1 /*
2 * Copyright (c) 2017 Google LLC.
3 * Copyright (c) 2018 qianfan Zhao.
4 * Copyright (c) 2023 Gerson Fernando Budke.
5 *
6 * SPDX-License-Identifier: Apache-2.0
7 */
8
9 #define DT_DRV_COMPAT atmel_sam_spi
10
11 #define LOG_LEVEL CONFIG_SPI_LOG_LEVEL
12 #include <zephyr/logging/log.h>
13 LOG_MODULE_REGISTER(spi_sam);
14
15 #include "spi_context.h"
16 #include <errno.h>
17 #include <zephyr/spinlock.h>
18 #include <zephyr/device.h>
19 #include <zephyr/drivers/spi.h>
20 #include <zephyr/drivers/dma.h>
21 #include <zephyr/drivers/pinctrl.h>
22 #include <zephyr/drivers/clock_control/atmel_sam_pmc.h>
23 #include <zephyr/rtio/rtio.h>
24 #include <zephyr/sys/__assert.h>
25 #include <zephyr/sys/util.h>
26 #include <soc.h>
27
28 #define SAM_SPI_CHIP_SELECT_COUNT 4
29
30 /* Number of bytes in transfer before using DMA if available */
31 #define SAM_SPI_DMA_THRESHOLD 32
32
33 /* Device constant configuration parameters */
34 struct spi_sam_config {
35 Spi *regs;
36 const struct atmel_sam_pmc_config clock_cfg;
37 const struct pinctrl_dev_config *pcfg;
38 bool loopback;
39
40 #ifdef CONFIG_SPI_SAM_DMA
41 const struct device *dma_dev;
42 const uint32_t dma_tx_channel;
43 const uint32_t dma_tx_perid;
44 const uint32_t dma_rx_channel;
45 const uint32_t dma_rx_perid;
46 #endif /* CONFIG_SPI_SAM_DMA */
47 };
48
49 /* Device run time data */
50 struct spi_sam_data {
51 struct spi_context ctx;
52 struct k_spinlock lock;
53
54 #ifdef CONFIG_SPI_RTIO
55 struct rtio *r; /* context for thread calls */
56 struct mpsc io_q;
57 struct rtio_iodev iodev;
58 struct rtio_iodev_sqe *txn_head;
59 struct rtio_iodev_sqe *txn_curr;
60 struct spi_dt_spec dt_spec;
61 #endif
62
63 #ifdef CONFIG_SPI_SAM_DMA
64 struct k_sem dma_sem;
65 #endif /* CONFIG_SPI_SAM_DMA */
66 };
67
spi_spin_lock(const struct device * dev)68 static inline k_spinlock_key_t spi_spin_lock(const struct device *dev)
69 {
70 struct spi_sam_data *data = dev->data;
71
72 return k_spin_lock(&data->lock);
73 }
74
spi_spin_unlock(const struct device * dev,k_spinlock_key_t key)75 static inline void spi_spin_unlock(const struct device *dev, k_spinlock_key_t key)
76 {
77 struct spi_sam_data *data = dev->data;
78
79 k_spin_unlock(&data->lock, key);
80 }
81
spi_slave_to_mr_pcs(int slave)82 static int spi_slave_to_mr_pcs(int slave)
83 {
84 int pcs[SAM_SPI_CHIP_SELECT_COUNT] = {0x0, 0x1, 0x3, 0x7};
85
86 /* SPI worked in fixed peripheral mode(SPI_MR.PS = 0) and disabled chip
87 * select decode(SPI_MR.PCSDEC = 0), based on Atmel | SMART ARM-based
88 * Flash MCU DATASHEET 40.8.2 SPI Mode Register:
89 * PCS = xxx0 NPCS[3:0] = 1110
90 * PCS = xx01 NPCS[3:0] = 1101
91 * PCS = x011 NPCS[3:0] = 1011
92 * PCS = 0111 NPCS[3:0] = 0111
93 */
94
95 return pcs[slave];
96 }
97
spi_sam_configure(const struct device * dev,const struct spi_config * config)98 static int spi_sam_configure(const struct device *dev,
99 const struct spi_config *config)
100 {
101 const struct spi_sam_config *cfg = dev->config;
102 struct spi_sam_data *data = dev->data;
103 Spi *regs = cfg->regs;
104 uint32_t spi_mr = 0U, spi_csr = 0U;
105 uint16_t spi_csr_idx = spi_cs_is_gpio(config) ? 0 : config->slave;
106 int div;
107
108 if (spi_context_configured(&data->ctx, config)) {
109 return 0;
110 }
111
112 if (config->operation & SPI_HALF_DUPLEX) {
113 LOG_ERR("Half-duplex not supported");
114 return -ENOTSUP;
115 }
116
117 if (SPI_OP_MODE_GET(config->operation) != SPI_OP_MODE_MASTER) {
118 /* Slave mode is not implemented. */
119 return -ENOTSUP;
120 }
121
122 if (config->slave > (SAM_SPI_CHIP_SELECT_COUNT - 1)) {
123 LOG_ERR("Slave %d is greater than %d",
124 config->slave, SAM_SPI_CHIP_SELECT_COUNT - 1);
125 return -EINVAL;
126 }
127
128 /* Set master mode, disable mode fault detection, set fixed peripheral
129 * select mode.
