1 /*
2 * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 *
6 * Licensed under the Apache License, Version 2.0 (the License); you may
7 * not use this file except in compliance with the License.
8 * You may obtain a copy of the License at
9 *
10 * www.apache.org/licenses/LICENSE-2.0
11 *
12 * Unless required by applicable law or agreed to in writing, software
13 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
14 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 * See the License for the specific language governing permissions and
16 * limitations under the License.
17 */
18
19 /* ----------------------------------------------------------------------
20 * Project: CMSIS NN Library
21 * Title: arm_depthwise_conv_3x3_s8.c
22 * Description: Optimized s8 depthwise convolution function for channel
23 * multiplier of 1 and 3x3 kernel size.
24 *
25 * $Date: 09. October 2020
26 * $Revision: V.2.0.1
27 *
28 * Target Processor: Cortex-M CPUs
29 *
30 * -------------------------------------------------------------------- */
31
32 #include "arm_nnfunctions.h"
33 #include "arm_nnsupportfunctions.h"
34
35 /**
36 * @ingroup groupNN
37 */
38
39 /**
40 * @addtogroup NNConv
41 * @{
42 */
43
44 /*
45 * Optimized s8 depthwise convolution function with constraint that
46 * in_channel == out_channel and kernel_x == kernel_y == 3 with pads at most 1
47 *
48 * Refer prototype header file for details.
49 *
50 */
51
arm_depthwise_conv_3x3_s8(const cmsis_nn_context * ctx,const cmsis_nn_dw_conv_params * dw_conv_params,const cmsis_nn_per_channel_quant_params * quant_params,const cmsis_nn_dims * input_dims,const q7_t * input,const cmsis_nn_dims * filter_dims,const q7_t * kernel,const cmsis_nn_dims * bias_dims,const int32_t * bias,const cmsis_nn_dims * output_dims,q7_t * output)52 arm_status arm_depthwise_conv_3x3_s8(const cmsis_nn_context *ctx,
53 const cmsis_nn_dw_conv_params *dw_conv_params,
54 const cmsis_nn_per_channel_quant_params *quant_params,
55 const cmsis_nn_dims *input_dims,
56 const q7_t *input,
57 const cmsis_nn_dims *filter_dims,
58 const q7_t *kernel,
59 const cmsis_nn_dims *bias_dims,
60 const int32_t *bias,
61 const cmsis_nn_dims *output_dims,
62 q7_t *output)
63 {
64 (void)ctx;
65 (void)bias_dims;
66
67 const int32_t input_x = input_dims->w;
68 const int32_t input_y = input_dims->h;
69 const int32_t input_ch = input_dims->c;
70 const int32_t output_ch = output_dims->c;
71 const int32_t pad_x = dw_conv_params->padding.w;
72 const int32_t pad_y = dw_conv_params->padding.h;
73 const int32_t stride_x = dw_conv_params->stride.w;
74 const int32_t stride_y = dw_conv_params->stride.h;
75 const int32_t *output_shift = quant_params->shift;
76 const int32_t *output_mult = quant_params->multiplier;
77 const int32_t output_x = output_dims->w;
78 const int32_t output_y = output_dims->h;
79 const int32_t output_offset = dw_conv_params->output_offset;
80 const int32_t input_offset = dw_conv_params->input_offset;
81 const int32_t output_activation_min = dw_conv_params->activation.min;
82 const int32_t output_activation_max = dw_conv_params->activation.max;
83
84 /* Check input constraints input_ch == output_ch */
85 if (input_ch != output_ch)
86 {
87 return ARM_MATH_SIZE_MISMATCH;
88 }
89 /* Check input constraints pad_x <= 1 */
90 if (pad_x > 1 || filter_dims->w != 3 || filter_dims->h != 3)
91 {
92 return ARM_MATH_ARGUMENT_ERROR;
93 }
94
95 for (int32_t in_h = -pad_y, out_h = 0, out_idx = 0; out_h < output_y; in_h += stride_y, ++out_h)
96 {
97 for (int32_t in_w = -pad_x, out_w = 0, ker_h_start = MAX(0, -in_h); out_w < output_x; in_w += stride_x, ++out_w)
98 {
99 int32_t in_ch = 0;
100 int32_t ker_w_start = MAX(0, -in_w);
101
102 for (; in_ch <= (input_ch - 4); in_ch += 4)
103 {
104 int32_t out_buff0 = bias[in_ch + 0];
105 int32_t out_buff1 = bias[in_ch + 1];
106 int32_t out_buff2 = bias[in_ch + 2];
107 int32_t out_buff3 = bias[in_ch + 3];
108
