1 /*
2 * Copyright (c) 2022 Espressif Systems (Shanghai) CO LTD
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 #define DT_DRV_COMPAT espressif_esp32_adc
8
9 #include <errno.h>
10 #include <hal/adc_hal.h>
11 #include <hal/adc_types.h>
12 #include <soc/adc_periph.h>
13 #include <esp_adc_cal.h>
14 #include <esp_clk_tree.h>
15 #include <esp_private/periph_ctrl.h>
16 #include <esp_private/sar_periph_ctrl.h>
17 #include <esp_private/adc_share_hw_ctrl.h>
18
19 #if defined(CONFIG_ADC_ESP32_DMA)
20 #if !SOC_GDMA_SUPPORTED
21 #error "SoCs without GDMA peripheral are not supported!"
22 #endif
23 #include <zephyr/drivers/dma.h>
24 #include <zephyr/drivers/dma/dma_esp32.h>
25 #endif
26
27 #include <zephyr/kernel.h>
28 #include <zephyr/device.h>
29 #include <zephyr/drivers/adc.h>
30 #include <zephyr/drivers/gpio.h>
31
32 #include <zephyr/logging/log.h>
33 LOG_MODULE_REGISTER(adc_esp32, CONFIG_ADC_LOG_LEVEL);
34
35 #define ADC_RESOLUTION_MIN SOC_ADC_DIGI_MIN_BITWIDTH
36 #define ADC_RESOLUTION_MAX SOC_ADC_DIGI_MAX_BITWIDTH
37
38 #if CONFIG_SOC_SERIES_ESP32
39 #define ADC_CALI_SCHEME ESP_ADC_CAL_VAL_EFUSE_VREF
40 /* Due to significant measurement discrepancy in higher voltage range, we
41 * clip the value instead of yet another correction. The IDF implementation
42 * for ESP32-S2 is doing it, so we copy that approach in Zephyr driver
43 */
44 #define ADC_CLIP_MVOLT_12DB 2550
45 #elif CONFIG_SOC_SERIES_ESP32S3
46 #define ADC_CALI_SCHEME ESP_ADC_CAL_VAL_EFUSE_TP_FIT
47 #else
48 #define ADC_CALI_SCHEME ESP_ADC_CAL_VAL_EFUSE_TP
49 #endif
50
51 /* Validate if resolution in bits is within allowed values */
52 #define VALID_RESOLUTION(r) ((r) >= ADC_RESOLUTION_MIN && (r) <= ADC_RESOLUTION_MAX)
53 #define INVALID_RESOLUTION(r) (!VALID_RESOLUTION(r))
54
55 /* Default internal reference voltage */
56 #define ADC_ESP32_DEFAULT_VREF_INTERNAL (1100)
57
58 #define ADC_DMA_BUFFER_SIZE DMA_DESCRIPTOR_BUFFER_MAX_SIZE_4B_ALIGNED
59
60 struct adc_esp32_conf {
61 adc_unit_t unit;
62 uint8_t channel_count;
63 #if defined(CONFIG_ADC_ESP32_DMA)
64 const struct device *gpio_port;
65 const struct device *dma_dev;
66 uint8_t dma_channel;
67 #endif /* defined(CONFIG_ADC_ESP32_DMA) */
68 };
69
70 struct adc_esp32_data {
71 adc_atten_t attenuation[SOC_ADC_MAX_CHANNEL_NUM];
72 uint8_t resolution[SOC_ADC_MAX_CHANNEL_NUM];
73 esp_adc_cal_characteristics_t chars[SOC_ADC_MAX_CHANNEL_NUM];
74 uint16_t meas_ref_internal;
75 uint16_t *buffer;
76 bool calibrate;
77 #if defined(CONFIG_ADC_ESP32_DMA)
78 adc_hal_dma_ctx_t adc_hal_dma_ctx;
79 uint8_t *dma_buffer;
80 struct k_sem dma_conv_wait_lock;
81 #endif /* defined(CONFIG_ADC_ESP32_DMA) */
82 };
83
84 /* Convert zephyr,gain property to the ESP32 attenuation */
gain_to_atten(enum adc_gain gain,adc_atten_t * atten)85 static inline int gain_to_atten(enum adc_gain gain, adc_atten_t *atten)
86 {
87 switch (gain) {
88 case ADC_GAIN_1:
89 *atten = ADC_ATTEN_DB_0;
90 break;
91 case ADC_GAIN_4_5:
92 *atten = ADC_ATTEN_DB_2_5;
93 break;
94 case ADC_GAIN_1_2:
95 *atten = ADC_ATTEN_DB_6;
96 break;
