn);
2082 continue;
2083 }
2084
2085 if (!bt_addr_eq(peer, &conn->br.dst)) {
2086 bt_conn_unref(conn);
2087 continue;
2088 }
2089
2090 return conn;
2091 }
2092
2093 return NULL;
2094 }
2095
bt_conn_add_sco(const bt_addr_t * peer,int link_type)2096 struct bt_conn *bt_conn_add_sco(const bt_addr_t *peer, int link_type)
2097 {
2098 struct bt_conn *sco_conn = sco_conn_new();
2099
2100 if (!sco_conn) {
2101 return NULL;
2102 }
2103
2104 sco_conn->sco.acl = bt_conn_lookup_addr_br(peer);
2105 if (!sco_conn->sco.acl) {
2106 bt_conn_unref(sco_conn);
2107 return NULL;
2108 }
2109
2110 sco_conn->type = BT_CONN_TYPE_SCO;
2111
2112 if (link_type == BT_HCI_SCO) {
2113 if (BT_FEAT_LMP_ESCO_CAPABLE(bt_dev.features)) {
2114 sco_conn->sco.pkt_type = (bt_dev.br.esco_pkt_type &
2115 ESCO_PKT_MASK);
2116 } else {
2117 sco_conn->sco.pkt_type = (bt_dev.br.esco_pkt_type &
2118 SCO_PKT_MASK);
2119 }
2120 } else if (link_type == BT_HCI_ESCO) {
2121 sco_conn->sco.pkt_type = (bt_dev.br.esco_pkt_type &
2122 ~EDR_ESCO_PKT_MASK);
2123 }
2124
2125 return sco_conn;
2126 }
2127
bt_conn_add_br(const bt_addr_t * peer)2128 struct bt_conn *bt_conn_add_br(const bt_addr_t *peer)
2129 {
2130 struct bt_conn *conn = acl_conn_new();
2131
2132 if (!conn) {
2133 return NULL;
2134 }
2135
2136 bt_addr_copy(&conn->br.dst, peer);
2137 conn->type = BT_CONN_TYPE_BR;
2138
2139 return conn;
2140 }
2141
bt_hci_connect_br_cancel(struct bt_conn * conn)2142 static int bt_hci_connect_br_cancel(struct bt_conn *conn)
2143 {
2144 struct bt_hci_cp_connect_cancel *cp;
2145 struct bt_hci_rp_connect_cancel *rp;
2146 struct net_buf *buf, *rsp;
2147 int err;
2148
2149 buf = bt_hci_cmd_create(BT_HCI_OP_CONNECT_CANCEL, sizeof(*cp));
2150 if (!buf) {
2151 return -ENOBUFS;
2152 }
2153
2154 cp = net_buf_add(buf, sizeof(*cp));
2155 memcpy(&cp->bdaddr, &conn->br.dst, sizeof(cp->bdaddr));
2156
2157 err = bt_hci_cmd_send_sync(BT_HCI_OP_CONNECT_CANCEL, buf, &rsp);
2158 if (err) {
2159 return err;
2160 }
2161
2162 rp = (void *)rsp->data;
2163
2164 err = rp->status ? -EIO : 0;
2165
2166 net_buf_unref(rsp);
2167
2168 return err;
2169 }
2170
2171 #endif /* CONFIG_BT_BREDR */
2172
2173 #if defined(CONFIG_BT_SMP)
bt_conn_ltk_present(const struct bt_conn * conn)2174 bool bt_conn_ltk_present(const struct bt_conn *conn)
2175 {
2176 const struct bt_keys *keys = conn->le.keys;
2177
2178 if (!keys) {
2179 keys = bt_keys_find_addr(conn->id, &conn->le.dst);
2180 }
2181
2182 if (keys) {
2183 if (conn->role == BT_HCI_ROLE_CENTRAL) {
2184 return keys->keys & (BT_KEYS_LTK_P256 | BT_KEYS_PERIPH_LTK);
2185 } else {
2186 return keys->keys & (BT_KEYS_LTK_P256 | BT_KEYS_LTK);
2187 }
2188 }
2189
2190 return false;
2191 }
2192
bt_conn_identity_resolved(struct bt_conn * conn)2193 void bt_conn_identity_resolved(struct bt_conn *conn)
2194 {
2195 const bt_addr_le_t *rpa;
2196
2197 if (conn->role == BT_HCI_ROLE_CENTRAL) {
2198 rpa = &conn->le.resp_addr;
2199 } else {
2200 rpa = &conn->le.init_addr;
2201 }
2202
2203 for (struct bt_conn_cb *cb = callback_list; cb; cb = cb->_next) {
2204 if (cb->identity_resolved) {
2205 cb->identity_resolved(conn, rpa, &conn->le.dst);
2206 }
2207 }
2208
2209 STRUCT_SECTION_FOREACH(bt_conn_cb, cb) {
2210 if (cb->identity_resolved) {
2211 cb->identity_resolved(conn, rpa, &conn->le.dst);
2212 }
2213 }
2214 }
2215
bt_conn_le_start_encryption(struct bt_conn * conn,uint8_t rand[8],uint8_t ediv[2],const uint8_t * ltk,size_t len)2216 int bt_conn_le_start_encryption(struct bt_conn *conn, uint8_t rand[8],
2217 uint8_t ediv[2], const uint8_t *ltk, size_t len)
2218 {
2219 struct bt_hci_cp_le_start_encryption *cp;
2220 struct net_buf *buf;
2221
2222 if (len > sizeof(cp->ltk)) {
2223 return -EINVAL;
2224 }
2225
2226 buf = bt_hci_cmd_create(BT_HCI_OP_LE_START_ENCRYPTION, sizeof(*cp));
2227 if (!buf) {
2228 return -ENOBUFS;
2229 }
2230
2231 cp = net_buf_add(buf, sizeof(*cp));
2232 cp->handle = sys_cpu_to_le16(conn->handle);
2233 memcpy(&cp->rand, rand, sizeof(cp->rand));
2234 memcpy(&cp->ediv, ediv, sizeof(cp->ediv));
2235
2236 memcpy(cp->ltk, ltk, len);
2237 if (len < sizeof(cp->ltk)) {
2238 (void)memset(cp->ltk + len, 0, sizeof(cp->ltk) - len);
2239 }
2240
2241 return bt_hci_cmd_send_sync(BT_HCI_OP_LE_START_ENCRYPTION, buf, NULL);
2242 }
2243 #endif /* CONFIG_BT_SMP */
2244
2245 #if defined(CONFIG_BT_SMP) || defined(CONFIG_BT_BREDR)
bt_conn_enc_key_size(const struct bt_conn * conn)2246 uint8_t bt_conn_enc_key_size(const struct bt_conn *conn)
2247 {
2248 if (!conn->encrypt) {
2249 return 0;
2250 }
2251
2252 if (IS_ENABLED(CONFIG_BT_BREDR) &&
2253 conn->type == BT_CONN_TYPE_BR) {
2254 struct bt_hci_cp_read_encryption_key_size *cp;
2255 struct bt_hci_rp_read_encryption_key_size *rp;
2256 struct net_buf *buf;
2257 struct net_buf *rsp;
2258 uint8_t key_size;
2259
2260 buf = bt_hci_cmd_create(BT_HCI_OP_READ_ENCRYPTION_KEY_SIZE,
2261 sizeof(*cp));
2262 if (!buf) {
2263 return 0;
2264 }
2265
2266 cp = net_buf_add(buf, sizeof(*cp));
2267 cp->handle = sys_cpu_to_le16(conn->handle);
2268
2269 if (bt_hci_cmd_send_sync(BT_HCI_OP_READ_ENCRYPTION_KEY_SIZE,