130 */
131 spi_mr |= (SPI_MR_MSTR | SPI_MR_MODFDIS);
132 spi_mr |= SPI_MR_PCS(spi_slave_to_mr_pcs(spi_csr_idx));
133
134 if (cfg->loopback) {
135 spi_mr |= SPI_MR_LLB;
136 }
137
138 if ((config->operation & SPI_MODE_CPOL) != 0U) {
139 spi_csr |= SPI_CSR_CPOL;
140 }
141
142 if ((config->operation & SPI_MODE_CPHA) == 0U) {
143 spi_csr |= SPI_CSR_NCPHA;
144 }
145
146 if (SPI_WORD_SIZE_GET(config->operation) != 8) {
147 return -ENOTSUP;
148 } else {
149 spi_csr |= SPI_CSR_BITS(SPI_CSR_BITS_8_BIT);
150 }
151
152 /* Use the requested or next highest possible frequency */
153 div = SOC_ATMEL_SAM_MCK_FREQ_HZ / config->frequency;
154 div = CLAMP(div, 1, UINT8_MAX);
155 spi_csr |= SPI_CSR_SCBR(div);
156
157 regs->SPI_CR = SPI_CR_SPIDIS; /* Disable SPI */
158 regs->SPI_MR = spi_mr;
159 regs->SPI_CSR[spi_csr_idx] = spi_csr;
160 regs->SPI_CR = SPI_CR_SPIEN; /* Enable SPI */
161
162 data->ctx.config = config;
163
164 return 0;
165 }
166
167 /* Finish any ongoing writes and drop any remaining read data */
spi_sam_finish(Spi * regs)168 static void spi_sam_finish(Spi *regs)
169 {
170 while ((regs->SPI_SR & SPI_SR_TXEMPTY) == 0) {
171 }
172
173 while (regs->SPI_SR & SPI_SR_RDRF) {
174 (void)regs->SPI_RDR;
175 }
176 }
177
178 /* Fast path that transmits a buf */
spi_sam_fast_tx(Spi * regs,const uint8_t * tx_buf,const uint32_t tx_buf_len)179 static void spi_sam_fast_tx(Spi *regs, const uint8_t *tx_buf, const uint32_t tx_buf_len)
180 {
181 const uint8_t *p = tx_buf;
182 const uint8_t *pend = (uint8_t *)tx_buf + tx_buf_len;
183 uint8_t ch;
184
185 while (p != pend) {
186 ch = *p++;
187
188 while ((regs->SPI_SR & SPI_SR_TDRE) == 0) {
189 }
190
191 regs->SPI_TDR = SPI_TDR_TD(ch);
192 }
193 }
194
195 /* Fast path that reads into a buf */
spi_sam_fast_rx(Spi * regs,uint8_t * rx_buf,const uint32_t rx_buf_len)196 static void spi_sam_fast_rx(Spi *regs, uint8_t *rx_buf, const uint32_t rx_buf_len)
197 {
198 uint8_t *rx = rx_buf;
199 int len = rx_buf_len;
200
201 if (len <= 0) {
202 return;
203 }
204
205 /* Write the first byte */
206 regs->SPI_TDR = SPI_TDR_TD(0);
207 len--;
208
209 while (len) {
210 while ((regs->SPI_SR & SPI_SR_TDRE) == 0) {
211 }
212
213 /* Read byte N+0 from the receive register */
214 while ((regs->SPI_SR & SPI_SR_RDRF) == 0) {
215 }
216
217 *rx = (uint8_t)regs->SPI_RDR;
218 rx++;
219
220 /* Load byte N+1 into the transmit register */
221 regs->SPI_TDR = SPI_TDR_TD(0);
222 len--;
223 }
224
225 /* Read the final incoming byte */
226 while ((regs->SPI_SR & SPI_SR_RDRF) == 0) {
227 }
228
229 *rx = (uint8_t)regs->SPI_RDR;
230 }
231
232 /* Fast path that writes and reads bufs of the same length */
spi_sam_fast_txrx(Spi * regs,const uint8_t * tx_buf,const uint8_t * rx_buf,const uint32_t len)233 static void spi_sam_fast_txrx(Spi *regs,
234 const uint8_t *tx_buf,
235 const uint8_t *rx_buf,
236 const uint32_t len)
237 {
238 const uint8_t *tx = tx_buf;
239 const uint8_t *txend = tx_buf + len;
240 uint8_t *rx = (uint8_t *)rx_buf;
241
242 if (len == 0) {
243 return;
244 }
245
246 /*
247 * The code below interleaves the transmit writes with the
248 * receive reads to keep the bus fully utilised. The code is
249 * equivalent to:
250 *
251 * Transmit byte 0
252 * Loop:
253 * - Transmit byte n+1
254 * - Receive byte n
255 * Receive the final byte
256 */
257
258 /* Write the first byte */
259 regs->SPI_TDR = SPI_TDR_TD(*tx++);
260
261 while (tx != txend) {
262 while ((regs->SPI_SR & SPI_SR_TDRE) == 0) {
263 }
264
265 /* Load byte N+1 into the transmit register. TX is
266 * single buffered and we have at most one byte in
267 * flight so skip the DRE check.
