1 /*
2  * Copyright (c) 2017 Google LLC.
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  */
6 
7 #define DT_DRV_COMPAT atmel_sam0_uart
8 
9 #include <zephyr/device.h>
10 #include <errno.h>
11 #include <zephyr/init.h>
12 #include <zephyr/sys/__assert.h>
13 #include <soc.h>
14 #include <zephyr/drivers/uart.h>
15 #include <zephyr/drivers/dma.h>
16 #include <zephyr/drivers/pinctrl.h>
17 #include <string.h>
18 #include <zephyr/irq.h>
19 
20 #ifndef SERCOM_USART_CTRLA_MODE_USART_INT_CLK
21 #define SERCOM_USART_CTRLA_MODE_USART_INT_CLK SERCOM_USART_CTRLA_MODE(0x1)
22 #endif
23 
24 /*
25  * Interrupt error flag is only supported in devices with
26  * SERCOM revision 0x500
27  */
28 #if defined(SERCOM_U2201) && (REV_SERCOM == 0x500)
29 #define SERCOM_REV500
30 #endif
31 
32 /* Device constant configuration parameters */
33 struct uart_sam0_dev_cfg {
34 	SercomUsart *regs;
35 	uint32_t baudrate;
36 	uint32_t pads;
37 	bool     collision_detect;
38 #ifdef MCLK
39 	volatile uint32_t *mclk;
40 	uint32_t mclk_mask;
41 	uint16_t gclk_core_id;
42 #else
43 	uint32_t pm_apbcmask;
44 	uint16_t gclk_clkctrl_id;
45 #endif
46 #if CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_SAM0_ASYNC
47 	void (*irq_config_func)(const struct device *dev);
48 #endif
49 #if CONFIG_UART_SAM0_ASYNC
50 	const struct device *dma_dev;
51 	uint8_t tx_dma_request;
52 	uint8_t tx_dma_channel;
53 	uint8_t rx_dma_request;
54 	uint8_t rx_dma_channel;
55 #endif
56 	const struct pinctrl_dev_config *pcfg;
57 };
58 
59 /* Device run time data */
60 struct uart_sam0_dev_data {
61 	struct uart_config config_cache;
62 #ifdef CONFIG_UART_INTERRUPT_DRIVEN
63 	uart_irq_callback_user_data_t cb;
64 	void *cb_data;
65 	uint8_t txc_cache;
66 #endif
67 #if CONFIG_UART_SAM0_ASYNC
68 	const struct device *dev;
69 	const struct uart_sam0_dev_cfg *cfg;
70 
71 	uart_callback_t async_cb;
72 	void *async_cb_data;
73 
74 	struct k_work_delayable tx_timeout_work;
75 	const uint8_t *tx_buf;
76 	size_t tx_len;
77 
78 	struct k_work_delayable rx_timeout_work;
79 	size_t rx_timeout_time;
80 	size_t rx_timeout_chunk;
81 	uint32_t rx_timeout_start;
82 	uint8_t *rx_buf;
83 	size_t rx_len;
84 	size_t rx_processed_len;
85 	uint8_t *rx_next_buf;
86 	size_t rx_next_len;
87 	bool rx_waiting_for_irq;
88 	bool rx_timeout_from_isr;
89 #endif
90 };
91 
wait_synchronization(SercomUsart * const usart)92 static void wait_synchronization(SercomUsart *const usart)
93 {
94 #if defined(SERCOM_USART_SYNCBUSY_MASK)
95 	/* SYNCBUSY is a register */
96 	while ((usart->SYNCBUSY.reg & SERCOM_USART_SYNCBUSY_MASK) != 0) {
97 	}
98 #elif defined(SERCOM_USART_STATUS_SYNCBUSY)
99 	/* SYNCBUSY is a bit */
100 	while ((usart->STATUS.reg & SERCOM_USART_STATUS_SYNCBUSY) != 0) {
101 	}
102 #else
103 #error Unsupported device
104 #endif
105 }
106 
uart_sam0_set_baudrate(SercomUsart * const usart,uint32_t baudrate,uint32_t clk_freq_hz)107 static int uart_sam0_set_baudrate(SercomUsart *const usart, uint32_t baudrate,
108 				  uint32_t clk_freq_hz)
109 {
110 	uint64_t tmp;
111 	uint16_t baud;
112 
113 	tmp = (uint64_t)baudrate << 20;
114 	tmp = (tmp + (clk_freq_hz >> 1)) / clk_freq_hz;
115 
116 	/* Verify that the calculated result is within range */
117 	if (tmp < 1 || tmp > UINT16_MAX) {
118 		return -ERANGE;
119 	}
120 
121 	baud = 65536 - (uint16_t)tmp;
122 	usart->BAUD.reg = baud;
123 	wait_synchronization(usart);
124 
125 	return 0;
126 }
127 
128 
129 #if CONFIG_UART_SAM0_ASYNC
130 
uart_sam0_dma_tx_done(const struct device * dma_dev,void * arg,uint32_t id,int error_code)131 static void uart_sam0_dma_tx_done(const struct device *dma_dev, void *arg,
132 				  uint32_t id, int error_code)
133 {
134 	ARG_UNUSED(dma_dev);
135 	ARG_UNUSED(id);
136 	ARG_UNUSED(error_code);
137 
138 	struct uart_sam0_dev_data *const dev_data =
139 		(struct uart_sam0_dev_data *const) arg;
140 	const struct uart_sam0_dev_cfg *const cfg = dev_data->cfg;
141 
142 	SercomUsart * const regs = cfg->regs;
143 
144 	regs->INTENSET.reg = SERCOM_USART_INTENSET_TXC;
145 }
146 
uart_sam0_tx_halt(struct uart_sam0_dev_data * dev_data)147 static int uart_sam0_tx_halt(struct uart_sam0_dev_data *dev_data)
148 {
149 	const struct uart_sam0_dev_cfg *const cfg = dev_data->cfg;
150 	unsigned int key = irq_lock();
151 	size_t tx_active = dev_data->tx_len;
152 	struct dma_status st;
153 
154 	struct uart_event evt = {
155 		.type = UART_TX_ABORTED,
156 		.data.tx = {
157 			.buf = dev_data->tx_buf,
158 			.len = 0U,
159 		},
160 	};
161 
162 	dev_data->tx_buf = NULL;
163 	dev_data->tx_len = 0U;
164 
165 	dma_stop(cfg->dma_dev, cfg->tx_dma_channel);
166 
167 	irq_unlock(key);
168 
169 	if (dma_get_status(cfg->dma_dev, cfg->tx_dma_channel, &st) == 0) {
170 		evt.data.tx.len = tx_active - st.pending_length;
171 	}
172 
173 	if (tx_active) {
174 		if (dev_data->async_cb) {
175 			dev_data->async_cb(dev_data->dev,
176 					   &evt, dev_data->async_cb_data);
177 		}
178 	} else {
179 		return -EINVAL;
180 	}
181 
182 	return 0;
183 }
184 
uart_sam0_tx_timeout(struct k_work * work)185 static void uart_sam0_tx_timeout(struct k_work *work)
186 {
187 	struct k_work_delayable *dwork = k_work_delayable_from_work(work);
188 	struct uart_sam0_dev_data *dev_data = CONTAINER_OF(dwork,
