1.. zephyr:board:: verdin_imx8mp 2 3Overview 4******** 5 6The Verdin iMX8M Plus is a Computer on Module (CoM) developed by Toradex. It is based on the NXP® 7i.MX 8M Plus family of processors (or System on Chips - SoCs). 8 9The Verdin iMX8M Plus family consists of: 10 11+-------------------------------------------------+-----------------------+ 12| CoM | SoC | 13+=================================================+=======================+ 14| Verdin iMX8M Plus Quad 8GB Wi-Fi / Bluetooth IT | i.MX 8M Plus Quad | 15+-------------------------------------------------+-----------------------+ 16| Verdin iMX8M Plus Quad 4GB Wi-Fi / Bluetooth IT | i.MX 8M Plus Quad | 17+-------------------------------------------------+-----------------------+ 18| Verdin iMX8M Plus Quad 4GB IT | i.MX 8M Plus Quad | 19+-------------------------------------------------+-----------------------+ 20| Verdin iMX8M Plus Quad 2GB Wi-Fi / Bluetooth IT | i.MX 8M Plus Quad | 21+-------------------------------------------------+-----------------------+ 22| Verdin iMX8M Plus QuadLite 1GB IT | i.MX 8M Plus QuadLite | 23+-------------------------------------------------+-----------------------+ 24 25Quoting NXP: 26 27 The i.MX 8M Plus family focuses on machine learning and vision, advanced multimedia, and 28 industrial automation with high reliability. It is built to meet the needs of Smart Home, 29 Building, City and Industry 4.0 applications. 30 31The Verdin iMX8M Plus integrates a total of 4 Arm Cortex™-A53 CPUs, operating at 1.6 GHz, alongside 32a single Arm Cortex™-M7F microcontroller operating at 800 MHz. 33 34Regarding the Cortex-A53 cluster, it employs the ARMv8-A architecture as a mid-range and 35energy-efficient processor. With four cores in this cluster, each core is equipped with its own L1 36memory system. Moreover, the cluster incorporates a unified L2 cache that offers supplementary 37functions. This cache is housed within a single APR region. Facilitating debugging processes, the 38cores support both real-time trace through the ETM system and static debugging via JTAG. 39Furthermore, the platform features support for real-time trace capabilities, achieved through ARM's 40CoreSight ETM modules, and also enables cross-triggering by utilizing CTI and CTM modules. 41 42The Arm® Cortex®-M7 microcontroller is indicated for Real-time control, combining high-performance 43with a minimal interrupt latency. It stands out for its compatibility with existing Cortex-M profile 44processors. The microcontroller employs an efficient in-order super-scalar pipeline, allowing 45dual-issued instructions such as load/load and load/store pairs, thanks to its multiple memory 46interfaces. These interfaces encompass Tightly-Coupled Memory (TCM), Harvard caches, and an AXI 47master interface. The Arm Cortex-M7 Platform boasts features like a 32 KB L1 Instruction Cache, 32 48KB L1 Data Cache, Floating Point Unit (FPU) with FPv5 architecture support, and an Internal Trace 49(TRC) mechanism. Furthermore, the chip supports 160 IRQs, and integrates crucial Arm CoreSight 50components including ETM and CTI, dedicated to facilitating debug and trace functions. 51 52Hardware 53******** 54 55- SoC name: NXP® i.MX 8M Plus 56- CPU Type: 4x Arm Cortex™-A53 (1.6 GHz) 57- Microcontroller: 1x Arm Cortex™-M7F (800 MHz) 58 59- Memory: 60 61 - RAM -> A53: 1GB, 2GB, 4GB or 8GB 62 - RAM -> M7: 3x32KB (TCML, TCMU, OCRAM_S), 1x128KB (OCRAM) and 1x256MB (DDR) 63 - Flash -> A53: Up to 32GB eMMC 64 65- Connectivity: 66 67 - USB 3.1: 1x Host / 1x OTG (Gen 1) 68 - USB 2.0: 1x Host / 1x OTG 69 - Ethernet Gigabit with TSN (+2nd RGMII) 70 - Wi-Fi Dual-band 802.11ac 2x2 MU-MIMO 71 - Bluetooth 5 72 - 5x I2C 73 - 3x SPI 74 - 1 QSPI 75 - 4x UART 76 - Up to 92 GPIO 77 - 4x Analog Input 78 - 2x CAN (FlexCAN) 79 80- Multimedia: 81 82 - Neural Processing Unit (NPU) 83 - Image Signal Processor (ISP) 84 - 2D and 3D acceleration 85 - HDMI, MIPI-DSI and MIPI-CSI interface 86 87For more information about the Verdin iMX8M Plus and the i.MX 8M Plus SoC refer to these links: 88 89- `i.MX 8M Plus Applications Processor page`_ 90- `Verdin iMX8M Plus homepage`_ 91- `Verdin iMX8M Plus developer page`_ 92- `Verdin Development Board developer page`_ 93- `Verdin iMX8M Plus Datasheet`_ 94- `Verdin Development Board Datasheet`_ 95 