268 */
269 regs->SPI_TDR = SPI_TDR_TD(*tx++);
270
271 /* Read byte N+0 from the receive register */
272 while ((regs->SPI_SR & SPI_SR_RDRF) == 0) {
273 }
274
275 *rx++ = (uint8_t)regs->SPI_RDR;
276 }
277
278 /* Read the final incoming byte */
279 while ((regs->SPI_SR & SPI_SR_RDRF) == 0) {
280 }
281
282 *rx = (uint8_t)regs->SPI_RDR;
283
284 }
285
286
287 #ifdef CONFIG_SPI_SAM_DMA
288
289 static __aligned(4) uint32_t tx_dummy;
290 static __aligned(4) uint32_t rx_dummy;
291
292 #ifdef CONFIG_SPI_RTIO
293 static void spi_sam_iodev_complete(const struct device *dev, int status);
294 #endif
295
dma_callback(const struct device * dma_dev,void * user_data,uint32_t channel,int status)296 static void dma_callback(const struct device *dma_dev, void *user_data,
297 uint32_t channel, int status)
298 {
299 ARG_UNUSED(dma_dev);
300 ARG_UNUSED(channel);
301 ARG_UNUSED(status);
302
303 const struct device *dev = user_data;
304 struct spi_sam_data *drv_data = dev->data;
305
306 #ifdef CONFIG_SPI_RTIO
307 if (drv_data->txn_head != NULL) {
308 spi_sam_iodev_complete(dev, status);
309 return;
310 }
311 #endif
312 k_sem_give(&drv_data->dma_sem);
313 }
314
315
316 /* DMA transceive path */
spi_sam_dma_txrx(const struct device * dev,Spi * regs,const uint8_t * tx_buf,const uint8_t * rx_buf,const uint32_t len)317 static int spi_sam_dma_txrx(const struct device *dev,
318 Spi *regs,
319 const uint8_t *tx_buf,
320 const uint8_t *rx_buf,
321 const uint32_t len)
322 {
323 const struct spi_sam_config *drv_cfg = dev->config;
324 struct spi_sam_data *drv_data = dev->data;
325 #ifdef CONFIG_SPI_RTIO
326 bool blocking = drv_data->txn_head == NULL;
327 #else
328 bool blocking = true;
329 #endif
330
331 int res = 0;
332
333 __ASSERT_NO_MSG(rx_buf != NULL || tx_buf != NULL);
334
335 struct dma_config rx_dma_cfg = {
336 .source_data_size = 1,
337 .dest_data_size = 1,
338 .block_count = 1,
339 .dma_slot = drv_cfg->dma_rx_perid,
340 .channel_direction = PERIPHERAL_TO_MEMORY,
341 .source_burst_length = 1,
342 .dest_burst_length = 1,
343 .complete_callback_en = true,
344 .dma_callback = NULL,
345 .user_data = (void *)dev,
346 };
347
348 uint32_t dest_address, dest_addr_adjust;
349
350 if (rx_buf != NULL) {
351 dest_address = (uint32_t)rx_buf;
352 dest_addr_adjust = DMA_ADDR_ADJ_INCREMENT;
353 } else {
354 dest_address = (uint32_t)&rx_dummy;
355 dest_addr_adjust = DMA_ADDR_ADJ_NO_CHANGE;
356 }
357
358 struct dma_block_config rx_block_cfg = {
359 .dest_addr_adj = dest_addr_adjust,
360 .block_size = len,
361 .source_address = (uint32_t)®s->SPI_RDR,
362 .dest_address = dest_address
363 };
364
365 rx_dma_cfg.head_block = &rx_block_cfg;
366
367 struct dma_config tx_dma_cfg = {
368 .source_data_size = 1,
369 .dest_data_size = 1,
370 .block_count = 1,
371 .dma_slot = drv_cfg->dma_tx_perid,
372 .channel_direction = MEMORY_TO_PERIPHERAL,
373 .source_burst_length = 1,
374 .dest_burst_length = 1,
375 .complete_callback_en = true,
376 .dma_callback = dma_callback,
377 .user_data = (void *)dev,
378 };
379
380 uint32_t source_address, source_addr_adjust;
381
382 if (tx_buf != NULL) {
383 source_address = (uint32_t)tx_buf;