97 case ADC_GAIN_1_4:
98 *atten = ADC_ATTEN_DB_12;
99 break;
100 default:
101 return -ENOTSUP;
102 }
103 return 0;
104 }
105
106 #if !defined(CONFIG_ADC_ESP32_DMA)
107 /* Convert voltage by inverted attenuation to support zephyr gain values */
atten_to_gain(adc_atten_t atten,uint32_t * val_mv)108 static void atten_to_gain(adc_atten_t atten, uint32_t *val_mv)
109 {
110 if (!val_mv) {
111 return;
112 }
113 switch (atten) {
114 case ADC_ATTEN_DB_2_5:
115 *val_mv = (*val_mv * 4) / 5; /* 1/ADC_GAIN_4_5 */
116 break;
117 case ADC_ATTEN_DB_6:
118 *val_mv = *val_mv >> 1; /* 1/ADC_GAIN_1_2 */
119 break;
120 case ADC_ATTEN_DB_12:
121 *val_mv = *val_mv / 4; /* 1/ADC_GAIN_1_4 */
122 break;
123 case ADC_ATTEN_DB_0: /* 1/ADC_GAIN_1 */
124 default:
125 break;
126 }
127 }
128 #endif /* !defined(CONFIG_ADC_ESP32_DMA) */
129
adc_hw_calibration(adc_unit_t unit)130 static void adc_hw_calibration(adc_unit_t unit)
131 {
132 #if SOC_ADC_CALIBRATION_V1_SUPPORTED
133 adc_hal_calibration_init(unit);
134 for (int j = 0; j < SOC_ADC_ATTEN_NUM; j++) {
135 adc_calc_hw_calibration_code(unit, j);
136 #if SOC_ADC_CALIB_CHAN_COMPENS_SUPPORTED
137 /* Load the channel compensation from efuse */
138 for (int k = 0; k < SOC_ADC_CHANNEL_NUM(unit); k++) {
139 adc_load_hw_calibration_chan_compens(unit, k, j);
140 }
141 #endif /* SOC_ADC_CALIB_CHAN_COMPENS_SUPPORTED */
142 }
143 #endif /* SOC_ADC_CALIBRATION_V1_SUPPORTED */
144 }
145
adc_calibration_init(const struct device * dev)146 static bool adc_calibration_init(const struct device *dev)
147 {
148 switch (esp_adc_cal_check_efuse(ADC_CALI_SCHEME)) {
149 case ESP_ERR_NOT_SUPPORTED:
150 LOG_WRN("Skip software calibration - Not supported!");
151 break;
152 case ESP_ERR_INVALID_VERSION:
153 LOG_WRN("Skip software calibration - Invalid version!");
154 break;
155 case ESP_OK:
156 LOG_DBG("Software calibration possible");
157 return true;
158 default:
159 LOG_ERR("Invalid arg");
160 break;
161 }
162
163 return false;
164 }
165
166 #if defined(CONFIG_ADC_ESP32_DMA)
167
adc_esp32_dma_conv_done(const struct device * dma_dev,void * user_data,uint32_t channel,int status)168 static void IRAM_ATTR adc_esp32_dma_conv_done(const struct device *dma_dev, void *user_data,
169 uint32_t channel, int status)
170 {
171 ARG_UNUSED(dma_dev);
172 ARG_UNUSED(status);
173
174 const struct device *dev = user_data;
175 struct adc_esp32_data *data = dev->data;
176
177 k_sem_give(&data->dma_conv_wait_lock);
178 }
179
adc_esp32_dma_start(const struct device * dev,uint8_t * buf,size_t len)180 static int adc_esp32_dma_start(const struct device *dev, uint8_t *buf, size_t len)
181 {
182 const struct adc_esp32_conf *conf = dev->config;
183 struct adc_esp32_data *data = dev->data;
184
185 int err = 0;
186 struct dma_config dma_cfg = {0};
187 struct dma_status dma_status = {0};
188 struct dma_block_config dma_blk = {0};
189
190 err = dma_get_status(conf->dma_dev, conf->dma_channel, &dma_status);
191 if (err) {
192 LOG_ERR("Unable to get dma channel[%u] status (%d)",
193 (unsigned int)conf->dma_channel, err);
194 return -EINVAL;
