1 /*
2  * Copyright (c) 2019 Nordic Semiconductor ASA
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  */
6 
7 /**
8  * @file
9  * @brief System/hardware module for Nordic Semiconductor nRF53 family processor
10  *
11  * This module provides routines to initialize and support board-level hardware
12  * for the Nordic Semiconductor nRF53 family processor.
13  */
14 
15 #include <zephyr/kernel.h>
16 #include <zephyr/init.h>
17 #include <zephyr/sys/barrier.h>
18 #include <soc/nrfx_coredep.h>
19 #include <zephyr/logging/log.h>
20 #include <nrf_erratas.h>
21 #include <hal/nrf_power.h>
22 #include <hal/nrf_ipc.h>
23 #include <helpers/nrfx_gppi.h>
24 #if defined(CONFIG_SOC_NRF5340_CPUAPP)
25 #include <zephyr/drivers/gpio.h>
26 #include <zephyr/devicetree.h>
27 #include <hal/nrf_cache.h>
28 #include <hal/nrf_gpio.h>
29 #include <hal/nrf_oscillators.h>
30 #include <hal/nrf_regulators.h>
31 #elif defined(CONFIG_SOC_NRF5340_CPUNET)
32 #include <hal/nrf_nvmc.h>
33 #endif
34 #include <hal/nrf_wdt.h>
35 #include <hal/nrf_rtc.h>
36 #include <soc_secure.h>
37 
38 #include <cmsis_core.h>
39 
40 #define PIN_XL1 0
41 #define PIN_XL2 1
42 
43 #define RTC1_PRETICK_CC_CHAN (RTC1_CC_NUM - 1)
44 
45 /* Mask of CC channels capable of generating interrupts, see nrf_rtc_timer.c */
46 #define RTC1_PRETICK_SELECTED_CC_MASK   BIT_MASK(CONFIG_NRF_RTC_TIMER_USER_CHAN_COUNT + 1U)
47 #define RTC0_PRETICK_SELECTED_CC_MASK	BIT_MASK(NRF_RTC_CC_COUNT_MAX)
48 
49 #if defined(CONFIG_SOC_NRF_GPIO_FORWARDER_FOR_NRF5340)
50 #define GPIOS_PSEL_BY_IDX(node_id, prop, idx) \
51 	NRF_DT_GPIOS_TO_PSEL_BY_IDX(node_id, prop, idx),
52 #define ALL_GPIOS_IN_NODE(node_id) \
53 	DT_FOREACH_PROP_ELEM(node_id, gpios, GPIOS_PSEL_BY_IDX)
54 #define ALL_GPIOS_IN_FORWARDER(node_id) \
55 	DT_FOREACH_CHILD(node_id, ALL_GPIOS_IN_NODE)
56 #endif
57 
58 #define LOG_LEVEL CONFIG_SOC_LOG_LEVEL
59 LOG_MODULE_REGISTER(soc);
60 
61 
62 #if defined(CONFIG_SOC_NRF53_ANOMALY_160_WORKAROUND)
63 /* This code prevents the CPU from entering sleep again if it already
64  * entered sleep 5 times within last 200 us.
65  */
nrf53_anomaly_160_check(void)66 static bool nrf53_anomaly_160_check(void)
67 {
68 	/* System clock cycles needed to cover 200 us window. */
69 	const uint32_t window_cycles =
70 		DIV_ROUND_UP(200 * CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC,
71 				 1000000);
72 	static uint32_t timestamps[5];
73 	static bool timestamps_filled;
74 	static uint8_t current;
75 	uint8_t oldest = (current + 1) % ARRAY_SIZE(timestamps);
76 	uint32_t now = k_cycle_get_32();
77 
78 	if (timestamps_filled &&
79 	    /* + 1 because only fully elapsed cycles need to be counted. */
80 	    (now - timestamps[oldest]) < (window_cycles + 1)) {
81 		return false;
82 	}
83 
84 	/* Check if the CPU actually entered sleep since the last visit here
85 	 * (WFE/WFI could return immediately if the wake-up event was already
86 	 * registered).