384 source_addr_adjust = DMA_ADDR_ADJ_INCREMENT;
385 } else {
386 source_address = (uint32_t)&tx_dummy;
387 source_addr_adjust = DMA_ADDR_ADJ_NO_CHANGE;
388 }
389
390 struct dma_block_config tx_block_cfg = {
391 .source_addr_adj = source_addr_adjust,
392 .block_size = len,
393 .source_address = source_address,
394 .dest_address = (uint32_t)®s->SPI_TDR
395 };
396
397 tx_dma_cfg.head_block = &tx_block_cfg;
398
399 res = dma_config(drv_cfg->dma_dev, drv_cfg->dma_rx_channel, &rx_dma_cfg);
400 if (res != 0) {
401 LOG_ERR("failed to configure SPI DMA RX");
402 goto out;
403 }
404
405 res = dma_config(drv_cfg->dma_dev, drv_cfg->dma_tx_channel, &tx_dma_cfg);
406 if (res != 0) {
407 LOG_ERR("failed to configure SPI DMA TX");
408 goto out;
409 }
410
411 /* Clocking begins on tx, so start rx first */
412 res = dma_start(drv_cfg->dma_dev, drv_cfg->dma_rx_channel);
413 if (res != 0) {
414 LOG_ERR("failed to start SPI DMA RX");
415 goto out;
416 }
417
418 res = dma_start(drv_cfg->dma_dev, drv_cfg->dma_tx_channel);
419 if (res != 0) {
420 LOG_ERR("failed to start SPI DMA TX");
421 dma_stop(drv_cfg->dma_dev, drv_cfg->dma_rx_channel);
422 }
423
424 /* Move up a level or wrap in branch when blocking */
425 if (blocking) {
426 k_sem_take(&drv_data->dma_sem, K_FOREVER);
427 spi_sam_finish(regs);
428 } else {
429 res = -EWOULDBLOCK;
430 }
431
432 out:
433 return res;
434 }
435
436 #endif /* CONFIG_SPI_SAM_DMA */
437
438
spi_sam_rx(const struct device * dev,Spi * regs,uint8_t * rx_buf,uint32_t rx_buf_len)439 static inline int spi_sam_rx(const struct device *dev,
440 Spi *regs,
441 uint8_t *rx_buf,
442 uint32_t rx_buf_len)
443 {
444 k_spinlock_key_t key;
445
446 #ifdef CONFIG_SPI_SAM_DMA
447 const struct spi_sam_config *cfg = dev->config;
448
449 if (rx_buf_len < SAM_SPI_DMA_THRESHOLD || cfg->dma_dev == NULL) {
450 key = spi_spin_lock(dev);
451 spi_sam_fast_rx(regs, rx_buf, rx_buf_len);
452 } else {
453 return spi_sam_dma_txrx(dev, regs, NULL, rx_buf, rx_buf_len);
454 }
455 #else
456 key = spi_spin_lock(dev);
457 spi_sam_fast_rx(regs, rx_buf, rx_buf_len);
458 #endif
459 spi_sam_finish(regs);
460
461 spi_spin_unlock(dev, key);
462 return 0;
463 }
464
spi_sam_tx(const struct device * dev,Spi * regs,const uint8_t * tx_buf,uint32_t tx_buf_len)465 static inline int spi_sam_tx(const struct device *dev,
466 Spi *regs,
467 const uint8_t *tx_buf,
468 uint32_t tx_buf_len)
469 {
470 k_spinlock_key_t key;
471
472 #ifdef CONFIG_SPI_SAM_DMA
473 const struct spi_sam_config *cfg = dev->config;
474
475 if (tx_buf_len < SAM_SPI_DMA_THRESHOLD || cfg->dma_dev == NULL) {
476 key = spi_spin_lock(dev);
477 spi_sam_fast_tx(regs, tx_buf, tx_buf_len);
478 } else {
479 return spi_sam_dma_txrx(dev, regs, tx_buf, NULL, tx_buf_len);
480 }
481 #else
482 key = spi_spin_lock(dev);
483 spi_sam_fast_tx(regs, tx_buf, tx_buf_len);
484 #endif
485 spi_sam_finish(regs);
486 spi_spin_unlock(dev, key);
487 return 0;
488 }
489
490
spi_sam_txrx(const struct device * dev,Spi * regs,const uint8_t * tx_buf,const uint8_t * rx_buf,uint32_t buf_len)491 static inline int spi_sam_txrx(const struct device *dev,
492 Spi *regs,
493 const uint8_t *tx_buf,
494 const uint8_t *rx_buf,