2270 buf, &rsp)) {
2271 return 0;
2272 }
2273
2274 rp = (void *)rsp->data;
2275
2276 key_size = rp->status ? 0 : rp->key_size;
2277
2278 net_buf_unref(rsp);
2279
2280 return key_size;
2281 }
2282
2283 if (IS_ENABLED(CONFIG_BT_SMP)) {
2284 return conn->le.keys ? conn->le.keys->enc_size : 0;
2285 }
2286
2287 return 0;
2288 }
2289
reset_pairing(struct bt_conn * conn)2290 static void reset_pairing(struct bt_conn *conn)
2291 {
2292 #if defined(CONFIG_BT_BREDR)
2293 if (conn->type == BT_CONN_TYPE_BR) {
2294 atomic_clear_bit(conn->flags, BT_CONN_BR_PAIRING);
2295 atomic_clear_bit(conn->flags, BT_CONN_BR_PAIRING_INITIATOR);
2296 atomic_clear_bit(conn->flags, BT_CONN_BR_LEGACY_SECURE);
2297 }
2298 #endif /* CONFIG_BT_BREDR */
2299
2300 /* Reset required security level to current operational */
2301 conn->required_sec_level = conn->sec_level;
2302 }
2303
bt_conn_security_changed(struct bt_conn * conn,uint8_t hci_err,enum bt_security_err err)2304 void bt_conn_security_changed(struct bt_conn *conn, uint8_t hci_err,
2305 enum bt_security_err err)
2306 {
2307 reset_pairing(conn);
2308 bt_l2cap_security_changed(conn, hci_err);
2309 if (IS_ENABLED(CONFIG_BT_ISO_CENTRAL)) {
2310 bt_iso_security_changed(conn, hci_err);
2311 }
2312
2313 for (struct bt_conn_cb *cb = callback_list; cb; cb = cb->_next) {
2314 if (cb->security_changed) {
2315 cb->security_changed(conn, conn->sec_level, err);
2316 }
2317 }
2318
2319 STRUCT_SECTION_FOREACH(bt_conn_cb, cb) {
2320 if (cb->security_changed) {
2321 cb->security_changed(conn, conn->sec_level, err);
2322 }
2323 }
2324
2325 #if defined(CONFIG_BT_KEYS_OVERWRITE_OLDEST)
2326 if (!err && conn->sec_level >= BT_SECURITY_L2) {
2327 if (conn->type == BT_CONN_TYPE_LE) {
2328 bt_keys_update_usage(conn->id, bt_conn_get_dst(conn));
2329 }
2330
2331 #if defined(CONFIG_BT_BREDR)
2332 if (conn->type == BT_CONN_TYPE_BR) {
2333 bt_keys_link_key_update_usage(&conn->br.dst);
2334 }
2335 #endif /* CONFIG_BT_BREDR */
2336
2337 }
2338 #endif
2339 }
2340
start_security(struct bt_conn * conn)2341 static int start_security(struct bt_conn *conn)
2342 {
2343 if (IS_ENABLED(CONFIG_BT_BREDR) && conn->type == BT_CONN_TYPE_BR) {
2344 return bt_ssp_start_security(conn);
2345 }
2346
2347 if (IS_ENABLED(CONFIG_BT_SMP)) {
2348 return bt_smp_start_security(conn);
2349 }
2350
2351 return -EINVAL;
2352 }
2353
bt_conn_set_security(struct bt_conn * conn,bt_security_t sec)2354 int bt_conn_set_security(struct bt_conn *conn, bt_security_t sec)
2355 {
2356 bool force_pair;
2357 int err;
2358
2359 if (conn->state != BT_CONN_CONNECTED) {
2360 return -ENOTCONN;
2361 }
2362
2363 force_pair = sec & BT_SECURITY_FORCE_PAIR;
2364 sec &= ~BT_SECURITY_FORCE_PAIR;
2365
2366 if (IS_ENABLED(CONFIG_BT_SMP_SC_ONLY)) {
2367 sec = BT_SECURITY_L4;
2368 }
2369
2370 if (IS_ENABLED(CONFIG_BT_SMP_OOB_LEGACY_PAIR_ONLY)) {
2371 sec = BT_SECURITY_L3;
2372 }
2373
2374 /* nothing to do */
2375 if (!force_pair && (conn->sec_level >= sec || conn->required_sec_level >= sec)) {
2376 return 0;
2377 }
2378
2379 atomic_set_bit_to(conn->flags, BT_CONN_FORCE_PAIR, force_pair);
2380 conn->required_sec_level = sec;
2381
2382 err = start_security(conn);
2383
2384 /* reset required security level in case of error */
2385 if (err) {
2386 conn->required_sec_level = conn->sec_level;
2387 }
2388
2389 return err;
2390 }
2391
bt_conn_get_security(const struct bt_conn * conn)2392 bt_security_t bt_conn_get_security(const struct bt_conn *conn)
2393 {
2394 return conn->sec_level;
2395 }
2396 #else
bt_conn_get_security(const struct bt_conn * conn)2397 bt_security_t bt_conn_get_security(const struct bt_conn *conn)
2398 {
2399 return BT_SECURITY_L1;
2400 }
2401 #endif /* CONFIG_BT_SMP */
2402
bt_conn_cb_register(struct bt_conn_cb * cb)2403 void bt_conn_cb_register(struct bt_conn_cb *cb)
2404 {
2405 cb->_next = callback_list;
2406 callback_list = cb;
2407 }
2408
bt_conn_cb_unregister(struct bt_conn_cb * cb)2409 int bt_conn_cb_unregister(struct bt_conn_cb *cb)
2410 {
2411 struct bt_conn_cb *previous_callback;
2412
2413 CHECKIF(cb == NULL) {
2414 return -EINVAL;
2415 }
2416
2417 if (callback_list == cb) {
2418 callback_list = callback_list->_next;
2419 return 0;
2420 }
2421
2422 previous_callback = callback_list;
2423
2424 while (previous_callback->_next) {
2425 if (previous_callback->_next == cb) {
2426 previous_callback->_next = previous_callback->_next->_next;
2427 return 0;
2428 }
2429
2430 previous_callback = previous_callback->_next;
2431 }
2432
2433 return -ENOENT;
2434 }
2435
bt_conn_exists_le(uint8_t id,const bt_addr_le_t * peer)2436 bool bt_conn_exists_le(uint8_t id, const bt_addr_le_t *peer)
2437 {
2438 struct bt_conn *conn = bt_conn_lookup_addr_le(id, peer);
2439
2440 if (conn) {
2441 /* Connection object already exists.
2442 * If the connection state is not "disconnected",then the
2443 * connection was created but has not yet been disconnected.
2444 * If the connection state is "disconnected" then the connection
2445 * still has valid references. The last reference of the stack
2446 * is released after the disconnected callback.