87 	 */
88 	if (nrf_power_event_check(NRF_POWER, NRF_POWER_EVENT_SLEEPENTER)) {
89 		nrf_power_event_clear(NRF_POWER, NRF_POWER_EVENT_SLEEPENTER);
90 		/* If so, update the index at which the current timestamp is
91 		 * to be stored so that it replaces the oldest one, otherwise
92 		 * (when the CPU did not sleep), the recently stored timestamp
93 		 * is updated.
94 		 */
95 		current = oldest;
96 		if (current == 0) {
97 			timestamps_filled = true;
98 		}
99 	}
100 
101 	timestamps[current] = k_cycle_get_32();
102 
103 	return true;
104 }
105 #endif /* CONFIG_SOC_NRF53_ANOMALY_160_WORKAROUND */
106 
107 #if defined(CONFIG_SOC_NRF53_RTC_PRETICK) && defined(CONFIG_SOC_NRF5340_CPUNET)
108 
109 BUILD_ASSERT(!IS_ENABLED(CONFIG_WDT_NRFX),
110 	     "For CONFIG_SOC_NRF53_RTC_PRETICK watchdog is used internally for the pre-tick workaround on nRF5340 cpunet. Application cannot use the watchdog.");
111 
rtc_counter_sub(uint32_t a,uint32_t b)112 static inline uint32_t rtc_counter_sub(uint32_t a, uint32_t b)
113 {
114 	return (a - b) & NRF_RTC_COUNTER_MAX;
115 }
116 
rtc_ticks_to_next_event_get(NRF_RTC_Type * rtc,uint32_t selected_cc_mask,uint32_t cntr,uint32_t * ticks_to_next_event)117 static bool rtc_ticks_to_next_event_get(NRF_RTC_Type *rtc, uint32_t selected_cc_mask, uint32_t cntr,
118 					uint32_t *ticks_to_next_event)
119 {
120 	bool result = false;
121 
122 	/* Let's preload register to speed-up. */
123 	uint32_t reg_intenset = rtc->INTENSET;
124 
125 	/* Note: TICK event not handled. */
126 
127 	if (reg_intenset & NRF_RTC_INT_OVERFLOW_MASK) {
128 		/* Overflow can generate an interrupt. */
129 		*ticks_to_next_event = NRF_RTC_COUNTER_MAX + 1U - cntr;
130 		result = true;
131 	}
132 
133 	for (uint32_t chan = 0; chan < NRF_RTC_CC_COUNT_MAX; chan++) {
134 		if ((selected_cc_mask & (1U << chan)) &&
135 		    (reg_intenset & NRF_RTC_CHANNEL_INT_MASK(chan))) {
136 			/* The CC is in selected mask and is can generate an interrupt. */
137 			uint32_t cc = nrf_rtc_cc_get(rtc, chan);
138 			uint32_t ticks_to_fire = rtc_counter_sub(cc, cntr);
139 
140 			if (ticks_to_fire == 0U) {
141 				/* When ticks_to_fire == 0, the event should have been just
142 				 * generated the interrupt can be already handled or be pending.
143 				 * However the next event is expected to be after counter wraps.