195 }
196
197 if (dma_status.busy) {
198 LOG_ERR("dma channel[%u] is busy!", (unsigned int)conf->dma_channel);
199 return -EBUSY;
200 }
201
202 unsigned int key = irq_lock();
203
204 dma_cfg.channel_direction = PERIPHERAL_TO_MEMORY;
205 dma_cfg.dma_callback = adc_esp32_dma_conv_done;
206 dma_cfg.user_data = (void *)dev;
207 dma_cfg.dma_slot = ESP_GDMA_TRIG_PERIPH_ADC0;
208 dma_cfg.block_count = 1;
209 dma_cfg.head_block = &dma_blk;
210 dma_blk.block_size = len;
211 dma_blk.dest_address = (uint32_t)buf;
212
213 err = dma_config(conf->dma_dev, conf->dma_channel, &dma_cfg);
214 if (err) {
215 LOG_ERR("Error configuring dma (%d)", err);
216 goto unlock;
217 }
218
219 err = dma_start(conf->dma_dev, conf->dma_channel);
220 if (err) {
221 LOG_ERR("Error starting dma (%d)", err);
222 goto unlock;
223 }
224
225 unlock:
226 irq_unlock(key);
227 return err;
228 }
229
adc_esp32_dma_stop(const struct device * dev)230 static int adc_esp32_dma_stop(const struct device *dev)
231 {
232 const struct adc_esp32_conf *conf = dev->config;
233 unsigned int key = irq_lock();
234 int err = 0;
235
236 err = dma_stop(conf->dma_dev, conf->dma_channel);
237 if (err) {
238 LOG_ERR("Error stopping dma (%d)", err);
239 }
240
241 irq_unlock(key);
242 return err;
243 }
244
adc_esp32_fill_digi_pattern(const struct device * dev,const struct adc_sequence * seq,void * pattern_config,uint32_t * pattern_len,uint32_t * unit_attenuation)245 static int adc_esp32_fill_digi_pattern(const struct device *dev, const struct adc_sequence *seq,
246 void *pattern_config, uint32_t *pattern_len, uint32_t *unit_attenuation)
247 {
248 const struct adc_esp32_conf *conf = dev->config;
249 struct adc_esp32_data *data = dev->data;
250
251 adc_digi_pattern_config_t *adc_digi_pattern_config =
252 (adc_digi_pattern_config_t *)pattern_config;
253 const uint32_t unit_atten_uninit = 999;
254 uint32_t channel_mask = 1, channels_copy = seq->channels;
255
256 *pattern_len = 0;
257 *unit_attenuation = unit_atten_uninit;
258 for (uint8_t channel_id = 0; channel_id < conf->channel_count; channel_id++) {
259 if (channels_copy & channel_mask) {
260 if (*unit_attenuation == unit_atten_uninit) {
261 *unit_attenuation = data->attenuation[channel_id];
262 } else if (*unit_attenuation != data->attenuation[channel_id]) {
263 LOG_ERR("Channel[%u] attenuation different of unit[%u] attenuation",
264 (unsigned int)channel_id, (unsigned int)conf->unit);
265 return -EINVAL;
266 }
267
268 adc_digi_pattern_config->atten = data->attenuation[channel_id];
269 adc_digi_pattern_config->channel = channel_id;
270 adc_digi_pattern_config->unit = conf->unit;
271 adc_digi_pattern_config->bit_width = seq->resolution;
272 adc_digi_pattern_config++;
273
274 *pattern_len += 1;
275 if (*pattern_len > SOC_ADC_PATT_LEN_MAX) {
276 LOG_ERR("Max pattern len is %d", SOC_ADC_PATT_LEN_MAX);
277 return -EINVAL;
278 }
279
280 channels_copy &= ~channel_mask;
281 if (!channels_copy) {
282 break;
283 }
284 }
285 channel_mask <<= 1;
286 }
287
288 return 0;
289 }
290