189 							   struct uart_sam0_dev_data, tx_timeout_work);
190 
191 	uart_sam0_tx_halt(dev_data);
192 }
193 
uart_sam0_notify_rx_processed(struct uart_sam0_dev_data * dev_data,size_t processed)194 static void uart_sam0_notify_rx_processed(struct uart_sam0_dev_data *dev_data,
195 					  size_t processed)
196 {
197 	if (!dev_data->async_cb) {
198 		return;
199 	}
200 
201 	if (dev_data->rx_processed_len == processed) {
202 		return;
203 	}
204 
205 	struct uart_event evt = {
206 		.type = UART_RX_RDY,
207 		.data.rx = {
208 			.buf = dev_data->rx_buf,
209 			.offset = dev_data->rx_processed_len,
210 			.len = processed - dev_data->rx_processed_len,
211 		},
212 	};
213 
214 	dev_data->rx_processed_len = processed;
215 
216 	dev_data->async_cb(dev_data->dev,
217 			   &evt, dev_data->async_cb_data);
218 }
219 
uart_sam0_dma_rx_done(const struct device * dma_dev,void * arg,uint32_t id,int error_code)220 static void uart_sam0_dma_rx_done(const struct device *dma_dev, void *arg,
221 				  uint32_t id, int error_code)
222 {
223 	ARG_UNUSED(dma_dev);
224 	ARG_UNUSED(id);
225 	ARG_UNUSED(error_code);
226 
227 	struct uart_sam0_dev_data *const dev_data =
228 		(struct uart_sam0_dev_data *const)arg;
229 	const struct device *dev = dev_data->dev;
230 	const struct uart_sam0_dev_cfg *const cfg = dev_data->cfg;
231 	SercomUsart * const regs = cfg->regs;
232 	unsigned int key = irq_lock();
233 
234 	if (dev_data->rx_len == 0U) {
235 		irq_unlock(key);
236 		return;
237 	}
238 
239 	uart_sam0_notify_rx_processed(dev_data, dev_data->rx_len);
240 
241 	if (dev_data->async_cb) {
242 		struct uart_event evt = {
243 			.type = UART_RX_BUF_RELEASED,
244 			.data.rx_buf = {
245 				.buf = dev_data->rx_buf,
246 			},
247 		};
248 
249 		dev_data->async_cb(dev, &evt, dev_data->async_cb_data);
250 	}
251 
252 	/* No next buffer, so end the transfer */
253 	if (!dev_data->rx_next_len) {
254 		dev_data->rx_buf = NULL;
255 		dev_data->rx_len = 0U;
256 
257 		if (dev_data->async_cb) {
258 			struct uart_event evt = {
259 				.type = UART_RX_DISABLED,
260 			};
261 
262 			dev_data->async_cb(dev, &evt, dev_data->async_cb_data);
263 		}
264 
265 		irq_unlock(key);
266 		return;
267 	}
268 
269 	dev_data->rx_buf = dev_data->rx_next_buf;
270 	dev_data->rx_len = dev_data->rx_next_len;
271 	dev_data->rx_next_buf = NULL;
272 	dev_data->rx_next_len = 0U;
273 	dev_data->rx_processed_len = 0U;
274 
275 	dma_reload(cfg->dma_dev, cfg->rx_dma_channel,
276 		   (uint32_t)(&(regs->DATA.reg)),
277 		   (uint32_t)dev_data->rx_buf, dev_data->rx_len);
278 
279 	/*
280 	 * If there should be a timeout, handle starting the DMA in the
281 	 * ISR, since reception resets it and DMA completion implies
282 	 * reception.  This also catches the case of DMA completion during
283 	 * timeout handling.
284 	 */
285 	if (dev_data->rx_timeout_time != SYS_FOREVER_US) {
286 		dev_data->rx_waiting_for_irq = true;
287 		regs->INTENSET.reg = SERCOM_USART_INTENSET_RXC;
288 		irq_unlock(key);
289 		return;
290 	}
291 
292 	/* Otherwise, start the transfer immediately. */
293 	dma_start(cfg->dma_dev, cfg->rx_dma_channel);
294 
295 	struct uart_event evt = {
296 		.type = UART_RX_BUF_REQUEST,
297 	};
298 
299 	dev_data->async_cb(dev, &evt, dev_data->async_cb_data);
300 
301 	irq_unlock(key);
302 }
303 
uart_sam0_rx_timeout(struct k_work * work)304 static void uart_sam0_rx_timeout(struct k_work *work)
305 {
306 	struct k_work_delayable *dwork = k_work_delayable_from_work(work);
307 	struct uart_sam0_dev_data *dev_data = CONTAINER_OF(dwork,
308 							   struct uart_sam0_dev_data, rx_timeout_work);
309 	const struct uart_sam0_dev_cfg *const cfg = dev_data->cfg;
310 	SercomUsart * const regs = cfg->regs;
311 	struct dma_status st;
312 	unsigned int key = irq_lock();
313 
314 	if (dev_data->rx_len == 0U) {
315 		irq_unlock(key);
316 		return;
317 	}
318 
319 	/*
320 	 * Stop the DMA transfer and restart the interrupt read
321 	 * component (so the timeout restarts if there's still data).
322 	 * However, just ignore it if the transfer has completed (nothing
323 	 * pending) that means the DMA ISR is already pending, so just let
324 	 * it handle things instead when we re-enable IRQs.
325 	 */
326 	dma_stop(cfg->dma_dev, cfg->rx_dma_channel);
327 	if (dma_get_status(cfg->dma_dev, cfg->rx_dma_channel,
328 			   &st) == 0 && st.pending_length == 0U) {
329 		irq_unlock(key);
330 		return;
331 	}
332 
333 	uint8_t *rx_dma_start = dev_data->rx_buf + dev_data->rx_len -
334 			     st.pending_length;
335 	size_t rx_processed = rx_dma_start - dev_data->rx_buf;
336 
337 	/*
338 	 * We know we still have space, since the above will catch the
339 	 * empty buffer, so always restart the transfer.
340 	 */
341 	dma_reload(cfg->dma_dev, cfg->rx_dma_channel,
342 		   (uint32_t)(&(regs->DATA.reg)),
343 		   (uint32_t)rx_dma_start,
344 		   dev_data->rx_len - rx_processed);
345 
346 	dev_data->rx_waiting_for_irq = true;
347 	regs->INTENSET.reg = SERCOM_USART_INTENSET_RXC;
348 
349 	/*
350 	 * Never do a notify on a timeout started from the ISR: timing
351 	 * granularity means the first timeout can be in the middle
352 	 * of reception but still have the total elapsed time exhausted.
353 	 * So we require a timeout chunk with no data seen at all
354 	 * (i.e. no ISR entry).