2447 */
2448 LOG_WRN("Found valid connection (%p) with address %s in %s state ", conn,
2449 bt_addr_le_str(peer), state2str(conn->state));
2450 bt_conn_unref(conn);
2451 return true;
2452 }
2453
2454 return false;
2455 }
2456
bt_conn_add_le(uint8_t id,const bt_addr_le_t * peer)2457 struct bt_conn *bt_conn_add_le(uint8_t id, const bt_addr_le_t *peer)
2458 {
2459 struct bt_conn *conn = acl_conn_new();
2460
2461 if (!conn) {
2462 return NULL;
2463 }
2464
2465 conn->id = id;
2466 bt_addr_le_copy(&conn->le.dst, peer);
2467 #if defined(CONFIG_BT_SMP)
2468 conn->sec_level = BT_SECURITY_L1;
2469 conn->required_sec_level = BT_SECURITY_L1;
2470 #endif /* CONFIG_BT_SMP */
2471 conn->type = BT_CONN_TYPE_LE;
2472 conn->le.interval_min = BT_GAP_INIT_CONN_INT_MIN;
2473 conn->le.interval_max = BT_GAP_INIT_CONN_INT_MAX;
2474
2475 return conn;
2476 }
2477
bt_conn_is_peer_addr_le(const struct bt_conn * conn,uint8_t id,const bt_addr_le_t * peer)2478 bool bt_conn_is_peer_addr_le(const struct bt_conn *conn, uint8_t id,
2479 const bt_addr_le_t *peer)
2480 {
2481 if (id != conn->id) {
2482 return false;
2483 }
2484
2485 /* Check against conn dst address as it may be the identity address */
2486 if (bt_addr_le_eq(peer, &conn->le.dst)) {
2487 return true;
2488 }
2489
2490 /* Check against initial connection address */
2491 if (conn->role == BT_HCI_ROLE_CENTRAL) {
2492 return bt_addr_le_eq(peer, &conn->le.resp_addr);
2493 }
2494
2495 return bt_addr_le_eq(peer, &conn->le.init_addr);
2496 }
2497
bt_conn_lookup_addr_le(uint8_t id,const bt_addr_le_t * peer)2498 struct bt_conn *bt_conn_lookup_addr_le(uint8_t id, const bt_addr_le_t *peer)
2499 {
2500 int i;
2501
2502 for (i = 0; i < ARRAY_SIZE(acl_conns); i++) {
2503 struct bt_conn *conn = bt_conn_ref(&acl_conns[i]);
2504
2505 if (!conn) {
2506 continue;
2507 }
2508
2509 if (conn->type != BT_CONN_TYPE_LE) {
2510 bt_conn_unref(conn);
2511 continue;
2512 }
2513
2514 if (!bt_conn_is_peer_addr_le(conn, id, peer)) {
2515 bt_conn_unref(conn);
2516 continue;
2517 }
2518
2519 return conn;
2520 }
2521
2522 return NULL;
2523 }
2524
bt_conn_lookup_state_le(uint8_t id,const bt_addr_le_t * peer,const bt_conn_state_t state)2525 struct bt_conn *bt_conn_lookup_state_le(uint8_t id, const bt_addr_le_t *peer,
2526 const bt_conn_state_t state)
2527 {
2528 int i;
2529
2530 for (i = 0; i < ARRAY_SIZE(acl_conns); i++) {
2531 struct bt_conn *conn = bt_conn_ref(&acl_conns[i]);
2532
2533 if (!conn) {
2534 continue;
2535 }
2536
2537 if (conn->type != BT_CONN_TYPE_LE) {
2538 bt_conn_unref(conn);
2539 continue;
2540 }
2541
2542 if (peer && !bt_conn_is_peer_addr_le(conn, id, peer)) {
2543 bt_conn_unref(conn);
2544 continue;
2545 }
2546
2547 if (!(conn->state == state && conn->id == id)) {
2548 bt_conn_unref(conn);
2549 continue;
2550 }
2551
2552 return conn;
2553 }
2554
2555 return NULL;
2556 }
2557
bt_conn_get_dst(const struct bt_conn * conn)2558 const bt_addr_le_t *bt_conn_get_dst(const struct bt_conn *conn)
2559 {
2560 return &conn->le.dst;
2561 }
2562
conn_internal_to_public_state(bt_conn_state_t state)2563 static enum bt_conn_state conn_internal_to_public_state(bt_conn_state_t state)
2564 {
2565 switch (state) {
2566 case BT_CONN_DISCONNECTED:
2567 case BT_CONN_DISCONNECT_COMPLETE:
2568 return BT_CONN_STATE_DISCONNECTED;
2569 case BT_CONN_CONNECTING_SCAN:
2570 case BT_CONN_CONNECTING_AUTO:
2571 case BT_CONN_CONNECTING_ADV:
2572 case BT_CONN_CONNECTING_DIR_ADV:
2573 case BT_CONN_CONNECTING:
2574 return BT_CONN_STATE_CONNECTING;
2575 case BT_CONN_CONNECTED:
2576 return BT_CONN_STATE_CONNECTED;
2577 case BT_CONN_DISCONNECTING:
2578 return BT_CONN_STATE_DISCONNECTING;
2579 default:
2580 __ASSERT(false, "Invalid conn state %u", state);
2581 return 0;
2582 }
2583 }
2584
bt_conn_get_info(const struct bt_conn * conn,struct bt_conn_info * info)2585 int bt_conn_get_info(const struct bt_conn *conn, struct bt_conn_info *info)
2586 {
2587 info->type = conn->type;
2588 info->role = conn->role;
2589 info->id = conn->id;
2590 info->state = conn_internal_to_public_state(conn->state);
2591 info->security.flags = 0;
2592 info->security.level = bt_conn_get_security(conn);
2593 #if defined(CONFIG_BT_SMP) || defined(CONFIG_BT_BREDR)
2594 info->security.enc_key_size = bt_conn_enc_key_size(conn);
2595 #else
2596 info->security.enc_key_size = 0;
2597 #endif /* CONFIG_BT_SMP || CONFIG_BT_BREDR */
2598
2599 switch (conn->type) {
2600 case BT_CONN_TYPE_LE:
2601 info->le.dst = &conn->le.dst;
2602 info->le.src = &bt_dev.id_addr[conn->id];
2603 if (conn->role == BT_HCI_ROLE_CENTRAL) {
2604 info->le.local = &conn->le.init_addr;
2605 info->le.remote = &conn->le.resp_addr;
2606 } else {
2607 info->le.local = &conn->le.resp_addr;
2608 info->le.remote = &conn->le.init_addr;
2609 }
2610 info->le.interval = conn->le.interval;
2611 info->le.latency = conn->le.latency;
2612 info->le.timeout = conn->le.timeout;
2613 #if defined(CONFIG_BT_USER_PHY_UPDATE)
2614 info->le.phy = &conn->le.phy;
2615 #endif
2616 #if defined(CONFIG_BT_USER_DATA_LEN_UPDATE)
2617 info->le.data_len = &conn->le.data_len;
2618 #endif
2619 if (conn->le.keys && (conn->le.keys->flags & BT_KEYS_SC)) {
2620 info->security.flags |= BT_SECURITY_FLAG_SC;
2621 }
2622 if (conn->le.keys && (conn->le.keys->flags & BT_KEYS_OOB)) {
2623 info->security.flags |= BT_SECURITY_FLAG_OOB;
2624 }
2625 return 0;
2626 #if defined(CONFIG_BT_BREDR)
2627 case BT_CONN_TYPE_BR:
2628 info->br.dst = &conn->br.dst;
2629 return 0;
2630 #endif
2631 #if defined(CONFIG_BT_ISO)
2632 case BT_CONN_TYPE_ISO:
2633 if (IS_ENABLED(CONFIG_BT_ISO_UNICAST) &&
2634 conn->iso.info.type == BT_ISO_CHAN_TYPE_CONNECTED && conn->iso.acl != NULL) {
2635 info->le.dst = &conn->iso.acl->le.dst;
2636 info->le.src = &bt_dev.id_addr[conn->iso.acl->id];
2637 } else {
2638 info->le.src = BT_ADDR_LE_NONE;
2639 info->le.dst = BT_ADDR_LE_NONE;
2640 }
2641 return 0;
2642 #endif
2643 default:
2644 break;
2645 }
2646
2647 return -EINVAL;
2648 }
2649
bt_conn_get_remote_info(struct bt_conn * conn,struct bt_conn_remote_info * remote_info)2650 int bt_conn_get_remote_info(struct bt_conn *conn,
2651 struct bt_conn_remote_info *remote_info)
2652 {