144 				 */
145 				ticks_to_fire = NRF_RTC_COUNTER_MAX + 1U;
146 			}
147 
148 			if (!result) {
149 				*ticks_to_next_event = ticks_to_fire;
150 				result = true;
151 			} else if (ticks_to_fire < *ticks_to_next_event) {
152 				*ticks_to_next_event = ticks_to_fire;
153 				result = true;
154 			} else {
155 				/* CC that fires no earlier than already found. */
156 			}
157 		}
158 	}
159 
160 	return result;
161 }
162 
rtc_counter_synchronized_get(NRF_RTC_Type * rtc_a,NRF_RTC_Type * rtc_b,uint32_t * counter_a,uint32_t * counter_b)163 static void rtc_counter_synchronized_get(NRF_RTC_Type *rtc_a, NRF_RTC_Type *rtc_b,
164 					 uint32_t *counter_a, uint32_t *counter_b)
165 {
166 	do {
167 		*counter_a = nrf_rtc_counter_get(rtc_a);
168 		barrier_dmem_fence_full();
169 		*counter_b = nrf_rtc_counter_get(rtc_b);
170 		barrier_dmem_fence_full();
171 	} while (*counter_a != nrf_rtc_counter_get(rtc_a));
172 }
173 
174 static uint8_t cpu_idle_prepare_monitor_dummy;
175 static bool cpu_idle_prepare_allows_sleep;
176 
cpu_idle_prepare_monitor_begin(void)177 static void cpu_idle_prepare_monitor_begin(void)
178 {
179 	__LDREXB(&cpu_idle_prepare_monitor_dummy);
180 }
181 
182 /* Returns 0 if no exception preempted since the last call to cpu_idle_prepare_monitor_begin. */
cpu_idle_prepare_monitor_end(void)183 static bool cpu_idle_prepare_monitor_end(void)
184 {
185 	/* The value stored is irrelevant. If any exception took place after
186 	 * cpu_idle_prepare_monitor_begin, the local monitor is cleared and
187 	 * the store fails returning 1.
188 	 * See Arm v8-M Architecture Reference Manual:
189 	 *   Chapter B9.2 The local monitors
190 	 *   Chapter B9.4 Exclusive access instructions and the monitors
191 	 * See Arm Cortex-M33 Processor Technical Reference Manual
192 	 *   Chapter 3.5 Exclusive monitor
193 	 */
194 	return __STREXB(0U, &cpu_idle_prepare_monitor_dummy);
195 }
196 
rtc_pretick_finish_previous(void)197 static void rtc_pretick_finish_previous(void)
198 {
199 	NRF_IPC->PUBLISH_RECEIVE[CONFIG_SOC_NRF53_RTC_PRETICK_IPC_CH_TO_NET] &=
200 			~IPC_PUBLISH_RECEIVE_EN_Msk;
201 
202 	nrf_rtc_event_clear(NRF_RTC1, NRF_RTC_CHANNEL_EVENT_ADDR(RTC1_PRETICK_CC_CHAN));
203 }
204 
205 
z_arm_on_enter_cpu_idle_prepare(void)206 void z_arm_on_enter_cpu_idle_prepare(void)
207 {
208 	bool ok_to_sleep = true;
209 
210 	cpu_idle_prepare_monitor_begin();
211 
212 	uint32_t rtc_counter = 0U;
213 	uint32_t rtc_ticks_to_next_event = 0U;
214 	uint32_t rtc0_counter = 0U;
215 	uint32_t rtc0_ticks_to_next_event = 0U;
216 
217 	rtc_counter_synchronized_get(NRF_RTC1, NRF_RTC0, &rtc_counter, &rtc0_counter);
218 
219 	bool rtc_scheduled = rtc_ticks_to_next_event_get(NRF_RTC1, RTC1_PRETICK_SELECTED_CC_MASK,
220 							 rtc_counter, &rtc_ticks_to_next_event);
221 
222 	if (rtc_ticks_to_next_event_get(NRF_RTC0, RTC0_PRETICK_SELECTED_CC_MASK, rtc0_counter,
223 					&rtc0_ticks_to_next_event)) {
224 		/* An event is scheduled on RTC0. */
225 		if (!rtc_scheduled) {
226 			rtc_ticks_to_next_event = rtc0_ticks_to_next_event;
227 			rtc_scheduled = true;
228 		} else if (rtc0_ticks_to_next_event < rtc_ticks_to_next_event) {
229 			rtc_ticks_to_next_event = rtc0_ticks_to_next_event;
230 		} else {
231 			/* Event on RTC0 will not happen earlier than already found. */
232 		}
233 	}
234 
235 	if (rtc_scheduled) {
236 		static bool rtc_pretick_cc_set_on_time;
237 		/* The pretick should happen 1 tick before the earliest scheduled event
238 		 * that can trigger an interrupt.