355 	 */
356 	if (dev_data->rx_timeout_from_isr) {
357 		dev_data->rx_timeout_from_isr = false;
358 		k_work_reschedule(&dev_data->rx_timeout_work,
359 				      K_USEC(dev_data->rx_timeout_chunk));
360 		irq_unlock(key);
361 		return;
362 	}
363 
364 	uint32_t now = k_uptime_get_32();
365 	uint32_t elapsed = now - dev_data->rx_timeout_start;
366 
367 	if (elapsed >= dev_data->rx_timeout_time) {
368 		/*
369 		 * No time left, so call the handler, and let the ISR
370 		 * restart the timeout when it sees data.
371 		 */
372 		uart_sam0_notify_rx_processed(dev_data, rx_processed);
373 	} else {
374 		/*
375 		 * Still have time left, so start another timeout.
376 		 */
377 		uint32_t remaining = MIN(dev_data->rx_timeout_time - elapsed,
378 				      dev_data->rx_timeout_chunk);
379 
380 		k_work_reschedule(&dev_data->rx_timeout_work,
381 				      K_USEC(remaining));
382 	}
383 
384 	irq_unlock(key);
385 }
386 
387 #endif
388 
389 #ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
uart_sam0_configure(const struct device * dev,const struct uart_config * new_cfg)390 static int uart_sam0_configure(const struct device *dev,
391 			       const struct uart_config *new_cfg)
392 {
393 	int retval;
394 
395 	const struct uart_sam0_dev_cfg *const cfg = dev->config;
396 	struct uart_sam0_dev_data *const dev_data = dev->data;
397 	SercomUsart * const usart = cfg->regs;
398 
399 	wait_synchronization(usart);
400 
401 	usart->CTRLA.bit.ENABLE = 0;
402 	wait_synchronization(usart);
403 
404 	if (new_cfg->flow_ctrl != UART_CFG_FLOW_CTRL_NONE) {
405 		/* Flow control not yet supported though in principle possible
406 		 * on this soc family.
407 		 */
408 		return -ENOTSUP;
409 	}
410 
411 	dev_data->config_cache.flow_ctrl = new_cfg->flow_ctrl;
412 
413 	SERCOM_USART_CTRLA_Type CTRLA_temp = usart->CTRLA;
414 	SERCOM_USART_CTRLB_Type CTRLB_temp = usart->CTRLB;
415 
416 	switch (new_cfg->parity) {
417 	case UART_CFG_PARITY_NONE:
418 		CTRLA_temp.bit.FORM = 0x0;
419 		break;
420 	case UART_CFG_PARITY_ODD:
421 		CTRLA_temp.bit.FORM = 0x1;
422 		CTRLB_temp.bit.PMODE = 1;
423 		break;
424 	case UART_CFG_PARITY_EVEN:
425 		CTRLA_temp.bit.FORM = 0x1;
426 		CTRLB_temp.bit.PMODE = 0;
427 		break;
428 	default:
429 		return -ENOTSUP;
430 	}
431 
432 	dev_data->config_cache.parity = new_cfg->parity;
433 
434 	switch (new_cfg->stop_bits) {
435 	case UART_CFG_STOP_BITS_1:
436 		CTRLB_temp.bit.SBMODE = 0;
437 		break;
438 	case UART_CFG_STOP_BITS_2:
439 		CTRLB_temp.bit.SBMODE = 1;
440 		break;
441 	default:
442 		return -ENOTSUP;
443 	}
444 
445 	dev_data->config_cache.stop_bits = new_cfg->stop_bits;
446 
447 	switch (new_cfg->data_bits) {
448 	case UART_CFG_DATA_BITS_5:
449 		CTRLB_temp.bit.CHSIZE = 0x5;
450 		break;
451 	case UART_CFG_DATA_BITS_6:
452 		CTRLB_temp.bit.CHSIZE = 0x6;
453 		break;
454 	case UART_CFG_DATA_BITS_7:
455 		CTRLB_temp.bit.CHSIZE = 0x7;
456 		break;
457 	case UART_CFG_DATA_BITS_8:
458 		CTRLB_temp.bit.CHSIZE = 0x0;
459 		break;
460 	case UART_CFG_DATA_BITS_9:
461 		CTRLB_temp.bit.CHSIZE = 0x1;
462 		break;
463 	default:
464 		return -ENOTSUP;
465 	}
466 
467 	dev_data->config_cache.data_bits = new_cfg->data_bits;
468 
469 #if defined(SERCOM_REV500)
470 	CTRLB_temp.bit.COLDEN = cfg->pads;
471 #endif
472 
473 	usart->CTRLA = CTRLA_temp;
474 	wait_synchronization(usart);
475 
476 	usart->CTRLB = CTRLB_temp;
477 	wait_synchronization(usart);
478 
479 	retval = uart_sam0_set_baudrate(usart, new_cfg->baudrate,
480 					SOC_ATMEL_SAM0_GCLK0_FREQ_HZ);
481 	if (retval != 0) {
482 		return retval;
483 	}
484 
485 	dev_data->config_cache.baudrate = new_cfg->baudrate;
486 
487 	usart->CTRLA.bit.ENABLE = 1;
488 	wait_synchronization(usart);
489 
490 	return 0;
491 }
492 
uart_sam0_config_get(const struct device * dev,struct uart_config * out_cfg)493 static int uart_sam0_config_get(const struct device *dev,
494 				struct uart_config *out_cfg)
495 {
496 	struct uart_sam0_dev_data *const dev_data = dev->data;
497 
498 	memcpy(out_cfg, &(dev_data->config_cache),
499 				sizeof(dev_data->config_cache));
500 
501 	return 0;
502 }
503 #endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
504 
uart_sam0_init(const struct device * dev)505 static int uart_sam0_init(const struct device *dev)
506 {
507 	int retval;
508 	const struct uart_sam0_dev_cfg *const cfg = dev->config;
509 	struct uart_sam0_dev_data *const dev_data = dev->data;
510 
511 	SercomUsart * const usart = cfg->regs;
512 
513 #ifdef MCLK
514 	/* Enable the GCLK */
515 	GCLK->PCHCTRL[cfg->gclk_core_id].reg = GCLK_PCHCTRL_GEN_GCLK0 |
516 					       GCLK_PCHCTRL_CHEN;
517 
518 	/* Enable SERCOM clock in MCLK */
519 	*cfg->mclk |= cfg->mclk_mask;
520 #else
521 	/* Enable the GCLK */
522 	GCLK->CLKCTRL.reg = cfg->gclk_clkctrl_id | GCLK_CLKCTRL_GEN_GCLK0 |
523 			    GCLK_CLKCTRL_CLKEN;
524 
525 	/* Enable SERCOM clock in PM */
526 	PM->APBCMASK.reg |= cfg->pm_apbcmask;
527 #endif
528 
529 	/* Disable all USART interrupts */
530 	usart->INTENCLR.reg = SERCOM_USART_INTENCLR_MASK;