2653 if (!atomic_test_bit(conn->flags, BT_CONN_AUTO_FEATURE_EXCH) ||
2654 (IS_ENABLED(CONFIG_BT_REMOTE_VERSION) &&
2655 !atomic_test_bit(conn->flags, BT_CONN_AUTO_VERSION_INFO))) {
2656 return -EBUSY;
2657 }
2658
2659 remote_info->type = conn->type;
2660 #if defined(CONFIG_BT_REMOTE_VERSION)
2661 /* The conn->rv values will be just zeroes if the operation failed */
2662 remote_info->version = conn->rv.version;
2663 remote_info->manufacturer = conn->rv.manufacturer;
2664 remote_info->subversion = conn->rv.subversion;
2665 #else
2666 remote_info->version = 0;
2667 remote_info->manufacturer = 0;
2668 remote_info->subversion = 0;
2669 #endif
2670
2671 switch (conn->type) {
2672 case BT_CONN_TYPE_LE:
2673 remote_info->le.features = conn->le.features;
2674 return 0;
2675 #if defined(CONFIG_BT_BREDR)
2676 case BT_CONN_TYPE_BR:
2677 /* TODO: Make sure the HCI commands to read br features and
2678 * extended features has finished. */
2679 return -ENOTSUP;
2680 #endif
2681 default:
2682 return -EINVAL;
2683 }
2684 }
2685
2686 /* Read Transmit Power Level HCI command */
bt_conn_get_tx_power_level(struct bt_conn * conn,uint8_t type,int8_t * tx_power_level)2687 static int bt_conn_get_tx_power_level(struct bt_conn *conn, uint8_t type,
2688 int8_t *tx_power_level)
2689 {
2690 int err;
2691 struct bt_hci_rp_read_tx_power_level *rp;
2692 struct net_buf *rsp;
2693 struct bt_hci_cp_read_tx_power_level *cp;
2694 struct net_buf *buf;
2695
2696 buf = bt_hci_cmd_create(BT_HCI_OP_READ_TX_POWER_LEVEL, sizeof(*cp));
2697 if (!buf) {
2698 return -ENOBUFS;
2699 }
2700
2701 cp = net_buf_add(buf, sizeof(*cp));
2702 cp->type = type;
2703 cp->handle = sys_cpu_to_le16(conn->handle);
2704
2705 err = bt_hci_cmd_send_sync(BT_HCI_OP_READ_TX_POWER_LEVEL, buf, &rsp);
2706 if (err) {
2707 return err;
2708 }
2709
2710 rp = (void *) rsp->data;
2711 *tx_power_level = rp->tx_power_level;
2712 net_buf_unref(rsp);
2713
2714 return 0;
2715 }
2716
2717 #if defined(CONFIG_BT_TRANSMIT_POWER_CONTROL)
notify_tx_power_report(struct bt_conn * conn,struct bt_conn_le_tx_power_report report)2718 void notify_tx_power_report(struct bt_conn *conn,
2719 struct bt_conn_le_tx_power_report report)
2720 {
2721 for (struct bt_conn_cb *cb = callback_list; cb; cb = cb->_next) {
2722 if (cb->tx_power_report) {
2723 cb->tx_power_report(conn, &report);
2724 }
2725 }
2726
2727 STRUCT_SECTION_FOREACH(bt_conn_cb, cb)
2728 {
2729 if (cb->tx_power_report) {
2730 cb->tx_power_report(conn, &report);
2731 }
2732 }
2733 }
2734
bt_conn_le_enhanced_get_tx_power_level(struct bt_conn * conn,struct bt_conn_le_tx_power * tx_power)2735 int bt_conn_le_enhanced_get_tx_power_level(struct bt_conn *conn,
2736 struct bt_conn_le_tx_power *tx_power)
2737 {
2738 int err;
2739 struct bt_hci_rp_le_read_tx_power_level *rp;
2740 struct net_buf *rsp;
2741 struct bt_hci_cp_le_read_tx_power_level *cp;
2742 struct net_buf *buf;
2743
2744 if (!tx_power->phy) {
2745 return -EINVAL;
2746 }
2747
2748 buf = bt_hci_cmd_create(BT_HCI_OP_LE_ENH_READ_TX_POWER_LEVEL, sizeof(*cp));
2749 if (!buf) {
2750 return -ENOBUFS;
2751 }
2752
2753 cp = net_buf_add(buf, sizeof(*cp));
2754 cp->handle = sys_cpu_to_le16(conn->handle);
2755 cp->phy = tx_power->phy;
2756
2757 err = bt_hci_cmd_send_sync(BT_HCI_OP_LE_ENH_READ_TX_POWER_LEVEL, buf, &rsp);
2758 if (err) {
2759 return err;
2760 }
2761
2762 rp = (void *) rsp->data;
2763 tx_power->phy = rp->phy;
2764 tx_power->current_level = rp->current_tx_power_level;
2765 tx_power->max_level = rp->max_tx_power_level;
2766 net_buf_unref(rsp);
2767
2768 return 0;
2769 }
2770
bt_conn_le_get_remote_tx_power_level(struct bt_conn * conn,enum bt_conn_le_tx_power_phy phy)2771 int bt_conn_le_get_remote_tx_power_level(struct bt_conn *conn,
2772 enum bt_conn_le_tx_power_phy phy)
2773 {
2774 struct bt_hci_cp_le_read_tx_power_level *cp;
2775 struct net_buf *buf;
2776
2777 if (!phy) {
2778 return -EINVAL;
2779 }
2780
2781 buf = bt_hci_cmd_create(BT_HCI_OP_LE_READ_REMOTE_TX_POWER_LEVEL, sizeof(*cp));
2782 if (!buf) {
2783 return -ENOBUFS;
2784 }
2785
2786 cp = net_buf_add(buf, sizeof(*cp));
2787 cp->handle = sys_cpu_to_le16(conn->handle);
2788 cp->phy = phy;
2789
2790 return bt_hci_cmd_send_sync(BT_HCI_OP_LE_READ_REMOTE_TX_POWER_LEVEL, buf, NULL);
2791 }
2792
bt_conn_le_set_tx_power_report_enable(struct bt_conn * conn,bool local_enable,bool remote_enable)2793 int bt_conn_le_set_tx_power_report_enable(struct bt_conn *conn,
2794 bool local_enable,
2795 bool remote_enable)
2796 {
2797 struct bt_hci_cp_le_set_tx_power_report_enable *cp;
2798 struct net_buf *buf;
2799
2800 buf = bt_hci_cmd_create(BT_HCI_OP_LE_SET_TX_POWER_REPORT_ENABLE, sizeof(*cp));
2801 if (!buf) {
2802 return -ENOBUFS;
2803 }
2804
2805 cp = net_buf_add(buf, sizeof(*cp));
2806 cp->handle = sys_cpu_to_le16(conn->handle);
2807 cp->local_enable = local_enable ? BT_HCI_LE_TX_POWER_REPORT_ENABLE :
2808 BT_HCI_LE_TX_POWER_REPORT_DISABLE;
2809 cp->remote_enable = remote_enable ? BT_HCI_LE_TX_POWER_REPORT_ENABLE :
2810 BT_HCI_LE_TX_POWER_REPORT_DISABLE;
2811
2812 return bt_hci_cmd_send_sync(BT_HCI_OP_LE_SET_TX_POWER_REPORT_ENABLE, buf, NULL);
2813 }
2814 #endif /* CONFIG_BT_TRANSMIT_POWER_CONTROL */
2815
bt_conn_le_get_tx_power_level(struct bt_conn * conn,struct bt_conn_le_tx_power * tx_power_level)2816 int bt_conn_le_get_tx_power_level(struct bt_conn *conn,
2817 struct bt_conn_le_tx_power *tx_power_level)
2818 {
2819 int err;
2820
2821 if (tx_power_level->phy != 0) {
2822 if (IS_ENABLED(CONFIG_BT_TRANSMIT_POWER_CONTROL)) {
2823 return bt_conn_le_enhanced_get_tx_power_level(conn, tx_power_level);
2824 } else {
2825 return -ENOTSUP;
2826 }
2827 }
2828
2829 err = bt_conn_get_tx_power_level(conn, BT_TX_POWER_LEVEL_CURRENT,
2830 &tx_power_level->current_level);
2831 if (err) {
2832 return err;
2833 }
2834
2835 err = bt_conn_get_tx_power_level(conn, BT_TX_POWER_LEVEL_MAX,
2836 &tx_power_level->max_level);
2837 return err;
2838 }
2839
bt_conn_le_param_update(struct bt_conn * conn,const struct bt_le_conn_param * param)2840 int bt_conn_le_param_update(struct bt_conn *conn,
2841 const struct bt_le_conn_param *param)
2842 {
2843 LOG_DBG("conn %p features 0x%02x params (%d-%d %d %d)", conn, conn->le.features[0],