adc_esp32_digi_start(const struct device * dev,void * pattern_config,uint32_t pattern_len,uint32_t number_of_samplings,uint32_t sample_freq_hz,uint32_t unit_attenuation)291 static void adc_esp32_digi_start(const struct device *dev, void *pattern_config,
292 uint32_t pattern_len, uint32_t number_of_samplings,
293 uint32_t sample_freq_hz, uint32_t unit_attenuation)
294 {
295 const struct adc_esp32_conf *conf = dev->config;
296 struct adc_esp32_data *data = dev->data;
297
298 sar_periph_ctrl_adc_continuous_power_acquire();
299 adc_lock_acquire(conf->unit);
300
301 #if SOC_ADC_CALIBRATION_V1_SUPPORTED
302 adc_set_hw_calibration_code(conf->unit, unit_attenuation);
303 #endif /* SOC_ADC_CALIBRATION_V1_SUPPORTED */
304
305 #if SOC_ADC_ARBITER_SUPPORTED
306 if (conf->unit == ADC_UNIT_2) {
307 adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
308
309 adc_hal_arbiter_config(&config);
310 }
311 #endif /* SOC_ADC_ARBITER_SUPPORTED */
312
313 adc_hal_digi_ctrlr_cfg_t adc_hal_digi_ctrlr_cfg;
314 soc_module_clk_t clk_src = ADC_DIGI_CLK_SRC_DEFAULT;
315 uint32_t clk_src_freq_hz = 0;
316
317 esp_clk_tree_src_get_freq_hz(clk_src, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED,
318 &clk_src_freq_hz);
319
320 adc_hal_digi_ctrlr_cfg.conv_mode =
321 (conf->unit == ADC_UNIT_1)?ADC_CONV_SINGLE_UNIT_1:ADC_CONV_SINGLE_UNIT_2;
322 adc_hal_digi_ctrlr_cfg.clk_src = clk_src;
323 adc_hal_digi_ctrlr_cfg.clk_src_freq_hz = clk_src_freq_hz;
324 adc_hal_digi_ctrlr_cfg.sample_freq_hz = sample_freq_hz;
325 adc_hal_digi_ctrlr_cfg.adc_pattern = (adc_digi_pattern_config_t *)pattern_config;
326 adc_hal_digi_ctrlr_cfg.adc_pattern_len = pattern_len;
327
328 uint32_t number_of_adc_digi_samples = number_of_samplings * pattern_len;
329
330 adc_hal_dma_config_t adc_hal_dma_config = {
331 .dev = (void *)GDMA_LL_GET_HW(0),
332 .eof_desc_num = 1,
333 .eof_step = 1,
334 .dma_chan = conf->dma_channel,
335 .eof_num = number_of_adc_digi_samples,
336 };
337
338 adc_hal_dma_ctx_config(&data->adc_hal_dma_ctx, &adc_hal_dma_config);
339
340 adc_hal_set_controller(conf->unit, ADC_HAL_CONTINUOUS_READ_MODE);
341 adc_hal_digi_init(&data->adc_hal_dma_ctx);
342 adc_hal_digi_controller_config(&data->adc_hal_dma_ctx, &adc_hal_digi_ctrlr_cfg);
343 adc_hal_digi_start(&data->adc_hal_dma_ctx, data->dma_buffer);
344 }
345
adc_esp32_digi_stop(const struct device * dev)346 static void adc_esp32_digi_stop(const struct device *dev)
347 {
348 const struct adc_esp32_conf *conf = dev->config;
349 struct adc_esp32_data *data = dev->data;
350
351 adc_hal_digi_dis_intr(&data->adc_hal_dma_ctx, ADC_HAL_DMA_INTR_MASK);
352 adc_hal_digi_clr_intr(&data->adc_hal_dma_ctx, ADC_HAL_DMA_INTR_MASK);
353 adc_hal_digi_stop(&data->adc_hal_dma_ctx);
354 adc_hal_digi_deinit(&data->adc_hal_dma_ctx);
355 adc_lock_release(conf->unit);
356 sar_periph_ctrl_adc_continuous_power_release();
357 }
358
adc_esp32_fill_seq_buffer(const void * seq_buffer,const void * dma_buffer,uint32_t number_of_samples)359 static void adc_esp32_fill_seq_buffer(const void *seq_buffer, const void *dma_buffer,
360 uint32_t number_of_samples)
361 {