495 uint32_t buf_len)
496 {
497 k_spinlock_key_t key;
498
499 #ifdef CONFIG_SPI_SAM_DMA
500 const struct spi_sam_config *cfg = dev->config;
501
502 if (buf_len < SAM_SPI_DMA_THRESHOLD || cfg->dma_dev == NULL) {
503 key = spi_spin_lock(dev);
504 spi_sam_fast_txrx(regs, tx_buf, rx_buf, buf_len);
505 } else {
506 return spi_sam_dma_txrx(dev, regs, tx_buf, rx_buf, buf_len);
507 }
508 #else
509 key = spi_spin_lock(dev);
510 spi_sam_fast_txrx(regs, tx_buf, rx_buf, buf_len);
511 #endif
512 spi_sam_finish(regs);
513 spi_spin_unlock(dev, key);
514 return 0;
515 }
516
517 #ifndef CONFIG_SPI_RTIO
518
519 /* Fast path where every overlapping tx and rx buffer is the same length */
spi_sam_fast_transceive(const struct device * dev,const struct spi_config * config,const struct spi_buf_set * tx_bufs,const struct spi_buf_set * rx_bufs)520 static void spi_sam_fast_transceive(const struct device *dev,
521 const struct spi_config *config,
522 const struct spi_buf_set *tx_bufs,
523 const struct spi_buf_set *rx_bufs)
524 {
525 const struct spi_sam_config *cfg = dev->config;
526 size_t tx_count = 0;
527 size_t rx_count = 0;
528 Spi *regs = cfg->regs;
529 const struct spi_buf *tx = NULL;
530 const struct spi_buf *rx = NULL;
531
532 if (tx_bufs) {
533 tx = tx_bufs->buffers;
534 tx_count = tx_bufs->count;
535 }
536
537 if (rx_bufs) {
538 rx = rx_bufs->buffers;
539 rx_count = rx_bufs->count;
540 }
541
542 while (tx_count != 0 && rx_count != 0) {
543 if (tx->buf == NULL) {
544 spi_sam_rx(dev, regs, rx->buf, rx->len);
545 } else if (rx->buf == NULL) {
546 spi_sam_tx(dev, regs, tx->buf, tx->len);
547 } else if (rx->len == tx->len) {
548 spi_sam_txrx(dev, regs, tx->buf, rx->buf, rx->len);
549 } else {
550 __ASSERT_NO_MSG("Invalid fast transceive configuration");
551 }
552
553 tx++;
554 tx_count--;
555 rx++;
556 rx_count--;
557 }
558
559 for (; tx_count != 0; tx_count--) {
560 spi_sam_tx(dev, regs, tx->buf, tx->len);
561 tx++;
562 }
563
564 for (; rx_count != 0; rx_count--) {
565 spi_sam_rx(dev, regs, rx->buf, rx->len);
566 rx++;
567 }
568 }
569
spi_sam_transfer_ongoing(struct spi_sam_data * data)570 static bool spi_sam_transfer_ongoing(struct spi_sam_data *data)
571 {
572 return spi_context_tx_on(&data->ctx) || spi_context_rx_on(&data->ctx);
573 }
574
spi_sam_shift_master(Spi * regs,struct spi_sam_data * data)575 static void spi_sam_shift_master(Spi *regs, struct spi_sam_data *data)
576 {
577 uint8_t tx;
578 uint8_t rx;
579
580 if (spi_context_tx_buf_on(&data->ctx)) {
581 tx = *(uint8_t *)(data->ctx.tx_buf);
582 } else {
583 tx = 0U;
584 }
585
586 while ((regs->SPI_SR & SPI_SR_TDRE) == 0) {
587 }
588
589 regs->SPI_TDR = SPI_TDR_TD(tx);
590 spi_context_update_tx(&data->ctx, 1, 1);
591
592 while ((regs->SPI_SR & SPI_SR_RDRF) == 0) {
593 }
594
595 rx = (uint8_t)regs->SPI_RDR;
596
597 if (spi_context_rx_buf_on(&data->ctx)) {
598 *data->ctx.rx_buf = rx;
599 }
600 spi_context_update_rx(&data->ctx, 1, 1);
601 }
602
603 /* Returns true if the request is suitable for the fast
604 * path. Specifically, the bufs are a sequence of:
605 *
606 * - Zero or more RX and TX buf pairs where each is the same length.