2844 param->interval_min, param->interval_max, param->latency, param->timeout);
2845
2846 /* Check if there's a need to update conn params */
2847 if (conn->le.interval >= param->interval_min &&
2848 conn->le.interval <= param->interval_max &&
2849 conn->le.latency == param->latency &&
2850 conn->le.timeout == param->timeout) {
2851 atomic_clear_bit(conn->flags, BT_CONN_PERIPHERAL_PARAM_SET);
2852 return -EALREADY;
2853 }
2854
2855 if (IS_ENABLED(CONFIG_BT_CENTRAL) &&
2856 conn->role == BT_CONN_ROLE_CENTRAL) {
2857 return send_conn_le_param_update(conn, param);
2858 }
2859
2860 if (IS_ENABLED(CONFIG_BT_PERIPHERAL)) {
2861 /* if peripheral conn param update timer expired just send request */
2862 if (atomic_test_bit(conn->flags, BT_CONN_PERIPHERAL_PARAM_UPDATE)) {
2863 return send_conn_le_param_update(conn, param);
2864 }
2865
2866 /* store new conn params to be used by update timer */
2867 conn->le.interval_min = param->interval_min;
2868 conn->le.interval_max = param->interval_max;
2869 conn->le.pending_latency = param->latency;
2870 conn->le.pending_timeout = param->timeout;
2871 atomic_set_bit(conn->flags, BT_CONN_PERIPHERAL_PARAM_SET);
2872 }
2873
2874 return 0;
2875 }
2876
2877 #if defined(CONFIG_BT_USER_DATA_LEN_UPDATE)
bt_conn_le_data_len_update(struct bt_conn * conn,const struct bt_conn_le_data_len_param * param)2878 int bt_conn_le_data_len_update(struct bt_conn *conn,
2879 const struct bt_conn_le_data_len_param *param)
2880 {
2881 if (conn->le.data_len.tx_max_len == param->tx_max_len &&
2882 conn->le.data_len.tx_max_time == param->tx_max_time) {
2883 return -EALREADY;
2884 }
2885
2886 return bt_le_set_data_len(conn, param->tx_max_len, param->tx_max_time);
2887 }
2888 #endif /* CONFIG_BT_USER_DATA_LEN_UPDATE */
2889
2890 #if defined(CONFIG_BT_USER_PHY_UPDATE)
bt_conn_le_phy_update(struct bt_conn * conn,const struct bt_conn_le_phy_param * param)2891 int bt_conn_le_phy_update(struct bt_conn *conn,
2892 const struct bt_conn_le_phy_param *param)
2893 {
2894 uint8_t phy_opts, all_phys;
2895
2896 if ((param->options & BT_CONN_LE_PHY_OPT_CODED_S2) &&
2897 (param->options & BT_CONN_LE_PHY_OPT_CODED_S8)) {
2898 phy_opts = BT_HCI_LE_PHY_CODED_ANY;
2899 } else if (param->options & BT_CONN_LE_PHY_OPT_CODED_S2) {
2900 phy_opts = BT_HCI_LE_PHY_CODED_S2;
2901 } else if (param->options & BT_CONN_LE_PHY_OPT_CODED_S8) {
2902 phy_opts = BT_HCI_LE_PHY_CODED_S8;
2903 } else {
2904 phy_opts = BT_HCI_LE_PHY_CODED_ANY;
2905 }
2906
2907 all_phys = 0U;
2908 if (param->pref_tx_phy == BT_GAP_LE_PHY_NONE) {
2909 all_phys |= BT_HCI_LE_PHY_TX_ANY;
2910 }
2911
2912 if (param->pref_rx_phy == BT_GAP_LE_PHY_NONE) {
2913 all_phys |= BT_HCI_LE_PHY_RX_ANY;
2914 }
2915
2916 return bt_le_set_phy(conn, all_phys, param->pref_tx_phy,
2917 param->pref_rx_phy, phy_opts);
2918 }
2919 #endif
2920
2921 #if defined(CONFIG_BT_CENTRAL)
bt_conn_set_param_le(struct bt_conn * conn,const struct bt_le_conn_param * param)2922 static void bt_conn_set_param_le(struct bt_conn *conn,
2923 const struct bt_le_conn_param *param)
2924 {
2925 conn->le.interval_min = param->interval_min;
2926 conn->le.interval_max = param->interval_max;
2927 conn->le.latency = param->latency;
2928 conn->le.timeout = param->timeout;
2929 }
2930
create_param_validate(const struct bt_conn_le_create_param * param)2931 static bool create_param_validate(const struct bt_conn_le_create_param *param)
2932 {
2933 #if defined(CONFIG_BT_PRIVACY)
2934 /* Initiation timeout cannot be greater than the RPA timeout */
2935 const uint32_t timeout_max = (MSEC_PER_SEC / 10) * bt_dev.rpa_timeout;
2936
2937 if (param->timeout > timeout_max) {
2938 return false;
2939 }
2940 #endif
2941
2942 return true;
2943 }
2944
create_param_setup(const struct bt_conn_le_create_param * param)2945 static void create_param_setup(const struct bt_conn_le_create_param *param)
2946 {
2947 bt_dev.create_param = *param;
2948
2949 bt_dev.create_param.timeout =
2950 (bt_dev.create_param.timeout != 0) ?
2951 bt_dev.create_param.timeout :
2952 (MSEC_PER_SEC / 10) * CONFIG_BT_CREATE_CONN_TIMEOUT;
2953
2954 bt_dev.create_param.interval_coded =
2955 (bt_dev.create_param.interval_coded != 0) ?
2956 bt_dev.create_param.interval_coded :
2957 bt_dev.create_param.interval;
2958
2959 bt_dev.create_param.window_coded =
2960 (bt_dev.create_param.window_coded != 0) ?
2961 bt_dev.create_param.window_coded :
2962 bt_dev.create_param.window;
2963 }
2964
2965 #if defined(CONFIG_BT_FILTER_ACCEPT_LIST)
bt_conn_le_create_auto(const struct bt_conn_le_create_param * create_param,const struct bt_le_conn_param * param)2966 int bt_conn_le_create_auto(const struct bt_conn_le_create_param *create_param,
2967 const struct bt_le_conn_param *param)
2968 {
2969 struct bt_conn *conn;
2970 int err;
2971
2972 if (!atomic_test_bit(bt_dev.flags, BT_DEV_READY)) {
2973 return -EAGAIN;
2974 }
2975
2976 if (!bt_le_conn_params_valid(param)) {
2977 return -EINVAL;
2978 }
2979
2980 conn = bt_conn_lookup_state_le(BT_ID_DEFAULT, BT_ADDR_LE_NONE,
2981 BT_CONN_CONNECTING_AUTO);
2982 if (conn) {
2983 bt_conn_unref(conn);
2984 return -EALREADY;
2985 }
2986
2987 /* Scanning either to connect or explicit scan, either case scanner was
2988 * started by application and should not be stopped.
2989 */
2990 if (atomic_test_bit(bt_dev.flags, BT_DEV_SCANNING)) {
2991 return -EINVAL;
2992 }
2993
2994 if (atomic_test_bit(bt_dev.flags, BT_DEV_INITIATING)) {
2995 return -EINVAL;
2996 }
2997
2998 if (!bt_id_scan_random_addr_check()) {
2999 return -EINVAL;
3000 }
3001
3002 conn = bt_conn_add_le(BT_ID_DEFAULT, BT_ADDR_LE_NONE);
3003 if (!conn) {
3004 return -ENOMEM;
3005 }
3006
3007 bt_conn_set_param_le(conn, param);
3008 create_param_setup(create_param);
3009
3010 atomic_set_bit(conn->flags, BT_CONN_AUTO_CONNECT);
3011 bt_conn_set_state(conn, BT_CONN_CONNECTING_AUTO);
3012
3013 err = bt_le_create_conn(conn);
3014 if (err) {
3015 LOG_ERR("Failed to start filtered scan");
3016 conn->err = 0;
3017 bt_conn_set_state(conn, BT_CONN_DISCONNECTED);
3018 bt_conn_unref(conn);
3019 return err;
3020 }
3021
3022 /* Since we don't give the application a reference to manage in
3023 * this case, we need to release this reference here.