362 uint16_t *sample = (uint16_t *)seq_buffer;
363 adc_digi_output_data_t *digi_data = (adc_digi_output_data_t *)dma_buffer;
364
365 for (uint32_t k = 0; k < number_of_samples; k++) {
366 *sample++ = (uint16_t)(digi_data++)->type2.data;
367 }
368 }
369
adc_esp32_wait_for_dma_conv_done(const struct device * dev)370 static int adc_esp32_wait_for_dma_conv_done(const struct device *dev)
371 {
372 struct adc_esp32_data *data = dev->data;
373 int err = 0;
374
375 err = k_sem_take(&data->dma_conv_wait_lock, K_FOREVER);
376 if (err) {
377 LOG_ERR("Error taking dma_conv_wait_lock (%d)", err);
378 }
379
380 return err;
381 }
382
383 #endif /* defined(CONFIG_ADC_ESP32_DMA) */
384
adc_esp32_read(const struct device * dev,const struct adc_sequence * seq)385 static int adc_esp32_read(const struct device *dev, const struct adc_sequence *seq)
386 {
387 const struct adc_esp32_conf *conf = dev->config;
388 struct adc_esp32_data *data = dev->data;
389 int reading;
390 uint32_t cal, cal_mv;
391
392 uint8_t channel_id = find_lsb_set(seq->channels) - 1;
393
394 if (seq->buffer_size < 2) {
395 LOG_ERR("Sequence buffer space too low '%d'", seq->buffer_size);
396 return -ENOMEM;
397 }
398
399 #if !defined(CONFIG_ADC_ESP32_DMA)
400 if (seq->channels > BIT(channel_id)) {
401 LOG_ERR("Multi-channel readings not supported");
402 return -ENOTSUP;
403 }
404 #endif /* !defined(CONFIG_ADC_ESP32_DMA) */
405
406 if (seq->options) {
407 if (seq->options->extra_samplings) {
408 LOG_ERR("Extra samplings not supported");
409 return -ENOTSUP;
410 }
411
412 #if !defined(CONFIG_ADC_ESP32_DMA)
413 if (seq->options->interval_us) {
414 LOG_ERR("Interval between samplings not supported");
415 return -ENOTSUP;
416 }
417 #endif /* !defined(CONFIG_ADC_ESP32_DMA) */
418 }
419
420 if (INVALID_RESOLUTION(seq->resolution)) {
421 LOG_ERR("unsupported resolution (%d)", seq->resolution);
422 return -ENOTSUP;
423 }
424
425 if (seq->calibrate) {
426 /* TODO: Does this mean actual Vref measurement on selected GPIO ?*/
427 LOG_ERR("calibration is not supported");
428 return -ENOTSUP;
429 }
430
431 data->resolution[channel_id] = seq->resolution;
432
433 #if CONFIG_SOC_SERIES_ESP32C3
434 /* NOTE: nothing to set on ESP32C3 SoC */
435 if (conf->unit == ADC_UNIT_1) {
436 adc1_config_width(ADC_WIDTH_BIT_DEFAULT);
437 }
438 #else
439 adc_set_data_width(conf->unit, data->resolution[channel_id]);
440 #endif /* CONFIG_SOC_SERIES_ESP32C3 */
441
442 #if !defined(CONFIG_ADC_ESP32_DMA)
443 /* Read raw value */
444 if (conf->unit == ADC_UNIT_1) {
445 reading = adc1_get_raw(channel_id);
446 }
447 if (conf->unit == ADC_UNIT_2) {
448 if (adc2_get_raw(channel_id, ADC_WIDTH_BIT_DEFAULT, &reading)) {
449 LOG_ERR("Conversion timeout on '%s' channel %d", dev->name, channel_id);
450 return -ETIMEDOUT;
451 }
452 }
453
454 /* Calibration scheme is available */
455 if (data->calibrate) {
456 data->chars[channel_id].bit_width = data->resolution[channel_id];
457 /* Get corrected voltage output */
458 cal = cal_mv = esp_adc_cal_raw_to_voltage(reading, &data->chars[channel_id]);
459