531 	wait_synchronization(usart);
532 
533 	/* 8 bits of data, no parity, 1 stop bit in normal mode */
534 	usart->CTRLA.reg =
535 	    cfg->pads
536 	    /* Internal clock */
537 	    | SERCOM_USART_CTRLA_MODE_USART_INT_CLK
538 #if defined(SERCOM_USART_CTRLA_SAMPR)
539 	    /* 16x oversampling with arithmetic baud rate generation */
540 	    | SERCOM_USART_CTRLA_SAMPR(0)
541 #endif
542 	    | SERCOM_USART_CTRLA_FORM(0) |
543 	    SERCOM_USART_CTRLA_CPOL | SERCOM_USART_CTRLA_DORD;
544 	wait_synchronization(usart);
545 
546 	/* Enable PINMUX based on PINCTRL */
547 	retval = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
548 	if (retval < 0) {
549 		return retval;
550 	}
551 
552 	dev_data->config_cache.flow_ctrl = UART_CFG_FLOW_CTRL_NONE;
553 	dev_data->config_cache.parity = UART_CFG_PARITY_NONE;
554 	dev_data->config_cache.stop_bits = UART_CFG_STOP_BITS_1;
555 	dev_data->config_cache.data_bits = UART_CFG_DATA_BITS_8;
556 
557 	/* Enable receiver and transmitter */
558 	usart->CTRLB.reg = SERCOM_USART_CTRLB_CHSIZE(0) |
559 			   SERCOM_USART_CTRLB_RXEN | SERCOM_USART_CTRLB_TXEN;
560 	wait_synchronization(usart);
561 
562 	retval = uart_sam0_set_baudrate(usart, cfg->baudrate,
563 					SOC_ATMEL_SAM0_GCLK0_FREQ_HZ);
564 	if (retval != 0) {
565 		return retval;
566 	}
567 	dev_data->config_cache.baudrate = cfg->baudrate;
568 
569 #if CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_SAM0_ASYNC
570 	cfg->irq_config_func(dev);
571 #endif
572 
573 #ifdef CONFIG_UART_SAM0_ASYNC
574 	dev_data->dev = dev;
575 	dev_data->cfg = cfg;
576 	if (!device_is_ready(cfg->dma_dev)) {
577 		return -ENODEV;
578 	}
579 
580 	k_work_init_delayable(&dev_data->tx_timeout_work, uart_sam0_tx_timeout);
581 	k_work_init_delayable(&dev_data->rx_timeout_work, uart_sam0_rx_timeout);
582 
583 	if (cfg->tx_dma_channel != 0xFFU) {
584 		struct dma_config dma_cfg = { 0 };
585 		struct dma_block_config dma_blk = { 0 };
586 
587 		dma_cfg.channel_direction = MEMORY_TO_PERIPHERAL;
588 		dma_cfg.source_data_size = 1;
589 		dma_cfg.dest_data_size = 1;
590 		dma_cfg.user_data = dev_data;
591 		dma_cfg.dma_callback = uart_sam0_dma_tx_done;
592 		dma_cfg.block_count = 1;
593 		dma_cfg.head_block = &dma_blk;
594 		dma_cfg.dma_slot = cfg->tx_dma_request;
595 
596 		dma_blk.block_size = 1;
597 		dma_blk.dest_address = (uint32_t)(&(usart->DATA.reg));
598 		dma_blk.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
599 
600 		retval = dma_config(cfg->dma_dev, cfg->tx_dma_channel,
601 				    &dma_cfg);
602 		if (retval != 0) {
603 			return retval;
604 		}
605 	}
606 
607 	if (cfg->rx_dma_channel != 0xFFU) {
608 		struct dma_config dma_cfg = { 0 };
609 		struct dma_block_config dma_blk = { 0 };
610 
611 		dma_cfg.channel_direction = PERIPHERAL_TO_MEMORY;
612 		dma_cfg.source_data_size = 1;
613 		dma_cfg.dest_data_size = 1;
614 		dma_cfg.user_data = dev_data;
615 		dma_cfg.dma_callback = uart_sam0_dma_rx_done;
616 		dma_cfg.block_count = 1;
617 		dma_cfg.head_block = &dma_blk;
618 		dma_cfg.dma_slot = cfg->rx_dma_request;
619 
620 		dma_blk.block_size = 1;
621 		dma_blk.source_address = (uint32_t)(&(usart->DATA.reg));
622 		dma_blk.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
623 
624 		retval = dma_config(cfg->dma_dev, cfg->rx_dma_channel,
625 				    &dma_cfg);
626 		if (retval != 0) {
627 			return retval;
628 		}
629 	}
630 
631 #endif
632 
633 	usart->CTRLA.bit.ENABLE = 1;
634 	wait_synchronization(usart);
635 
636 	return 0;
637 }
638 
uart_sam0_poll_in(const struct device * dev,unsigned char * c)639 static int uart_sam0_poll_in(const struct device *dev, unsigned char *c)
640 {
641 	const struct uart_sam0_dev_cfg *config = dev->config;
642 
643 	SercomUsart * const usart = config->regs;
644 
645 	if (!usart->INTFLAG.bit.RXC) {
646 		return -EBUSY;
647 	}
648 
649 	*c = (unsigned char)usart->DATA.reg;
650 	return 0;
651 }
652 
uart_sam0_poll_out(const struct device * dev,unsigned char c)653 static void uart_sam0_poll_out(const struct device *dev, unsigned char c)
654 {
655 	const struct uart_sam0_dev_cfg *config = dev->config;
656 
657 	SercomUsart * const usart = config->regs;
658 
659 	while (!usart->INTFLAG.bit.DRE) {
660 	}
661 
662 	/* send a character */
663 	usart->DATA.reg = c;
664 }
665 
uart_sam0_err_check(const struct device * dev)666 static int uart_sam0_err_check(const struct device *dev)
667 {
668 	const struct uart_sam0_dev_cfg *config = dev->config;
669 
670 	SercomUsart * const regs = config->regs;
671 	uint32_t err = 0U;
672 
673 	if (regs->STATUS.reg & SERCOM_USART_STATUS_BUFOVF) {
674 		err |= UART_ERROR_OVERRUN;
675 	}
676 
677 	if (regs->STATUS.reg & SERCOM_USART_STATUS_FERR) {
678 		err |= UART_ERROR_PARITY;
679 	}
680 
681 	if (regs->STATUS.reg & SERCOM_USART_STATUS_PERR) {
682 		err |= UART_ERROR_FRAMING;
683 	}
684 
685 #if defined(SERCOM_REV500)
686 	if (regs->STATUS.reg & SERCOM_USART_STATUS_ISF) {
687 		err |= UART_BREAK;
688 	}
689 
690 	if (regs->STATUS.reg & SERCOM_USART_STATUS_COLL) {
691 		err |= UART_ERROR_COLLISION;