3024 */
3025 bt_conn_unref(conn);
3026 return 0;
3027 }
3028
bt_conn_create_auto_stop(void)3029 int bt_conn_create_auto_stop(void)
3030 {
3031 struct bt_conn *conn;
3032 int err;
3033
3034 if (!atomic_test_bit(bt_dev.flags, BT_DEV_READY)) {
3035 return -EINVAL;
3036 }
3037
3038 conn = bt_conn_lookup_state_le(BT_ID_DEFAULT, BT_ADDR_LE_NONE,
3039 BT_CONN_CONNECTING_AUTO);
3040 if (!conn) {
3041 return -EINVAL;
3042 }
3043
3044 if (!atomic_test_bit(bt_dev.flags, BT_DEV_INITIATING)) {
3045 return -EINVAL;
3046 }
3047
3048 bt_conn_set_state(conn, BT_CONN_DISCONNECTED);
3049 bt_conn_unref(conn);
3050
3051 err = bt_le_create_conn_cancel();
3052 if (err) {
3053 LOG_ERR("Failed to stop initiator");
3054 return err;
3055 }
3056
3057 return 0;
3058 }
3059 #endif /* defined(CONFIG_BT_FILTER_ACCEPT_LIST) */
3060
conn_le_create_common_checks(const bt_addr_le_t * peer,const struct bt_le_conn_param * conn_param)3061 static int conn_le_create_common_checks(const bt_addr_le_t *peer,
3062 const struct bt_le_conn_param *conn_param)
3063 {
3064
3065 if (!atomic_test_bit(bt_dev.flags, BT_DEV_READY)) {
3066 return -EAGAIN;
3067 }
3068
3069 if (!bt_le_conn_params_valid(conn_param)) {
3070 return -EINVAL;
3071 }
3072
3073 if (atomic_test_bit(bt_dev.flags, BT_DEV_EXPLICIT_SCAN)) {
3074 return -EAGAIN;
3075 }
3076
3077 if (atomic_test_bit(bt_dev.flags, BT_DEV_INITIATING)) {
3078 return -EALREADY;
3079 }
3080
3081 if (!bt_id_scan_random_addr_check()) {
3082 return -EINVAL;
3083 }
3084
3085 if (bt_conn_exists_le(BT_ID_DEFAULT, peer)) {
3086 return -EINVAL;
3087 }
3088
3089 return 0;
3090 }
3091
conn_le_create_helper(const bt_addr_le_t * peer,const struct bt_le_conn_param * conn_param)3092 static struct bt_conn *conn_le_create_helper(const bt_addr_le_t *peer,
3093 const struct bt_le_conn_param *conn_param)
3094 {
3095 bt_addr_le_t dst;
3096 struct bt_conn *conn;
3097
3098 if (bt_addr_le_is_resolved(peer)) {
3099 bt_addr_le_copy_resolved(&dst, peer);
3100 } else {
3101 bt_addr_le_copy(&dst, bt_lookup_id_addr(BT_ID_DEFAULT, peer));
3102 }
3103
3104 /* Only default identity supported for now */
3105 conn = bt_conn_add_le(BT_ID_DEFAULT, &dst);
3106 if (!conn) {
3107 return NULL;
3108 }
3109
3110 bt_conn_set_param_le(conn, conn_param);
3111
3112 return conn;
3113 }
3114
bt_conn_le_create(const bt_addr_le_t * peer,const struct bt_conn_le_create_param * create_param,const struct bt_le_conn_param * conn_param,struct bt_conn ** ret_conn)3115 int bt_conn_le_create(const bt_addr_le_t *peer, const struct bt_conn_le_create_param *create_param,
3116 const struct bt_le_conn_param *conn_param, struct bt_conn **ret_conn)
3117 {
3118 struct bt_conn *conn;
3119 int err;
3120
3121 err = conn_le_create_common_checks(peer, conn_param);
3122 if (err) {
3123 return err;
3124 }
3125
3126 if (!create_param_validate(create_param)) {
3127 return -EINVAL;
3128 }
3129
3130 conn = conn_le_create_helper(peer, conn_param);
3131 if (!conn) {
3132 return -ENOMEM;
3133 }
3134
3135 create_param_setup(create_param);
3136
3137 #if defined(CONFIG_BT_SMP)
3138 if (bt_dev.le.rl_entries > bt_dev.le.rl_size) {
3139 /* Use host-based identity resolving. */
3140 bt_conn_set_state(conn, BT_CONN_CONNECTING_SCAN);
3141
3142 err = bt_le_scan_update(true);
3143 if (err) {
3144 bt_conn_set_state(conn, BT_CONN_DISCONNECTED);
3145 bt_conn_unref(conn);
3146
3147 return err;
3148 }
3149
3150 *ret_conn = conn;
3151 return 0;
3152 }
3153 #endif
3154
3155 bt_conn_set_state(conn, BT_CONN_CONNECTING);
3156
3157 err = bt_le_create_conn(conn);
3158 if (err) {
3159 conn->err = 0;
3160 bt_conn_set_state(conn, BT_CONN_DISCONNECTED);
3161 bt_conn_unref(conn);
3162
3163 bt_le_scan_update(false);
3164 return err;
3165 }
3166
3167 *ret_conn = conn;
3168 return 0;
3169 }
3170
bt_conn_le_create_synced(const struct bt_le_ext_adv * adv,const struct bt_conn_le_create_synced_param * synced_param,const struct bt_le_conn_param * conn_param,struct bt_conn ** ret_conn)3171 int bt_conn_le_create_synced(const struct bt_le_ext_adv *adv,
3172 const struct bt_conn_le_create_synced_param *synced_param,
3173 const struct bt_le_conn_param *conn_param, struct bt_conn **ret_conn)
3174 {
3175 struct bt_conn *conn;
3176 int err;
3177
3178 err = conn_le_create_common_checks(synced_param->peer, conn_param);
3179 if (err) {
3180 return err;
3181 }
3182
3183 if (!atomic_test_bit(adv->flags, BT_PER_ADV_ENABLED)) {
3184 return -EINVAL;
3185 }
3186
3187 if (!BT_FEAT_LE_PAWR_ADVERTISER(bt_dev.le.features)) {
3188 return -ENOTSUP;
3189 }
3190
3191 if (synced_param->subevent >= BT_HCI_PAWR_SUBEVENT_MAX) {
3192 return -EINVAL;
3193 }
3194
3195 conn = conn_le_create_helper(synced_param->peer, conn_param);
3196 if (!conn) {
3197 return -ENOMEM;
3198 }
3199
3200 /* The connection creation timeout is not really useful for PAwR.
3201 * The controller will give a result for the connection attempt
3202 * within a periodic interval. We do not know the periodic interval
3203 * used, so disable the timeout.