239 		 */
240 		uint32_t rtc_pretick_cc_val = (rtc_counter + rtc_ticks_to_next_event - 1U)
241 						& NRF_RTC_COUNTER_MAX;
242 
243 		if (rtc_pretick_cc_val != nrf_rtc_cc_get(NRF_RTC1, RTC1_PRETICK_CC_CHAN)) {
244 			/* The CC for pretick needs to be updated. */
245 			rtc_pretick_finish_previous();
246 			nrf_rtc_cc_set(NRF_RTC1, RTC1_PRETICK_CC_CHAN, rtc_pretick_cc_val);
247 
248 			if (rtc_ticks_to_next_event >= NRF_RTC_COUNTER_MAX/2) {
249 				/* Pretick is scheduled so far in the future, assumed on time. */
250 				rtc_pretick_cc_set_on_time = true;
251 			} else {
252 				/* Let's check if we updated CC on time, so that the CC can
253 				 * take effect.
254 				 */
255 				barrier_dmem_fence_full();
256 				rtc_counter = nrf_rtc_counter_get(NRF_RTC1);
257 				uint32_t pretick_cc_to_counter =
258 						rtc_counter_sub(rtc_pretick_cc_val, rtc_counter);
259 
260 				if ((pretick_cc_to_counter < 3) ||
261 				    (pretick_cc_to_counter >= NRF_RTC_COUNTER_MAX/2)) {
262 					/* The COUNTER value is close enough to the expected
263 					 * pretick CC or has just expired, so the pretick event
264 					 * generation is not guaranteed.
265 					 */
266 					rtc_pretick_cc_set_on_time = false;
267 				} else {
268 					/* The written rtc_pretick_cc is guaranteed to trigger
269 					 * compare event.
270 					 */
271 					rtc_pretick_cc_set_on_time = true;
272 				}
273 			}
274 		} else {
275 			/* The CC for pretick doesn't need to be updated, however
276 			 * rtc_pretick_cc_set_on_time still holds if we managed to set it on time.
277 			 */
278 		}
279 
280 		/* If the CC for pretick is set on time, so the pretick CC event can be reliably
281 		 * generated then allow to sleep. Otherwise (the CC for pretick cannot be reliably
282 		 * generated, because CC was set very short to it's fire time) sleep not at all.
283 		 */
284 		ok_to_sleep = rtc_pretick_cc_set_on_time;
285 	} else {
286 		/* No events on any RTC timers are scheduled. */
287 	}
288 
289 	if (ok_to_sleep) {
290 		NRF_IPC->PUBLISH_RECEIVE[CONFIG_SOC_NRF53_RTC_PRETICK_IPC_CH_TO_NET] |=
291 			IPC_PUBLISH_RECEIVE_EN_Msk;
292 		if (!nrf_rtc_event_check(NRF_RTC1,
293 				NRF_RTC_CHANNEL_EVENT_ADDR(RTC1_PRETICK_CC_CHAN))) {
294 			NRF_WDT->TASKS_STOP = 1;
295 			/* Check if any event did not occur after we checked for
296 			 * stopping condition. If yes, we might have stopped WDT
297 			 * when it should be running. Restart it.