109 const int8_t *input_ptr = input + (in_h + ker_h_start) * (input_ch * input_x) + in_w * input_ch + in_ch;
110 const int8_t *kernel_ptr = kernel + ker_h_start * (input_ch * 3) + in_ch;
111
112 for (int32_t ker_h = ker_h_start; ker_h < MIN(3, input_y - in_h); ++ker_h)
113 {
114 int32_t in_val = 0;
115 int32_t ker_val = 0;
116
117 if (ker_w_start == 0)
118 {
119 in_val = arm_nn_read_q7x4(input_ptr);
120 ker_val = arm_nn_read_q7x4(kernel_ptr);
121
122 out_buff0 += ((int8_t)in_val + input_offset) * (int8_t)ker_val;
123 out_buff1 += ((int8_t)(in_val >> 8) + input_offset) * (int8_t)(ker_val >> 8);
124 out_buff2 += ((int8_t)(in_val >> 16) + input_offset) * (int8_t)(ker_val >> 16);
125 out_buff3 += ((int8_t)(in_val >> 24) + input_offset) * (int8_t)(ker_val >> 24);
126 }
127
128 in_val = arm_nn_read_q7x4(input_ptr + input_ch);
129 ker_val = arm_nn_read_q7x4(kernel_ptr + input_ch);
130
131 out_buff0 += ((int8_t)in_val + input_offset) * (int8_t)ker_val;
132 out_buff1 += ((int8_t)(in_val >> 8) + input_offset) * (int8_t)(ker_val >> 8);
133 out_buff2 += ((int8_t)(in_val >> 16) + input_offset) * (int8_t)(ker_val >> 16);
134 out_buff3 += ((int8_t)(in_val >> 24) + input_offset) * (int8_t)(ker_val >> 24);
135
136 if ((input_x - in_w) >= 3)
137 {
138 in_val = arm_nn_read_q7x4(input_ptr + (input_ch << 1));
139 ker_val = arm_nn_read_q7x4(kernel_ptr + (input_ch << 1));
140
141 out_buff0 += ((int8_t)in_val + input_offset) * (int8_t)ker_val;
142 out_buff1 += ((int8_t)(in_val >> 8) + input_offset) * (int8_t)(ker_val >> 8);
143 out_buff2 += ((int8_t)(in_val >> 16) + input_offset) * (int8_t)(ker_val >> 16);
144 out_buff3 += ((int8_t)(in_val >> 24) + input_offset) * (int8_t)(ker_val >> 24);
145 }
146
147 input_ptr += (input_ch * input_x);
148 kernel_ptr += (input_ch * 3);
149 }
150
151 out_buff0 = arm_nn_requantize(out_buff0, output_mult[in_ch + 0], output_shift[in_ch + 0]);
152 out_buff1 = arm_nn_requantize(out_buff1, output_mult[in_ch + 1], output_shift[in_ch + 1]);
153 out_buff2 = arm_nn_requantize(out_buff2, output_mult[in_ch + 2], output_shift[in_ch + 2]);
154 out_buff3 = arm_nn_requantize(out_buff3, output_mult[in_ch + 3], output_shift[in_ch + 3]);
155
156 out_buff0 += output_offset;
157 out_buff1 += output_offset;
158 out_buff2 += output_offset;
159 out_buff3 += output_offset;
160
161 out_buff0 = MIN(MAX(out_buff0, output_activation_min), output_activation_max);
162 out_buff1 = MIN(MAX(out_buff1, output_activation_min), output_activation_max);
163 out_buff2 = MIN(MAX(out_buff2, output_activation_min), output_activation_max);
164 out_buff3 = MIN(MAX(out_buff3, output_activation_min), output_activation_max);
165
166 output[out_idx++] = (int8_t)out_buff0;
167 output[out_idx++] = (int8_t)out_buff1;
168 output[out_idx++] = (int8_t)out_buff2;
169 output[out_idx++] = (int8_t)out_buff3;
170 }
171
172 // Leftover
173 for (; in_ch < input_ch; ++in_ch)
174 {
175 int32_t out_buff = bias[in_ch];
176
177 const int8_t *input_ptr = input + (in_h + ker_h_start) * (input_ch * input_x) + in_w * input_ch + in_ch;
178 const int8_t *kernel_ptr = kernel + ker_h_start * (input_ch * 3) + in_ch;
179
180 for (int32_t ker_h = ker_h_start; ker_h < MIN(3, input_y - in_h); ++ker_h)
181 {
182 if (ker_w_start == 0)
183 {
184 out_buff += (*(input_ptr) + input_offset) * *(kernel_ptr);
185 }
186
187 out_buff += (*(input_ptr + input_ch) + input_offset) * *(kernel_ptr + input_ch);
188
189 if ((input_x - in_w) >= 3)
190 {
191 out_buff += (*(input_ptr + (input_ch << 1)) + input_offset) * *(kernel_ptr + (input_ch << 1));
192 }
193
194 input_ptr += (input_ch * input_x);
195 kernel_ptr += (input_ch * 3);
196 }
197
198 out_buff = arm_nn_requantize(out_buff, output_mult[in_ch], output_shift[in_ch]);
199 out_buff += output_offset;
200 out_buff = MIN(MAX(out_buff, output_activation_min), output_activation_max);
201 output[out_idx++] = (int8_t)out_buff;
202 }
203 }
204 }
205
206 /* Return to application */
207 return ARM_MATH_SUCCESS;
208 }
209
210 /**
211 * @} end of NNConv group
212 */
213