96Supported Features 97================== 98 99The Zephyr verdin_imx8mp_m7 board configuration supports the following hardware features: 100 101+-----------+------------+-------------------------------------+ 102| Interface | Controller | Driver/Component | 103+===========+============+=====================================+ 104| NVIC | on-chip | nested vector interrupt controller | 105+-----------+------------+-------------------------------------+ 106| SYSTICK | on-chip | systick | 107+-----------+------------+-------------------------------------+ 108| CLOCK | on-chip | clock_control | 109+-----------+------------+-------------------------------------+ 110| PINMUX | on-chip | pinmux | 111+-----------+------------+-------------------------------------+ 112| UART | on-chip | serial port-polling; | 113| | | serial port-interrupt | 114+-----------+------------+-------------------------------------+ 115| GPIO | on-chip | GPIO output | 116| | | GPIO input | 117+-----------+------------+-------------------------------------+ 118 119The default configuration can be found in the defconfig file: 120 121- :zephyr_file:`boards/toradex/verdin_imx8mp/verdin_imx8mp_mimx8ml8_m7_defconfig`, if you choose to use 122 the ITCM memory. 123 124- :zephyr_file:`boards/toradex/verdin_imx8mp/verdin_imx8mp_mimx8ml8_m7_ddr_defconfig`, if you choose to use 125 the DDR memory. 126 127It is recommended to disable peripherals used by the M7 core on the Linux host. 128 129Other hardware features are not currently supported by the port. 130 131Connections and IOs 132=================== 133 134UART 135---- 136 137Zephyr is configured to use the UART4 by default, which is connected to the FTDI USB converter on 138most Toradex carrier boards. 139 140This is also the UART connected to WiFi/BT chip in modules that have the WiFi/BT chip. Therefore, if 141UART4 is used, WiFI/BT will not work properly. 142 143If the WiFi/BT is needed, then another UART should be used for Zephyr (UART1 for example). You can 144change the UART by changing the ``zephyr,console`` and ``zephyr,shell-uart`` in the 145:zephyr_file:`boards/toradex/verdin_imx8mp/verdin_imx8mp_mimx8ml8_m7.dts` or 146:zephyr_file:`boards/toradex/verdin_imx8mp/verdin_imx8mp_mimx8ml8_m7_ddr.dts` file. 147 148+---------------+-----------------+---------------------------+ 149| Board Name | SoC Name | Usage | 150+===============+=================+===========================+ 151| UART_1 | UART1 | General purpose UART | 152+---------------+-----------------+---------------------------+ 153| UART_4 | UART4 | Cortex-M4 debug UART | 154+---------------+-----------------+---------------------------+ 155 156GPIO 157---- 158 159All the GPIO banks available are enabled in the :zephyr_file:`dts/arm/nxp/nxp_imx8ml_m7.dtsi`. 160 161System Clock 162============ 163 164The M7 Core is configured to run at a 800 MHz clock speed. 165 166Serial Port 167=========== 168 169The i.MX8M Plus SoC has four UARTs. UART_4 is configured for the console and the remaining are not 170used/tested. 171 172Programming and Debugging 173************************* 174 175The Verdin iMX8M Plus board doesn't have QSPI flash for the M7, and it needs to be started by the 176A53 core. The A53 core is responsible to load the M7 binary application into the RAM, put the M7 in 177reset, set the M7 Program Counter and Stack Pointer, and get the M7 out of reset. The A53 can 178perform these steps at bootloader level or after the Linux system has booted. 179 180The M7 can use up to 3 different RAMs (currently, only two configurations are supported: ITCM and 181DDR). These are the memory mapping for A53 and M7: 182 183+------------+-------------------------+------------------------+-----------------------+----------------------+ 184| Region | Cortex-A53 | Cortex-M7 (System Bus) | Cortex-M7 (Code Bus) | Size | 185+============+=========================+========================+=======================+======================+ 186| OCRAM | 0x00900000-0x0098FFFF | 0x20200000-0x2028FFFF | 0x00900000-0x0098FFFF | 576KB | 187+------------+-------------------------+------------------------+-----------------------+----------------------+ 188| DTCM | 0x00800000-0x0081FFFF | 0x20000000-0x2001FFFF | | 128KB | 189+------------+-------------------------+------------------------+-----------------------+----------------------+ 