298 			 */
299 			if (nrf_rtc_event_check(NRF_RTC1,
300 					NRF_RTC_CHANNEL_EVENT_ADDR(RTC1_PRETICK_CC_CHAN))) {
301 				NRF_WDT->TASKS_START = 1;
302 			}
303 		}
304 	}
305 
306 	cpu_idle_prepare_allows_sleep = ok_to_sleep;
307 }
308 #endif /* CONFIG_SOC_NRF53_RTC_PRETICK && CONFIG_SOC_NRF5340_CPUNET */
309 
310 #if defined(CONFIG_SOC_NRF53_ANOMALY_160_WORKAROUND) || \
311 	(defined(CONFIG_SOC_NRF53_RTC_PRETICK) && defined(CONFIG_SOC_NRF5340_CPUNET))
z_arm_on_enter_cpu_idle(void)312 bool z_arm_on_enter_cpu_idle(void)
313 {
314 	bool ok_to_sleep = true;
315 
316 #if defined(CONFIG_SOC_NRF53_RTC_PRETICK) && defined(CONFIG_SOC_NRF5340_CPUNET)
317 	if (cpu_idle_prepare_monitor_end() == 0) {
318 		/* No exception happened since cpu_idle_prepare_monitor_begin.
319 		 * We can trust the outcome of. z_arm_on_enter_cpu_idle_prepare
320 		 */
321 		ok_to_sleep = cpu_idle_prepare_allows_sleep;
322 	} else {
323 		/* Exception happened since cpu_idle_prepare_monitor_begin.
324 		 * The values which z_arm_on_enter_cpu_idle_prepare could be changed
325 		 * by the exception, so we can not trust to it's outcome.
326 		 * Do not sleep at all, let's try in the next iteration of idle loop.
327 		 */
328 		ok_to_sleep = false;
329 	}
330 #endif
331 
332 #if defined(CONFIG_SOC_NRF53_ANOMALY_160_WORKAROUND)
333 	if (ok_to_sleep) {
334 		ok_to_sleep = nrf53_anomaly_160_check();
335 
336 #if (LOG_LEVEL >= LOG_LEVEL_DBG)
337 		static bool suppress_message;
338 
339 		if (ok_to_sleep) {
340 			suppress_message = false;
341 		} else if (!suppress_message) {
342 			LOG_DBG("Anomaly 160 trigger conditions detected.");
343 			suppress_message = true;
344 		}
345 #endif
346 	}
347 #endif /* CONFIG_SOC_NRF53_ANOMALY_160_WORKAROUND */
348 
349 #if defined(CONFIG_SOC_NRF53_RTC_PRETICK) && defined(CONFIG_SOC_NRF5340_CPUNET)
350 	if (!ok_to_sleep) {
351 		NRF_IPC->PUBLISH_RECEIVE[CONFIG_SOC_NRF53_RTC_PRETICK_IPC_CH_TO_NET] &=
352 			~IPC_PUBLISH_RECEIVE_EN_Msk;
353 		NRF_WDT->TASKS_STOP = 1;
354 	}
355 #endif
356 
357 	return ok_to_sleep;
358 }
359 #endif /* CONFIG_SOC_NRF53_ANOMALY_160_WORKAROUND ||
360 	* (CONFIG_SOC_NRF53_RTC_PRETICK && CONFIG_SOC_NRF5340_CPUNET)
361 	*/
362 
363 #if CONFIG_SOC_NRF53_RTC_PRETICK
364 #ifdef CONFIG_SOC_NRF5340_CPUAPP
365 /* RTC pretick - application core part. */
rtc_pretick_cpuapp_init(void)366 static int rtc_pretick_cpuapp_init(void)
367 {
368 	uint8_t ch;
369 	nrfx_err_t err;
370 	nrf_ipc_event_t ipc_event =
371 		nrf_ipc_receive_event_get(CONFIG_SOC_NRF53_RTC_PRETICK_IPC_CH_FROM_NET);
372 	nrf_ipc_task_t ipc_task =