460 #if CONFIG_SOC_SERIES_ESP32
461 if (data->attenuation[channel_id] == ADC_ATTEN_DB_12) {
462 if (cal > ADC_CLIP_MVOLT_12DB) {
463 cal = ADC_CLIP_MVOLT_12DB;
464 }
465 }
466 #endif /* CONFIG_SOC_SERIES_ESP32 */
467
468 /* Fit according to selected attenuation */
469 atten_to_gain(data->attenuation[channel_id], &cal);
470 if (data->meas_ref_internal > 0) {
471 cal = (cal << data->resolution[channel_id]) / data->meas_ref_internal;
472 }
473 } else {
474 LOG_DBG("Using uncalibrated values!");
475 /* Uncalibrated raw value */
476 cal = reading;
477 }
478
479 /* Store result */
480 data->buffer = (uint16_t *) seq->buffer;
481 data->buffer[0] = cal;
482
483 #else /* !defined(CONFIG_ADC_ESP32_DMA) */
484
485 int err = 0;
486 uint32_t adc_pattern_len, unit_attenuation;
487 adc_digi_pattern_config_t adc_digi_pattern_config[SOC_ADC_MAX_CHANNEL_NUM];
488
489 err = adc_esp32_fill_digi_pattern(dev, seq, &adc_digi_pattern_config,
490 &adc_pattern_len, &unit_attenuation);
491 if (err || adc_pattern_len == 0) {
492 return -EINVAL;
493 }
494
495 const struct adc_sequence_options *options = seq->options;
496 uint32_t sample_freq_hz = SOC_ADC_SAMPLE_FREQ_THRES_HIGH,
497 number_of_samplings = 1;
498
499 if (options != NULL) {
500 number_of_samplings = seq->buffer_size / (adc_pattern_len * sizeof(uint16_t));
501
502 if (options->interval_us) {
503 sample_freq_hz = MHZ(1) / options->interval_us;
504 }
505 }
506
507 if (!number_of_samplings) {
508 LOG_ERR("buffer_size insufficient to store at least one set of samples!");
509 return -EINVAL;
510 }
511
512 if (sample_freq_hz < SOC_ADC_SAMPLE_FREQ_THRES_LOW ||
513 sample_freq_hz > SOC_ADC_SAMPLE_FREQ_THRES_HIGH) {
514 LOG_ERR("ADC sampling frequency out of range: %uHz", sample_freq_hz);
515 return -EINVAL;
516 }
517
518 uint32_t number_of_adc_samples = number_of_samplings * adc_pattern_len;
519 uint32_t number_of_adc_dma_data_bytes =
520 number_of_adc_samples * SOC_ADC_DIGI_DATA_BYTES_PER_CONV;
521
522 if (number_of_adc_dma_data_bytes > ADC_DMA_BUFFER_SIZE) {
523 LOG_ERR("dma buffer size insufficient to store a complete sequence!");
524 return -EINVAL;
525 }
526
527 err = adc_esp32_dma_start(dev, data->dma_buffer, number_of_adc_dma_data_bytes);
528 if (err) {
529 return err;
530 }
531
532 adc_esp32_digi_start(dev, &adc_digi_pattern_config, adc_pattern_len, number_of_samplings,
533 sample_freq_hz, unit_attenuation);
534
535 err = adc_esp32_wait_for_dma_conv_done(dev);
536 if (err) {
537 return err;
538 }
539
540 adc_esp32_digi_stop(dev);
541
542 err = adc_esp32_dma_stop(dev);
543 if (err) {
544 return err;
545 }
546
547 adc_esp32_fill_seq_buffer(seq->buffer, data->dma_buffer, number_of_adc_samples);
548
549 #endif /* !defined(CONFIG_ADC_ESP32_DMA) */
550
551 return 0;
552 }
553
554 #ifdef CONFIG_ADC_ASYNC
adc_esp32_read_async(const struct device * dev,const struct adc_sequence * sequence,struct k_poll_signal * async)555 static int adc_esp32_read_async(const struct device *dev,
556 const struct adc_sequence *sequence,
557 struct k_poll_signal *async)
558 {
559 (void)(dev);