3204 */
3205 bt_dev.create_param.timeout = 0;
3206 bt_conn_set_state(conn, BT_CONN_CONNECTING);
3207
3208 err = bt_le_create_conn_synced(conn, adv, synced_param->subevent);
3209 if (err) {
3210 conn->err = 0;
3211 bt_conn_set_state(conn, BT_CONN_DISCONNECTED);
3212 bt_conn_unref(conn);
3213
3214 return err;
3215 }
3216
3217 *ret_conn = conn;
3218 return 0;
3219 }
3220
3221 #if !defined(CONFIG_BT_FILTER_ACCEPT_LIST)
bt_le_set_auto_conn(const bt_addr_le_t * addr,const struct bt_le_conn_param * param)3222 int bt_le_set_auto_conn(const bt_addr_le_t *addr,
3223 const struct bt_le_conn_param *param)
3224 {
3225 struct bt_conn *conn;
3226
3227 if (!atomic_test_bit(bt_dev.flags, BT_DEV_READY)) {
3228 return -EAGAIN;
3229 }
3230
3231 if (param && !bt_le_conn_params_valid(param)) {
3232 return -EINVAL;
3233 }
3234
3235 if (!bt_id_scan_random_addr_check()) {
3236 return -EINVAL;
3237 }
3238
3239 /* Only default identity is supported */
3240 conn = bt_conn_lookup_addr_le(BT_ID_DEFAULT, addr);
3241 if (!conn) {
3242 conn = bt_conn_add_le(BT_ID_DEFAULT, addr);
3243 if (!conn) {
3244 return -ENOMEM;
3245 }
3246 }
3247
3248 if (param) {
3249 bt_conn_set_param_le(conn, param);
3250
3251 if (!atomic_test_and_set_bit(conn->flags,
3252 BT_CONN_AUTO_CONNECT)) {
3253 bt_conn_ref(conn);
3254 }
3255 } else {
3256 if (atomic_test_and_clear_bit(conn->flags,
3257 BT_CONN_AUTO_CONNECT)) {
3258 bt_conn_unref(conn);
3259 if (conn->state == BT_CONN_CONNECTING_SCAN) {
3260 bt_conn_set_state(conn, BT_CONN_DISCONNECTED);
3261 }
3262 }
3263 }
3264
3265 if (conn->state == BT_CONN_DISCONNECTED &&
3266 atomic_test_bit(bt_dev.flags, BT_DEV_READY)) {
3267 if (param) {
3268 bt_conn_set_state(conn, BT_CONN_CONNECTING_SCAN);
3269 }
3270 bt_le_scan_update(false);
3271 }
3272
3273 bt_conn_unref(conn);
3274
3275 return 0;
3276 }
3277 #endif /* !defined(CONFIG_BT_FILTER_ACCEPT_LIST) */
3278 #endif /* CONFIG_BT_CENTRAL */
3279
bt_conn_le_conn_update(struct bt_conn * conn,const struct bt_le_conn_param * param)3280 int bt_conn_le_conn_update(struct bt_conn *conn,
3281 const struct bt_le_conn_param *param)
3282 {
3283 struct hci_cp_le_conn_update *conn_update;
3284 struct net_buf *buf;
3285
3286 buf = bt_hci_cmd_create(BT_HCI_OP_LE_CONN_UPDATE,
3287 sizeof(*conn_update));
3288 if (!buf) {
3289 return -ENOBUFS;
3290 }
3291
3292 conn_update = net_buf_add(buf, sizeof(*conn_update));
3293 (void)memset(conn_update, 0, sizeof(*conn_update));
3294 conn_update->handle = sys_cpu_to_le16(conn->handle);
3295 conn_update->conn_interval_min = sys_cpu_to_le16(param->interval_min);
3296 conn_update->conn_interval_max = sys_cpu_to_le16(param->interval_max);
3297 conn_update->conn_latency = sys_cpu_to_le16(param->latency);
3298 conn_update->supervision_timeout = sys_cpu_to_le16(param->timeout);
3299
3300 return bt_hci_cmd_send_sync(BT_HCI_OP_LE_CONN_UPDATE, buf, NULL);
3301 }
3302
3303 #if defined(CONFIG_NET_BUF_LOG)
bt_conn_create_frag_timeout_debug(size_t reserve,k_timeout_t timeout,const char * func,int line)3304 struct net_buf *bt_conn_create_frag_timeout_debug(size_t reserve,
3305 k_timeout_t timeout,
3306 const char *func, int line)
3307 #else
3308 struct net_buf *bt_conn_create_frag_timeout(size_t reserve, k_timeout_t timeout)
3309 #endif
3310 {
3311 struct net_buf_pool *pool = NULL;
3312
3313 #if CONFIG_BT_L2CAP_TX_FRAG_COUNT > 0
3314 pool = &frag_pool;
3315 #endif
3316
3317 #if defined(CONFIG_NET_BUF_LOG)
3318 return bt_conn_create_pdu_timeout_debug(pool, reserve, timeout,
3319 func, line);
3320 #else
3321 return bt_conn_create_pdu_timeout(pool, reserve, timeout);
3322 #endif /* CONFIG_NET_BUF_LOG */
3323 }
3324
3325 #if defined(CONFIG_BT_SMP) || defined(CONFIG_BT_BREDR)
bt_conn_auth_cb_register(const struct bt_conn_auth_cb * cb)3326 int bt_conn_auth_cb_register(const struct bt_conn_auth_cb *cb)
3327 {
3328 if (!cb) {
3329 bt_auth = NULL;
3330 return 0;
3331 }
3332
3333 if (bt_auth) {
3334 return -EALREADY;
3335 }
3336
3337 /* The cancel callback must always be provided if the app provides
3338 * interactive callbacks.
3339 */
3340 if (!cb->cancel &&
3341 (cb->passkey_display || cb->passkey_entry || cb->passkey_confirm ||
3342 #if defined(CONFIG_BT_BREDR)
3343 cb->pincode_entry ||
3344 #endif
3345 cb->pairing_confirm)) {
3346 return -EINVAL;
3347 }
3348
3349 bt_auth = cb;
3350 return 0;
3351 }
3352
3353 #if defined(CONFIG_BT_SMP)
bt_conn_auth_cb_overlay(struct bt_conn * conn,const struct bt_conn_auth_cb * cb)3354 int bt_conn_auth_cb_overlay(struct bt_conn *conn, const struct bt_conn_auth_cb *cb)
3355 {
3356 CHECKIF(conn == NULL) {
3357 return -EINVAL;
3358 }
3359
3360 /* The cancel callback must always be provided if the app provides
3361 * interactive callbacks.
3362 */
3363 if (cb && !cb->cancel &&
3364 (cb->passkey_display || cb->passkey_entry || cb->passkey_confirm ||
3365 cb->pairing_confirm)) {
3366 return -EINVAL;
3367 }
3368
3369 if (conn->type == BT_CONN_TYPE_LE) {
3370 return bt_smp_auth_cb_overlay(conn, cb);
3371 }
3372
3373 return -ENOTSUP;
3374 }
3375 #endif
3376
bt_conn_auth_info_cb_register(struct bt_conn_auth_info_cb * cb)3377 int bt_conn_auth_info_cb_register(struct bt_conn_auth_info_cb *cb)
3378 {
3379 CHECKIF(cb == NULL) {
3380 return -EINVAL;
3381 }
3382
3383 sys_slist_append(&bt_auth_info_cbs, &cb->node);
3384
3385 return 0;
3386 }
3387
bt_conn_auth_info_cb_unregister(struct bt_conn_auth_info_cb * cb)3388 int bt_conn_auth_info_cb_unregister(struct bt_conn_auth_info_cb *cb)
3389 {
3390 CHECKIF(cb == NULL) {
3391 return -EINVAL;
3392 }
3393
3394 if (!sys_slist_find_and_remove(&bt_auth_info_cbs, &cb->node)) {
3395 return -EALREADY;
3396 }
3397
3398 return 0;
3399 }
3400
bt_conn_auth_passkey_entry(struct bt_conn * conn,unsigned int passkey)3401 int bt_conn_auth_passkey_entry(struct bt_conn *conn, unsigned int passkey)
3402 {
3403 if (IS_ENABLED(CONFIG_BT_SMP) && conn->type == BT_CONN_TYPE_LE) {
3404 return bt_smp_auth_passkey_entry(conn, passkey);
3405 }
3406
3407 if (IS_ENABLED(CONFIG_BT_BREDR) && conn->type == BT_CONN_TYPE_BR) {
3408 if (!bt_auth) {