373 		nrf_ipc_send_task_get(CONFIG_SOC_NRF53_RTC_PRETICK_IPC_CH_TO_NET);
374 	uint32_t task_ipc = nrf_ipc_task_address_get(NRF_IPC, ipc_task);
375 	uint32_t evt_ipc = nrf_ipc_event_address_get(NRF_IPC, ipc_event);
376 
377 	err = nrfx_gppi_channel_alloc(&ch);
378 	if (err != NRFX_SUCCESS) {
379 		return -ENOMEM;
380 	}
381 
382 	nrf_ipc_receive_config_set(NRF_IPC, CONFIG_SOC_NRF53_RTC_PRETICK_IPC_CH_FROM_NET,
383 				   BIT(CONFIG_SOC_NRF53_RTC_PRETICK_IPC_CH_FROM_NET));
384 	nrf_ipc_send_config_set(NRF_IPC, CONFIG_SOC_NRF53_RTC_PRETICK_IPC_CH_TO_NET,
385 				   BIT(CONFIG_SOC_NRF53_RTC_PRETICK_IPC_CH_TO_NET));
386 
387 	nrfx_gppi_task_endpoint_setup(ch, task_ipc);
388 	nrfx_gppi_event_endpoint_setup(ch, evt_ipc);
389 	nrfx_gppi_channels_enable(BIT(ch));
390 
391 	return 0;
392 }
393 #else /* CONFIG_SOC_NRF5340_CPUNET */
394 
rtc_pretick_rtc0_isr_hook(void)395 void rtc_pretick_rtc0_isr_hook(void)
396 {
397 	rtc_pretick_finish_previous();
398 }
399 
rtc_pretick_rtc1_isr_hook(void)400 void rtc_pretick_rtc1_isr_hook(void)
401 {
402 	rtc_pretick_finish_previous();
403 }
404 
rtc_pretick_cpunet_init(void)405 static int rtc_pretick_cpunet_init(void)
406 {
407 	uint8_t ppi_ch;
408 	nrf_ipc_task_t ipc_task =
409 		nrf_ipc_send_task_get(CONFIG_SOC_NRF53_RTC_PRETICK_IPC_CH_FROM_NET);
410 	nrf_ipc_event_t ipc_event =
411 		nrf_ipc_receive_event_get(CONFIG_SOC_NRF53_RTC_PRETICK_IPC_CH_TO_NET);
412 	uint32_t task_ipc = nrf_ipc_task_address_get(NRF_IPC, ipc_task);
413 	uint32_t evt_ipc = nrf_ipc_event_address_get(NRF_IPC, ipc_event);
414 	uint32_t task_wdt = nrf_wdt_task_address_get(NRF_WDT, NRF_WDT_TASK_START);
415 	uint32_t evt_cc = nrf_rtc_event_address_get(NRF_RTC1,
416 				NRF_RTC_CHANNEL_EVENT_ADDR(RTC1_PRETICK_CC_CHAN));
417 
418 	/* Configure Watchdog to allow stopping. */
419 	nrf_wdt_behaviour_set(NRF_WDT, WDT_CONFIG_STOPEN_Msk | BIT(4));
420 	*((volatile uint32_t *)0x41203120) = 0x14;
421 
422 	/* Configure IPC */
423 	nrf_ipc_receive_config_set(NRF_IPC, CONFIG_SOC_NRF53_RTC_PRETICK_IPC_CH_TO_NET,
424 				   BIT(CONFIG_SOC_NRF53_RTC_PRETICK_IPC_CH_TO_NET));
425 	nrf_ipc_send_config_set(NRF_IPC, CONFIG_SOC_NRF53_RTC_PRETICK_IPC_CH_FROM_NET,
426 				   BIT(CONFIG_SOC_NRF53_RTC_PRETICK_IPC_CH_FROM_NET));
427 
428 	/* Allocate PPI channel for RTC Compare event publishers that starts WDT. */
429 	nrfx_err_t err = nrfx_gppi_channel_alloc(&ppi_ch);
430 
431 	if (err != NRFX_SUCCESS) {
432 		return -ENOMEM;
433 	}
434 
435 	nrfx_gppi_event_endpoint_setup(ppi_ch, evt_cc);
436 	nrfx_gppi_task_endpoint_setup(ppi_ch, task_ipc);
437 	nrfx_gppi_event_endpoint_setup(ppi_ch, evt_ipc);