607 * - Zero or more trailing RX only bufs
608 * - Zero or more trailing TX only bufs
609 */
spi_sam_is_regular(const struct spi_buf_set * tx_bufs,const struct spi_buf_set * rx_bufs)610 static bool spi_sam_is_regular(const struct spi_buf_set *tx_bufs,
611 const struct spi_buf_set *rx_bufs)
612 {
613 const struct spi_buf *tx = NULL;
614 const struct spi_buf *rx = NULL;
615 size_t tx_count = 0;
616 size_t rx_count = 0;
617
618 if (tx_bufs) {
619 tx = tx_bufs->buffers;
620 tx_count = tx_bufs->count;
621 }
622
623 if (rx_bufs) {
624 rx = rx_bufs->buffers;
625 rx_count = rx_bufs->count;
626 }
627
628 if (!tx || !rx) {
629 return true;
630 }
631
632 while (tx_count != 0 && rx_count != 0) {
633 if (tx->len != rx->len) {
634 return false;
635 }
636
637 tx++;
638 tx_count--;
639 rx++;
640 rx_count--;
641 }
642
643 return true;
644 }
645
646 #else
647
648 static void spi_sam_iodev_complete(const struct device *dev, int status);
649 static void spi_sam_iodev_next(const struct device *dev, bool completion);
650
spi_sam_iodev_start(const struct device * dev)651 static void spi_sam_iodev_start(const struct device *dev)
652 {
653 const struct spi_sam_config *cfg = dev->config;
654 struct spi_sam_data *data = dev->data;
655 struct rtio_sqe *sqe = &data->txn_curr->sqe;
656 int ret = 0;
657
658 switch (sqe->op) {
659 case RTIO_OP_RX:
660 ret = spi_sam_rx(dev, cfg->regs, sqe->buf, sqe->buf_len);
661 break;
662 case RTIO_OP_TX:
663 ret = spi_sam_tx(dev, cfg->regs, sqe->buf, sqe->buf_len);
664 break;
665 case RTIO_OP_TINY_TX:
666 ret = spi_sam_tx(dev, cfg->regs, sqe->tiny_buf, sqe->tiny_buf_len);
667 break;
668 case RTIO_OP_TXRX:
669 ret = spi_sam_txrx(dev, cfg->regs, sqe->tx_buf, sqe->rx_buf, sqe->txrx_buf_len);
670 break;
671 default:
672 LOG_ERR("Invalid op code %d for submission %p\n", sqe->op, (void *)sqe);
673 struct rtio_iodev_sqe *txn_head = data->txn_head;
674
675 spi_sam_iodev_next(dev, true);
676 rtio_iodev_sqe_err(txn_head, -EINVAL);
677 ret = 0;
678 }
679 if (ret == 0) {
680 spi_sam_iodev_complete(dev, 0);
681 }
682 }
683
spi_sam_iodev_next(const struct device * dev,bool completion)684 static void spi_sam_iodev_next(const struct device *dev, bool completion)
685 {
686 struct spi_sam_data *data = dev->data;
687
688 k_spinlock_key_t key = spi_spin_lock(dev);
689
690 if (!completion && data->txn_curr != NULL) {
691 spi_spin_unlock(dev, key);
692 return;
693 }
694
695 struct mpsc_node *next = mpsc_pop(&data->io_q);
696
697 if (next != NULL) {
698 struct rtio_iodev_sqe *next_sqe = CONTAINER_OF(next, struct rtio_iodev_sqe, q);
699
700 data->txn_head = next_sqe;
701 data->txn_curr = next_sqe;
702 } else {
703 data->txn_head = NULL;
704 data->txn_curr = NULL;
705 }
706
707 spi_spin_unlock(dev, key);
708
709 if (data->txn_curr != NULL) {
710 struct spi_dt_spec *spi_dt_spec = data->txn_curr->sqe.iodev->data;
711 struct spi_config *spi_cfg = &spi_dt_spec->config;
712
713 spi_sam_configure(dev, spi_cfg);
714 spi_context_cs_control(&data->ctx, true);
715 spi_sam_iodev_start(dev);
716 }
717 }
718
spi_sam_iodev_complete(const struct device * dev,int status)719 static void spi_sam_iodev_complete(const struct device *dev, int status)
720 {
721 struct spi_sam_data *data = dev->data;
722
723 if (data->txn_curr->sqe.flags & RTIO_SQE_TRANSACTION) {
724 data->txn_curr = rtio_txn_next(data->txn_curr);
725 spi_sam_iodev_start(dev);
726 } else {
727 struct rtio_iodev_sqe *txn_head = data->txn_head;
728
729 spi_context_cs_control(&data->ctx, false);
730 spi_sam_iodev_next(dev, true);
731 rtio_iodev_sqe_ok(txn_head, status);
732 }
733 }
734
spi_sam_iodev_submit(const struct device * dev,struct rtio_iodev_sqe * iodev_sqe)735 static void spi_sam_iodev_submit(const struct device *dev,
736 struct rtio_iodev_sqe *iodev_sqe)
737 {
738 struct spi_sam_data *data = dev->data;
739
740 mpsc_push(&data->io_q, &iodev_sqe->q);
741 spi_sam_iodev_next(dev, false);
742 }