692 	}
693 
694 	regs->STATUS.reg |=	SERCOM_USART_STATUS_BUFOVF
695 			 |	SERCOM_USART_STATUS_FERR
696 			 |	SERCOM_USART_STATUS_PERR
697 			 |	SERCOM_USART_STATUS_COLL
698 			 |	SERCOM_USART_STATUS_ISF;
699 #else
700 	regs->STATUS.reg |=	SERCOM_USART_STATUS_BUFOVF
701 			 |	SERCOM_USART_STATUS_FERR
702 			 |	SERCOM_USART_STATUS_PERR;
703 #endif
704 
705 	wait_synchronization(regs);
706 	return err;
707 }
708 
709 #if CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_SAM0_ASYNC
710 
uart_sam0_isr(const struct device * dev)711 static void uart_sam0_isr(const struct device *dev)
712 {
713 	struct uart_sam0_dev_data *const dev_data = dev->data;
714 
715 #if CONFIG_UART_INTERRUPT_DRIVEN
716 	if (dev_data->cb) {
717 		dev_data->cb(dev, dev_data->cb_data);
718 	}
719 #endif
720 
721 #if CONFIG_UART_SAM0_ASYNC
722 	const struct uart_sam0_dev_cfg *const cfg = dev->config;
723 	SercomUsart * const regs = cfg->regs;
724 
725 	if (dev_data->tx_len && regs->INTFLAG.bit.TXC) {
726 		regs->INTENCLR.reg = SERCOM_USART_INTENCLR_TXC;
727 
728 		k_work_cancel_delayable(&dev_data->tx_timeout_work);
729 
730 		unsigned int key = irq_lock();
731 
732 		struct uart_event evt = {
733 			.type = UART_TX_DONE,
734 			.data.tx = {
735 				.buf = dev_data->tx_buf,
736 				.len = dev_data->tx_len,
737 			},
738 		};
739 
740 		dev_data->tx_buf = NULL;
741 		dev_data->tx_len = 0U;
742 
743 		if (evt.data.tx.len != 0U && dev_data->async_cb) {
744 			dev_data->async_cb(dev, &evt, dev_data->async_cb_data);
745 		}
746 
747 		irq_unlock(key);
748 	}
749 
750 	if (dev_data->rx_len && regs->INTFLAG.bit.RXC &&
751 	    dev_data->rx_waiting_for_irq) {
752 		dev_data->rx_waiting_for_irq = false;
753 		regs->INTENCLR.reg = SERCOM_USART_INTENCLR_RXC;
754 
755 		/* Receive started, so request the next buffer */
756 		if (dev_data->rx_next_len == 0U && dev_data->async_cb) {
757 			struct uart_event evt = {
758 				.type = UART_RX_BUF_REQUEST,
759 			};
760 
761 			dev_data->async_cb(dev, &evt, dev_data->async_cb_data);
762 		}
763 
764 		/*
765 		 * If we have a timeout, restart the time remaining whenever
766 		 * we see data.
767 		 */
768 		if (dev_data->rx_timeout_time != SYS_FOREVER_US) {
769 			dev_data->rx_timeout_from_isr = true;
770 			dev_data->rx_timeout_start = k_uptime_get_32();
771 			k_work_reschedule(&dev_data->rx_timeout_work,
772 					      K_USEC(dev_data->rx_timeout_chunk));
773 		}
774 
775 		/* DMA will read the currently ready byte out */
776 		dma_start(cfg->dma_dev, cfg->rx_dma_channel);
777 	}
778 #endif
779 }
780 
781 #endif
782 
783 #if CONFIG_UART_INTERRUPT_DRIVEN
784 
uart_sam0_fifo_fill(const struct device * dev,const uint8_t * tx_data,int len)785 static int uart_sam0_fifo_fill(const struct device *dev,
786 			       const uint8_t *tx_data, int len)
787 {
788 	const struct uart_sam0_dev_cfg *config = dev->config;
789 	SercomUsart *regs = config->regs;
790 
791 	if (regs->INTFLAG.bit.DRE && len >= 1) {
792 		regs->DATA.reg = tx_data[0];
793 		return 1;
794 	} else {
795 		return 0;
796 	}
797 }
798 
uart_sam0_irq_tx_enable(const struct device * dev)799 static void uart_sam0_irq_tx_enable(const struct device *dev)
800 {
801 	const struct uart_sam0_dev_cfg *config = dev->config;
802 	SercomUsart * const regs = config->regs;
803 
804 	regs->INTENSET.reg = SERCOM_USART_INTENSET_DRE
805 			   | SERCOM_USART_INTENSET_TXC;
806 }
807 
uart_sam0_irq_tx_disable(const struct device * dev)808 static void uart_sam0_irq_tx_disable(const struct device *dev)
809 {
810 	const struct uart_sam0_dev_cfg *config = dev->config;
811 	SercomUsart * const regs = config->regs;
812 
813 	regs->INTENCLR.reg = SERCOM_USART_INTENCLR_DRE
814 			   | SERCOM_USART_INTENCLR_TXC;
815 }
816 
uart_sam0_irq_tx_ready(const struct device * dev)817 static int uart_sam0_irq_tx_ready(const struct device *dev)
818 {
819 	const struct uart_sam0_dev_cfg *config = dev->config;
820 	SercomUsart * const regs = config->regs;
821 
822 	return (regs->INTFLAG.bit.DRE != 0) && (regs->INTENSET.bit.DRE != 0);
823 }
824 
uart_sam0_irq_tx_complete(const struct device * dev)825 static int uart_sam0_irq_tx_complete(const struct device *dev)
826 {
827 	const struct uart_sam0_dev_cfg *config = dev->config;
828 	struct uart_sam0_dev_data *const dev_data = dev->data;
829 	SercomUsart * const regs = config->regs;
830 
831 	return (dev_data->txc_cache != 0) && (regs->INTENSET.bit.TXC != 0);
832 }
833 
uart_sam0_irq_rx_enable(const struct device * dev)834 static void uart_sam0_irq_rx_enable(const struct device *dev)
835 {
836 	const struct uart_sam0_dev_cfg *config = dev->config;
837 	SercomUsart * const regs = config->regs;
838 
839 	regs->INTENSET.reg = SERCOM_USART_INTENSET_RXC;
840 }
841 
uart_sam0_irq_rx_disable(const struct device * dev)842 static void uart_sam0_irq_rx_disable(const struct device *dev)
843 {
844 	const struct uart_sam0_dev_cfg *config = dev->config;
845 	SercomUsart * const regs = config->regs;
846 
847 	regs->INTENCLR.reg = SERCOM_USART_INTENCLR_RXC;
848 }
849 