560 (void)(sequence);
561 (void)(async);
562
563 return -ENOTSUP;
564 }
565 #endif /* CONFIG_ADC_ASYNC */
566
adc_esp32_channel_setup(const struct device * dev,const struct adc_channel_cfg * cfg)567 static int adc_esp32_channel_setup(const struct device *dev, const struct adc_channel_cfg *cfg)
568 {
569 const struct adc_esp32_conf *conf = (const struct adc_esp32_conf *)dev->config;
570 struct adc_esp32_data *data = (struct adc_esp32_data *) dev->data;
571
572 if (cfg->channel_id >= conf->channel_count) {
573 LOG_ERR("Unsupported channel id '%d'", cfg->channel_id);
574 return -ENOTSUP;
575 }
576
577 if (cfg->reference != ADC_REF_INTERNAL) {
578 LOG_ERR("Unsupported channel reference '%d'", cfg->reference);
579 return -ENOTSUP;
580 }
581
582 if (cfg->acquisition_time != ADC_ACQ_TIME_DEFAULT) {
583 LOG_ERR("Unsupported acquisition_time '%d'", cfg->acquisition_time);
584 return -ENOTSUP;
585 }
586
587 if (cfg->differential) {
588 LOG_ERR("Differential channels are not supported");
589 return -ENOTSUP;
590 }
591
592 if (gain_to_atten(cfg->gain, &data->attenuation[cfg->channel_id])) {
593 LOG_ERR("Unsupported gain value '%d'", cfg->gain);
594 return -ENOTSUP;
595 }
596
597 /* Prepare channel */
598 if (conf->unit == ADC_UNIT_1) {
599 adc1_config_channel_atten(cfg->channel_id, data->attenuation[cfg->channel_id]);
600 }
601 if (conf->unit == ADC_UNIT_2) {
602 adc2_config_channel_atten(cfg->channel_id, data->attenuation[cfg->channel_id]);
603 }
604
605 if (data->calibrate) {
606 esp_adc_cal_value_t cal = esp_adc_cal_characterize(conf->unit,
607 data->attenuation[cfg->channel_id],
608 data->resolution[cfg->channel_id],
609 data->meas_ref_internal,
610 &data->chars[cfg->channel_id]);
611 if (cal >= ESP_ADC_CAL_VAL_NOT_SUPPORTED) {
612 LOG_ERR("Calibration error or not supported");
613 return -EIO;
614 }
615 LOG_DBG("Using ADC calibration method %d", cal);
616 }
617
618 #if defined(CONFIG_ADC_ESP32_DMA)
619
620 if (!SOC_ADC_DIG_SUPPORTED_UNIT(conf->unit)) {
621 LOG_ERR("ADC2 dma mode is no longer supported, please use ADC1!");
622 return -EINVAL;
623 }
624
625 int io_num = adc_channel_io_map[conf->unit][cfg->channel_id];
626
627 if (io_num < 0) {
628 LOG_ERR("Channel %u not supported!", cfg->channel_id);
629 return -ENOTSUP;
630 }
631
632 struct gpio_dt_spec gpio = {
633 .port = conf->gpio_port,
634 .dt_flags = 0,
635 .pin = io_num,
636 };
637
638 int err = gpio_pin_configure_dt(&gpio, GPIO_DISCONNECTED);
639
640 if (err) {
641 LOG_ERR("Error disconnecting io (%d)", io_num);
642 return err;
643 }
644
645 #endif /* defined(CONFIG_ADC_ESP32_DMA) */
646
647 return 0;
648 }
649
adc_esp32_init(const struct device * dev)650 static int adc_esp32_init(const struct device *dev)
651 {
652 struct adc_esp32_data *data = (struct adc_esp32_data *) dev->data;
653 const struct adc_esp32_conf *conf = (struct adc_esp32_conf *) dev->config;
654
655 adc_hw_calibration(conf->unit);
656
657 #if CONFIG_SOC_SERIES_ESP32S2 || CONFIG_SOC_SERIES_ESP32C3
658 if (conf->unit == ADC_UNIT_2) {
659 adc2_init_code_calibration();
660 }