190| ITCM | 0x007E0000-0x007FFFFF | | 0x00000000-0x0001FFFF | 128KB | 191+------------+-------------------------+------------------------+-----------------------+----------------------+ 192| OCRAM_S | 0x00180000-0x00188FFF | 0x20180000-0x20188FFF | 0x00180000-0x00188FFF | 36KB | 193+------------+-------------------------+------------------------+-----------------------+----------------------+ 194| DDR | 0x80000000-0x803FFFFF | 0x80200000-0x803FFFFF | 0x80000000-0x801FFFFF | 2MB | 195+------------+-------------------------+------------------------+-----------------------+----------------------+ 196 197For more information about memory mapping see the `i.MX 8M Plus Applications Processor Reference 198Manual`_ (section 2.1 to 2.3) 199 200At compilation time you have to choose which RAM will be used. To facilitate this process, there are 201two targets available: 202 203- ``verdin_imx8mp/mimx8ml8/m7``, which uses the ITCM configuration. 204- ``verdin_imx8mp/mimx8ml8/m7/ddr``, which uses the DDR configuration. 205 206 207Starting the Cortex-M7 via U-Boot 208================================= 209 210Load and run Zephyr on M7 from A53 using u-boot by copying the compiled ``zephyr.bin`` to the first 211FAT partition of the SD card and plug the SD card into the board. Power it up and stop the u-boot 212execution at prompt. 213 214Load the M7 binary onto the desired memory and start its execution using: 215 216ITCM 217==== 218 219Loading the binary from an EXT4 partition: 220 221.. code-block:: shell 222 223 ext4load mmc 2:2 ${loadaddr} /<path-to-binary>/zephyr.bin 224 cp.b ${loadaddr} 0x7e0000 <size_of_binary_in_bytes> 225 bootaux 0x7e0000 226 227DDR 228=== 229 230Loading the binary from an EXT4 partition: 231 232.. code-block:: shell 233 234 ext4load mmc 2:2 ${loadaddr} /<path-to-binary>/zephyr.bin 235 cp.b ${loadaddr} 0x80000000 <size_of_binary_in_bytes> 236 bootaux 0x80000000 237 238Debugging 239========= 240 241Toradex Verdin iMX8M Plus SoM can be debugged by connecting an external JLink JTAG debugger to the 242X56 debug connector and to the PC, or simply connecting a USB-C to X66 on the Verdin Development 243Board. Then, the application can be debugged using the usual way. 244 245Here is an example for the :zephyr:code-sample:`hello_world` application. 246 247.. zephyr-app-commands:: 248 :zephyr-app: samples/hello_world 249 :board: verdin_imx8mp/mimx8ml8/m7/ddr 250 :goals: debug 251 252Open a serial terminal, step through the application in your debugger, and you 253should see the following message in the terminal: 254 255.. code-block:: console 256 257 *** Booting Zephyr OS build zephyr-v3.4.0-2300-g03905f7e55d2 *** 258 Hello World! verdin_imx8mp 259 260References 261========== 262 263- `How to Load Compiled Binaries into Cortex-M`_ 264- `Cortex-M JTAG Debugging`_ 265- `NXP website`_ 266 267.. _NXP website: 268 https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/evaluation-kit-for-the-i-mx-8m-plus-applications-processor:8MPLUSLPD4-EVK 269 270.. _i.MX 8M Plus Applications Processor Reference Manual: 271 https://www.nxp.com/webapp/Download?colCode=IMX8MPRM 272 273.. _How to Load Compiled Binaries into Cortex-M: 274 https://developer.toradex.com/software/real-time/cortex-m/how-to-load-binaries 275 276.. _Cortex-M JTAG Debugging: 277 https://developer.toradex.com/software/real-time/cortex-m/cortexm-jtag-debugging/ 278 279.. _i.MX 8M Plus Applications Processor page: 280 https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-8-applications-processors/i-mx-8m-plus-arm-cortex-a53-machine-learning-vision-multimedia-and-industrial-iot:IMX8MPLUS 281 282.. _Verdin iMX8M Plus homepage: 283 https://www.toradex.com/computer-on-modules/verdin-arm-family/nxp-imx-8m-plus 284 285.. _Verdin iMX8M Plus developer page: 286 https://developer.toradex.com/hardware/verdin-som-family/modules/verdin-imx8m-plus 287 288.. _Verdin Development Board developer page: 289 https://developer.toradex.com/hardware/verdin-som-family/carrier-boards/verdin-development-board/ 290 291.. _Verdin iMX8M Plus Datasheet: 292 https://docs.toradex.com/110977-verdin_imx8m_plus_v1.1_datasheet.pdf 293 294.. _Verdin Development Board Datasheet: 295 https://docs.toradex.com/109463-verdin_development_board_datasheet_v1.1.pdf 296