uart_sam0_irq_rx_ready(const struct device * dev)850 static int uart_sam0_irq_rx_ready(const struct device *dev)
851 {
852 	const struct uart_sam0_dev_cfg *config = dev->config;
853 	SercomUsart * const regs = config->regs;
854 
855 	return regs->INTFLAG.bit.RXC != 0;
856 }
857 
uart_sam0_fifo_read(const struct device * dev,uint8_t * rx_data,const int size)858 static int uart_sam0_fifo_read(const struct device *dev, uint8_t *rx_data,
859 			       const int size)
860 {
861 	const struct uart_sam0_dev_cfg *config = dev->config;
862 	SercomUsart * const regs = config->regs;
863 
864 	if (regs->INTFLAG.bit.RXC) {
865 		uint8_t ch = regs->DATA.reg;
866 
867 		if (size >= 1) {
868 			*rx_data = ch;
869 			return 1;
870 		} else {
871 			return -EINVAL;
872 		}
873 	}
874 	return 0;
875 }
876 
uart_sam0_irq_is_pending(const struct device * dev)877 static int uart_sam0_irq_is_pending(const struct device *dev)
878 {
879 	const struct uart_sam0_dev_cfg *config = dev->config;
880 	SercomUsart * const regs = config->regs;
881 
882 	return (regs->INTENSET.reg & regs->INTFLAG.reg) != 0;
883 }
884 
885 #if defined(SERCOM_REV500)
uart_sam0_irq_err_enable(const struct device * dev)886 static void uart_sam0_irq_err_enable(const struct device *dev)
887 {
888 	const struct uart_sam0_dev_cfg *config = dev->config;
889 	SercomUsart * const regs = config->regs;
890 
891 	regs->INTENSET.reg |= SERCOM_USART_INTENCLR_ERROR;
892 	wait_synchronization(regs);
893 }
894 
uart_sam0_irq_err_disable(const struct device * dev)895 static void uart_sam0_irq_err_disable(const struct device *dev)
896 {
897 	const struct uart_sam0_dev_cfg *config = dev->config;
898 	SercomUsart * const regs = config->regs;
899 
900 	regs->INTENCLR.reg |= SERCOM_USART_INTENSET_ERROR;
901 	wait_synchronization(regs);
902 }
903 #endif
904 
uart_sam0_irq_update(const struct device * dev)905 static int uart_sam0_irq_update(const struct device *dev)
906 {
907 	/* Clear sticky interrupts */
908 	const struct uart_sam0_dev_cfg *config = dev->config;
909 	SercomUsart * const regs = config->regs;
910 
911 #if defined(SERCOM_REV500)
912 	/*
913 	 * Cache the TXC flag, and use this cached value to clear the interrupt
914 	 * if we do not used the cached value, there is a chance TXC will set
915 	 * after caching...this will cause TXC to never cached.
916 	 */
917 	struct uart_sam0_dev_data *const dev_data = dev->data;
918 
919 	dev_data->txc_cache = regs->INTFLAG.bit.TXC;
920 	regs->INTFLAG.reg = SERCOM_USART_INTENCLR_ERROR
921 			  | SERCOM_USART_INTENCLR_RXBRK
922 			  | SERCOM_USART_INTENCLR_CTSIC
923 			  | SERCOM_USART_INTENCLR_RXS
924 			  | (dev_data->txc_cache << SERCOM_USART_INTENCLR_TXC_Pos);
925 #else
926 	regs->INTFLAG.reg = SERCOM_USART_INTENCLR_RXS;
927 #endif
928 	return 1;
929 }
930 
uart_sam0_irq_callback_set(const struct device * dev,uart_irq_callback_user_data_t cb,void * cb_data)931 static void uart_sam0_irq_callback_set(const struct device *dev,
932 				       uart_irq_callback_user_data_t cb,
933 				       void *cb_data)
934 {
935 	struct uart_sam0_dev_data *const dev_data = dev->data;
936 
937 	dev_data->cb = cb;
938 	dev_data->cb_data = cb_data;
939 
940 #if defined(CONFIG_UART_SAM0_ASYNC) && defined(CONFIG_UART_EXCLUSIVE_API_CALLBACKS)
941 	dev_data->async_cb = NULL;
942 	dev_data->async_cb_data = NULL;
943 #endif
944 }
945 #endif
946 
947 #ifdef CONFIG_UART_SAM0_ASYNC
948 
uart_sam0_callback_set(const struct device * dev,uart_callback_t callback,void * user_data)949 static int uart_sam0_callback_set(const struct device *dev,
950 				  uart_callback_t callback,
951 				  void *user_data)
952 {
953 	struct uart_sam0_dev_data *const dev_data = dev->data;
954 
955 	dev_data->async_cb = callback;
956 	dev_data->async_cb_data = user_data;
957 
958 #if defined(CONFIG_UART_EXCLUSIVE_API_CALLBACKS)
959 	dev_data->cb = NULL;
960 	dev_data->cb_data = NULL;
961 #endif
962 
963 	return 0;
964 }
965 
uart_sam0_tx(const struct device * dev,const uint8_t * buf,size_t len,int32_t timeout)966 static int uart_sam0_tx(const struct device *dev, const uint8_t *buf,
967 			size_t len,
968 			int32_t timeout)
969 {
970 	struct uart_sam0_dev_data *const dev_data = dev->data;
971 	const struct uart_sam0_dev_cfg *const cfg = dev->config;
972 	SercomUsart *regs = cfg->regs;
973 	int retval;
974 
975 	if (cfg->tx_dma_channel == 0xFFU) {
976 		return -ENOTSUP;
977 	}
978 
979 	if (len > 0xFFFFU) {
980 		return -EINVAL;
981 	}
982 
983 	unsigned int key = irq_lock();
984 
985 	if (dev_data->tx_len != 0U) {
986 		retval = -EBUSY;
987 		goto err;
988 	}
989 
990 	dev_data->tx_buf = buf;
991 	dev_data->tx_len = len;
992 
993 	irq_unlock(key);
994 
995 	retval = dma_reload(cfg->dma_dev, cfg->tx_dma_channel, (uint32_t)buf,
996 			    (uint32_t)(&(regs->DATA.reg)), len);
997 	if (retval != 0U) {
998 		return retval;
999 	}
1000 
1001 	if (timeout != SYS_FOREVER_US) {
1002 		k_work_reschedule(&dev_data->tx_timeout_work,
1003 				      K_USEC(timeout));
1004 	}
1005 
1006 	return dma_start(cfg->dma_dev, cfg->tx_dma_channel);
