Searched refs:keras (Results 1 – 11 of 11) sorted by relevance
/cmsis-nn-latest/Tests/UnitTest/ |
D | pooling_settings.py | 21 import tf_keras as keras namespace 88 model = keras.models.Sequential() 90 model.add(keras.layers.InputLayer(input_shape=input_shape[1:], batch_size=self.batches)) 93 keras.layers.AveragePooling2D(pool_size=(self.filter_y, self.filter_x), 99 keras.layers.MaxPooling2D(pool_size=(self.filter_y, self.filter_x),
|
D | add_mul_settings.py | 21 import tf_keras as keras namespace 94 input1 = keras.layers.Input(shape=input_shape[1:]) 95 input2 = keras.layers.Input(shape=input_shape[1:]) 97 layer = keras.layers.Add()([input1, input2]) 99 layer = keras.layers.Multiply()([input1, input2]) 102 out = keras.layers.Lambda(function=lambda x: x)(layer) 103 model = keras.models.Model(inputs=[input1, input2], outputs=out)
|
D | softmax_settings.py | 20 import tf_keras as keras namespace 150 model = keras.models.Sequential() 152 model.add(keras.layers.Softmax(input_shape=input_shape))
|
D | fully_connected_settings.py | 21 import tf_keras as keras namespace 239 model = keras.models.Sequential() 241 keras.layers.InputLayer(input_shape=(self.y_input * self.x_input * self.input_ch, ), 243 …fully_connected_layer = keras.layers.Dense(self.output_ch, activation=None, use_bias=self.generate…
|
D | conv_settings.py | 22 import tf_keras as keras namespace 334 model = keras.models.Sequential() 336 model.add(keras.layers.InputLayer(input_shape=input_shape[1:], batch_size=self.batches)) 338 conv_layer = keras.layers.Conv2D(self.output_ch, 352 … depthwise_layer = keras.layers.DepthwiseConv2D(kernel_size=(self.filter_y, self.filter_x), 365 transposed_conv_layer = keras.layers.Conv2DTranspose(self.output_ch,
|
D | lstm_settings.py | 22 import tf_keras as keras namespace 145 input_layer = keras.layers.Input(shape=(self.time_steps, self.number_inputs), 150 lstm_layer = keras.layers.LSTM(units=self.number_units, 154 lstm_layer = keras.layers.LSTM(units=self.number_units, 157 model = keras.Model(input_layer, lstm_layer, name="LSTM")
|
D | test_settings.py | 22 import keras 29 import tf_keras as keras namespace 134 os.path.basename(__file__), tf.__version__, keras.__version__)) 456 model.compile(loss=keras.losses.categorical_crossentropy, 457 optimizer=keras.optimizers.Adam(),
|
D | README.md | 36 pip install numpy packaging tensorflow tf-keras~=2.16
|
/cmsis-nn-latest/Tests/UnitTest/RefactoredTestGen/Lib/ |
D | op_conv.py | 22 import tf_keras as keras namespace 74 model = keras.models.Sequential() 76 … model.add(keras.layers.InputLayer(input_shape=input_shape[1:], batch_size=params["batch_size"])) 78 conv_layer = keras.layers.Conv2D(params["out_ch"],
|
D | op_lstm.py | 24 import tf_keras as keras namespace 48 input_layer = keras.layers.Input(shape=(params["time_steps"], params["input_size"]), 56 lstm_layer = keras.layers.LSTM(units=params["hidden_size"], 61 lstm_layer = keras.layers.LSTM(units=params["hidden_size"], 65 model = keras.Model(input_layer, lstm_layer, name="LSTM")
|
D | test.py | 29 import tf_keras as keras namespace 153 keras_model.compile(loss=keras.losses.categorical_crossentropy, 154 optimizer=keras.optimizers.Adam(),
|