438 	nrfx_gppi_task_endpoint_setup(ppi_ch, task_wdt);
439 	nrfx_gppi_channels_enable(BIT(ppi_ch));
440 
441 	nrf_rtc_event_enable(NRF_RTC1, NRF_RTC_CHANNEL_INT_MASK(RTC1_PRETICK_CC_CHAN));
442 	nrf_rtc_event_clear(NRF_RTC1, NRF_RTC_CHANNEL_EVENT_ADDR(RTC1_PRETICK_CC_CHAN));
443 
444 	return 0;
445 }
446 #endif /* CONFIG_SOC_NRF5340_CPUNET */
447 
rtc_pretick_init(void)448 static int rtc_pretick_init(void)
449 {
450 #ifdef CONFIG_SOC_NRF5340_CPUAPP
451 	return rtc_pretick_cpuapp_init();
452 #else
453 	return rtc_pretick_cpunet_init();
454 #endif
455 }
456 #endif /* CONFIG_SOC_NRF53_RTC_PRETICK */
457 
458 
nordicsemi_nrf53_init(void)459 static int nordicsemi_nrf53_init(void)
460 {
461 #if defined(CONFIG_SOC_NRF5340_CPUAPP) && defined(CONFIG_NRF_ENABLE_CACHE)
462 #if !defined(CONFIG_BUILD_WITH_TFM)
463 	/* Enable the instruction & data cache.
464 	 * This can only be done from secure code.
465 	 * This is handled by the TF-M platform so we skip it when TF-M is
466 	 * enabled.
467 	 */
468 	nrf_cache_enable(NRF_CACHE);
469 #endif
470 #elif defined(CONFIG_SOC_NRF5340_CPUNET) && defined(CONFIG_NRF_ENABLE_CACHE)
471 	nrf_nvmc_icache_config_set(NRF_NVMC, NRF_NVMC_ICACHE_ENABLE);
472 #endif
473 
474 #if defined(CONFIG_SOC_ENABLE_LFXO)
475 	nrf_oscillators_lfxo_cap_set(NRF_OSCILLATORS,
476 		IS_ENABLED(CONFIG_SOC_LFXO_CAP_INT_6PF) ?
477 			NRF_OSCILLATORS_LFXO_CAP_6PF :
478 		IS_ENABLED(CONFIG_SOC_LFXO_CAP_INT_7PF) ?
479 			NRF_OSCILLATORS_LFXO_CAP_7PF :
480 		IS_ENABLED(CONFIG_SOC_LFXO_CAP_INT_9PF) ?
481 			NRF_OSCILLATORS_LFXO_CAP_9PF :
482 			NRF_OSCILLATORS_LFXO_CAP_EXTERNAL);
483 #if !defined(CONFIG_BUILD_WITH_TFM)
484 	/* This can only be done from secure code.
485 	 * This is handled by the TF-M platform so we skip it when TF-M is
486 	 * enabled.
487 	 */
488 	nrf_gpio_pin_control_select(PIN_XL1, NRF_GPIO_PIN_SEL_PERIPHERAL);
489 	nrf_gpio_pin_control_select(PIN_XL2, NRF_GPIO_PIN_SEL_PERIPHERAL);
490 #endif /* !defined(CONFIG_BUILD_WITH_TFM) */
491 #endif /* defined(CONFIG_SOC_ENABLE_LFXO) */
492 #if defined(CONFIG_SOC_HFXO_CAP_INTERNAL)
493 	/* This register is only accessible from secure code. */
494 	uint32_t xosc32mtrim = soc_secure_read_xosc32mtrim();
495 	/* The SLOPE field is in the two's complement form, hence this special
496 	 * handling. Ideally, it would result in just one SBFX instruction for
497 	 * extracting the slope value, at least gcc is capable of producing such
498 	 * output, but since the compiler apparently tries first to optimize
499 	 * additions and subtractions, it generates slightly less than optimal
500 	 * code.