3409 return -EINVAL;
3410 }
3411
3412 return bt_ssp_auth_passkey_entry(conn, passkey);
3413 }
3414
3415 return -EINVAL;
3416 }
3417
3418 #if defined(CONFIG_BT_PASSKEY_KEYPRESS)
bt_conn_auth_keypress_notify(struct bt_conn * conn,enum bt_conn_auth_keypress type)3419 int bt_conn_auth_keypress_notify(struct bt_conn *conn,
3420 enum bt_conn_auth_keypress type)
3421 {
3422 if (IS_ENABLED(CONFIG_BT_SMP) && conn->type == BT_CONN_TYPE_LE) {
3423 return bt_smp_auth_keypress_notify(conn, type);
3424 }
3425
3426 LOG_ERR("Not implemented for conn type %d", conn->type);
3427 return -EINVAL;
3428 }
3429 #endif
3430
bt_conn_auth_passkey_confirm(struct bt_conn * conn)3431 int bt_conn_auth_passkey_confirm(struct bt_conn *conn)
3432 {
3433 if (IS_ENABLED(CONFIG_BT_SMP) && conn->type == BT_CONN_TYPE_LE) {
3434 return bt_smp_auth_passkey_confirm(conn);
3435 }
3436
3437 if (IS_ENABLED(CONFIG_BT_BREDR) && conn->type == BT_CONN_TYPE_BR) {
3438 if (!bt_auth) {
3439 return -EINVAL;
3440 }
3441
3442 return bt_ssp_auth_passkey_confirm(conn);
3443 }
3444
3445 return -EINVAL;
3446 }
3447
bt_conn_auth_cancel(struct bt_conn * conn)3448 int bt_conn_auth_cancel(struct bt_conn *conn)
3449 {
3450 if (IS_ENABLED(CONFIG_BT_SMP) && conn->type == BT_CONN_TYPE_LE) {
3451 return bt_smp_auth_cancel(conn);
3452 }
3453
3454 if (IS_ENABLED(CONFIG_BT_BREDR) && conn->type == BT_CONN_TYPE_BR) {
3455 if (!bt_auth) {
3456 return -EINVAL;
3457 }
3458
3459 return bt_ssp_auth_cancel(conn);
3460 }
3461
3462 return -EINVAL;
3463 }
3464
bt_conn_auth_pairing_confirm(struct bt_conn * conn)3465 int bt_conn_auth_pairing_confirm(struct bt_conn *conn)
3466 {
3467 if (IS_ENABLED(CONFIG_BT_SMP) && conn->type == BT_CONN_TYPE_LE) {
3468 return bt_smp_auth_pairing_confirm(conn);
3469 }
3470
3471 if (IS_ENABLED(CONFIG_BT_BREDR) && conn->type == BT_CONN_TYPE_BR) {
3472 if (!bt_auth) {
3473 return -EINVAL;
3474 }
3475
3476 return bt_ssp_auth_pairing_confirm(conn);
3477 }
3478
3479 return -EINVAL;
3480 }
3481 #endif /* CONFIG_BT_SMP || CONFIG_BT_BREDR */
3482
bt_conn_lookup_index(uint8_t index)3483 struct bt_conn *bt_conn_lookup_index(uint8_t index)
3484 {
3485 if (index >= ARRAY_SIZE(acl_conns)) {
3486 return NULL;
3487 }
3488
3489 return bt_conn_ref(&acl_conns[index]);
3490 }
3491
bt_conn_init(void)3492 int bt_conn_init(void)
3493 {
3494 int err, i;
3495
3496 k_fifo_init(&free_tx);
3497 for (i = 0; i < ARRAY_SIZE(conn_tx); i++) {
3498 k_fifo_put(&free_tx, &conn_tx[i]);
3499 }
3500
3501 bt_att_init();
3502
3503 err = bt_smp_init();
3504 if (err) {
3505 return err;
3506 }
3507
3508 bt_l2cap_init();
3509
3510 /* Initialize background scan */
3511 if (IS_ENABLED(CONFIG_BT_CENTRAL)) {
3512 for (i = 0; i < ARRAY_SIZE(acl_conns); i++) {
3513 struct bt_conn *conn = bt_conn_ref(&acl_conns[i]);
3514
3515 if (!conn) {
3516 continue;
3517 }
3518
3519 #if !defined(CONFIG_BT_FILTER_ACCEPT_LIST)
3520 if (atomic_test_bit(conn->flags,
3521 BT_CONN_AUTO_CONNECT)) {
3522 /* Only the default identity is supported */
3523 conn->id = BT_ID_DEFAULT;
3524 bt_conn_set_state(conn,
3525 BT_CONN_CONNECTING_SCAN);
3526 }
3527 #endif /* !defined(CONFIG_BT_FILTER_ACCEPT_LIST) */
3528
3529 bt_conn_unref(conn);
3530 }
3531 }
3532
3533 return 0;
3534 }
3535
3536 #if defined(CONFIG_BT_DF_CONNECTION_CTE_RX)
bt_hci_le_df_connection_iq_report_common(uint8_t event,struct net_buf * buf)3537 void bt_hci_le_df_connection_iq_report_common(uint8_t event, struct net_buf *buf)
3538 {
3539 struct bt_df_conn_iq_samples_report iq_report;
3540 struct bt_conn *conn;
3541 int err;
3542
3543 if (event == BT_HCI_EVT_LE_CONNECTION_IQ_REPORT) {
3544 err = hci_df_prepare_connection_iq_report(buf, &iq_report, &conn);
3545 if (err) {
3546 LOG_ERR("Prepare CTE conn IQ report failed %d", err);
3547 return;
3548 }
3549 } else if (IS_ENABLED(CONFIG_BT_DF_VS_CONN_IQ_REPORT_16_BITS_IQ_SAMPLES) &&
3550 event == BT_HCI_EVT_VS_LE_CONNECTION_IQ_REPORT) {
3551 err = hci_df_vs_prepare_connection_iq_report(buf, &iq_report, &conn);
3552 if (err) {
3553 LOG_ERR("Prepare CTE conn IQ report failed %d", err);
3554 return;
3555 }
3556 } else {
3557 LOG_ERR("Unhandled VS connection IQ report");
3558 return;
3559 }
3560
3561 for (struct bt_conn_cb *cb = callback_list; cb; cb = cb->_next) {
3562 if (cb->cte_report_cb) {
3563 cb->cte_report_cb(conn, &iq_report);
3564 }
3565 }
3566
3567 STRUCT_SECTION_FOREACH(bt_conn_cb, cb)
3568 {
3569 if (cb->cte_report_cb) {
3570 cb->cte_report_cb(conn, &iq_report);
3571 }
3572 }
3573
3574 bt_conn_unref(conn);
3575 }
3576
bt_hci_le_df_connection_iq_report(struct net_buf * buf)3577 void bt_hci_le_df_connection_iq_report(struct net_buf *buf)
3578 {
3579 bt_hci_le_df_connection_iq_report_common(BT_HCI_EVT_LE_CONNECTION_IQ_REPORT, buf);
3580 }
3581
3582 #if defined(CONFIG_BT_DF_VS_CONN_IQ_REPORT_16_BITS_IQ_SAMPLES)
bt_hci_le_vs_df_connection_iq_report(struct net_buf * buf)3583 void bt_hci_le_vs_df_connection_iq_report(struct net_buf *buf)
3584 {
3585 bt_hci_le_df_connection_iq_report_common(BT_HCI_EVT_VS_LE_CONNECTION_IQ_REPORT, buf);
3586 }
3587 #endif /* CONFIG_BT_DF_VS_CONN_IQ_REPORT_16_BITS_IQ_SAMPLES */
3588 #endif /* CONFIG_BT_DF_CONNECTION_CTE_RX */
3589
3590 #if defined(CONFIG_BT_DF_CONNECTION_CTE_REQ)
bt_hci_le_df_cte_req_failed(struct net_buf * buf)3591 void bt_hci_le_df_cte_req_failed(struct net_buf *buf)
3592 {
3593 struct bt_df_conn_iq_samples_report iq_report;
3594 struct bt_conn *conn;
3595 int err;
3596
3597 err = hci_df_prepare_conn_cte_req_failed(buf, &iq_report, &conn);
3598 if (err) {
3599 LOG_ERR("Prepare CTE REQ failed IQ report failed %d", err);
3600 return;
3601 }
3602
3603 for (struct bt_conn_cb *cb = callback_list; cb; cb = cb->_next) {
3604 if (cb->cte_report_cb) {
3605 cb->cte_report_cb(conn, &iq_report);
3606 }
3607 }
3608
3609 STRUCT_SECTION_FOREACH(bt_conn_cb, cb)
3610 {
3611 if (cb->cte_report_cb) {
3612 cb->cte_report_cb(conn, &iq_report);
3613 }
3614 }
3615
3616 bt_conn_unref(conn);
3617 }
3618 #endif /* CONFIG_BT_DF_CONNECTION_CTE_REQ */
3619
3620 #endif /* CONFIG_BT_CONN */
3621