661 #endif /* CONFIG_SOC_SERIES_ESP32S2 || CONFIG_SOC_SERIES_ESP32C3 */
662
663 #if defined(CONFIG_ADC_ESP32_DMA)
664 if (!device_is_ready(conf->gpio_port)) {
665 LOG_ERR("gpio0 port not ready");
666 return -ENODEV;
667 }
668
669 if (k_sem_init(&data->dma_conv_wait_lock, 0, 1)) {
670 LOG_ERR("dma_conv_wait_lock initialization failed!");
671 return -EINVAL;
672 }
673
674 data->adc_hal_dma_ctx.rx_desc = k_aligned_alloc(sizeof(uint32_t),
675 sizeof(dma_descriptor_t));
676 if (!data->adc_hal_dma_ctx.rx_desc) {
677 LOG_ERR("rx_desc allocation failed!");
678 return -ENOMEM;
679 }
680 LOG_DBG("rx_desc = 0x%08X", (unsigned int)data->adc_hal_dma_ctx.rx_desc);
681
682 data->dma_buffer = k_aligned_alloc(sizeof(uint32_t), ADC_DMA_BUFFER_SIZE);
683 if (!data->dma_buffer) {
684 LOG_ERR("dma buffer allocation failed!");
685 k_free(data->adc_hal_dma_ctx.rx_desc);
686 return -ENOMEM;
687 }
688 LOG_DBG("data->dma_buffer = 0x%08X", (unsigned int)data->dma_buffer);
689
690 #endif /* defined(CONFIG_ADC_ESP32_DMA) */
691
692 for (uint8_t i = 0; i < ARRAY_SIZE(data->resolution); i++) {
693 data->resolution[i] = ADC_RESOLUTION_MAX;
694 }
695
696 for (uint8_t i = 0; i < ARRAY_SIZE(data->attenuation); i++) {
697 data->attenuation[i] = ADC_ATTEN_DB_0;
698 }
699
700 /* Default reference voltage. This could be calibrated externaly */
701 data->meas_ref_internal = ADC_ESP32_DEFAULT_VREF_INTERNAL;
702
703 /* Check if calibration is possible */
704 data->calibrate = adc_calibration_init(dev);
705
706 return 0;
707 }
708
709 static DEVICE_API(adc, api_esp32_driver_api) = {
710 .channel_setup = adc_esp32_channel_setup,
711 .read = adc_esp32_read,
712 #ifdef CONFIG_ADC_ASYNC
713 .read_async = adc_esp32_read_async,
714 #endif /* CONFIG_ADC_ASYNC */
715 .ref_internal = ADC_ESP32_DEFAULT_VREF_INTERNAL,
716 };
717
718 #if defined(CONFIG_ADC_ESP32_DMA)
719
720 #define ADC_ESP32_CONF_GPIO_PORT_INIT .gpio_port = DEVICE_DT_GET(DT_NODELABEL(gpio0)),
721
722 #define ADC_ESP32_CONF_DMA_INIT(n) .dma_dev = COND_CODE_1(DT_INST_NODE_HAS_PROP(n, dmas), \
723 (DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_IDX(n, 0))), \
724 (NULL)), \
725 .dma_channel = COND_CODE_1(DT_INST_NODE_HAS_PROP(n, dmas), \
726 (DT_INST_DMAS_CELL_BY_IDX(n, 0, channel)), \
727 (0xff)),
728 #else
729
730 #define ADC_ESP32_CONF_GPIO_PORT_INIT
731 #define ADC_ESP32_CONF_DMA_INIT(inst)
732
733 #endif /* defined(CONFIG_ADC_ESP32_DMA) */
734
735 #define ESP32_ADC_INIT(inst) \
736 \
737 static const struct adc_esp32_conf adc_esp32_conf_##inst = { \
738 .unit = DT_PROP(DT_DRV_INST(inst), unit) - 1, \
739 .channel_count = DT_PROP(DT_DRV_INST(inst), channel_count), \
740 ADC_ESP32_CONF_GPIO_PORT_INIT \
741 ADC_ESP32_CONF_DMA_INIT(inst) \
742 }; \
743 \
744 static struct adc_esp32_data adc_esp32_data_##inst = { \
745 }; \
746 \
747 DEVICE_DT_INST_DEFINE(inst, &adc_esp32_init, NULL, \
748 &adc_esp32_data_##inst, \
749 &adc_esp32_conf_##inst, \
750 POST_KERNEL, \
751 CONFIG_ADC_INIT_PRIORITY, \
752 &api_esp32_driver_api);
753
754 DT_INST_FOREACH_STATUS_OKAY(ESP32_ADC_INIT)
755