501 	 */
502 	uint32_t slope_field = (xosc32mtrim & FICR_XOSC32MTRIM_SLOPE_Msk)
503 			       >> FICR_XOSC32MTRIM_SLOPE_Pos;
504 	uint32_t slope_mask = FICR_XOSC32MTRIM_SLOPE_Msk
505 			      >> FICR_XOSC32MTRIM_SLOPE_Pos;
506 	uint32_t slope_sign = (slope_mask - (slope_mask >> 1));
507 	int32_t slope = (int32_t)(slope_field ^ slope_sign) - (int32_t)slope_sign;
508 	uint32_t offset = (xosc32mtrim & FICR_XOSC32MTRIM_OFFSET_Msk)
509 			  >> FICR_XOSC32MTRIM_OFFSET_Pos;
510 	/* As specified in the nRF5340 PS:
511 	 * CAPVALUE = (((FICR->XOSC32MTRIM.SLOPE+56)*(CAPACITANCE*2-14))
512 	 *            +((FICR->XOSC32MTRIM.OFFSET-8)<<4)+32)>>6;
513 	 * where CAPACITANCE is the desired capacitor value in pF, holding any
514 	 * value between 7.0 pF and 20.0 pF in 0.5 pF steps.
515 	 */
516 	uint32_t capvalue =
517 		((slope + 56) * (CONFIG_SOC_HFXO_CAP_INT_VALUE_X2 - 14)
518 		 + ((offset - 8) << 4) + 32) >> 6;
519 
520 	nrf_oscillators_hfxo_cap_set(NRF_OSCILLATORS, true, capvalue);
521 #elif defined(CONFIG_SOC_HFXO_CAP_EXTERNAL)
522 	nrf_oscillators_hfxo_cap_set(NRF_OSCILLATORS, false, 0);
523 #endif
524 
525 #if defined(CONFIG_SOC_DCDC_NRF53X_APP)
526 	nrf_regulators_vreg_enable_set(NRF_REGULATORS, NRF_REGULATORS_VREG_MAIN, true);
527 #endif
528 #if defined(CONFIG_SOC_DCDC_NRF53X_NET)
529 	nrf_regulators_vreg_enable_set(NRF_REGULATORS, NRF_REGULATORS_VREG_RADIO, true);
530 #endif
531 #if defined(CONFIG_SOC_DCDC_NRF53X_HV)
532 	nrf_regulators_vreg_enable_set(NRF_REGULATORS, NRF_REGULATORS_VREG_HIGH, true);
533 #endif
534 
535 #if defined(CONFIG_SOC_NRF_GPIO_FORWARDER_FOR_NRF5340)
536 	static const uint8_t forwarded_psels[] = {
537 		DT_FOREACH_STATUS_OKAY(nordic_nrf_gpio_forwarder, ALL_GPIOS_IN_FORWARDER)
538 	};
539 
540 	for (int i = 0; i < ARRAY_SIZE(forwarded_psels); i++) {
541 		soc_secure_gpio_pin_mcu_select(forwarded_psels[i], NRF_GPIO_PIN_SEL_NETWORK);
542 	}
543 
544 #endif
545 
546 	return 0;
547 }
548 
arch_busy_wait(uint32_t time_us)549 void arch_busy_wait(uint32_t time_us)
550 {
551 	nrfx_coredep_delay_us(time_us);
552 }
553 
554 SYS_INIT(nordicsemi_nrf53_init, PRE_KERNEL_1, 0);
555 
556 #ifdef CONFIG_SOC_NRF53_RTC_PRETICK
557 SYS_INIT(rtc_pretick_init, POST_KERNEL, 0);
558 #endif
559