1007 err:
1008 	irq_unlock(key);
1009 	return retval;
1010 }
1011 
uart_sam0_tx_abort(const struct device * dev)1012 static int uart_sam0_tx_abort(const struct device *dev)
1013 {
1014 	struct uart_sam0_dev_data *const dev_data = dev->data;
1015 	const struct uart_sam0_dev_cfg *const cfg = dev->config;
1016 
1017 	if (cfg->tx_dma_channel == 0xFFU) {
1018 		return -ENOTSUP;
1019 	}
1020 
1021 	k_work_cancel_delayable(&dev_data->tx_timeout_work);
1022 
1023 	return uart_sam0_tx_halt(dev_data);
1024 }
1025 
uart_sam0_rx_enable(const struct device * dev,uint8_t * buf,size_t len,int32_t timeout)1026 static int uart_sam0_rx_enable(const struct device *dev, uint8_t *buf,
1027 			       size_t len,
1028 			       int32_t timeout)
1029 {
1030 	struct uart_sam0_dev_data *const dev_data = dev->data;
1031 	const struct uart_sam0_dev_cfg *const cfg = dev->config;
1032 	SercomUsart *regs = cfg->regs;
1033 	int retval;
1034 
1035 	if (cfg->rx_dma_channel == 0xFFU) {
1036 		return -ENOTSUP;
1037 	}
1038 
1039 	if (len > 0xFFFFU) {
1040 		return -EINVAL;
1041 	}
1042 
1043 	unsigned int key = irq_lock();
1044 
1045 	if (dev_data->rx_len != 0U) {
1046 		retval = -EBUSY;
1047 		goto err;
1048 	}
1049 
1050 	/* Read off anything that was already there */
1051 	while (regs->INTFLAG.bit.RXC) {
1052 		char discard = regs->DATA.reg;
1053 
1054 		(void)discard;
1055 	}
1056 
1057 	retval = dma_reload(cfg->dma_dev, cfg->rx_dma_channel,
1058 			    (uint32_t)(&(regs->DATA.reg)),
1059 			    (uint32_t)buf, len);
1060 	if (retval != 0) {
1061 		return retval;
1062 	}
1063 
1064 	dev_data->rx_buf = buf;
1065 	dev_data->rx_len = len;
1066 	dev_data->rx_processed_len = 0U;
1067 	dev_data->rx_waiting_for_irq = true;
1068 	dev_data->rx_timeout_from_isr = true;
1069 	dev_data->rx_timeout_time = timeout;
1070 	dev_data->rx_timeout_chunk = MAX(timeout / 4U, 1);
1071 
1072 	regs->INTENSET.reg = SERCOM_USART_INTENSET_RXC;
1073 
1074 	irq_unlock(key);
1075 	return 0;
1076 
1077 err:
1078 	irq_unlock(key);
1079 	return retval;
1080 }
1081 
uart_sam0_rx_buf_rsp(const struct device * dev,uint8_t * buf,size_t len)1082 static int uart_sam0_rx_buf_rsp(const struct device *dev, uint8_t *buf,
1083 				size_t len)
1084 {
1085 	if (len > 0xFFFFU) {
1086 		return -EINVAL;
1087 	}
1088 
1089 	struct uart_sam0_dev_data *const dev_data = dev->data;
1090 	unsigned int key = irq_lock();
1091 	int retval = 0;
1092 
1093 	if (dev_data->rx_len == 0U) {
1094 		retval = -EACCES;
1095 		goto err;
1096 	}
1097 
1098 	if (dev_data->rx_next_len != 0U) {
1099 		retval = -EBUSY;
1100 		goto err;
1101 	}
1102 
1103 	dev_data->rx_next_buf = buf;
1104 	dev_data->rx_next_len = len;
1105 
1106 	irq_unlock(key);
1107 	return 0;
1108 
1109 err:
1110 	irq_unlock(key);
1111 	return retval;
1112 }
1113 
uart_sam0_rx_disable(const struct device * dev)1114 static int uart_sam0_rx_disable(const struct device *dev)
1115 {
1116 	struct uart_sam0_dev_data *const dev_data = dev->data;
1117 	const struct uart_sam0_dev_cfg *const cfg = dev->config;
1118 	SercomUsart * const regs = cfg->regs;
1119 	struct dma_status st;
1120 
1121 	k_work_cancel_delayable(&dev_data->rx_timeout_work);
1122 
1123 	unsigned int key = irq_lock();
1124 
1125 	if (dev_data->rx_len == 0U) {
1126 		irq_unlock(key);
1127 		return -EINVAL;
1128 	}
1129 
1130 	regs->INTENCLR.reg = SERCOM_USART_INTENCLR_RXC;
1131 	dma_stop(cfg->dma_dev, cfg->rx_dma_channel);
1132 
1133 
1134 	if (dma_get_status(cfg->dma_dev, cfg->rx_dma_channel,
1135 			   &st) == 0 && st.pending_length != 0U) {
1136 		size_t rx_processed = dev_data->rx_len - st.pending_length;
1137 
1138 		uart_sam0_notify_rx_processed(dev_data, rx_processed);
1139 	}
1140 
1141 	struct uart_event evt = {
1142 		.type = UART_RX_BUF_RELEASED,
1143 		.data.rx_buf = {
1144 			.buf = dev_data->rx_buf,
1145 		},
1146 	};
1147 
1148 	dev_data->rx_buf = NULL;
1149 	dev_data->rx_len = 0U;
1150 
1151 	if (dev_data->async_cb) {
1152 		dev_data->async_cb(dev, &evt, dev_data->async_cb_data);
1153 	}
1154 
1155 	if (dev_data->rx_next_len) {
1156 		struct uart_event next_evt = {
1157 			.type = UART_RX_BUF_RELEASED,
1158 			.data.rx_buf = {
1159 				.buf = dev_data->rx_next_buf,
1160 			},
1161 		};
1162 
1163 		dev_data->rx_next_buf = NULL;
1164 		dev_data->rx_next_len = 0U;
1165 
1166 		if (dev_data->async_cb) {
1167 			dev_data->async_cb(dev, &next_evt, dev_data->async_cb_data);
1168 		}
1169 	}
1170 
1171 	evt.type = UART_RX_DISABLED;
1172 	if (dev_data->async_cb) {
1173 		dev_data->async_cb(dev, &evt, dev_data->async_cb_data);
1174 	}
1175 
1176 	irq_unlock(key);
1177 
1178 	return 0;
1179 }
1180 
1181 #endif
1182 
1183 static DEVICE_API(uart, uart_sam0_driver_api) = {
1184 	.poll_in = uart_sam0_poll_in,
1185 	.poll_out = uart_sam0_poll_out,
1186 #ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
1187 	.configure = uart_sam0_configure,
1188 	.config_get = uart_sam0_config_get,
1189 #endif
1190 	.err_check = uart_sam0_err_check,
1191 #if CONFIG_UART_INTERRUPT_DRIVEN