743 #endif
744
spi_sam_transceive(const struct device * dev,const struct spi_config * config,const struct spi_buf_set * tx_bufs,const struct spi_buf_set * rx_bufs)745 static int spi_sam_transceive(const struct device *dev,
746 const struct spi_config *config,
747 const struct spi_buf_set *tx_bufs,
748 const struct spi_buf_set *rx_bufs)
749 {
750 struct spi_sam_data *data = dev->data;
751 int err = 0;
752
753 spi_context_lock(&data->ctx, false, NULL, NULL, config);
754
755 #if CONFIG_SPI_RTIO
756 struct rtio_sqe *sqe;
757 struct rtio_cqe *cqe;
758
759 struct spi_dt_spec *dt_spec = &data->dt_spec;
760
761 dt_spec->config = *config;
762
763 int ret = spi_rtio_copy(data->r, &data->iodev, tx_bufs, rx_bufs, &sqe);
764
765 if (ret < 0) {
766 err = ret;
767 goto done;
768 }
769
770 /* Submit request and wait */
771 rtio_submit(data->r, ret);
772
773 while (ret > 0) {
774 cqe = rtio_cqe_consume(data->r);
775
776 if (cqe->result < 0) {
777 err = cqe->result;
778 }
779
780 rtio_cqe_release(data->r, cqe);
781
782 ret--;
783 }
784 #else
785 const struct spi_sam_config *cfg = dev->config;
786
787 err = spi_sam_configure(dev, config);
788 if (err != 0) {
789 goto done;
790 }
791
792 spi_context_cs_control(&data->ctx, true);
793
794 if (spi_sam_is_regular(tx_bufs, rx_bufs)) {
795 spi_sam_fast_transceive(dev, config, tx_bufs, rx_bufs);
796 } else {
797 spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);
798
799 do {
800 spi_sam_shift_master(cfg->regs, data);
801 } while (spi_sam_transfer_ongoing(data));
802 }
803
804 spi_context_cs_control(&data->ctx, false);
805 #endif
806 done:
807 spi_context_release(&data->ctx, err);
808 return err;
809 }
810
spi_sam_transceive_sync(const struct device * dev,const struct spi_config * config,const struct spi_buf_set * tx_bufs,const struct spi_buf_set * rx_bufs)811 static int spi_sam_transceive_sync(const struct device *dev,
812 const struct spi_config *config,
813 const struct spi_buf_set *tx_bufs,
814 const struct spi_buf_set *rx_bufs)
815 {
816 return spi_sam_transceive(dev, config, tx_bufs, rx_bufs);
817 }
818
819 #ifdef CONFIG_SPI_ASYNC
spi_sam_transceive_async(const struct device * dev,const struct spi_config * config,const struct spi_buf_set * tx_bufs,const struct spi_buf_set * rx_bufs,spi_callback_t cb,void * userdata)820 static int spi_sam_transceive_async(const struct device *dev,
821 const struct spi_config *config,
822 const struct spi_buf_set *tx_bufs,
823 const struct spi_buf_set *rx_bufs,
824 spi_callback_t cb,
825 void *userdata)
826 {
827 /* TODO: implement async transceive */
828 return -ENOTSUP;
829 }
830 #endif /* CONFIG_SPI_ASYNC */
831
spi_sam_release(const struct device * dev,const struct spi_config * config)832 static int spi_sam_release(const struct device *dev,
833 const struct spi_config *config)
834 {
835 struct spi_sam_data *data = dev->data;
836
837 spi_context_unlock_unconditionally(&data->ctx);
838
839 return 0;
840 }
841
spi_sam_init(const struct device * dev)842 static int spi_sam_init(const struct device *dev)
843 {
844 int err;
845 const struct spi_sam_config *cfg = dev->config;
846 struct spi_sam_data *data = dev->data;
847
848 /* Enable SPI clock in PMC */
849 (void)clock_control_on(SAM_DT_PMC_CONTROLLER,
850 (clock_control_subsys_t)&cfg->clock_cfg);
851
852 err = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
853 if (err < 0) {
854 return err;
855 }
856
857 err = spi_context_cs_configure_all(&data->ctx);
858 if (err < 0) {
859 return err;
860 }
861
862 #ifdef CONFIG_SPI_SAM_DMA
863 k_sem_init(&data->dma_sem, 0, K_SEM_MAX_LIMIT);
864 #endif
865
866 #ifdef CONFIG_SPI_RTIO
867 data->dt_spec.bus = dev;
868 data->iodev.api = &spi_iodev_api;
869 data->iodev.data = &data->dt_spec;
870 mpsc_init(&data->io_q);
871 #endif
872
873 spi_context_unlock_unconditionally(&data->ctx);
874
875 /* The device will be configured and enabled when transceive
876 * is called.
877 */
878
879 return 0;
880 }
881
882 static const struct spi_driver_api spi_sam_driver_api = {
883 .transceive = spi_sam_transceive_sync,
884 #ifdef CONFIG_SPI_ASYNC
885 .transceive_async = spi_sam_transceive_async,
886 #endif
887 #ifdef CONFIG_SPI_RTIO
888 .iodev_submit = spi_sam_iodev_submit,
889 #endif
890 .release = spi_sam_release,
891 };
892
893 #define SPI_DMA_INIT(n) \
894 .dma_dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(n, tx)), \
895 .dma_tx_channel = DT_INST_DMAS_CELL_BY_NAME(n, tx, channel), \
896 .dma_tx_perid = DT_INST_DMAS_CELL_BY_NAME(n, tx, perid), \
897 .dma_rx_channel = DT_INST_DMAS_CELL_BY_NAME(n, rx, channel), \
898 .dma_rx_perid = DT_INST_DMAS_CELL_BY_NAME(n, rx, perid),
899
900 #ifdef CONFIG_SPI_SAM_DMA
901 #define SPI_SAM_USE_DMA(n) DT_INST_DMAS_HAS_NAME(n, tx)
902 #else
903 #define SPI_SAM_USE_DMA(n) 0
904 #endif
905
906 #define SPI_SAM_DEFINE_CONFIG(n) \
907 static const struct spi_sam_config spi_sam_config_##n = { \
908 .regs = (Spi *)DT_INST_REG_ADDR(n), \
909 .clock_cfg = SAM_DT_INST_CLOCK_PMC_CFG(n), \
910 .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
911 .loopback = DT_INST_PROP(n, loopback), \
912 COND_CODE_1(SPI_SAM_USE_DMA(n), (SPI_DMA_INIT(n)), ()) \
913 }
914
915 #define SPI_SAM_RTIO_DEFINE(n) RTIO_DEFINE(spi_sam_rtio_##n, CONFIG_SPI_SAM_RTIO_SQ_SIZE, \
916 CONFIG_SPI_SAM_RTIO_SQ_SIZE)
917
918 #define SPI_SAM_DEVICE_INIT(n) \
919 PINCTRL_DT_INST_DEFINE(n); \
920 SPI_SAM_DEFINE_CONFIG(n); \
921 COND_CODE_1(CONFIG_SPI_RTIO, (SPI_SAM_RTIO_DEFINE(n)), ()); \
922 static struct spi_sam_data spi_sam_dev_data_##n = { \
923 SPI_CONTEXT_INIT_LOCK(spi_sam_dev_data_##n, ctx), \
924 SPI_CONTEXT_INIT_SYNC(spi_sam_dev_data_##n, ctx), \
925 SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(n), ctx) \
926 IF_ENABLED(CONFIG_SPI_RTIO, (.r = &spi_sam_rtio_##n)) \
927 }; \
928 DEVICE_DT_INST_DEFINE(n, &spi_sam_init, NULL, \
929 &spi_sam_dev_data_##n, \
930 &spi_sam_config_##n, POST_KERNEL, \
931 CONFIG_SPI_INIT_PRIORITY, &spi_sam_driver_api);
932
933 DT_INST_FOREACH_STATUS_OKAY(SPI_SAM_DEVICE_INIT)
934