1192 	.fifo_fill = uart_sam0_fifo_fill,
1193 	.fifo_read = uart_sam0_fifo_read,
1194 	.irq_tx_enable = uart_sam0_irq_tx_enable,
1195 	.irq_tx_disable = uart_sam0_irq_tx_disable,
1196 	.irq_tx_ready = uart_sam0_irq_tx_ready,
1197 	.irq_tx_complete = uart_sam0_irq_tx_complete,
1198 	.irq_rx_enable = uart_sam0_irq_rx_enable,
1199 	.irq_rx_disable = uart_sam0_irq_rx_disable,
1200 	.irq_rx_ready = uart_sam0_irq_rx_ready,
1201 	.irq_is_pending = uart_sam0_irq_is_pending,
1202 #if defined(SERCOM_REV500)
1203 	.irq_err_enable = uart_sam0_irq_err_enable,
1204 	.irq_err_disable = uart_sam0_irq_err_disable,
1205 #endif
1206 	.irq_update = uart_sam0_irq_update,
1207 	.irq_callback_set = uart_sam0_irq_callback_set,
1208 #endif
1209 #if CONFIG_UART_SAM0_ASYNC
1210 	.callback_set = uart_sam0_callback_set,
1211 	.tx = uart_sam0_tx,
1212 	.tx_abort = uart_sam0_tx_abort,
1213 	.rx_enable = uart_sam0_rx_enable,
1214 	.rx_buf_rsp = uart_sam0_rx_buf_rsp,
1215 	.rx_disable = uart_sam0_rx_disable,
1216 #endif
1217 };
1218 
1219 #if CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_SAM0_ASYNC
1220 
1221 #define SAM0_UART_IRQ_CONNECT(n, m)					\
1222 	do {								\
1223 		IRQ_CONNECT(DT_INST_IRQ_BY_IDX(n, m, irq),		\
1224 			    DT_INST_IRQ_BY_IDX(n, m, priority),		\
1225 			    uart_sam0_isr,				\
1226 			    DEVICE_DT_INST_GET(n), 0);			\
1227 		irq_enable(DT_INST_IRQ_BY_IDX(n, m, irq));		\
1228 	} while (false)
1229 
1230 #define UART_SAM0_IRQ_HANDLER_DECL(n)					\
1231 	static void uart_sam0_irq_config_##n(const struct device *dev)
1232 #define UART_SAM0_IRQ_HANDLER_FUNC(n)					\
1233 	.irq_config_func = uart_sam0_irq_config_##n,
1234 
1235 #if DT_INST_IRQ_HAS_IDX(0, 3)
1236 #define UART_SAM0_IRQ_HANDLER(n)					\
1237 static void uart_sam0_irq_config_##n(const struct device *dev)		\
1238 {									\
1239 	SAM0_UART_IRQ_CONNECT(n, 0);					\
1240 	SAM0_UART_IRQ_CONNECT(n, 1);					\
1241 	SAM0_UART_IRQ_CONNECT(n, 2);					\
1242 	SAM0_UART_IRQ_CONNECT(n, 3);					\
1243 }
1244 #else
1245 #define UART_SAM0_IRQ_HANDLER(n)					\
1246 static void uart_sam0_irq_config_##n(const struct device *dev)		\
1247 {									\
1248 	SAM0_UART_IRQ_CONNECT(n, 0);					\
1249 }
1250 #endif
1251 #else
1252 #define UART_SAM0_IRQ_HANDLER_DECL(n)
1253 #define UART_SAM0_IRQ_HANDLER_FUNC(n)
1254 #define UART_SAM0_IRQ_HANDLER(n)
1255 #endif
1256 
1257 #if CONFIG_UART_SAM0_ASYNC
1258 #define UART_SAM0_DMA_CHANNELS(n)					\
1259 	.dma_dev = DEVICE_DT_GET(ATMEL_SAM0_DT_INST_DMA_CTLR(n, tx)),	\
1260 	.tx_dma_request = ATMEL_SAM0_DT_INST_DMA_TRIGSRC(n, tx),	\
1261 	.tx_dma_channel = ATMEL_SAM0_DT_INST_DMA_CHANNEL(n, tx),	\
1262 	.rx_dma_request = ATMEL_SAM0_DT_INST_DMA_TRIGSRC(n, rx),	\
1263 	.rx_dma_channel = ATMEL_SAM0_DT_INST_DMA_CHANNEL(n, rx),
1264 #else
1265 #define UART_SAM0_DMA_CHANNELS(n)
1266 #endif
1267 
1268 #define UART_SAM0_SERCOM_PADS(n) \
1269 	(DT_INST_PROP(n, rxpo) << SERCOM_USART_CTRLA_RXPO_Pos) |	\
1270 	(DT_INST_PROP(n, txpo) << SERCOM_USART_CTRLA_TXPO_Pos)
1271 
1272 #define UART_SAM0_SERCOM_COLLISION_DETECT(n) \
1273 	(DT_INST_PROP(n, collision_detection))
1274 
1275 #ifdef MCLK
1276 #define UART_SAM0_CONFIG_DEFN(n)					\
1277 static const struct uart_sam0_dev_cfg uart_sam0_config_##n = {		\
1278 	.regs = (SercomUsart *)DT_INST_REG_ADDR(n),			\
1279 	.baudrate = DT_INST_PROP(n, current_speed),			\
1280 	.mclk = (volatile uint32_t *)MCLK_MASK_DT_INT_REG_ADDR(n),	\
1281 	.mclk_mask = BIT(DT_INST_CLOCKS_CELL_BY_NAME(n, mclk, bit)),	\
1282 	.gclk_core_id = DT_INST_CLOCKS_CELL_BY_NAME(n, gclk, periph_ch),\
1283 	.pads = UART_SAM0_SERCOM_PADS(n),				\
1284 	.collision_detect = UART_SAM0_SERCOM_COLLISION_DETECT(n),	\
1285 	.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n),			\
1286 	UART_SAM0_IRQ_HANDLER_FUNC(n)					\
1287 	UART_SAM0_DMA_CHANNELS(n)					\
1288 }
1289 #else
1290 #define UART_SAM0_CONFIG_DEFN(n)					\
1291 static const struct uart_sam0_dev_cfg uart_sam0_config_##n = {		\
1292 	.regs = (SercomUsart *)DT_INST_REG_ADDR(n),			\
1293 	.baudrate = DT_INST_PROP(n, current_speed),			\
1294 	.pm_apbcmask = BIT(DT_INST_CLOCKS_CELL_BY_NAME(n, pm, bit)),	\
1295 	.gclk_clkctrl_id = DT_INST_CLOCKS_CELL_BY_NAME(n, gclk, clkctrl_id),\
1296 	.pads = UART_SAM0_SERCOM_PADS(n),				\
1297 	.collision_detect = UART_SAM0_SERCOM_COLLISION_DETECT(n),	\
1298 	.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n),			\
1299 	UART_SAM0_IRQ_HANDLER_FUNC(n)					\
1300 	UART_SAM0_DMA_CHANNELS(n)					\
1301 }
1302 #endif
1303 
1304 #define UART_SAM0_DEVICE_INIT(n)					\
1305 PINCTRL_DT_INST_DEFINE(n);						\
1306 static struct uart_sam0_dev_data uart_sam0_data_##n;			\
1307 UART_SAM0_IRQ_HANDLER_DECL(n);						\
1308 UART_SAM0_CONFIG_DEFN(n);						\
1309 DEVICE_DT_INST_DEFINE(n, uart_sam0_init, NULL,				\
1310 		    &uart_sam0_data_##n,				\
1311 		    &uart_sam0_config_##n, PRE_KERNEL_1,		\
1312 		    CONFIG_SERIAL_INIT_PRIORITY,			\
1313 		    &uart_sam0_driver_api);				\
1314 UART_SAM0_IRQ_HANDLER(n)
1315 
1316 DT_INST_FOREACH_STATUS_OKAY(UART_SAM0_DEVICE_INIT)
1317